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ABSTRACT

Agricultural management practices improve crop vyields to satisfy food demand of the growing population. However, these
activities can have negative consequences, including the release of greenhouse gas (GHG) emissions that contribute to global
Corn climate change. To mitigate this global environmental problem, the management practices that contribute the most to system
Greenhouse gas emissions GHG emissions should be identified and targeted to mitigate emissions. Accordingly, we estimated the cradle-to-product GHG
Groundwater pumping emissions of irrigated corn production under various farmer-selected scenarios at an experimental testing field in the semi-
IrrigaFion . arid U.S. Great Plains. We applied a carbon footprint approach to quantify life cycle GHG emissions associated with pre-field
Sustainable agriculture (e.g., energy production, fertilizer production) and in-field (e.g., groundwater pumping, fertilizer application) activities within
fourteen scenarios in the 2020 Oklahoma Testing Ag Performance Solutions (TAPS) sprinkler corn competition. We determined
that 63% of the total GHG emission from corn production was associated with in- field activities and that agricultural soil
emissions were the overall driving factor. Soil biochemical processes within agricultural soils were expected to contribute an
average of 89 + 18 g CO,-eq kg~ corn of the total 271 + 46 g CO,-eq kg~ * corn estimated from these systems. On-site natural
gas combustion for agricultural groundwater pumping, pre-field fertilizer production, and pre-field energy production for
groundwater pumping were the next most influential parameters on total GHG emissions. Diesel fuel, seed, and herbicide
production had insignificant contributions to total GHG emissions from corn production. The model was most sensitive to the
modeled GHG emissions from agricultural soil, which had significant uncertainty in the emission factor. Therefore, future efforts
should target field measurements to better predict the contribution of direct soil emissions to total GHG emissions, particularly
under different managements. In addition, identifying the optimal application rate of irrigation water and fertilizer will help to
decrease GHG emissions from groundwater irrigated crops.

Introduction

While irrigation water and fertilizers can increase crop yields, their
potential negative environmental and economic consequences should not be
neglected. The U.S. Great Plains rely on agricultural irrigation water,
particularly in Oklahoma where more than 1800 farms apply irrigation water
to maintain crop yields in arid and semi-arid climate regions (Mehata and
Taghvaeian, 2020). The expected increase in climate extremes (e.g., drought,
floods) will only increase the need for groundwater resources for agriculture,
yet, aquifer water levels continue to decline in areas of the state that need the
water most (Field et al., 2012; McGuire, 2017). To address this issue and
encourage adoption of regenerative and efficient agricultural management,
Oklahoma has engaged producers in the Testing Ag Performance Solutions
(TAPS) program in the panhandle region for several years (Rudnick et al.,
2020). Historically, this area has focused on crop yields and nitrogen use
efficiency to promote economically sustainable agriculture (Freeman et al.,
2007). While the farmer competition has been assessed to understand

economic concerns surrounding the use of irrigation water and fertilizer in this
region, environmental impacts (e.g., greenhouse gas (GHG) emissions) have
not been previously explored. There is some precedent for considering carbon
footprint reduction for irrigation efficiency (Karimi et al., 2012) and reduced
tillage (Zhang et al., 2016), but site-specific life-cycle GHG emissions
associated variable irrigation and fertilizer rates are lacking.

The principle GHG emissions from human activities include carbon dioxide
(CO,), methane (CHa4), and nitrous oxide (N20) (USEPA 2022; UNCC 2022).
Greenhouse gas emissions can be reported on the basis of CO»-equivalents
(CO2-eq) when multiplying by the global warming potential of each gas. Of
these principle GHGs, N0 is almost 300 times that of CO,, which can make
N20 emissions of even greater concern when reported as CO-eq despite their
lower net emissions (USEPA 2022). Worldwide, agriculture is the third largest
source of GHG emissions (24% of 2010 global GHG emissions) and the main
source of N2O (Cocco et al., 2018).

To understand the factors that contribute to these overall emissions and
target GHG mitigation strategies, agricultural systems should be evaluated for
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their carbon footprint or life cycle GHG emissions. GHG emissions may come
from pre-field processes (e.g., fertilizer production) which are associated with
energy production and consumption. GHG emissions are also linked to field
conditions and in-field management practices, which can significantly affect
the rates of N2O emissions from agricultural activities (Decock, 2014; Foltz and
Zilles, 2019). So, quantifying and comparing the agricultural GHG emissions
from various field management practices and environmental conditions is
crucial to distinguish the more sustainable and less environmentally costly
farming practices that enhance yield.

Several experimental and modeling approaches could be adopted to
quantify agricultural GHG emissions. The Intergovernmental Panel on Climate
Change (IPCC) offers a simple empirical-equation based on nitrogen (N) inputs
to estimate the direct N2O emissions from managed soils and can be used even
when minimal input data is available (IPCC, 2006). Various other stages of corn
production (e.g., fertilizer production) can be assessed using a carbon
footprint approach to estimate life cycle GHG emissions of various pre-field
and in-field factors. Although CO» uptake by the crop may affect the net CO of
the system, only positive emissions are considered here.

This research aims to quantify cradle-to-product GHG emission
estimations of corn production under different fertilizer and irrigation
management. This study specifically aims to (i) estimate the total GHG
emissions of corn production under various rates of fertilizer and irrigation
water application in Oklahoma, (ii) identify the categories that contribute most
to total GHG emissions, and (iii) quantify the effects of in-field agriculture
management practices on GHG emissions.

Material and methods
Study area

The study area is an interactive program titled “Testing Ag Performance
Solutions” (TAPS) that is operated in Texas county, Oklahoma (Panhandle),
United States. Originally started in Nebraska, TAPS was later expanded to
Oklahoma to help irrigated corn and cotton producers improve water use
efficiency and management (Rudnick et al.,, 2020). The ongoing program
provides the opportunities for farmers to examine research-based improved
technologies and strategies in experimental plots of the Oklahoma Panhandle
before applying these approaches on their land. The TAPS field is operated
with one center pivot irrigation system, although individual plots can be
irrigated and fertilized at different rates, which are remotely controlled with a
FieldNET variable rate irrigation system (Lindsay Irrigation, Omaha, NE, USA).
In the year of consideration (2020), there were fourteen farmers controlling
individual plots, such that each “field” had different farmer-selected rates of
irrigation water, fertilizer application, and corn seeding (Table 1). All primary
input data for the competition year are reported here and included in the
supplementary material as an Excel spreadsheet.

All fields were planted to corn which typically requires soil temperature to
be 55°F or more and moisture at field capacity or above maximum allowable
depletion for seed germination. The irrigation amount for this crop often
varies based on the environmental conditions,

Table 1

Farmer-selected application rates of irrigation water, fertilizer, and seed in each field of the
2020 TAPS competition. Herbicide application was constant (3 kg ha~1) across all fields.

Field Irrigation (m*ha™?) Fertilizer (kg ha™*) Seed (kg ha™?)
1 6662 247 14
2 6236 235 13
3 7201 269 14
4 6007 230 15
5 6998 247 14
6 7709 269 15
7 7264 342 11
8 6121 303 14
9 6845 471 13
10 5258 213 13
11 6803 297 13
12 5512 296 13
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13 6502 280 12
14 6519 191 13

which are driven by rainfall received during the growing season and crop water
demand. However, irrigation allocations in the Panhandle have been limited.
Recommended fertilization rate for corn depends on residual nutrient status
and site-specific yield goal, which was at least 15,000 kg corn ha~*at this site.
Farmers often differ in their approach to application amount and frequency,
as reflected in Table 1, with the goal of meeting this yield goal.

Life cycle GHG emissions

A carbon footprint was adopted to estimate the total GHG emissions from
corn production under different application rates of irrigation water and
fertilizer. The life cycle GHG emissions were estimated for different pre-field
and in-field parameters. Pre-field GHG emissions include those from
generating energy (electricity and natural gas) for irrigation, fuel production
for agricultural vehicles, and producing and transportation of seeds and
chemicals (i.e., fertilizers, herbicides). SimaPro (Ecoinvent) and GREET-2021
databases were used to obtain GHG emission data for pre-field processes
(Table 2). The in-field GHG emissions include GHG emissions from agricultural
soils, natural gas combustion from groundwater pumping, and several on-farm
human activities (e.g., preparing the land, planting, applying chemical
materials, harvesting). Total GHG emissions from each TAPS field were
calculated as the sum of the pre-field and in-field GHG emissions. All GHG
emissions were converted to COz-eq and normalized using the functional unit
of corn yield (kg™ *corn), which is considered a better estimate than unit area
although less ideal that on an economic basis (Huang et al., 2019). As it is
recommended to consider both economic and yield-based comparisons
(Huang et al., 2019), we have included economic considerations as outlined in
Section 2.8 below.

Table 2
Assumed GHG emissions from various corn production parameters based on databases
and published guidance.

Parameter GHG Emissions Unit
Fertilizer Production ° 2545.89 kg CO,-eq ton™!
Corn Seed Production ° Herbicide 1971.14
Production ° Transportation ° 11,002.89
Electricity Generation © 132.69 kg CO-eq km™'g
Natural Gas Production © 7123 CO,-eq kWh?
On-site Natural Gas Engine Combustion " Diesel 2094
Production © 18576

, 534.2 3
On-site Diesel Combustion © 2673.2 kg CO,-eq L
On-farm Fuel Consumption of Vehicles 36.85 Lhas

S: Extracted from SimaPro 9.3 (Ecoinvent) (Frischknecht et al., 2005).
G: Extracted from GREET-2021.

E: EPA Greenhouse Gas Inventory Guidance (EPA 2016).
Fuel and energy production

Fuel production for agricultural vehicles were estimated using the GREET-
2021 well to pump model (GREET version 2021, Argonne National Laboratory,
Argonne, IL, USA). “Conventional Diesel from Crude Oil for US Refineries Main
Output: Conventional Diesel” category was considered as diesel used for
agricultural vehicles fuel.

Pumping energy needed for irrigation was estimated as a function of
dynamic head, groundwater discharge, pumping plant efficiency, and
distribution loss (Karimi et al., 2012). The irrigation water for the field was
provided through groundwater pumping from three wells, one electric and
two natural gas pumps. About 75 percent of the groundwater pumping energy
was natural gas and the remainder electricity. The overall pump efficiencies
were assumed to be 46.9% for electric and 14.8% for natural gas pumps. The
lifting height was assumed to be 60 m, based on average groundwater levels
in the area (Oklahoma Water Resources Board 2022). The emissions from
electricity generation for the “U.S. Central and Southern Plains Mix” was
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applied for groundwater pumping using electric pumps, while those for
stationary natural gas were estimated based on the GHG emissions from “NA
(North American) NG from Shale and Conventional Recovery as Stationary
Fuel”

Seed and chemical production

GHG emissions from seed and chemical (i.e., fertilizer and herbicide)
production and transportation of these materials to the agricultural site were
estimated based on discussion with farm managers and using the Ecoinvent
database within SimaPro 9.3 (Frischknecht et al., 2005). All resulting GHG
emissions obtained from the Ecoinvent database were converted to COz-eq
using global warming potentials. The fertilizer type (anhydrous ammonia) was
constant between fields in the TAPS competition. Thus, fertilizer was based on
“Ammonia, anhydrous, liquid {RNA}| market.” Although different corn seeds
(hybrids) were used in the TAPS competition, GHG emissions from seed
production were estimated based on only one type: “Maize seed, for sowing
{GLO}| market for | APOS, U.” GHG emissions from herbicide production were
estimated based on the “Glyphosate {GLO}| market for | APOS, U.” Based on
discussion with field managers, transportation of these products was assumed
to occur overland via roads and estimated based on “Transport, freight, lorry
3.5-7.5 t, euro6 {RoW}| market for transport, freight, lorry 3.5-7.5 t, EURO6
| APOS, U.” Distances were obtained directly from farm managers based on
the distance nearby suppliers, all of which were local. For example, fertilizer
was purchased from a local supplier within 33 miles of the experimental site.

Agricultural soils

GHG emissions from agricultural soil for each TAPS field were estimated
using emission factor approach as specified in the Intergovernmental Panel on
Climate Change (IPCC) guidelines (IPCC 2006). N.O was assumed to be the
dominant source of direct soil GHG emissions, so the Tier 1 IPCC model was
applied to estimate direct N2O fluxes as a function of fertilizer applied (IPCC
2006). The model was simplified by eliminating non-relevant terms (i.e.,
flooded rice, organic amendments, land use change) such that the N.O
emissions (kg N y~!) were estimated by multiplying an emission factor (EF1) by
the sum of fertilizer applied
(Fsn, kg N y~1) and crop residues left in the field (Fcr, kg N y=1) (IPCC 2006). The
IPCC default value for EF1is 0.01 with an uncertainty range between 0.003 and
0.03 (IPCC 2006).

Natural gas combustion

Operation of natural gas pumps were estimated for their contribution to
in-field GHG emissions from the fuel combustion process. The stationary
engine emissions were estimated based on the U.S. Environmental Protection
Agency Greenhouse Gas Inventory Guidance (EPA 2016). As such, emissions
were estimated as a function of fuel combusted, fuel heat content, and an
emission factor. The 2016 values for fuel heat content and emission factors
were used in these overall emission estimates (EPA 2016).

Farm vebhicle operation

GHG emissions from agricultural vehicles include those from producing
diesel fuel (accounted for under pre-field) and the GHG emissions from fuel
combustion (considered part of in-field). The GHG emissions from diesel
combustion were estimated using GREET-2021 “Conventional Diesel from
Crude Oil for US Refineries Main Output: Conventional Diesel.” The average
fuel consumption for on-farm human activities was estimated from an
extension report out of Minnesota (Lazarus, 2001).
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Net revenue

The farmer decisions from the 2020 competition and their associated costs
and generated revenue were calculated and normalized to an area basis based
on individual field corn yields. Some costs were uniform between fields, such
as strip tillage ($42/acre), planting costs ($37/ acre), and herbicide application
cost ($151/acre), all of which were estimated based on discussion with farm
managers. Some costs were farmer-decision dependent, including fertilizer,
irrigation, and seeding costs, which differed based on selected fertilizer,
irrigation, and seeding rates for each field (Table 1). Fertilizer costs averaged
$314/acre, irrigation costs averaged $509/acre, and seeding costs averaged
$299/acre, all estimated based on discussion with farm managers. Farmers
had multiple selling opportunities and revenue was obtained from farm
managers based on corn market price and market decisions. Net revenue was
estimated as the sum of revenue from corn sales minus all incurred costs in
the growing year, including transportation of corn grain to market. Land costs
were neglected in this analysis as the farmers did not pay rent for the land
used in the competition.

Uncertainty and sensitivity analyses

The main consideration in uncertainty analysis was the large uncertainty
regarding the emission factor EF: (0.03—0.003) in estimating in-field
agricultural soil emissions. The other major area of uncertainty was due to the
differences in farmer decisions (various application rates of irrigation water
and fertilizer) that resulted in unique GHG emission estimates for each field
parameter. A Monte-Carlo uncertainty simulation with 100,000 runs per year
and treatment based on variation in model inputs was adopted in R to analyze
the uncertainties associated with the overall GHG emission estimates. A
uniform distribution was assumed for EF: based on the minimum and
maximum of its range. The rest of the parameters were assumed to fit normal
distributions with different means and standard deviations based on
variability in inputs from farmer decision-making (Table 1). We chose these
variables based on known uncertainty (i.e., EF1) and management variability
(e.g., fertilizer rate, irrigation rate, yield).

Using the results of the Monte Carlo runs, Spearman’s Rank correlation
was used to find the correlation coefficient (rho) between total GHG emissions
and various parameters (EFi; Fer; Fsy; corn yield; natural gas, diesel, and
pumping energy; herbicide, seed, and fertilizer production; diesel and natural
gas combustion; and agricultural soil emissions). The correlation coefficients
were used to assess the overall sensitivity of total GHG emissions to each
tested parameter, where rho values near *1 indicate strong correlations.
Results and discussion

Field-specific yields and revenue

Yields were measured at harvest and used in determination of net revenue
based on the difference in revenue and costs from different farmer decisions
(Table 3). Most fields produced at least 13,700 kg corn ha~?, although a few
fields severely underperformed (field 10 had only 7880 kg corn ha™!) and field
11 had the overall highest yield (15,189 kg corn ha~?). It should be noted that
only field 11 obtained yield higher than the yield goal (15,000 kg corn ha=?).
Based on farmer decisions and resulting yields, net revenue averaged $687 ha-
1 although field 10 generated no revenue (lost $8 ha™!) and field 14 had the
highest net revenue ($1115 ha~1). Despite field 11 having the highest yield, its
net revenue was lower (5763 ha~1) as it had higher fertilizer and irrigation rates
compared to several other fields.

Yield-weighted life cycle GHG emissions

Total GHG emissions from the fourteen corn fields were yield- weighted
and ranged from 213 to 360 (average 271 + 46) g CO-eq kg~*corn (Fig. 1). The
differences among yield-weighted GHG emitted from various fields were due
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to different rates of irrigation water and fertilizer and their resulting
differences in corn yields. The maximum GHG emissions per kilogram of corn
production was estimated from field 10, which had the lowest corn yield (7880
kg corn ha™?). The minimum GHG emission came from field 17, which had the
lowest fertilizer application (191 kg ha=?) and the second highest corn yield
(14,934 kg corn ha=1). This trend is to be expected, as decreased fertilizer
application rates are tied to decreases in N2O emissions and overall GHG
emissions (IPCC 2006; Decock, 2014). Considering the range of uncertainty,
total GHG emissions from each individual field could deviate between - 24%
and +56% from the average due to different values of the IPCC emission factor
EF1 (minimum of 0.003, average of 0.01, and maximum of 0.03). These
extreme uncertainty ranges reveal the importance of accurate estimation on
EF1when calculating agricultural GHG emissions.

Contributions of pre-field and in-field parameters to total GHG emissions

Total GHG emissions from corn production averaged 271 + 46 g COz-eq kg~
Lcorn, with thehighest proportion (average of 171 g CO.-eq kg™ corn or about
63%) associated with in-field GHG emissions (Table 4). This total is of a similar
magnitude to other reported carbon footprints for corn (Ma et al., 2012;
Cheng et al., 2015; Xu and Lan, 2017). Semi-arid regions requiring irrigation
are generally expected to have higher carbon footprints, as was found in China
(390 g COz-eq kg™ *corn) (Yan et al., 2015). It is interesting to note that the
proportion of GHG emissions associate with in-field management varied
between fields and were not always directly proportional to fertilizer or
irrigation rates. For example, field 14 had the lowest total GHG emissions (213
g COz-eq kg~ tcorn) and the highest proportion (65% of the total) were from
in-field management. Meanwhile, field 10 had the highest total GHG
emissions (360 g CO»-eq kg™ ! corn) and only 62.5% came from in-field
management. The relationship is further complicated when normalizing GHG
emissions by yield (per kg corn). Thus, the influence of fertilizer and irrigation
rate simultaneously impacts GHG emissions and corn yield, sometimes in
opposite directions, such that total weighted GHG emissions varies. For
example, field 9 had the highest fertlizer rate (471 kg ha™?!) and yet the
proportion of those emissions from in-field management (i.e., fertilizer-
induced soil N.O emissions) were lowest (61%). Although it would be expected
that fertilizer application would directly increase the in-field GHG emissions,
Table 3
Yields and net revenue for each field of the 2020 TAPS competition.

Field Corn Yield (kg ha™*) Net Revenue ($ ha™?)
1 14,150 624
2 14,921 937
3 14,910 987
4 13,709 285
5 13,737 525
6 14,910 637
7 14,435 909
8 14,095 837
9 14,399 771
10 7880 -8
11 15,189 763
12 9594 220
13 14,732 1016
14 14,934 1115
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weighting GHG emissions by corn yield rewards fields with efficient fertlization
rates that effectively increase yields.

Estimated GHG emitted from each parameter indicated that agricultural
soils contribute the most (89 + 18 g CO»-eq kg=*corn or about 33%) to the total
GHG emissions from corn production (Fig. 2). Denitrification and nitrification
processes are two dominant pathways contributing to N.O emissions from
agricultural soils (Braker and Conrad, 2011; Kumar et al., 2020; Tian et al.,
2020). Although many factors can contribute to these soil N2O emissions, the
model presented here only included fertilizer-induced emissions as predicted
by IPCC. When converted to COz-eq emissions, the contribution of N.O
becomes significant due to its global warming potential nearly 300 times
higher than CO, (USEPA 2022). This contrasts with the other in-field and pre-
field parameters which are mostly associated with energy production and
consumption and primarily produce CO, (USEPA 2022). This relationship is
consistent with previous studies that have reported fertilizer use as a primary
source of agricultural GHG emissions (Yan et al., 2015; Jat et al., 2019; Wu et
al., 2022).

As fertilizer-induced soil emissions dominated total GHG production, it is
likely the contributions from agricultural soils could be decreased when
applying best management practices (BMPs) for fertilizer. Studies suggest
BMPs for N fertilizer application considering the source of N, rate, timing, and
placement in addition to other in-field practices (e.g., cover cropping) could
lower GHG emissions from corn production (Snyder et al., 2009; Decock, 2014;
Foltz et al., 2021).

Besides agricultural soil, other influential parameters on total GHG
emissions in this study include on-site natural gas combustion for agricultural
groundwater pumping (28%), fertilizer production (20%), and energy
production for groundwater pumping (15%). This is consistent with a carbon
footprint study from China, where fertilizer, electricity consumption for
irrigation, and agricultural films were identified as the main factors
contributing to carbon emissions (Huang et al., 2022). Improving overall pump
efficiencies to decrease agricultural pumping energy consumption and
switching the pumping energy from natural gas to electricity, specifically wind
energy, where possible, could also reduce agricultural carbon footprint (data
not shown).

The lowest portion (0.55%) of the total GHG emissions was associ-

ated with diesel production for agricultural vehicles (1.5 g CO2-eq kg~ corn), followed by seed (0.77%) and herbicide (0.81%) production. The GHG emission from
on-site diesel combustion from the agricultural vehicle is estimated at an average of approximately 7.5 g CO»-eq kg~* corn. Therefore, operation of farm vehicles
and equipment should not be a major focus for reducing total GHG from agriculture. Similarly, improving efficiency of seed and herbicide production should not
be a focus until fertilizer production and energy production are more efficient and sustainable.

Yield impacts

As the GHG emissions were yield-weighted in this study, it was important to consider the influence of irrigation water and fertilizer application on yield. Corn

yield had a strong positive polynomial
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Fig. 1. Total GHG emissions in g CO,-eq kg~* corn production from each field in the 2020 TAPS competition. IPCC emission factor (EF) values used in the ranges are

reported as minimum, average, and maximum for each field.

Table 4
Pre-field, in-field and total yield-weighted GHG emissions (g CO,-eq kg~ * corn) from each
field in the 2020 TAPS competition.

Field ID Pre-Field In-Field Total
1 90 158 248
2 81 144 225
3 92 161 253
4 86 151 237
5 94 166 260
6 95 167 262
7 108 182 290
8 97 165 262
9 130 204 334
10 135 225 360
11 93 160 253
12 136 219 354
13 91 158 249
14 74 138 213
Ave 100 171 271

relationship with water application (R? = 0.96, Fig. 3) while it has a weak

relationship with fertilizer application (R?= 0.04, data not shown). In the study
year, there appeared to be an optimum irrigation rate of about 6000 m3ha~?
above which yield did not fluctuate as much with additional water. The study
year was a relatively dry year with a drought starting in May 2020 (NIDIS 2022),
which may also contribute to the strong connection between irrigation rate
and yield. The presence of a yield plateau suggests that many fields were

overwatering at a higher economic and environmental cost with no net gains
to yield. However, the risk of falling below this critical irrigation rate is
significant to yield and costs. For example, the two lowest yielding fields (10
and 12) were the highest overall emitters of GHG on a per kg corn basis.
Further, these farmer’s losses economically are significant, with yields well
below average.

Sensitivity and uncertainty

Uncertainty in the emission factor and differences in farmer-selected field
management were incorporated into Monte Carlo simulations and correlation
analysis of resulting GHG emission estimates. Parameters that were most
influential for GHG emissions had rho values close to 1. Yield-weighted total
GHG emissions were driven by emissions from agricultural soil, so it was not
surprising that total emissions were most sensitive to agricultural soil
emissions (Table 5). As agricultural soil emissions are strongly linked to the
emission factor (EF.), variability in
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Fig. 2. Average yield-weighted GHG emissions from each process or parameter associated
with irrigated corn production in the 2020 TAPS competition. Error bars show standard
deviations (n = 14). Orange bars represent pre-field parameters, while blue bars represent
in-field parameters.

this input parameter caused significant variability in the total estimated GHG
emissions. While agricultural soil emissions, and more specifically the
emission factor, had a strong positive correlation with total GHG emissions
(rho = 0.87-0.97), emissions were the least sensitive to herbicide, seed, and
diesel production. Fertilizer production and fertilizer application rate (Fsn) both
had positive correlations with total GHG emissions, but at a lower level
(rho=0.18-0.28) which could be linked to the insignificant link between
fertilizer application and yield discussed previously. Overall, these sensitivity
outcomes indicate the importance of targeting agricultural soil when planning
to reduce agricultural GHG emissions from crop production. Due to the high
sensitivity of GHG emissions from crop production to EF1, accurate estimation
of this
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Fcr 0.0676
Fsn 0.2768
EF1 0.8706
Corn Yield -0.2553
NG Combustion 0.1162
Diesel Combustion 0.0212
Fertilizer Production 0.1790
Herbicide Production 0.0041
Seed Production 0.0043
Pumping Energy 0.0610
Diesel Production 0.0060
Agricultural Soil 0.9705

emission factor is essential to reduce the uncertainty of these GHG
estimations. Sustainable agriculture could be planned through a multi-
objective optimization model that targets maximizing crop vyield and
minimizing GHG emissions.

Model uncertainty in average GHG emissions from corn production was
estimated using Monte Carlo simulations based on uncertainty in EF1 and
variation of the GHG emitted from different pre-field and in- field parameters
at each of the 14 TAPS fields. The model results show approximately 25
percent uncertainty in estimating total GHG emissions from corn production.
Most of this uncertainty was due to uncertainty in EF1, which was an issue
established in the literature previously (Zhang et al., 2017). It was our intention
to minimize uncertainty in our total GHG emission estimates by removing
uncertainty surrounding in-
ventory data, for which we had exact input rates for fertilizer, irrigation,
seeding, travel distances, yields, and costs. However, uncertainty in the direct
soil emissions still dominate, which is a limitation of this study. This outcome
suggests that incorporation of process-based models and direct field
measurements of GHG will be necessary to improve accuracy of predictions.

Implications and recommendations

Total GHG emissions from irrigated corn production in CO2-eq per kg corn
were driven by in-field parameters, mostly as direct N.O emissions from soil
and the combustion of natural gas for groundwater pumping. Among pre-field
parameters, energy production for groundwater pumping was the dominant
GHG source, followed by fertilizer production. Therefore, when planning
methods to reduce the GHG emissions from corn production, direct soil N,O
emissions should be closely considered first. The second area to target in
decreasing overall GHG emissions from agriculture involves improving energy
use efficiency such that energy-related emissions in the agricultural life cycle
are decreased. Overall, it is recommended to estimate the optimum fertilizer
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Fig. 3. Relationship between irrigation water application rate and corn yield in the 2020 TAPS competition. The polynomial relationship shown: R? = 0.96.

Table 5

Spearman’s Rank correlation coefficients (rho) between yield- weighted total

GHG emissions and various parameters. Correlation coefficients greater than

0.5 are bolded to highlight strong correlations.
Variable

Total GHG Emissions

and water application rates for specific areas that will maximize crop yield and
minimize potential GHG emissions. In the efforts to improve GHG emission
estimates, parameters with high uncertainty and model sensitivity (i.e., the
IPCC emission factor, EF1) should be determined for each site, as climate
variability and field conditions may affect the resulting GHG emissions.
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Therefore, it is recommended that direct soil emissions are measured in at
least one growing season and used to validate process-based models that have
been calibrated to the site with other direct field measurements, such as corn
yield and soil moisture. With better estimates of in-field soil emissions, the
overall GHG emissions from irrigated corn production will have greater
certainty. Then, identification of optimal application rates will enable targeted
policy and education to reduce overall GHG from irrigated and fertilized crops.
Conclusions

In this study, we quantified life cycle GHG emissions associated with pre-
field and in-field activities within fourteen independent, farmer- selected
management scenarios in the 2020 Oklahoma TAPS sprinkler corn
competition. Our overall findings were as follows:

Irrigated corn production in the U.S. Great Plains produced an average of
271 + 46 g COz-eq kg™ tcorn across diverse, farmer- selected irrigation and
fertilization scenarios.

In-field activities represented the majority (63 + 10%) of total GHG
emission.

Direct soil emissions (as N.O) were the greatest source (89 + 18 g COz-eq
kg~ corn) of total GHG from corn production.

On-site natural gas combustion for agricultural groundwater pumping, pre-
field fertilizer production, and pre-field energy production for groundwater
pumping were the next most influential parameters on total GHG
emissions.

Diesel fuel, seed, and herbicide production had insignificant contributions
to total GHG emissions from corn production.

The model was most sensitive to the modeled GHG emissions from
agricultural soil, which had significant uncertainty in the emission factor.

Supplementary Material

All primary data used as inputs for modeling and resulting outputs for each
of the 14 fields in the 2020 OK TAPS sprinkler corn competition are available
as “OK-TAPS-2020-sprinkler-corn-competition.xIxs” for further information.
The Excel file includes the following: field number, total irrigation amount,
number of irrigation events, total fertilizer amount, pre-plant fertilizer
amount, post-planting fertigation amount, number of fertigation events, seed,
corn yield, net revenue, pre-field GHG emissions, in-field GHG emissions, and
total GHG emissions.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests
or personal relationships that could have appeared to influence the work
reported in this paper.

Data availability

Data are available in the Supplementary Material as an .xlsx file

Acknowledgements

This material is based on work partially supported by the National Science
Foundation under Grant No. OIA-1946093. We thank all the farmers that
participated in the 2020 TAPS competition to provide different scenarios for
comparison. We also thank the teams involved with implementing farmer-
decided field management.

Supplementary materials

Supplementary material associated with this article can be found, in the
online version, at doi:10.1016/j.envc.2023.100750.

Environmental Challenges 13 (2023) 100750
References

Braker, G., Conrad, R., 2011. Diversity, structure, and Size of N,0-producing Microbial
Communities in Soils—What Matters For Their functioning? Adv. Appl. Microbiol., 75.
Elsevier, pp. 33-70. https://doi.org/10.1016/B978-0-12-387046-9.00002-5.

Cheng, K., Yan, M., Nayak, D., Pan, G.X., Smith, P.,, Zheng, J.F,, et al., 2015. Carbon footprint of
crop production in China: an analysis of national statistics data. J. Agric. Sci. 153, 422-431.
https://doi.org/10.1017/5S0021859614000665.

Cocco, E., Bertora, C., Squartini, A., Delle Vedove, G., Berti, A., Grignani, C., et al., 2018. How
shallow water table conditions affect N20 emissions and associated microbial abundances
under different nitrogen fertilisations. Agric. Ecosyst. Environ. 261, 1-11.
https://doi.org/10.1016/j.agee.2018.03.018.

Decock, C., 2014. Mitigating nitrous oxide emissions from corn cropping systems in the
midwestern U.S.: potential and data gaps. Environ. Sci. Technol. 48, 4247-4256.
https://doi.org/10.1021/es4055324.

EPA. Greenhouse gas inventory guidance 2016:24.

Field, C.B., Barros, V., Stocker, T.F., Dahe, Q., 2012. Managing the Risks of Extreme
Events and Disasters to Advance Climate Change Adaptation: Special Report of the
Intergovernmental Panel On Climate Change. Cambridge University Press, Cambridge.
https://doi.org/10.1017/CB09781139177245.

Foltz, M.E., Zilles, J.L., 2019. Koloutsou-Vakakis S. Prediction of N20 emissions under different
field management practices and climate conditions. Sci. Total Environ. 646, 872-879.
https://doi.org/10.1016/j.scitotenv.2018.07.364.

Foltz, M.E., Kent, A.D., Koloutsou-Vakakis, S., Zilles, J.L., 2021. Influence of rye cover cropping on
denitrification potential and year-round field N,O emissions. Sci. Total Environ. 765, 144295
https://doi.org/10.1016/j.scitotenv.2020.144295.

Freeman, KW., Girma, K., Teal, R.K., Arnall, D.B., Tubana, B., Holtz, S., et al., 2007. Long-term
effects of nitrogen management practices on grain yield, nitrogen uptake, and efficiency in
irrigated corn. J. Plant Nutr. 30, 2021-2036. https://doi.org/ 10.1080/01904160701700467.

Frischknecht, R., Jungbluth, N., Althaus, H.-J., Doka, G., Dones, R., Heck, T., et al., 2005. The
ecoinvent database: overview and methodological framework (7 pp). Int. J. Life Cycle Assess.
10, 3-9. https://doi.org/10.1065/1ca2004.10.181.1.

Huang, J., Chen, Y., Pan, J., Liu, W,, Yang, G., Xiao, X., et al., 2019. Carbon footprint of different
agricultural systems in China estimated by different evaluation metrics. J. Clean. Prod. 225,
939-948. https://doi.org/10.1016/j.jclepro.2019.04.044.

Huang, W., Wu, F.,, Han, W., Li, Q., Han, Y., Wang, G., et al., 2022. Carbon footprint of cotton
production in China: composition, spatiotemporal changes and driving factors. Sci. Total
Environ. 821, 153407 https://doi.org/10.1016/j.
scitotenv.2022.153407.

IPCC, 2006. N,0 Emissions from Managed soils, and CO, Emissions from Lime and Urea
Applications. Guidel. Natl. Greenh. Gas Invent.

Jat, S.L., Parihar, C.M., Singh, A.K., Kumar, B., Choudhary, M., Nayak, H.S., et al., 2019. Energy
auditing and carbon footprint under long-term conservation agriculture- based intensive
maize systems with diverse inorganic nitrogen management options. Sci. Total Environ. 664,
659-668. https://doi.org/10.1016/].scitotenv.2019.01.425.

Karimi, P., Qureshi, A.S., Bahramloo, R., Molden, D., 2012. Reducing carbon emissions through
improved irrigation and groundwater management: a case study from Iran.

Agric. Water Manag. 108, 52—-60. https://doi.org/10.1016/j.agwat.2011.09.001.

Kumar, A., Medhi, K., Fagodiya, R.K., Subrahmanyam, G., Mondal, R., Raja, P, et al., 2020.
Molecular and ecological perspectives of nitrous oxide producing microbial communities in
agro-ecosystems. Rev. Environ. Sci. Biotechnol. 19, 717-750.
https://doi.org/10.1007/511157-020-09554-w.

Lazarus, W., 2001. Minnesota Farm Machinery Economic Cost Estimates for 2001.

College of Agricultural, Food, and Environmental Sciences. University of Minnesota.

Ma, B.L., Liang, B.C., Biswas, D.K., Morrison, M.J., McLaughlin, N.B., 2012. The carbon footprint
of maize production as affected by nitrogen fertilizer and maize-legume rotations. Nutr.
Cycl Agroecosyst. 94, 15-31. https://doi.org/10.1007/s10705-012- 9522-0.

McGuire V.L. Water-level and recoverable water in storage changes, high plains aquifer,
Predevelopment to 2015 and 2013-15. 2017.

Mehata, M., Taghvaeian, S., 2020. Irrigated Agriculture in Oklahoma. Okla Coop Ext Fact Sheet,
p. 4. BAE-1530.

NIDIS. Explore Historical Drought Conditions in Texas County, OK. Natl Integr Drought Inf Syst
NIDIS Natl Ocean Atmospheric Adm NOAA 2022. https://rb.gy/k39cox (accessed August 17,
2022).

Oklahoma Water Resources Board. Oklahoma groundwater data 2022. www.owrb.ok. gov.

Rudnick, D., Warren, J.G., Burr, C., Sharma, S., Stockton, M., Arnall, B., 2020. Testing Ag
performance solutions (TAPS) in Nebraska and Oklahoma. In: Proc 32nd Annu Cent Plains
Irrig Conf, p. 9.

Snyder, C.S., Bruulsema, TW., Jensen, T.L., Fixen, P.E., 2009. Review of greenhouse gas emissions
from crop production systems and fertilizer management effects. Agric. Ecosyst. Environ.
133, 247-266. https://doi.org/10.1016/j.agee.2009.04.021.

Tian, H., Xy, R., Canadell, J.G., Thompson, R.L., Winiwarter, W., Suntharalingam, P., et al., 2020.
A comprehensive quantification of global nitrous oxide sources and sinks. Nature 586, 248—
256. https://doi.org/10.1038/s41586-020-2780-0.

UNCC, 2022. Introduction to Land Use. U N Clim Change. https://unfccc.int/topics/la nd-
use/the-big-picture/introduction-to-land-use#:~:text=Land%20plays%20an%
20important%20role%20in%20 global%20cycles,or%20removal%200f%20 greenh ouse%20
gases%20from%20the%20atmosphere (accessed March 26, 2022).

USEPA. Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2020. Washington, DC:
2022.

Wu, H., Guo, S., Guo, P,, Shan, B., Zhang, Y., 2022. Agricultural water and land resources allocation
considering carbon sink/source and water scarcity/degradation footprint. Sci. Total Environ.
819, 152058 https://doi.org/10.1016/j.scitotenv.2021.152058.

7


https://doi.org/10.1016/j.envc.2023.100750
https://doi.org/10.1016/j.envc.2023.100750
https://doi.org/10.1016/B978-0-12-387046-9.00002-5
https://doi.org/10.1017/S0021859614000665
https://doi.org/10.1016/j.agee.2018.03.018
https://doi.org/10.1016/j.agee.2018.03.018
https://doi.org/10.1021/es4055324
https://doi.org/10.1021/es4055324
https://doi.org/10.1017/CBO9781139177245
https://doi.org/10.1016/j.scitotenv.2018.07.364
https://doi.org/10.1016/j.scitotenv.2018.07.364
https://doi.org/10.1016/j.scitotenv.2020.144295
https://doi.org/10.1080/01904160701700467
https://doi.org/10.1080/01904160701700467
https://doi.org/10.1080/01904160701700467
https://doi.org/10.1065/lca2004.10.181.1
https://doi.org/10.1065/lca2004.10.181.1
https://doi.org/10.1016/j.jclepro.2019.04.044
https://doi.org/10.1016/j.jclepro.2019.04.044
https://doi.org/10.1016/j.scitotenv.2022.153407
https://doi.org/10.1016/j.scitotenv.2022.153407
http://refhub.elsevier.com/S2667-0100(23)00074-4/sbref0018
http://refhub.elsevier.com/S2667-0100(23)00074-4/sbref0018
http://refhub.elsevier.com/S2667-0100(23)00074-4/sbref0018
http://refhub.elsevier.com/S2667-0100(23)00074-4/sbref0018
http://refhub.elsevier.com/S2667-0100(23)00074-4/sbref0018
http://refhub.elsevier.com/S2667-0100(23)00074-4/sbref0018
https://doi.org/10.1016/j.scitotenv.2019.01.425
https://doi.org/10.1016/j.agwat.2011.09.001
https://doi.org/10.1016/j.agwat.2011.09.001
https://doi.org/10.1007/s11157-020-09554-w
http://refhub.elsevier.com/S2667-0100(23)00074-4/sbref0019
http://refhub.elsevier.com/S2667-0100(23)00074-4/sbref0019
http://refhub.elsevier.com/S2667-0100(23)00074-4/sbref0019
https://doi.org/10.1007/s10705-012-9522-0
https://doi.org/10.1007/s10705-012-9522-0
https://doi.org/10.1007/s10705-012-9522-0
http://refhub.elsevier.com/S2667-0100(23)00074-4/sbref0001
http://refhub.elsevier.com/S2667-0100(23)00074-4/sbref0001
http://refhub.elsevier.com/S2667-0100(23)00074-4/sbref0001
https://rb.gy/k39cox
http://www.owrb.ok.gov/
http://www.owrb.ok.gov/
http://www.owrb.ok.gov/
http://refhub.elsevier.com/S2667-0100(23)00074-4/sbref0004
http://refhub.elsevier.com/S2667-0100(23)00074-4/sbref0004
http://refhub.elsevier.com/S2667-0100(23)00074-4/sbref0004
http://refhub.elsevier.com/S2667-0100(23)00074-4/sbref0004
http://refhub.elsevier.com/S2667-0100(23)00074-4/sbref0004
https://doi.org/10.1016/j.agee.2009.04.021
https://doi.org/10.1016/j.agee.2009.04.021
https://doi.org/10.1038/s41586-020-2780-0
https://www.unfccc.int/topics/land-use/the-big-picture/introduction-to-land-use#:~:text=Land%20plays%20an%20important%20role%20in%20-global%20cycles,or%20removal%20of%20-greenhouse%20-gases%20from%20the%20atmosphere
https://www.unfccc.int/topics/land-use/the-big-picture/introduction-to-land-use#:~:text=Land%20plays%20an%20important%20role%20in%20-global%20cycles,or%20removal%20of%20-greenhouse%20-gases%20from%20the%20atmosphere
https://www.unfccc.int/topics/land-use/the-big-picture/introduction-to-land-use#:~:text=Land%20plays%20an%20important%20role%20in%20-global%20cycles,or%20removal%20of%20-greenhouse%20-gases%20from%20the%20atmosphere
https://www.unfccc.int/topics/land-use/the-big-picture/introduction-to-land-use#:~:text=Land%20plays%20an%20important%20role%20in%20-global%20cycles,or%20removal%20of%20-greenhouse%20-gases%20from%20the%20atmosphere
https://www.unfccc.int/topics/land-use/the-big-picture/introduction-to-land-use#:~:text=Land%20plays%20an%20important%20role%20in%20-global%20cycles,or%20removal%20of%20-greenhouse%20-gases%20from%20the%20atmosphere
https://www.unfccc.int/topics/land-use/the-big-picture/introduction-to-land-use#:~:text=Land%20plays%20an%20important%20role%20in%20-global%20cycles,or%20removal%20of%20-greenhouse%20-gases%20from%20the%20atmosphere
https://www.unfccc.int/topics/land-use/the-big-picture/introduction-to-land-use#:~:text=Land%20plays%20an%20important%20role%20in%20-global%20cycles,or%20removal%20of%20-greenhouse%20-gases%20from%20the%20atmosphere
https://www.unfccc.int/topics/land-use/the-big-picture/introduction-to-land-use#:~:text=Land%20plays%20an%20important%20role%20in%20-global%20cycles,or%20removal%20of%20-greenhouse%20-gases%20from%20the%20atmosphere
https://doi.org/10.1016/j.scitotenv.2021.152058

R. Koushki et al.

Xu, X., Lan, Y., 2017. Spatial and temporal patterns of carbon footprints of grain crops in China. J.
Clean. Prod. 146, 218-227. https://doi.org/10.1016/].
jclepro.2016.11.181.

Yan, M., Cheng, K., Luo, T, Yan, Y., Pan, G., Rees, R.M., 2015. Carbon footprint of grain crop
production in China — based on farm survey data. J. Clean. Prod. 104, 130-138.
https://doi.org/10.1016/j.jclepro.2015.05.058.

Zhang, X.-Q., Py, C., Zhao, X., Xue, J.-F., Zhang, R., Nie, Z.-J., et al., 2016. Tillage effects on carbon
footprint and ecosystem services of climate regulation in a winter wheat—summer maize
cropping system of the North China Plain. Ecol. Indic. 67, 821-829.
https://doi.org/10.1016/j.ecolind.2016.03.046.

Zhang, D., Shen, J., Zhang, F., Li, Y., Zhang, W., 2017. Carbon footprint of grain production in China.
Sci. Rep. 7, 4126. https://doi.org/10.1038/s41598-017-04182- x.

Environmental Challenges 13 (2023) 100750


https://doi.org/10.1016/j.jclepro.2016.11.181
https://doi.org/10.1016/j.jclepro.2016.11.181
https://doi.org/10.1016/j.jclepro.2015.05.058
https://doi.org/10.1016/j.jclepro.2015.05.058
https://doi.org/10.1016/j.ecolind.2016.03.046
https://doi.org/10.1038/s41598-017-04182-x
https://doi.org/10.1038/s41598-017-04182-x

