DOI: 10.1002/ece3.9763

RESEARCHARTICLE

Role of plant relatedness in plant—soil feedback dynamics of sympatric *Asclepias* species

Eric B. Duell¹ | James D. Bever^{1,2} | Gail W. T. Wilson³

Abstract									
Plants	affect	associate	d	biotic	and	abiotic	edaphic	factors,	
	with	reciproca	lfeedback	S	from	soil	character	istics	
	affecting	plants.	These	two-	way	interactio	ns	between	
	plants	and	soils	are	collective	ly	known	as	
	plant–	soil	feedback	S	(PSFs).	The	role	of	
	phylogen	etic	relatedne	ess.	and	evolution	ary	histories	
	have	recently	emerged	as	а	potential	driver	of	
	PSFs,	although	the	strength	and	direction	of	feedback	.S
	among	sympatric	congener	s	are	not	well-	understo	od.
	We	examined	lplant–	soil	feedback	response	s	of	
	Asclepias	syriaca,	а	common	clonal	milkweed	Ispecies,	with	
	several	sympatric	congener	s	across	a	gradient	of	
	increasing	g	phylogen	etic	distances	(A. tubero	osa,	A. viridis,	Α.
sullivantii	,	and	A. verticil	lata,	respectiv	ely).	Plant-	soil	
	feedback	S	were	measure	d	through	productiv	vity	an
	colonizati	ion	by	arbuscula	ar	mycorrhi	zal	(AM)	
	fungi.	Asclepias	syriaca pr	oduced le	ess biomas	s	in	soils	
	condition	ed	by	the	most	phylogen	etically	distant	
	species	(A. vertici	illata),	relative	to conspec		ic-	conditioned	
	soils.	Similarly,	arbuscula	ır	mycorrhi	zal	(AM)	fungal	
	colonizati	ion	of	A. syriaco	roots	was	reduced	when	
	grown	in	soils	condition	ied	by	A.	vertici	llat
	compared	d	with	colonizati	ion	in	plants	grown	in
	soil	condition	ed	by	any	of	the	other	
	three	Asclepias	species,	indicating	gmycorrhi	zal	associatio	ons	are
	а	potential	mechanis	m	of	observed	positive	PSFs.	Th
	display	of	difference	es	between	the	most		
	phylogen	etically	distant,	but	not	close	or	intermed	liate
	paring(s)	suggests	а	potential	phylogen	etic	threshold	l,	
	although	other	exogenou	IS	factors	cannot	be	ruled	ou
	Overall,	these	results	highlight	the	potential	role	of	

Open Access

¹KansasBiologicalSurvey&CenterforEcologicalResearch,Lawrence,Kansas,

USA

²Department of Ecology & Evolutionary

Biology, University of Kansas,
Lawrence, Kansas, USA

³Department of Natural Resource

Ecology & Management,

Oklahoma State University, Stillwater,
Oklahoma USA

Correspondence

Eric B. Duell, Kansas
Biological Survey & Center
for Ecological Research, Lawrence,
KS, USA.

Email: eduell@ku.edu

Funding information

National Institute of Food and Agriculture,

Grant/Award Number: 1003475

and

OKL- 02930; National Science

Foundation,

Grant/Award Number: OIA

1656006

phylogenetic distance in influencing positive PSFs through mutualists. The role of phylogenetic relatedness and evolutionary histories have recently emerged as potential driver of plantsoil direction of feedbacks (PSFs), although the strength and feedbacks sympatriccongeners among are not wellunderstood. Congeneric, sympatricmilkweeds typically generated positive PSFs terms productivity and AM fungal colonization, suggesting the likelihoodof low coexistence among tested with feedback increasing pairs, а strength of as the phylogenetic distance increases.

KEYWORDS

arbuscular mycorrhizal (AM) fungi, *Asclepias*, congener, mutualists,phylogenetic relatedness, plant— soil feedback (PSF)

This is an open access	article un	nder th	e term	s of	the	Creative	Commons	Attribution
License, which permits use, distribution	and re	production	in	any	medium,	provided	the	original
work is properly cited.								
© 2023 The Authors. <i>Ecology and Evolution</i> published	by Jo	hn W	'iley &	Sons	Ltd.			

Ecology and Evolution. 2023;13:e9763.

www.ecolevol.org

1 of 9 https://doi.org/10.1002/ece3.9763

ecology

Ά	Х	0	N	0	M	Υ	С	L	A	S	S	I	F	I	C	ΑT	1	0)	١

Botany, Community ecology, Evolutionar y ecology, Soil

1 **INTRODUCTION**

Interactions between plants and associated soils important role in the shaping play of and maintenance plant communities et 2015; (Bever al., Schnitzer, et Mangan, al., 2010). **Plants** actively exude phytohormones, sugars, and other compounds, which directly indirectly influence the biotic and abiotic and properties of rhizosphere soil 1994; (Bever, 2018: De et Meiners et Long al., al., 2017). The effects of plants on soil properties, along with subsequent local reciprocal interactions, collectively known are feedbacks (PSFs) plant-(Bever as soil et 2010). Plantsoil feedbacks span al., a continuum from negative to positive, and the direction and magnitude of the feedback are often determined by the presence or abundance, of absence, as well as 2019). certain soil biota (Crawford et al., growth Negative **PSFs** occur when plant is reduced in soil previously occupied by plants of the same species (conspecificconditioned), compared to growth in soil previously occupied different by а species (heterospecificconditioned). Alternatively, positive **PSFs** occur when plants produce greater biomass in conditioned soil by conspecifics, relative to heterospecificconditioned soil. In plant communities. negative PSFs encourage heterogeneity and between heterospecifics; coexistence thereby positive **PSFs** promoting greater plant diversity, whereas with resultant reductions in promote monotypic stands, 1997; plant diversity (Bever et al., Mack et al., 2019). Plant species within native, evolved communities typically exert where negative PSF, the species generally performs better conditioned in soils by heterospecifics, which facilitates greater overall plant diversity (Crawford et al., 2019; Meiners et 2017; & 2020). al., Stein Mangan, of factors influence the However, a number of PSF dynamics magnitude and direction between species within а localized plant community, with tremendous implications for communitylevel interactions contributing heterogeneity. Elucidation of mechanisms driving these interactions critical further understanding is for οf

competitiv	/e	dynamics	that	contribute	to	obser
ved	communit	у	patterns.			
One	such	mechanisn	n	may	be	plant
relatednes	SS.	Closely	related	species	are	more
likely	to	share	common	traits	or	
characteri	stics	due	to	a	longer	shared
evolutiona	ar y	histor y,	relative	to	species	that
diverged	earlier	in	histor y	(Pagel,	1999).	Over
the	last	decade,	a	growing	body	of
literature	suggests	that	phylogene	tic	relationshi	ps
influence	plant-	soil	interaction	IS	(Anacker	et
al.,	2014;	Crawford	et	al.,	2019;	
Hoeksema	et	al.,	2018;	Kempel	et	al.,
2018;	Segnitz	et	al.,	2020;	Wandrag	et
al.,	2020).	Although	diverse,	native	plant	
communit	ies	typically	display	high	levels	of
phylogene	tic	diversity	with	representa	tives	from
multiple	genera,	families,	and	orders,	many	
ecosystem	IS	support	suites	of	sympatric	
congeners	,and	the	role	of	PSFs	among
CO-	occurring	congeners	is	poorly	understood	d
(Wilschut	et	al.,	2019).	While	some	studies
have	found	no	relationshi	р	between	
phylogene	tic	distance	and	PSF	(Mehrabi	&
Tuck,	2014; Wils	chut	et	al.,	2019),	many
others	have	found	considerab	ole	support	for
phylogene	etic	relatednes	S	influencing	PSF	
dynamics	(Anacker	et	al.,	2014;	Crawford	et
al.,	2019;	Hoeksema	et	al.,	2018;	Kempel
et	al.,	2018;	Wandrag	et	al.,	2020).
However,	PSF	can	be	driven	by	several
mechanisı	ns,	some	of	which	may	be
differentia	lly	influenced	by	phylogene	tic	
relatednes	SS	of	host	plants.	For	
instance,	the	degree	of	host	specificity	of
soil	pathogens	and	mutualists	may	depend	upon
phylogene	tic	scale,	with	pathogens	being	more
specialized	din	lower-	order	taxa	[e.g.	within
genera	(Wang,	Hoffland,	et	al.,	2019;	Wang,
Jiang,	et	al.,	2019)].	Strong	phylogene	tic
conser vat	ism	of	host-	specific	pathogens	
suggests	that	many	plant	species	should	exhibit
strong	negative	PSF	when	soil	is	
condition	ed	by	phylogene	tically	distant	plant
species,	due	to	the	lack	of	shared
antagonis	:S	(Collins	et	al.,	2020;	Gilbert
&	Webb,	2007;	Parker	et	al.,	2015).
Alternativ	•	PSFs	may	be	driven	by
the						•
	presence	or	absence	of	mutualists	,which
typically	presence show		absence specificity		mutualists,	,which order
	show	or greater [e.g.				

Jiang, Hoffland, et al., 2019; Wang, et (whorled milk weed). and several others. 2019)]. do the bet ween milk al., For example, plants that Recause relationship weeds share will likely mutualisticcohorts exhibit AM fungi unexplored, not and remains largely positive **PSFs** if each plant benefits knowledgegaps including the direc species many exist. equally from the hostspecific mutualists tion and magnitude of feedbacks occurring bet (Hoeksema et al., 2018; Reinhart et ween sympatric species. Filling these gaps can 2012). if intraspecific organization al., In this scenario. provide insight into phylogenetically distant species are less likely on landscapeswhere congeners cooccur, and share mutualists due to earlier how these dvnamic s mav he mediated through to divergences. relative to more closely related PSFs. **PSFs** will likely PSF species. then hecome more Tο the dynamics het ween 255655 the distance sympatric congeners, a positive as phylogenetic greenhouse study was increases (Crawford al., 2019). The conduc ted streng th et vast tο assess the and ٥f majority of studies examining the role direc tion οf **PSFs** occurring bet ween a evolutionar v histor y in plantmicrobial common, clonal milk weed species [A. syriaca (focal interactions do so at ver y coarse sympatric species)] and four congeners across phylogenetic scales, incorporating relatively large gradient increasing phylogenetic dist ances [A. numbers species from multiple genera or tuberosa, A. viridis, A. sullivantii, A. verticillata, and families (Crawford et al., 2019; Hoeksema et respec tively (collec tively, peripheral species)]. The al.. 2018). Negative feedbacks have A. syriaca on heen shown influence of sympatric congeners, as predominate at such well the reciprocal ef fec t s, tο scales as coarse were (Crawford et 2019), consistent with al.. deeply measured by comparing biomass produc tion and conser ved plant fungal of peripheral species traits related to pathogen AM colonization defense. Whether conspecificvariation in mutualists becomes more grown in A. syriaca- and important at finer phylogenetic scales remains conditioned soils. Due to previous perform unknown. research suggesting many native plant species in conditioned Milk weeds (Asclepias) are а diverse poorly soil by genus of plant s in the milkweed and conspecific s, we hypothesize that our family with 130 of selec ted milk weed species will produce greater dogbane (Apoc vnaceae). estimated 400 in Nor th and AM fungal the species found biomass have greater America. Milk weed research has increased dramatically colonization in soil conditioned bv PSF). due in (i.e. over the past t wo decades, heterospecific s negative Fur thermore, the hypothesize that this dif ference will par t to it s impor t ance as we primar y food source of monarch (Danaus plexippus be amplified as the phylogenetic dist L.) lar vae. Only recently have researchers ance of the "conditioning" species PSFs, st ar ted to explore the complex relationships increases. Native plant s of ten promote negative bet ween milk weeds and soil symbiont s, although previous research suggest s positive or neutral arbuscular mycorrhizal (AM) fungi. **PSFs** be obser ved bet ween closely related par ticularly mav Even less research has been conduc ted species (Liu et al., 2011; Craw ford et assessing PSF occurring bet 2019). that mav he al., Because οf this, We expec t dif ferent milk weed species, weakly **PSFs** bet ween A. with only one neutral negative ween or published to & study being date (Snyder syriaca and more closely related species. such 2019). **PSFs** Harmon-Threat t, In the grasslands of as A. tuberosa and A. viridis. with negative central Nor th America, several Asclepias species becoming more strongly as the obser ved growing within relatively phylogenetic dist ance increases, as with A. be close proximity to one another. Common sympatric species sullivantii A. verticillata. F xamination of Nor th American prairies include **PSFs** of closely related species is largely in Asclepias syriaca L. (common milk weed), Α. nonexistent. including species at the center (but ter fly milk weed), of conser vation A. viridis Walter current such tuberosa L. concerns. as Α antelopehorn), A. sullivantii Engelm. ex Βv examining the and (green Asclepias spp ahovemilk weed), A. verticillata belowground ef fec t s (i.e. produc Gray (prairie L biomass tion

and	AM	fungal	colonizatio	on,	respec	tively)	was	collec ted	for	use	as	inoculum	in
of	PSFs	bet ween	CO-	occurring	congeners	,we	а	subsequer	nt	feedback	experimen	nt .	For
may	bet ter	underst an	nd	the	role	of	our	focal	species,	A. syriaca,	80	seedlings	were
plant-	soil-	microbial	interac tio	ns	in	shaping	grown	for	the	purposes	of	soil	
plant	communit	ies.	In	addition,	this		conditioni	ng,	whereas	20	individuals	of	each
research	can	provide	key	insight	into	the	of	the	other	four	species	were	grown.
coexistenc	ce	dynamic s	of	related	species	on	This	ensured	that	enough	inoculum	would	be
the	landscape	, as	well	as	the	degree	produced	for	each	pair wise	feedback	bet ween	being
to	which	evolutiona	ır y	histor y	dic t ates	plant-	tested.	The	soil	conditionii	ng	phase	
soil-	microbial	interac tio	ns.				consisted	of	160	pot s	[(4	species × 2	20
							replicates)	+(1	species × 8	3 0	replicates)].	
							Condition	ed	soils	were	pooled	by	species
2 1	METHODS	S					and	homogeni	zed	prior	to	use	as

inoculum for

2

individuals were

beginning to

senesce,

soil

2.1 Plant species, soil collection, and soil conditioning

In our experiment, we tested the plantsoil feedback dynamics focal of а (Asclepias syriaca) four plant species and sympatric congeners spanning across phylogenetic а gradient. Asclepias syriaca longlived perennial, clonal milkweed species native to much of eastern and central North America. The peripheral species, from decreasing to four increasing phylogenetic distance from A. syriaca, were A. tuberosa (phylogenetic distance: 480.5), A. (1155.0), A. sullivantii viridis (1308.8), and Α. verticillata (2441.1). Phylogenetic distances were derived from recent phylogenies constructed by Fishbein et al. (2018). Native tallgrass prairie soil was collected from the Konza Prairie Biological Station (KPBS), Manhattan, KS, USA all five species in this where used commonly found. experiment can be Soil was sieved through а 10 mm sieve tο rocks material. remove and plant coarse ΑII seeds for this experiment were Prairie purchased from Moon Nurser y (Winona, MN, USA). In initial of the the phase experiment, soils were conditioned, by growing individual Asclepias seedlings in 650 ml dee-(Stuewe & Sons, OR pot s Inc., Tangent, USA) cont aining 60 0 g of native prairie soil. conditioning Each not cont ained a single of of the seedling one five species used in the experiment, and this all Plant s process repeated for species. was for were grown and maint ained 18 weeks, at which time the majorit y of

2.2 Plant-Soil feedback (PSF) experiment

the

PSF

experiment.

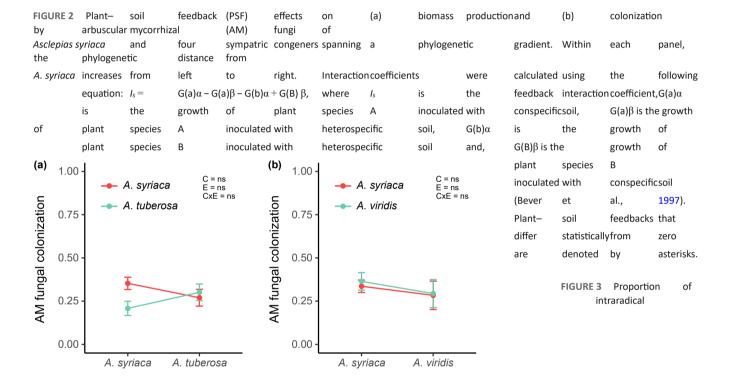
The	experimen	ital	design	of	the	PSF
test	follows	the	feedback	approach	described	by
Bever	(1994).	Seeds	of	all	five	species
were	germinate	d	in	moist	vermiculite	9
following	30 days	of	cold-	moist	stratification	on.
After	two	pairs	of	true	leaves	had
formed	(~24 days)	,individual	seedlings	were	transplant	ed
into	pots	(Stuewe	&	Sons,	Inc.,	
Tangent,	OR,	USA)	filled	with	60 0 g	(dr y
weight)	of	soil	partitioned	d	into	three
layers:	40 0 g	of	steam-	pasteurize	d	prairie
(KPBS)	soil	[80°C	for	2 h	and	allowed
to	cool	for	72 h	to	eliminate	biotic
communit	ies	but	retain	soil	abiotic	traits
(Hetrick	et	al.,	1990,	Wilson	&	
Hartnett,	1998)],	followed	by	10 0 g	of	soil
inoculum	(described	above	in	soil	conditioning	ng
phase),	followed	by	10 0 g	of	steam-	
pasteurize	ed	soil	to	protect	from	cross-
contamina	ation	during	the	growing	period	(Duell
et	al.,	2019).	For	our	focal	species,
A. syriaca,	, a	single	seedling	was	planted	per
pot	and	inoculated	with	soil	conditione	d
by	а	conspecific	cor	one	of	each
of	the	four	heterospe	cific	peripheral	species.
For	each	of	the	four	peripheral	species,
a	single	seedling	was	planted	per	pot
and	inoculated	with	soil	conditione	ed	by
conspecifi	cs	or	soil	conditione	ed	by
A. syriaca	. The	feedback	test	consisted	of	a
partially	factorial	design	with	130	pots	[(1
species × .	5 inocula × 1	10	replicates)	+ (4	species × 2	!
inocula × :	10	replicates)].			

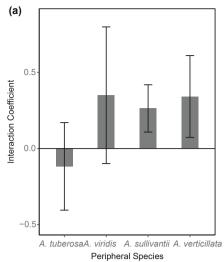
After	20 weeks,	nrior	to	shoot	senescenc	•
	,	•				•
plants	were	harvested,	and	root	and	shoot
biomass	was	separated.	All	biomass	was	dried
at	60°C	for	48 h	and	weighed.	Roots
were	washed	free	of	soil	and	three
subsample	es	from	each	individual	plant	were
collected	and	stained	with	Tr ypan	blue	to
determine	the	percent	mycorrhiza	al	root	
colonizatio	n.	AM	fungal	root	colonizatio	n
was	scored	by	using	the	magnified	gridline
intersect	method	(McGonigl	e	et	al.,	1990),
using	a	compound	l microscop	е	(20 0×)	to
measure	the	percentage	е	of	root	
colonized	by	AM	fungal	structures		
(hyphae+	vesicles + a	rbuscules).	For	each	root	sample,
three	random	sections	of	root	length	were
scored	separately	, with	а	total	of	
approxima	itely	90 0	grids	obser ved	per	sample.
Reported	colonizatio	on	values	of	each	sample
represent	the	mean	of	these	three	subsets.

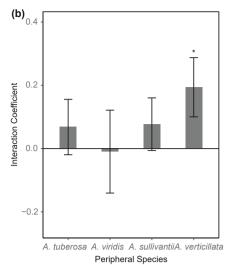
2.3 | Statistical analyses

Feedbacks were calculated for tot al biomass and fungal colonization. intraradical AM Interac tion coef ficient s were calculated to quantif PSF dynamic s bet ween У A. syriaca and several with inoculum conditioned peripheral congeners grown by either conspecificor heterospecific plant s. We used the following equation: $I_s =$ G (A) $_{\alpha}$ – G (A) $_{\beta}$ – G (B) $_{\alpha}$ + G (B) $_{\beta}$, where the l, is feedback interaction coef ficient, $G(A)_a$ is the grow th plant species Α conspecificsoil, G (A)_β inoculated with is the grow th of plant species Δ inoculated with heterospecific $G(B)_a$ the grow th soil. is В inoculated with of plant species heterospecific soil and, $G(B)_{\beta}$ is the grow th of plant species B inoculated with conspecificsoil (Bever et al., 1997). When $(I_s > 0),$ Is values are positive а net feedback positive on plant grow th is the soil communit y, generated by and coexistence bet ween plant species does not Conversely, when Is values occur. are $(I_s < 0),$ negative feedback on negative а net plant grow th is generated by the soil communit y, and coexistence bet ween plant does (Bever, 2003). Interac tion species occur coef ficientvalues calculated for each were

A. syriaca and combination of the four peripheral species. Using PROC-GLM in SAS, we construc ted а general linear model using logtransformed (for normalization of dat a) biomass dat a and logittransformed colonization dat a dependent as the variables. Conditioning species identit y and experiment al species identit v were used as fac tors with interac tions for each focal-Plantfeedback peripheral species pairing. soil was within the conditioning and tested species experiment al plantinterac tion, where conditioning species represent s the plant species used in the conditioning phase experiment of the experiment and al species refers to the plant being in the second experiment (Bever, assessed 1994). These analyses were conduc ted using PROC-GLM the procedure in (SA ς Institute, C ar y, NC, U. S. A .), 9.4 of version SA S Windows. the System for Prior to analysis, all dat a were tested of for normality and homogeneit y variances using Shapiro-Wilk the and Levene's test s, respec tively. L astly, simple linear regressions were construc ted to test the ef fec t of pair wise phylogenetic dist PSF dynamic s. These analyses ance on were per formed in R version 4.0. 2 (R Core 2020). Team.

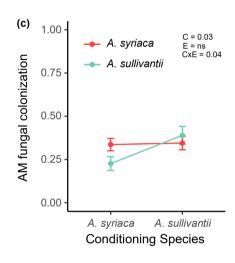

3 | RESULTS

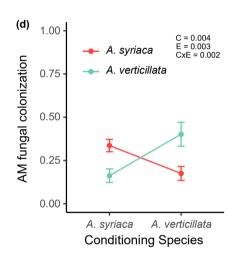

productionof **Biomass** A. syriaca was not different among soil inoculum, with the exception of inoculum conditioned by Α. verticillata (Figure 1d; Figure S1). In soils conditioned A. verticillata, A. syriaca produced significantly by less biomass compared to conspecificconditioned soils, as well as soils conditioned bv A. tuberosa, A. viridis, and A. sullivantii. of **Biomass** productionof three the four peripheral species was not conspecificdifferent between A. syriaca- and conditioned soils, with the exception being A. verticillata (Figure 1d; Figure S2). Interestingly, A. verticillata produced significantly less biomass in conspecificconditioned soils, relative to soil conditioned by A. syriaca (Figure 1d; Figure


S2). Interaction coefficients in biomass verticillataconditioned soils, A. syriaca with displayed significantly productiontended tο become more positive lower ΔM fungal of increasing phylogenetic distance, colonization levels, relative conspecificbut none to individual feedbacks between A. syriaca and conditioned soils Interestingly, these (Figure 3d). peripheral species were significant (Figure 2a). A. verticillata is the most Overall, there were no significant phylogenetically distant peripheral species, our obser differencesin AM fungal colonization vation of colonization among greater A. syriaca grown in conspecificor conspecificconditioned soil with the heterospecificconditioned soils (Figure 3; Figure A. verticillata-A. syriaca pairing is qualitatively S3). However, similar patterns seen in consistent with greater mycorrhizal specialization tο biomass fungal colonization production, ΔM with greater phylogenetic distance (Figures 2, 3), generally lower in A. syriaca plants was grown A. verticillataconditioned soils, relative in to soils conditioned Α. tuberosa, A. sullivantii A. viridis, and (Figure 3ad; DISCUSSION Figure S3). In fact, grown in Α. when (b) FIGURE 1 Biomass production (a) 2.5 -2.5 of A. syriaca and paired A. syriaca A. syriaca C = ns E = ns CxE = ns C = ns E = ns CxE = ns peripheral species across 2.0 A. tuberosa Dry weight (g/ plant) 2.0 A. viridis Dry weight (g/ plant) phylogenetic gradient. Phylogenetic distance from A. syriaca increases 1.5 1.5 from panels with 1.0 1.0 A. tuberosa and A. verticillata most being the 0.5 0.5 closely and distantly related to Within 0.0 A. syriaca, respectively. 0.0 each red panel. A. syriaca A. tuberosa A. syriaca A. viridis points and lines A. syriaca, and represent points lines green represent peripheral species. In the upper rightexperiment)], and the interaction of Conditioning Species Conditioning Species the hand of each panel, the effects of conditioning species (c), experimental species [E identity of (i.e. species grown during the experimental phase of the feedback (c) 2.5 two (CxE) are shown as A. syriaca represented by €=%.02 (d) 2.5 model p₋ values, with significance Dry weight (g/ plant) A. sullivantii 2.0 CxE = ns A. syriaca C = <0.0001 E = <0.0001 CxE = 0.02 $p \le .05$. assessed Dry weight (g/ plant) 2.0 A. verticillata 1.5 1.5 1.0 1.0 0.5 0.5 0.0 A. syriaca A. sullivantii 0.0 Conditioning Species A. verticillata A. syriaca

Conditioning Species

We	investigate	ed	the	PSF	and	AM	species	performed	lbetter	in	soils	and	AM
fungal	dynamics	between	а	common	milkweed	species	fungal	communit	ies	conditione	d	by	
(A. syriace	a)and	several	sympatric	congeners	spanning	a	conspecific	cs,	compared	to	those	of	
phylogen	etic	gradient	(A. tubero	sa,	A. viridis,	A.	heterospe	cific	trees	(Mangan,	Herre,	&	Bever,
sullivantii	, and	A. verticille	ata,	respective	ly).	Overall,	2010).	Alternative	ely,	the	only	peripheral	species
two	clear	patterns	emerged.	First,	biomass	PSF	to	be	affected	by	soil	conditionir	ng
between	A. syriaca	and	all	four	peripheral	species	was	A. verticillo	ata,	which	produced	greater	
were	generally	weakly	positive.	Secondly,	AM	fungal	biomass	in	soils	previously	occupied	by	Α.
interactio	n coefficient	ts	indicate	greater	colonizatio	on -	syriaca,	relative	to	conspecific)- -	conditione	d
density	when	milkweeds	were	grown	with		soils,	suggesting	a	build-	up	of	host-
conspecif	icsoils.	as	is	consistent	with	AM	specific	pathogens		Taken	together,	our	results
fungal	specializat	tion	on	plant	species,	and	suggest	that	PSF	dynamics		A. syriaca	and
this	was	particularl		true	for	the	A. verticillo		may	be	driven	by	both
two	more	phylogene	•	distant	species	pairs	mutualists		•	simultaneo		with	
	g with <i>A. sul</i>		and	A.	•	rticillata,		dynamics	-	having	the	strongest	
respective		Such	specializat		of	AM	influence	-	-	productivit		and	
	would	be	expected			positive	pathogen		driving	patterns	obser ved		А.
fungi PSF	and,		•	significant	J	PSF	verticillata		While	the	effects	of	А.
	,	though	not										h a a
tended	to	be	most	positive	between		phylogene		distance	on	PSF	dynamics	nave
two	most	distantly	related	species,	A. syriaca		been	obser ved		other	species	pairings	
	lata. With	an	estimated		,	found	(Crawford		al.,	2019),	these	•	have
througho		North	America,	parts	of	South	rarely	been	obser ved		such	fine	
America,		sub-	Saharan	Africa,	the		phylogene		scales.	Although	no .	interaction	
inclusion		additional	•	would	certainly		or	significant		were	detected	between	
strengthe	n this	type	of	experimer	ıt;		<i>syriaca</i> and		the	three	more	closely	related
however,	as	we	were	interested	primarily	in	peripheral	species,	significant	ly	greater	AM	fungal
local-	scale	communit	У	dynamics	including		colonizatio	n	with	conspecific	C-	conditione	d
sympatric	congeners	,the	number	of	available	species	soils	between	the	most	distantly	related	pairs
was	limited.						of	species	does	not	rule	out	the
Phylo	genetically-	driven	PSF	is	often	linked	possibility	of	a	phylogene	tic	threshold.	
to	the	presence	and	abundance	е	of	However,	it	is	also	possible	other	factors
host-	specific	pathogens	(Collins	et	al.,	2020;	are	at	play,	including,	but	not	limited
Gilbert	&	Webb,	2007;	Parker	et	al.,	to,	host	life	cycle,	CSR	(competito	or,
2015)	or	mutualists	(Bever,	2003; Mar	ngan,	Herre,	stress-	tolerator,	ruderal)	strategies,	or	the	degree
&	Bever,	2010;	Wang	et	al.,	2017),	of	responsive	eness	to	symbionts	(Davison	et
and	the	degree	to	which	the		al.,	2020;	Koziol	et	al.,	2022).	
associate	d microbion	nes	of	the	two	plants	While	most	PSF	studies	assess	the	
overlap.	Interesting	gly,	significant	results	in	our	influence	of	plants,	soils,	and	reciprocal	
study	centered	around	the	pair wise	interaction	ns	interaction	ns	on	subsequen	it	biomass	
between	A. syriaca	and	A. verticille	ata,	the	most	production	٦,	the	flexibility	of	the	
phylogen	etically	distant	of	the	four		interaction	coefficient	calculation	allows	for	the	testing
periphera	l species.	For	example,	we	found	no	of	differentia	limpacts	of	conspecific	cvs	
difference	esin	the	productivi	ty	of	A.	heterospe	cific	inocula	on	a	number	of
<i>syriaca</i> an	nong	conditione	ed	soils,	with	the	quantifiab	le	plant	traits.	In	our	study,
exception	of	soil	conditione	ed	by		AM	fungal	root	colonizatio	n	of	our
A. verticili		These	results	suggest	the	reduced	focal	species	did	not	differ,	regardless	
productiv		of	A. syriaca			rticillata-	conditioni		species	identity.	Interesting		Α.
condition	•	soils	is	likely	driven	by	tuberosa,	•	most	closely	related	to	our
а	lack	of	shared	mutualists		AM	focal	species,	displayed	•	weakly	greater	AM
fungi.	Similar	patterns	have	been	obser ved		fungal	i	1,00		1	J - 2-2-	
tropical	rainforests	•	where	seedlings		tree							
Copical	rannoi est	-,	WITCIE	Jecumigs	J1								





Conditioning Species

Conditioning Species

arbuscular mycorrhiz		al	(AM)	
fungal	colonizatio	n	of	A.
syriaca	and	paired	periphe	eral
species	across	a	phyloge	enetic
gradient.	Phylogene	tic	distance	е
from	A. syriaca	increases	from	
panels	a-	d,	with	A.
tuberosa	and	A.	verti	cillata
being	the	most	closely	
and	distantly	related	to	A.
syriaca,	respective	ly.	Within	
each	panel,	red	points	
and	lines	represent	A. sy	riaca,
and	green	points	and	
lines	represent	peripheral	species	. In
the	upper	right-	hand	of
each	panel,	the	effects	of
conditioning	ng	species	(c),	
experimen	tal	species	[E	
(i.e.	identity	of	species	
grown	during	the		
experimen	tal	phase	of	

colonizatio	n	in	conspecific	cinocula.	However,	AM
fungal	colonizatio	n	of	A. sullivan	tii	and
A. verticille	ata	was	much	greater	in	
conspecifi	c-	conditione	d	soils,	compared	to
A. syriaca-	conditione	ed	soils,	with	significant	У
positive	interaction	coefficient	s.	These	results	suggest
an	absence	of	mutualists	in	soils	
conditione	ed	by	A. syriaca	(Bever,	2002),	which
may	be	attributed	to	the	phylogene	tic
distances	of	these	species.	Overall,	these	results
are	in	line	with	several	previous	studies
that	have	found	greater	mutualist	abundance	es
in	soils	previously	occupied	by	conspecific	CS
(Haskins	&	Gehring,	20 05;	Kulmatiski	et	al.,
2017;	Wang,	Hoffland,	et	al.,	2019;	Wang,
Jiang,	et	al.,	2019).			

the feedback experiment)], and the $interaction \, of \,$ the two (CxE) shown as represented by model pvalues, with significance assessed at

		p ≤ .0	05.			
The	positive	AM	fungal	interac tio	n	coef
ficient s	seen	in	our	study	may	be
due	at	least	in	par t	to	the
clonal	nature	of	some	of	our	study
species.	For	clonalit y	to	be	a	
successful	form	of	asexual	reproduc t	ion	and
lateral	spread,	appropriat	e	soil	conditions	must
exist	for	the	est ablishn	nent	of	new
ramet s.	Negative	PSF	has	been	obser ved	in
several	clonal	plant	species	and	is	thought
to	be	a	driving	mechanisn	n	of
ring	formation	in	some	species	(Bonanom	iet
al.,	2014;	C ar tenì	et	al.,	2012).	The
connec tec	dness	of	rhizomes	or	stolons	may
increase	susceptibil	it y	to	soil	pathogens	,
and	recent	evidence	suggest s	that	some	
stolonifero	ous	grasses	per form	bet ter	in	sterile

by soil, relative soils previously occupied direction and magnitude, depending on the to conspecific s, though be degree specificit v of mutualisticand these result s mav οf host specific W/ith the 2022). pathogenic communities. species-(Xue et al.. rapid Alternatively, ex tensive rhizomes may facilit molecular tools ate advancement in and pathogen escape, thus weakening the ef fec t of techniques, researchers are able to negative PSF (D'Her tefeldt & van der identif y AM fungal t axa in soils. This, 1998). Ιt is wor th with Put ten, noting that along emerging interest in hostwe did not test mother plant s and symbiont specificity within plant communities ramet s due to time constraint s. (Klironomos. 2002: Sepp et al.. 2018: as this would t ake multiple vears to grow Wang, Hof fland, et al., 2019; Wang, Jiang, maturit y. While 2019), is nlant s tο it nossible al., nrovides а unique et oppor that plant seedling dif ferences in ontogeny (e.g. VS ramet) tunit v tο assess influences PSF of outcomes, this area work microbial communit v composition bet ween and Three remains largely unexplored. out οf among related species. A s plant communit ٧ five of our Asclepias species A. syriaca, succession advances temporally, species within those A. sullivantii, and A. verticillata) exhibit clonalit communities of ten display greater degrees of v. the t wo clonal peripheral species host specificit y with regard to AM fungal (A. sullivantii A. verticillata) symbiont s (Koziol 2016; and consistently Bever, Cheeke et exhibited the strongest, albeit not always al., 2019). Successional st ages of significant, positive interac tion coef ficient Asclepias are of ten speciesspecific and ς. contex Although there significant ef fec t of tdependent(Bauer 2018: was nο et al.. 2012), species identit y ΔМ Middleton & with conditioning on fungal Bever many sullivantii consideredto of Α. midcolonization A. syriaca, both be successional. Thus. it exhibited significantly is and A. verticillata greater likely that а cer t ain degree ΑM fungal colonization in conspecificof AM fungal host specificit y exist s within conditioned soils, indicating a presence of the genus, as suppor ted by recent studies 2022). selec ted mutualist sin conspecificconditioned (Koziol et al.. soils. However, greater colonization levels hib Interactions between plants and their necessarilytranslate conferred benefit s. associated soils recognized as drivers not to as are kev A. verticillata produced ver y lit tle biomass in of community diversity plant and organization conspecificconditioned soils, highlighting the landscape (Bever οn et fur ther the need for investigation of 2015; 2010) al., Mangan, Schnitzer, et al., specificit y (Koziol important for Asclepias- microbial interac tions and and may be especially al., 2022). sympatric- related species (Mangan, Herre, ጴ Bever, et Our study provides novel insight into the 2010). While recent literature suggests that pairs related ef fec t s plantsoil interac tions on of distantly species likely exhibit more biomass production and AM fungal negative PSF due to pathogen specialization colonization in coexisting Asclepias (Crawford et al., 2019; ጴ species. vet Mangan. Herre. many knowledgegaps remain. We assessed PSF Bever. 2010), these patterns mav occasionally dynamic's bet ween a single, focal species he masked by the absence οf shared and within mutualists, resulting positive feedbacks. Our peripheral congeners. Even the in several same stronger it well-e PSF genus, has been st ablished that results suggest dynamics between Asclepias species in plant s can var y widely their are likely driven by mutualist communities responses to, and selec tion of, ΑM fungal In short, our data indicate that soil par tners (Koziol al., 2022; Wilschut et conditioning heterospecific congeners et by al., 2019). making microbial communit generally does not affect productivity, У abundances and assemblages crucial for regardless of phylogenetic distance. However, this underst anding plantmicrobial dynamic s among related was the for paired not case phylogenetically study, distant (Crawford et species. In the contex t of al.. our species PSFs it is that pair wise het 2019). Furthermore study indicates that possible our dif fer peripheral species in sympatric Asclepias species capable οf ween our may are

nonnative grassland plants. *Ecology*, 100(12), e02855.

https://doi.org/10.1002/ecy.2855

condition	ing	soils	to	the	benefit	of	ORCID						
conspecif	ics	with	regard	to	intraradica	al	Eric B. Du	ell 몓 https	://orcid.org	/0 0 0 0-0 0	01-8692-5	271	
AM	fungal	abundanc	es,	but	that	these							
results	do	not	translate	to	plant		REFERENC	CES					
productiv	ity	metrics	such	as	total		Anacker,	В.	L.,	Klironomos	s,	J.	N.,
biomass	productio	n.	While	our	study			Maherali,	Н.,	Reinhart,	K.	O.,	&
consisted	of	four	sympatric	congeners	.further			Strauss,	S.	Y	(2014).	Phylogenet	
research	is	warranted		determine		this		conservati and	sm its	in implication	plant-	soil for	feedback plant
is	a	generaliza		pattern	across				e.Ecology Let		17,	1613-	1621.
				•		within	Bauer,	J.	T.,	Koziol,	L.,	&	Bever,
	l <i>Asclepias</i>		Phylogene		signals			J.	D.	(2018).	Ecology	of	floristic
and 	among	plant–		interaction		are		quality	assessmen		Testing	for	
well-	documen	ted,	though	empirical	evidence	with		correlatior conservati		between species	coefficients	and	
a	focus	on	congeners	is	severely	lacking.			alresponsive	•	AoB Plants		plx073.
Our	research	provides	support	for	change	in	Bever,	J.	D.	(1994).	Feedback		plants
directiona	ality	and	magnitude	of	PSF	across		and	their	soil	communiti	es	in
congener	icphylogen	etic	distances	and	provides	a		an	old	field	community	ı.Ecology,	75,
baseline	for	further	similar	studies.			Bever,	1965– J.	1977. D.	(2002).	Negative	feedback	within
							bever,	a	mutualism	. ,	specific	growth	of
AUTHOR	CONTRIBU [*]	TIONS						mycorrhiza		reduces	plant	benefit.	
Eric Duell	: Conceptu	alization	(equal);	data	curation	(lead);		Proceeding	gs	of	the	Royal	Society
formal	analysis	(equal);	investigati	on	(lead);			of 2595–	London.	Series B: Bi	ological Scie	ences,	269,
methodol		(lead);	project	administra		(equal);	Bever,	2595- J.	2601. D.	(2003).	Soil	community	, foodback
software	0.	validation		visualizatio		(lead);	bever,	and	the	coexistence		competitor	
			, ,					Conceptua	l framework		and	empirical	
writing	-	original	draft	(lead);	writing	_		New Phyto	logist,	157,	465-	473.	
review	and	editing	(lead).	James D. I		Formal	Bever,	J.	D.,	Dickie,	l.	A.,	Facelli,
analysis	(equal);	methodol	0.	(supportin	g);			E., J.,	Facelli, Moora,	J. M.,	M., Rillig,	Klironomos M.	s, C.,
software	(equal);	validation	(equal);	writing	-	review		Stock,	W.	D.,	Tibbett,	M.,	&
and	editing	(equal).	Gail Wilso	n:	Funding			Zobel,	M.	(2010).	Rooting	theories	of
acquisitio	n (lead);	project	administra	ition	(supportin	ıg);		plant	community	0,	in	microbial	
resources	(lead);	super visio	on	(lead);	writing	-		interaction			cology & Ev		<i>25</i> (8),
review	and	editing	(equal).				Bever,	468– J.	478. D.,	Mangan,	. org/10.101 S.,	&	10.05.004
							bever,	Alexander,	-	(2015).	Pathogens		plant
ACKNOW	LEDGMENT	rs						diversity.	Annual Rev	iew of Ecolo	gy and Syst	ematics,	46,
The	authors	would	like	to	acknowled	dge		305-	325.				
support	from	the	National	Science	Foundatio	n	Bever,	J.	D.,	Westover,		M.,	& *h a
grant	OIA	16560 06,		States	Departme			Antonovic: soil	community	(1997). (into	Incorporati plant	ng population	the
of	Agricultur	,	NIFA-	AFRI	grant	10		dynamics:		utility	of	the	feedback
					_			approach.	Journal of I	Ecology,	85,	561-	573.
03475,	and	USDA	NIFA	Hatch	Project	OKL-	Bonanomi,	•	Incerti,	G.,	Stinca,	A.,	Cartenì,
02930.	The	authors	also	thank	Kris	and		F.,	Giannino,		&	Mazzoleni,	
Melissa	Vance,	Oakley	Windiate,	and	Heath			(2014). Communit	Ring v <i>Ecology</i>	formation 15,	in 77–	clonal 86.	plants.
McDonald	d for	their	assistance	with	experimer	ntal	Cartenì,	F.,	Marasco,	A.,	Bonanomi,		
maintena	nce.							Mazzoleni	S.,	Rietkerk,	M.,	&	
								Giannino,	F.	(2012).	Negative	plant	soil
CONFLICT	OF INTERE	ST						feedback	explaining	-	formation	in 212	clonal
The	authors	declare	no	competing	g interests.			plants. 161.	Journal of	Theoretical I	siology,	313,	153–
							Cheeke,	T.	E.,	Zheng,	C.,	Koziol,	L.,
DATA AVA	ILABILITY S	TATEMENT					,	Gurholt,	C.	R.,	&	Bever,	J.
Data	will	be	uploaded	in	the	Dr yad		D.	(2019).	Sensitivity		AMF	species
upon	acceptano		1		-	,		is	greater	in	late-	succession	
ироп	acceptant							than	early-	succession	aı _ ,	native	or

Calli		6	D	Davies		Б	0		Candaa	N.4	Cobrine		^	Llowb
Collins	ns,	C. Hersh,	D., M.	Bever, H.	J. (2020).	D.,	&		Gardes, M.	M.,	_	C.	A.,	Hart,
		for	mechanism		(2020). of	Community disease	dilution:		Kaonongbu	M.,	Housworth W.,	, c. Klironomos	A.,	J.
			from	linking	epidemiolo		and		N.,	Lajeunesse		J.,	, Meadow,	J.,
		plant–	soil	•	throry.	Annals of			Milligan,	B.	G.,	Piculell,	B.	J.,
	Vork .	Academy of :		1469,	65–8	5.	the ivev		Pringle,	A.,	Rúa,	M.	A.,	J.,
Crawf		-каасту ој . К.	M.,	,	J.	T.,	Comita,		Umbanhow	-	J.,	Viechtbaue	-	W.,
Claw	noru,	L.	S.,		л. М.	в.,	Johnson,		Wang,	Y	W.,		Zee,	P.
			J.,	11 0 /	S.	A.,	301113011,		C.	(2018).	Evolutionar		history	of
		Queenboro	•	•	A.,	Strand,	A.		plant	hosts	and	fungal	symbionts	
		E.,	Suding,	K.	N.,	Umbanhow			the	strength	of	mycorrhiza	•	
		J.,	&		J.	D.	(2019).			ations Biolog		1,	1–	10.
		When	and	where	plant-	soil	feedback	Kempel,	A.,	Rindisbach		A.,	&	Fischer,
		may	promote	plant	coexistence		A	itempel)	Α.	E.	(2018).	Plant	soil	feedback
		meta-	analysis.	Ecology Let		22,	1274-		strength	in	relation	to	large-	scale
		1284.	/	3,	,	,			plant	rarity	and	phylogenet	•	
Davis	son.	J.,	Garcìa	de	León,	D.,	Zobel,		relatedness	•	Ecology,	99,	597-	606.
	,	M.,	Moora,	M.,	Bueno,	c.	G.,	Klironomos	,J.	N.	(2002).	Feedback	with	soil
		Barceló,	M.,	Gertz,	M.,	Léon,	D.,		biota	contributes	, ,	plant	rarity	and
		Meng,	Y.,	Pillar,	V.	D.,	Sepp,		invasivenes	s	in	communitie	es.	Nature,
		S	K.,	Soudzilovas	skaia,	N.	A.,		417(6884),	67–	70.			
		Tedersoo,	L.,	Vaessen,	S.,	Vahter,	T.,		https://doi.	org/10.1038	3/417067a			
		Winck,	В.,	&	Öpik,	M.	(2020).	Koziol,	L.,	&	Bever,	J.	D.	(2016).
		Plant	functional	groups	associate	with	distinct		AMF,	phylogeny,	and	succession:	Specificity	of
		arbuscular	mycorrhiza	lfungal	communitie	es.	New		response	to	mycorrhiza	Ifungi	increases	for
	Phyto	ologist,	226,	1117-	1128.				late-	successiona	al	plants.	Ecosphere,	7,
De	Long,	J.	R.,	Fry,	E.	L.,	Veen,		e01555.					
		G.	F.,	&	Kardol,	P.	(2018).	Koziol,	L.,	Schultz,	P.	A.,	Parsons,	S.,
		Why	are	plant-	feedbacks	so			&	Bever,	J.	D.	(2022).	Native
		unpredictal	ole,	and	what	to	do		mycorrhiza	Ifungi	improve	milkweed	growth,	latex,
		about	it?	Functional I	Ecology,	33,	118-		and	establishme	ent	while	some	
		128.							commercia	lfungi	may	inhibit	them.	
D'He	ertefeld	t,	T.,	&	van	der	Putten,		Ecosphere,	13,	e4052.			
		W.	(1998).	Physiologic	al	integration	of	Kulmatiski,	A.,	Beard,	K.	H.,	Norton,	J.
		the	clonal	plant	Carex aren	aria	to		M.,	Heavilin,	J.	E.,	Forero,	L.
		soil-	borne	pathogens.	Oikos,	81,	229–		E.,	&	Grenzer,	J.	(2017).	Live
		237.							long	and	prosper:	Plant–	soil	
Duel	l, E.	В.,	Zaiger,		L.,	Bever,	J.		feedback,	lifespan,	and	landscape	abundance	covary.
		D.,	&		G.	W.	Т.		Ecology,	98,	3063-	3073.		
		(2019).	Climate	affects	plant-	soil	feedback	Liu, X.,	Liang,	M.,	Etienne,	R.	S.,	Wang,
		of	native		invasive	grasses:	Negative		Y.,	Staehelin,	,	&	Yu,	S.
		feedbacks		stable	but	not	in		(2011).	Experiment			for	a
	5l.	variable	environmen		Frontiers	in Ecolo	gy and		phylogenet		Janzen-	Connell	effect	4 = (0)
C:-L-I	Evolu		7,	419.	6	L/	D + + -	in	a	subtropical		Ecology Let		15(2),
Fishb	bein,	M.,	Straub,	S.	C.	K.,	Boutte,		111-	118.	https://doi.		org/10.11	11/j.1461-
		J., &		K., A.	Cronn, (2018).	R. Evolution	C., at	Maal	0248.2011.			in	N.4	D
		the	-	A. Asclepias	phylogenor		and	Mack,	K.	M.	L.,		M.	B.,
		new	perspective		on	leaf	surfaces.		&	,	J.	D.	(2019).	Plant–
		American Jo			105,	514–	524.		soil resilience	feedbacks in	multi-	coexistence species	eana communiti	A C
Gilbe	ert	G.	S.,	& &	Webb,	C.	0.		PLoS One,		e0211572.	species	Communiti	cs.
Silbe	,	(2007).	Phylogenet		signal	in	plant	Mangan,	S.	A.,	Herre,	E.	A.,	&
		pathogen-		range.	-	s of the	•	iviangan,	Bever,	J.	D.	(2010).	Specificity	
	Acad	emy of Scien		104,	4979-	4983.			neotropical			and	their	fungal
Hask		K.	E.,	&	Gehring,	C.	A.		mutualists		to	plant-	soil	Tuligai
		(2005).		for	•	limitation:			feedback.		91,	2594–	2603.	
		impacts	of	conspecific		on	the	Mangan,	S.	A.,	•	S.	A.,	Herre,
		mycorrhizal			of	woodland			5. E.	A.,	Mack,	K.	M.	L.,
		Oecologia,		123-	131.				Valencia,	M.	C.,	Sanchez,	E.	l.,
Hetri	ick,	_	Α.		Wilson,	G.	W.		&		J.	D.	(2010).	, Negative
	,	T.,	&	-	T.	C.	(1990).		plant-	soil	feedback	predicts	tree-	species
		Differential			 C₃	and	C ₄		relative	abundance		a	tropical	forest.
			to		Isymbiosis,				Nature,	7307,	752-	755.		
		fertilization		and	soil	microorgan		McGonigle,	•	O.,	Miller,	M.	Н.,	Evans,
		Canadian Jo	ournal of Bo	tany,	68,	461-	467.	5 -/	D.	G.,	Fairchild,	G.	L.,	&
Hoek	ksema,	J.	D.,	Bever,	J.	D.,			Swan,	J.	Α.	(1990).	A	new
		Chakrabort	у,	S.,	Chaudhary,	V.	В.,		method	which	gives	an	objective	measure

		of	colonizatio	n	of	roots	by	Wang,	G.	Z.,	Li,	Н.	G.,	Christie,
			arbuscular				hytologist,		P.,	Zhang,	F.	S.,	Zhang,	J.
		115,	495-	501.	. 0		,		L.,	&	Bever,	J.	D.	(2017).
Meh	ırabi,	Z.,	&	Tuck,	S.	L.	(2014).		Plant-	soil	feedback	contributes		(2027).
	,	Relatednes		is	а	poor	(intercroppi		overyieldin		by	reducing
			of	negative	plant-	soil			the	negative	effect	of	take-	all
		•	New Phytol	•	205,	1071-	1075.		wheat	and	compensat		growth	of
Meir	ners.	S.	J.,	Phipps,	Κ.	K.,			faba	bean.	Plant and S	•	415,	1-
	/	Pendergras	-	Т.	Н.,	IV,	Canam,		12.	ocarr.	r iaire aria 5	on,	413,	-
		T.,	&	Carson,	W.	P.	(2017).	Wang,	X	X.,	Hoffland,	E.,	Mommer,	1
		Soil	microbial	communitie	es	alter	leaf	wang,	Feng,	G.,	&	Kuyper,	T.	W.
		chemistry	and	influence	allelopathic	potential	among		(2019).	Maize	varieties	can	strengthen	
		coexisting	plant	species.					plant-	soil	feedback	through	beneficial	p
	Oeco	logia,	183,	1155-	1165.					mycorrhiza		mutualists.		1,29,
Middleton		E.	L.,	&	Bever,	J.	D.		251-	261.	Ü		,	
		(2012).	Inoculation	with	native	soil		Wang,	Z.,	Jiang,	Y.,	Deane,	D.	C.,
		community	advances	succession	in	а		O,	He,	F.,	Shu,	W.,	&	Liu,
		grassland	restoration	.Restoration	Ecology,	20,	218-		Υ.	(2019).	Effects	of	host	
		226.							phylogeny,	habitat	and	spatial	proximity	on
Page	el, M.	(1999).	Inferring	the	historical	patterns	of		host	specificity	and	diversity	of	
		biological	evolution.	Nature,	401(6756),	877–8	84.		pathogenic	and	mycorrhiza	lfungi	in	а
		https://doi	org/10.103	8/44766					subtropical	forest.	New Phytol	logist,	223,	462-
Park	er,	l.	M.,	Saunders,	M.,	Bontrager,	M.,		474.					
		Weitz,	A.	P.,	Hendricks,	R.,		Wilschut,	R.	Α.,	van	der	Putten,	W.
		Margarey,	R.,	Suiter,	K.,	&	Gilbert,		Н.,	Garbeva,	P.,	Harkes,	P.,	Konings,
		G.	S.	(2015).	Phylogenet	ic	structure		W.,	Kulkarni,	P.,	Martens,	Н.,	&
		and	host	abundance	drive	disease	pressure		Geisen,	S.	(2019).	Root	traits	and
		in	communitie	es.					belowgrour	nd	herbivores	relate	to	plant–
	Natu	re,	520,	542-	544.				soil	feedback	variation	among	congeners.	Nature
R	Core	Team.	(2020).	R: A langua	ge and envii	ronment foi	statistical	Com	munications,	10,	1-	9.		
	comp	outing.	R	Foundation	for	Statistical		Wilson,	G.	W.	T.,	&	Hartnett,	D.
			https://ww	w.R-	proje	ct.org/			C.	(1998).	Interspecifi	С	variation	in
Rein	hart,	K.	0.,	Wilson,	G.	W.	T.,		plant	responses	to	mycorrhiza	Icolonizatio	n
		&	Rinella,	M.	J.	(2012).			in	tallgrass	prairie.	American	Journal of	f Botany,
		Predicting	•	responses		mycorrhiza			85,	1732–	1738.			
			evolutionar	•	history	and	plant	Xue, W.,	Huang,	L.,	Sheng,	W	J.,	Zhu,
_		traits.	Ecology Let		15,	689–	695.		J	T.,	Li,	S	Q.,	&
Segn	nitz,	R.	M.,	Russo,	S.	E.,	Davies,		Yu,	F	Н.	(2022).	Contrasting	
		S.	J.,	& 	Peay,	K.	G.		of	plant-	soil	feedbacks		growth
		(2020).	Ectomycorr		fungi	drive	positive		and	morpholog		of	physically-	
		phylogenet		plant-	soil	feedbacks			connected	•	and	mother	ramets	in 472/4
		a Ecology,		dominant e03083.	tropicai	plant	family.		two	clonal	plants.	Plant and S	-	472(1–
Conn			101,		т	Vacar	N/A	ora	2),	479–	489.	https://doi		
Sepp	J, 3.,	Davison, Moora,	J.,	Jairus, Zobel,	T., M.,	Vasar, &	M., Öpik,	org/	10.1007/s11:	104-021-	05266	-	4	
		M.	M., (2018).	Non-rando		association	•							
		in	(2016). a		vcorrhizal		network	SUPPORT	ING INFORMATION					
		reveal	host–	•	specificity.			Additiona	Lsupporting	portinginformation			be	found
		<i>28</i> (2),	365-	378.	specificity.	orcculul	Leology,					can		
			.org/10.111		4			online	in	the		gInformatio		section
Snyd	der.	A.	E.,	&	Harmon-	Threatt,	A.	at	the	end	of	this	article.	
Silyue	,	N.	(2019).	Reduced	water-a	vailability	lowers							
		the	strength	of	negative	plant-	soil							
			_	two	Asclepias	species.	-							
		feedbacks	Oi											
		Oecologia,		425-	432.									
Steir	1, C.,				432. A.	(2020).	Soil					_	_	
Stein	n, C.,	Oecologia,	190,	425-	A.	(2020). for	Soil	How	to cite this a	rticle: Duel	l,	E.	В.,	
Steir	n, C.,	Oecologia, &	190, Mangan, increase	425– S.	A. likelihood	, ,	Soil Ecology,	How	to cite this a	rticle: Duel J.	l, D.,	E. &	B., Wilson,	G.
Steir	n, C.,	<i>Oecologia,</i> & biota	190, Mangan, increase	425– S. the	A. likelihood	for		How			•			
	n, C.,	Oecologia, & biota coexistence	190, Mangan, increase eamong	425– S. the	A. likelihood	for		How	Bever, W.	J. T.	D., (2023).	& Role	Wilson, of	G. plant
		Oecologia, & biota coexistence 101,	190, Mangan, increase eamong e03147.	425– S. the competing	A. likelihood plant	for species.	Ecology,	How	Bever, W. relatednes	J. T. s	D., (2023). in	& Role plant–	Wilson, of soil	
		Oecologia, & biota coexistence 101, E.	190, Mangan, increase eamong e03147. M.,	425– S. the competing Bates,	A. likelihood plant S.	for species.	Ecology, Barrett,		Bever, W. relatednes feedback	J. T. s dynamics	D., (2023). in	& Role	Wilson, of soil	
		Oecologia, & biota coexistence 101, E. L.	Mangan, increase eamong e03147. M.,	425— S. the competing Bates, Catford,	A. likelihood plant S. J.	for species. E., A.,	Ecology, Barrett, Thrall,		Bever, W. relatednes	J. T. s dynamics	D., (2023). in	& Role plant–	Wilson, of soil	
		Oecologia, & biota coexistence 101, E. L. P.	190, Mangan, increase eamong e03147. M., G., H.,	425– S. the competing Bates, Catford, van	A. likelihood plant S. J. der	for species. E., A., Putten,	Ecology, Barrett, Thrall, W. (2020).		Bever, W. relatednes feedback es. <i>Ecology</i> a	J. T. s dynamics	D., (2023). in of	& Role plant— sympatric 13,	Wilson, of soil <i>Asclepias</i>	
		Oecologia, & biota coexistence 101, E. L. P. H.,	190, Mangan, increase eamong e03147. M., G., H.,	425— S. the competing Bates, Catford, van Duncan,	A. likelihood plant S. J. der R.	for species. E., A., Putten, P. predictabil	Ecology, Barrett, Thrall, W. (2020).		Bever, W. relatednes feedback es. <i>Ecology</i> a	J. T. s dynamics and Evolutio	D., (2023). in of	& Role plant— sympatric 13,	Wilson, of soil <i>Asclepias</i>	