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Agricultural management practices improve crop yields to satisfy food demand of the growing population. However, these 

activities can have negative consequences, including the release of greenhouse gas (GHG) emissions that contribute to global 

climate change. To mitigate this global environmental problem, the management practices that contribute the most to system 

GHG emissions should be identified and targeted to mitigate emissions. Accordingly, we estimated the cradle-to-product GHG 

emissions of irrigated corn production under various farmer-selected scenarios at an experimental testing field in the semi-

arid U.S. Great Plains. We applied a carbon footprint approach to quantify life cycle GHG emissions associated with pre-field 

(e.g., energy production, fertilizer production) and in-field (e.g., groundwater pumping, fertilizer application) activities within 

fourteen scenarios in the 2020 Oklahoma Testing Ag Performance Solutions (TAPS) sprinkler corn competition. We determined 

that 63% of the total GHG emission from corn production was associated with in- field activities and that agricultural soil 

emissions were the overall driving factor. Soil biochemical processes within agricultural soils were expected to contribute an 

average of 89 ± 18 g CO2-eq kg− 1 corn of the total 271 ± 46 g CO2-eq kg− 1 corn estimated from these systems. On-site natural 

gas combustion for agricultural groundwater pumping, pre-field fertilizer production, and pre-field energy production for 

groundwater pumping were the next most influential parameters on total GHG emissions. Diesel fuel, seed, and herbicide 

production had insignificant contributions to total GHG emissions from corn production. The model was most sensitive to the 

modeled GHG emissions from agricultural soil, which had significant uncertainty in the emission factor. Therefore, future efforts 

should target field measurements to better predict the contribution of direct soil emissions to total GHG emissions, particularly 

under different managements. In addition, identifying the optimal application rate of irrigation water and fertilizer will help to 

decrease GHG emissions from groundwater irrigated crops.    

Introduction  

While irrigation water and fertilizers can increase crop yields, their 

potential negative environmental and economic consequences should not be 

neglected. The U.S. Great Plains rely on agricultural irrigation water, 

particularly in Oklahoma where more than 1800 farms apply irrigation water 

to maintain crop yields in arid and semi-arid climate regions (Mehata and 

Taghvaeian, 2020). The expected increase in climate extremes (e.g., drought, 

floods) will only increase the need for groundwater resources for agriculture, 

yet, aquifer water levels continue to decline in areas of the state that need the 

water most (Field et al., 2012; McGuire, 2017). To address this issue and 

encourage adoption of regenerative and efficient agricultural management, 

Oklahoma has engaged producers in the Testing Ag Performance Solutions 

(TAPS) program in the panhandle region for several years (Rudnick et al., 

2020). Historically, this area has focused on crop yields and nitrogen use 

efficiency to promote economically sustainable agriculture (Freeman et al., 

2007). While the farmer competition has been assessed to understand 

economic concerns surrounding the use of irrigation water and fertilizer in this 

region, environmental impacts (e.g., greenhouse gas (GHG) emissions) have 

not been previously explored. There is some precedent for considering carbon 

footprint reduction for irrigation efficiency (Karimi et al., 2012) and reduced 

tillage (Zhang et al., 2016), but site-specific life-cycle GHG emissions 

associated variable irrigation and fertilizer rates are lacking.  

The principle GHG emissions from human activities include carbon dioxide 

(CO2), methane (CH4), and nitrous oxide (N2O) (USEPA 2022; UNCC 2022). 

Greenhouse gas emissions can be reported on the basis of CO2-equivalents 

(CO2-eq) when multiplying by the global warming potential of each gas. Of 

these principle GHGs, N2O is almost 300 times that of CO2, which can make 

N2O emissions of even greater concern when reported as CO2-eq despite their 

lower net emissions (USEPA 2022). Worldwide, agriculture is the third largest 

source of GHG emissions (24% of 2010 global GHG emissions) and the main 

source of N2O (Cocco et al., 2018).  

To understand the factors that contribute to these overall emissions and 

target GHG mitigation strategies, agricultural systems should be evaluated for 
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their carbon footprint or life cycle GHG emissions. GHG emissions may come 

from pre-field processes (e.g., fertilizer production) which are associated with 

energy production and consumption. GHG emissions are also linked to field 

conditions and in-field management practices, which can significantly affect 

the rates of N2O emissions from agricultural activities (Decock, 2014; Foltz and 

Zilles, 2019). So, quantifying and comparing the agricultural GHG emissions 

from various field management practices and environmental conditions is 

crucial to distinguish the more sustainable and less environmentally costly 

farming practices that enhance yield.  

Several experimental and modeling approaches could be adopted to 

quantify agricultural GHG emissions. The Intergovernmental Panel on Climate 

Change (IPCC) offers a simple empirical-equation based on nitrogen (N) inputs 

to estimate the direct N2O emissions from managed soils and can be used even 

when minimal input data is available (IPCC, 2006). Various other stages of corn 

production (e.g., fertilizer production) can be assessed using a carbon 

footprint approach to estimate life cycle GHG emissions of various pre-field 

and in-field factors. Although CO2 uptake by the crop may affect the net CO2 of 

the system, only positive emissions are considered here.  

This research aims to quantify cradle-to-product GHG emission 

estimations of corn production under different fertilizer and irrigation 

management. This study specifically aims to (i) estimate the total GHG 

emissions of corn production under various rates of fertilizer and irrigation 

water application in Oklahoma, (ii) identify the categories that contribute most 

to total GHG emissions, and (iii) quantify the effects of in-field agriculture 

management practices on GHG emissions.  

Material and methods  

Study area  

The study area is an interactive program titled “Testing Ag Performance 

Solutions” (TAPS) that is operated in Texas county, Oklahoma (Panhandle), 

United States. Originally started in Nebraska, TAPS was later expanded to 

Oklahoma to help irrigated corn and cotton producers improve water use 

efficiency and management (Rudnick et al., 2020). The ongoing program 

provides the opportunities for farmers to examine research-based improved 

technologies and strategies in experimental plots of the Oklahoma Panhandle 

before applying these approaches on their land. The TAPS field is operated 

with one center pivot irrigation system, although individual plots can be 

irrigated and fertilized at different rates, which are remotely controlled with a 

FieldNET variable rate irrigation system (Lindsay Irrigation, Omaha, NE, USA). 

In the year of consideration (2020), there were fourteen farmers controlling 

individual plots, such that each “field” had different farmer-selected rates of 

irrigation water, fertilizer application, and corn seeding (Table 1). All primary 

input data for the competition year are reported here and included in the 

supplementary material as an Excel spreadsheet.  

All fields were planted to corn which typically requires soil temperature to 

be 55◦F or more and moisture at field capacity or above maximum allowable 

depletion for seed germination. The irrigation amount for this crop often 

varies based on the environmental conditions,  

Table 1  

Farmer-selected application rates of irrigation water, fertilizer, and seed in each field of the 

2020 TAPS competition. Herbicide application was constant (3 kg ha− 1) across all fields.   
Field  Irrigation (m3 ha− 1)  Fertilizer (kg ha− 1)  Seed (kg ha− 1)  

1  6662  247  14  

2  6236  235  13  
3  7201  269  14  
4  6007  230  15  
5  6998  247  14  
6  7709  269  15  
7  7264  342  11  
8  6121  303  14  
9  6845  471  13  
10  5258  213  13  
11  6803  297  13  
12  5512  296  13  

13  6502  280  12  
14  6519  191  13   

which are driven by rainfall received during the growing season and crop water 

demand. However, irrigation allocations in the Panhandle have been limited. 

Recommended fertilization rate for corn depends on residual nutrient status 

and site-specific yield goal, which was at least 15,000 kg corn ha− 1 at this site. 

Farmers often differ in their approach to application amount and frequency, 

as reflected in Table 1, with the goal of meeting this yield goal.  

Life cycle GHG emissions  

A carbon footprint was adopted to estimate the total GHG emissions from 

corn production under different application rates of irrigation water and 

fertilizer. The life cycle GHG emissions were estimated for different pre-field 

and in-field parameters. Pre-field GHG emissions include those from 

generating energy (electricity and natural gas) for irrigation, fuel production 

for agricultural vehicles, and producing and transportation of seeds and 

chemicals (i.e., fertilizers, herbicides). SimaPro (Ecoinvent) and GREET-2021 

databases were used to obtain GHG emission data for pre-field processes 

(Table 2). The in-field GHG emissions include GHG emissions from agricultural 

soils, natural gas combustion from groundwater pumping, and several on-farm 

human activities (e.g., preparing the land, planting, applying chemical 

materials, harvesting). Total GHG emissions from each TAPS field were 

calculated as the sum of the pre-field and in-field GHG emissions. All GHG 

emissions were converted to CO2-eq and normalized using the functional unit 

of corn yield (kg− 1 corn), which is considered a better estimate than unit area 

although less ideal that on an economic basis (Huang et al., 2019). As it is 

recommended to consider both economic and yield-based comparisons 

(Huang et al., 2019), we have included economic considerations as outlined in 

Section 2.8 below.  

Table 2  

Assumed GHG emissions from various corn production parameters based on databases 

and published guidance.   

Parameter  GHG Emissions  Unit  

Fertilizer Production S  
Corn Seed Production S Herbicide 

Production S Transportation S  
Electricity Generation G  
Natural Gas Production G  
On-site Natural Gas Engine Combustion E Diesel 

Production G  
On-site Diesel Combustion E  

On-farm Fuel Consumption of Vehicles  

2545.89  
1971.14  
11,002.89  
132.69  
712.3  
20.94  
185.76  
534.2  
2673.2  
36.85  

kg CO2-eq ton− 1  

kg CO2-eq km− 1 g 

CO2-eq kWh− 1  

kg CO2-eq L− 1  

L ha− 1   
S : Extracted from SimaPro 9.3 (Ecoinvent) (Frischknecht et al., 2005).  
G : Extracted from GREET-2021.  
E : EPA Greenhouse Gas Inventory Guidance (EPA 2016).  

Fuel and energy production  

Fuel production for agricultural vehicles were estimated using the GREET-

2021 well to pump model (GREET version 2021, Argonne National Laboratory, 

Argonne, IL, USA). “Conventional Diesel from Crude Oil for US Refineries Main 

Output: Conventional Diesel” category was considered as diesel used for 

agricultural vehicles fuel.  

Pumping energy needed for irrigation was estimated as a function of 

dynamic head, groundwater discharge, pumping plant efficiency, and 

distribution loss (Karimi et al., 2012). The irrigation water for the field was 

provided through groundwater pumping from three wells, one electric and 

two natural gas pumps. About 75 percent of the groundwater pumping energy 

was natural gas and the remainder electricity. The overall pump efficiencies 

were assumed to be 46.9% for electric and 14.8% for natural gas pumps. The 

lifting height was assumed to be 60 m, based on average groundwater levels 

in the area (Oklahoma Water Resources Board 2022). The emissions from 

electricity generation for the “U.S. Central and Southern Plains Mix” was 
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applied for groundwater pumping using electric pumps, while those for 

stationary natural gas were estimated based on the GHG emissions from “NA 

(North American) NG from Shale and Conventional Recovery as Stationary 

Fuel.”  

Seed and chemical production  

GHG emissions from seed and chemical (i.e., fertilizer and herbicide) 

production and transportation of these materials to the agricultural site were 

estimated based on discussion with farm managers and using the Ecoinvent 

database within SimaPro 9.3 (Frischknecht et al., 2005). All resulting GHG 

emissions obtained from the Ecoinvent database were converted to CO2-eq 

using global warming potentials. The fertilizer type (anhydrous ammonia) was 

constant between fields in the TAPS competition. Thus, fertilizer was based on 

“Ammonia, anhydrous, liquid {RNA}| market.” Although different corn seeds 

(hybrids) were used in the TAPS competition, GHG emissions from seed 

production were estimated based on only one type: “Maize seed, for sowing 

{GLO}| market for | APOS, U.” GHG emissions from herbicide production were 

estimated based on the “Glyphosate {GLO}| market for | APOS, U.” Based on 

discussion with field managers, transportation of these products was assumed 

to occur overland via roads and estimated based on “Transport, freight, lorry 

3.5–7.5 t, euro6 {RoW}| market for transport, freight, lorry 3.5–7.5 t, EURO6 

| APOS, U.” Distances were obtained directly from farm managers based on 

the distance nearby suppliers, all of which were local. For example, fertilizer 

was purchased from a local supplier within 33 miles of the experimental site.  

Agricultural soils  

GHG emissions from agricultural soil for each TAPS field were estimated 

using emission factor approach as specified in the Intergovernmental Panel on 

Climate Change (IPCC) guidelines (IPCC 2006). N2O was assumed to be the 

dominant source of direct soil GHG emissions, so the Tier 1 IPCC model was 

applied to estimate direct N2O fluxes as a function of fertilizer applied (IPCC 

2006). The model was simplified by eliminating non-relevant terms (i.e., 

flooded rice, organic amendments, land use change) such that the N2O 

emissions (kg N y− 1) were estimated by multiplying an emission factor (EF1) by 

the sum of fertilizer applied  

(FSN, kg N y− 1) and crop residues left in the field (FCR, kg N y− 1) (IPCC 2006). The 

IPCC default value for EF1 is 0.01 with an uncertainty range between 0.003 and 

0.03 (IPCC 2006).  

Natural gas combustion  

Operation of natural gas pumps were estimated for their contribution to 

in-field GHG emissions from the fuel combustion process. The stationary 

engine emissions were estimated based on the U.S. Environmental Protection 

Agency Greenhouse Gas Inventory Guidance (EPA 2016). As such, emissions 

were estimated as a function of fuel combusted, fuel heat content, and an 

emission factor. The 2016 values for fuel heat content and emission factors 

were used in these overall emission estimates (EPA 2016).  

Farm vehicle operation  

GHG emissions from agricultural vehicles include those from producing 

diesel fuel (accounted for under pre-field) and the GHG emissions from fuel 

combustion (considered part of in-field). The GHG emissions from diesel 

combustion were estimated using GREET-2021 “Conventional Diesel from 

Crude Oil for US Refineries Main Output: Conventional Diesel.” The average 

fuel consumption for on-farm human activities was estimated from an 

extension report out of Minnesota (Lazarus, 2001).  

Net revenue  

The farmer decisions from the 2020 competition and their associated costs 

and generated revenue were calculated and normalized to an area basis based 

on individual field corn yields. Some costs were uniform between fields, such 

as strip tillage ($42/acre), planting costs ($37/ acre), and herbicide application 

cost ($151/acre), all of which were estimated based on discussion with farm 

managers. Some costs were farmer-decision dependent, including fertilizer, 

irrigation, and seeding costs, which differed based on selected fertilizer, 

irrigation, and seeding rates for each field (Table 1). Fertilizer costs averaged 

$314/acre, irrigation costs averaged $509/acre, and seeding costs averaged 

$299/acre, all estimated based on discussion with farm managers. Farmers 

had multiple selling opportunities and revenue was obtained from farm 

managers based on corn market price and market decisions. Net revenue was 

estimated as the sum of revenue from corn sales minus all incurred costs in 

the growing year, including transportation of corn grain to market. Land costs 

were neglected in this analysis as the farmers did not pay rent for the land 

used in the competition.  

Uncertainty and sensitivity analyses  

The main consideration in uncertainty analysis was the large uncertainty 

regarding the emission factor EF1 (0.03–0.003) in estimating in-field 

agricultural soil emissions. The other major area of uncertainty was due to the 

differences in farmer decisions (various application rates of irrigation water 

and fertilizer) that resulted in unique GHG emission estimates for each field 

parameter. A Monte-Carlo uncertainty simulation with 100,000 runs per year 

and treatment based on variation in model inputs was adopted in R to analyze 

the uncertainties associated with the overall GHG emission estimates. A 

uniform distribution was assumed for EF1 based on the minimum and 

maximum of its range. The rest of the parameters were assumed to fit normal 

distributions with different means and standard deviations based on 

variability in inputs from farmer decision-making (Table 1). We chose these 

variables based on known uncertainty (i.e., EF1) and management variability 

(e.g., fertilizer rate, irrigation rate, yield).  

Using the results of the Monte Carlo runs, Spearman’s Rank correlation 

was used to find the correlation coefficient (rho) between total GHG emissions 

and various parameters (EF1; FCR; FSN; corn yield; natural gas, diesel, and 

pumping energy; herbicide, seed, and fertilizer production; diesel and natural 

gas combustion; and agricultural soil emissions). The correlation coefficients 

were used to assess the overall sensitivity of total GHG emissions to each 

tested parameter, where rho values near ±1 indicate strong correlations.  

Results and discussion  

Field-specific yields and revenue  

Yields were measured at harvest and used in determination of net revenue 

based on the difference in revenue and costs from different farmer decisions 

(Table 3). Most fields produced at least 13,700 kg corn ha− 1, although a few 

fields severely underperformed (field 10 had only 7880 kg corn ha− 1) and field 

11 had the overall highest yield (15,189 kg corn ha− 1). It should be noted that 

only field 11 obtained yield higher than the yield goal (15,000 kg corn ha− 1). 

Based on farmer decisions and resulting yields, net revenue averaged $687 ha− 

1, although field 10 generated no revenue (lost $8 ha− 1) and field 14 had the 

highest net revenue ($1115 ha− 1). Despite field 11 having the highest yield, its 

net revenue was lower ($763 ha− 1) as it had higher fertilizer and irrigation rates 

compared to several other fields.  

Yield-weighted life cycle GHG emissions  

Total GHG emissions from the fourteen corn fields were yield- weighted 

and ranged from 213 to 360 (average 271 ± 46) g CO2-eq kg− 1 corn (Fig. 1). The 

differences among yield-weighted GHG emitted from various fields were due 
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to different rates of irrigation water and fertilizer and their resulting 

differences in corn yields. The maximum GHG emissions per kilogram of corn 

production was estimated from field 10, which had the lowest corn yield (7880 

kg corn ha− 1). The minimum GHG emission came from field 17, which had the 

lowest fertilizer application (191 kg ha− 1) and the second highest corn yield 

(14,934 kg corn ha− 1). This trend is to be expected, as decreased fertilizer 

application rates are tied to decreases in N2O emissions and overall GHG 

emissions (IPCC 2006; Decock, 2014). Considering the range of uncertainty, 

total GHG emissions from each individual field could deviate between − 24% 

and +56% from the average due to different values of the IPCC emission factor 

EF1 (minimum of 0.003, average of 0.01, and maximum of 0.03). These 

extreme uncertainty ranges reveal the importance of accurate estimation on 

EF1 when calculating agricultural GHG emissions.  

Contributions of pre-field and in-field parameters to total GHG emissions  

Total GHG emissions from corn production averaged 271 ± 46 g CO2-eq kg− 

1 corn, with thehighest proportion (average of 171 g CO2-eq kg− 1 corn or about 

63%) associated with in-field GHG emissions (Table 4). This total is of a similar 

magnitude to other reported carbon footprints for corn (Ma et al., 2012; 

Cheng et al., 2015; Xu and Lan, 2017). Semi-arid regions requiring irrigation 

are generally expected to have higher carbon footprints, as was found in China 

(390 g CO2-eq kg− 1 corn) (Yan et al., 2015). It is interesting to note that the 

proportion of GHG emissions associate with in-field management varied 

between fields and were not always directly proportional to fertilizer or 

irrigation rates. For example, field 14 had the lowest total GHG emissions (213 

g CO2-eq kg− 1 corn) and the highest proportion (65% of the total) were from 

in-field management. Meanwhile, field 10 had the highest total GHG 

emissions (360 g CO2-eq kg− 1 corn) and only 62.5% came from in-field 

management. The relationship is further complicated when normalizing GHG 

emissions by yield (per kg corn). Thus, the influence of fertilizer and irrigation 

rate simultaneously impacts GHG emissions and corn yield, sometimes in 

opposite directions, such that total weighted GHG emissions varies. For 

example, field 9 had the highest fertlizer rate (471 kg ha− 1) and yet the 

proportion of those emissions from in-field management (i.e., fertilizer-

induced soil N2O emissions) were lowest (61%). Although it would be expected 

that fertilizer application would directly increase the in-field GHG emissions, 

weighting GHG emissions by corn yield rewards fields with efficient fertlization 

rates that effectively increase yields.  

Estimated GHG emitted from each parameter indicated that agricultural 

soils contribute the most (89 ± 18 g CO2-eq kg− 1 corn or about 33%) to the total 

GHG emissions from corn production (Fig. 2). Denitrification and nitrification 

processes are two dominant pathways contributing to N2O emissions from 

agricultural soils (Braker and Conrad, 2011; Kumar et al., 2020; Tian et al., 

2020). Although many factors can contribute to these soil N2O emissions, the 

model presented here only included fertilizer-induced emissions as predicted 

by IPCC. When converted to CO2-eq emissions, the contribution of N2O 

becomes significant due to its global warming potential nearly 300 times 

higher than CO2 (USEPA 2022). This contrasts with the other in-field and pre-

field parameters which are mostly associated with energy production and 

consumption and primarily produce CO2 (USEPA 2022). This relationship is 

consistent with previous studies that have reported fertilizer use as a primary 

source of agricultural GHG emissions (Yan et al., 2015; Jat et al., 2019; Wu et 

al., 2022).  

As fertilizer-induced soil emissions dominated total GHG production, it is 

likely the contributions from agricultural soils could be decreased when 

applying best management practices (BMPs) for fertilizer. Studies suggest 

BMPs for N fertilizer application considering the source of N, rate, timing, and 

placement in addition to other in-field practices (e.g., cover cropping) could 

lower GHG emissions from corn production (Snyder et al., 2009; Decock, 2014; 

Foltz et al., 2021).  

Besides agricultural soil, other influential parameters on total GHG 

emissions in this study include on-site natural gas combustion for agricultural 

groundwater pumping (28%), fertilizer production (20%), and energy 

production for groundwater pumping (15%). This is consistent with a carbon 

footprint study from China, where fertilizer, electricity consumption for 

irrigation, and agricultural films were identified as the main factors 

contributing to carbon emissions (Huang et al., 2022). Improving overall pump 

efficiencies to decrease agricultural pumping energy consumption and 

switching the pumping energy from natural gas to electricity, specifically wind 

energy, where possible, could also reduce agricultural carbon footprint (data 

not shown).  

The lowest portion (0.55%) of the total GHG emissions was associ- 

Table 3  

Yields and net revenue for each field of the 2020 TAPS competition.   
Field  Corn Yield (kg ha− 1)  Net Revenue ($ ha− 1)  

1  14,150  624  

2  14,921  937  
3  14,910  987  
4  13,709  285  
5  13,737  525  
6  14,910  637  
7  14,435  909  
8  14,095  837  
9  14,399  771  
10  7880  − 8  
11  15,189  763  
12  9594  220  
13  14,732  1016  
14  14,934  1115   

ated with diesel production for agricultural vehicles (1.5 g CO2-eq kg− 1 corn), followed by seed (0.77%) and herbicide (0.81%) production. The GHG emission from 

on-site diesel combustion from the agricultural vehicle is estimated at an average of approximately 7.5 g CO2-eq kg− 1 corn. Therefore, operation of farm vehicles 

and equipment should not be a major focus for reducing total GHG from agriculture. Similarly, improving efficiency of seed and herbicide production should not 

be a focus until fertilizer production and energy production are more efficient and sustainable.  

Yield impacts  

As the GHG emissions were yield-weighted in this study, it was important to consider the influence of irrigation water and fertilizer application on yield. Corn 

yield had a strong positive polynomial  
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Fig. 1. Total GHG emissions in g CO2-eq kg− 1 corn production from each field in the 2020 TAPS competition. IPCC emission factor (EF) values used in the ranges are  
reported as minimum, average, and maximum for each field.  

Table 4  

Pre-field, in-field and total yield-weighted GHG emissions (g CO2-eq kg− 1 corn) from each 

field in the 2020 TAPS competition.   

relationship with water application (R2 
= 0.96, Fig. 3) while it has a weak 

relationship with fertilizer application (R2 
= 0.04, data not shown). In the study 

year, there appeared to be an optimum irrigation rate of about 6000 m3 ha− 1 

above which yield did not fluctuate as much with additional water. The study 

year was a relatively dry year with a drought starting in May 2020 (NIDIS 2022), 

which may also contribute to the strong connection between irrigation rate 

and yield. The presence of a yield plateau suggests that many fields were 

overwatering at a higher economic and environmental cost with no net gains 

to yield. However, the risk of falling below this critical irrigation rate is 

significant to yield and costs. For example, the two lowest yielding fields (10 

and 12) were the highest overall emitters of GHG on a per kg corn basis. 

Further, these farmer’s losses economically are significant, with yields well 

below average.  

Sensitivity and uncertainty  

Uncertainty in the emission factor and differences in farmer-selected field 

management were incorporated into Monte Carlo simulations and correlation 

analysis of resulting GHG emission estimates. Parameters that were most 

influential for GHG emissions had rho values close to ±1. Yield-weighted total 

GHG emissions were driven by emissions from agricultural soil, so it was not 

surprising that total emissions were most sensitive to agricultural soil 

emissions (Table 5). As agricultural soil emissions are strongly linked to the 

emission factor (EF1), variability in  

Field ID  Pre-Field  In-Field  Total  

1  90  158  248  

2  81  144  225  
3  92  161  253  
4  86  151  237  
5  94  166  260  
6  95  167  262  
7  108  182  290  
8  97  165  262  
9  130  204  334  
10  135  225  360  
11  93  160  253  
12  136  219  354  
13  91  158  249  
14  74  138  213  
Ave  100  171  271   
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Fig. 2. Average yield-weighted GHG emissions from each process or parameter associated 

with irrigated corn production in the 2020 TAPS competition. Error bars show standard 

deviations (n = 14). Orange bars represent pre-field parameters, while blue bars represent 

in-field parameters.  

this input parameter caused significant variability in the total estimated GHG 

emissions. While agricultural soil emissions, and more specifically the 

emission factor, had a strong positive correlation with total GHG emissions 

(rho = 0.87–0.97), emissions were the least sensitive to herbicide, seed, and 

diesel production. Fertilizer production and fertilizer application rate (FSN) both 

had positive correlations with total GHG emissions, but at a lower level 

(rho=0.18–0.28) which could be linked to the insignificant link between 

fertilizer application and yield discussed previously. Overall, these sensitivity 

outcomes indicate the importance of targeting agricultural soil when planning 

to reduce agricultural GHG emissions from crop production. Due to the high 

sensitivity of GHG emissions from crop production to EF1, accurate estimation 

of this  

Table 5  

Spearman’s Rank correlation coefficients (rho) between yield- weighted total 

GHG emissions and various parameters. Correlation coefficients greater than 

0.5 are bolded to highlight strong correlations.   
Variable  Total GHG Emissions  

FCR  0.0676  

FSN  0.2768  
EF1  0.8706  
Corn Yield  − 0.2553  
NG Combustion  0.1162  
Diesel Combustion  0.0212  
Fertilizer Production  0.1790  
Herbicide Production  0.0041  
Seed Production  0.0043  
Pumping Energy  0.0610  
Diesel Production  0.0060  
Agricultural Soil  0.9705   

emission factor is essential to reduce the uncertainty of these GHG 

estimations. Sustainable agriculture could be planned through a multi- 

objective optimization model that targets maximizing crop yield and 

minimizing GHG emissions.  

Model uncertainty in average GHG emissions from corn production was 

estimated using Monte Carlo simulations based on uncertainty in EF1 and 

variation of the GHG emitted from different pre-field and in- field parameters 

at each of the 14 TAPS fields. The model results show approximately 25 

percent uncertainty in estimating total GHG emissions from corn production. 

Most of this uncertainty was due to uncertainty in EF1, which was an issue 

established in the literature previously (Zhang et al., 2017). It was our intention 

to minimize uncertainty in our total GHG emission estimates by removing 

uncertainty surrounding in- 

ventory data, for which we had exact input rates for fertilizer, irrigation, 

seeding, travel distances, yields, and costs. However, uncertainty in the direct 

soil emissions still dominate, which is a limitation of this study. This outcome 

suggests that incorporation of process-based models and direct field 

measurements of GHG will be necessary to improve accuracy of predictions.  

Implications and recommendations  

Total GHG emissions from irrigated corn production in CO2-eq per kg corn 

were driven by in-field parameters, mostly as direct N2O emissions from soil 

and the combustion of natural gas for groundwater pumping. Among pre-field 

parameters, energy production for groundwater pumping was the dominant 

GHG source, followed by fertilizer production. Therefore, when planning 

methods to reduce the GHG emissions from corn production, direct soil N2O 

emissions should be closely considered first. The second area to target in 

decreasing overall GHG emissions from agriculture involves improving energy 

use efficiency such that energy-related emissions in the agricultural life cycle 

are decreased. Overall, it is recommended to estimate the optimum fertilizer 

and water application rates for specific areas that will maximize crop yield and 

minimize potential GHG emissions. In the efforts to improve GHG emission 

estimates, parameters with high uncertainty and model sensitivity (i.e., the 

IPCC emission factor, EF1) should be determined for each site, as climate 

variability and field conditions may affect the resulting GHG emissions. 

 

Fig. 3. Relationship between irrigation water application rate and corn yield in the 2020 TAPS competition. The polynomial relationship shown: R2 = 0.96.   
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Therefore, it is recommended that direct soil emissions are measured in at 

least one growing season and used to validate process-based models that have 

been calibrated to the site with other direct field measurements, such as corn 

yield and soil moisture. With better estimates of in-field soil emissions, the 

overall GHG emissions from irrigated corn production will have greater 

certainty. Then, identification of optimal application rates will enable targeted 

policy and education to reduce overall GHG from irrigated and fertilized crops. 

Conclusions  

In this study, we quantified life cycle GHG emissions associated with pre-

field and in-field activities within fourteen independent, farmer- selected 

management scenarios in the 2020 Oklahoma TAPS sprinkler corn 

competition. Our overall findings were as follows:   

• Irrigated corn production in the U.S. Great Plains produced an average of 

271 ± 46 g CO2-eq kg− 1 corn across diverse, farmer- selected irrigation and 

fertilization scenarios.   

• In-field activities represented the majority (63 ± 10%) of total GHG 

emission.   

• Direct soil emissions (as N2O) were the greatest source (89 ± 18 g CO2-eq 

kg− 1 corn) of total GHG from corn production.  

• On-site natural gas combustion for agricultural groundwater pumping, pre-

field fertilizer production, and pre-field energy production for groundwater 

pumping were the next most influential parameters on total GHG 

emissions.  

• Diesel fuel, seed, and herbicide production had insignificant contributions 

to total GHG emissions from corn production.   

• The model was most sensitive to the modeled GHG emissions from 

agricultural soil, which had significant uncertainty in the emission factor.  

Supplementary Material  

All primary data used as inputs for modeling and resulting outputs for each 

of the 14 fields in the 2020 OK TAPS sprinkler corn competition are available 

as “OK-TAPS-2020-sprinkler-corn-competition.xlxs” for further information. 

The Excel file includes the following: field number, total irrigation amount, 

number of irrigation events, total fertilizer amount, pre-plant fertilizer 

amount, post-planting fertigation amount, number of fertigation events, seed, 

corn yield, net revenue, pre-field GHG emissions, in-field GHG emissions, and 

total GHG emissions.  
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