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Abstract

Fugacity is a fundamental thermodynamical property of gas and ga- m. *1+_s to determine their
behavior and dynamics in complex systems. Fugacity can be deducc ! experimentally from the
measurements of volume as a function of pressure at constant .emperature or calculated iteratively
using analytical equations of states (EOS). Experimental mea. rement is time-consuming, and
analytical models based on EOS are computationally der.an’.irg, especially when an approximate
but quick estimation is desired. In this work, machine le« *.ing'\ ML) is employed as a viable
alternative to analytical EOSs for quick and accurat’ ar jroximation of CO2 fugacity coefficients.
Five different ML algorithms are used to estimate th.  rug city coefficients of pure CO 2asa
function of pressure (<2000 bar) and tempera ure < 1000 °C). A combination of experimental
and pseudo-experimental (obtained from an ana:7tic.l EOS) data of CO : fugacity coefficients is
used to train, validate, and test the moc.'<. The best =sults were found using the Extreme Gradient
Boosting algorithm, which showed a mean . ~uare error of only 0.0002 in the validation data and
an average deviation of only 1.3% ir the t -t data (pure prediction). To quantify the effectiveness
of the machine learning techniques. rc it from the best-performing model are compared with
two state-of-the-art analytical n ddels. The ML model with significantly less computational
complexity showed similar accur.~v to the analytical models. The estimated fugacity data are then
used to compute the CO , -olubility in aqueous NaCl solution of different concentrations, and a
maximum deviation of anly _ 2%% from the experimental data is observed.

1. Introduction

The fugacity of g. = often expressed by the fugacity coefficient (ratio of fugacity and pressure), is
the pressure of ti. - suostance corrected for the non-ideality in its behavior (e.g., some level of
interaction ¢. ‘sts " etween gas molecules). The real gas pressure and fugacity are connected with
fugacit/ ce cfficicot, a dimensionless number that measures how far away the gas is from ideal
conc:tic s. V' hen the fugacity coefficient is 1, there would be no interaction between the

~oie tules, and the gas will behave as an ideal gas. If the fugacity coefficient is less than 1,

1 slecules are attraction dominant; hence the effective pressure exerted by the gas molecules will
oe less than the ideal gas pressure. Similarly, fugacity coefficient greater than 1 indicates the
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molecules are repulsion dominant, and the effective pressure is higher than the pressure exerted
by the ideal gas molecules.

The term fugacity was first coined by Lewis (1908) to replace the mechanical partial pressur : of
gas or gas mixtures with effective partial pressure, and since then, it has been a very criticc
thermodynamical property of gas or a mixture of gases to compute their chemical equili 1.

Fugacity is directly related to the chemical potential (i) of the substances (Eqgs. 1 and 2), ¢ 4 thus
dictates the preference of the component for one phase over others. The different il c.1a” ge in the
chemical potential between two states of slightly different pressure but equal ttmpe =*.ce for a real
gas can be explained by the ideal gas law if the pressure term is replaced by 1 gac. 7, as shown in
equations 1 and 2. Readers are referred to the study by Hurai et al. (2015) .2-~e. an in-depth
understanding of fugacity and fugacity coefficient.

M P P RT
(for ideal gas) f du = f VmdP = f Har=a"Inkipg (1)
Mo P, Po P

(forreal gas)du=RTIn f/f (2)

Where, R is the gas constant, Vi, is fluid’s molar volume¢ ar« I’y and fo are reference pressure and
fugacity, respectively.

Fugacity can be measured experimentally (Bruno, i 2“5; F -ost and Wood, 1997) or estimated using
different equations of state (EOS) (Duan et al., . v>7: holland and Powell, 1991; Spycher and
Reed, 1988). There have been a number of em, ‘rical or semi-empirical EOSs developed to
estimate the fugacity of gas in pure form or as a m.. ture with other fluids, such as Redlich-Kwong
EOS (Redlich and Kwong, 1949), several .»odifications of Redlich-Kwong (de Santis et al., 1974;
Flowers, 1979; Holloway, 1977), Per g-k hinson EOS (Peng and Robinson, 1976), and Virial EOS
(Mason and Spurling, 1969).

Redlich and Kwong equation i an em, irical Van-der-Waals type cubic equation that relates
temperature, pressure, and volume >f gases to estimate the thermodynamical properties of fluids.
Several modifications of .. = equations were proposed to improve the estimation. However, the
original Redlich-Kwor_ aua..on, along with some of its modifications, is reported to be less
accurate in estimatin. fugaci.y values near critical conditions (Tarakad et al., 1979). The Peng-
Robinson equaticns, 2now. er type of EOS devised to model gas fugacity, even though enables a
more accurate €. ‘matio. of fugacity in the liquid-vapor boundary than the Redlich-Kwong
equations, th_y . =e 1. ore intricate in nature (Appelo et al., 2014). The only EOS with a better
theoretical . unda ion to represent the properties of pure and mixed gases is the Virial equations
(Masor an: Spu. ling, 1969) which have been used extensively to estimate thermodynamical
proper. 2., in luding gas fugacity or fugacity coefficients (Bai et al., 2021; Chueh and Prausnitz,
19¢ * Dhamu et al., 2021; Duan et al., 1992; Schultz et al., 2010; Spycher and Reed, 1988).
S yche.and Reed(1988) presented a second-order Virial EOS in terms of pressure and temperature
0 estimate the fugacity of pure and mixture of gases. Their model has the ability to be efficiently



74
75
76
77
78
79
80
81
82

83
84
85
86
87
88
89
90
91
92
93
94

95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

111
11.

implemented in other numerical models where pressure and temperature are the primary variables
Duan et al. (1992) formulated a fifth-order Virial expansion to estimate the fugacity coefficient oi
pure CO2, CH4, H>0, and their mixtures. Comparison of their estimations with a large amour: v,
experimental data for pure systems revealed that the EOS is capable of providing a very acct =.¢
estimation (deviation below 2.5%) of CO > fugacity coefficients for a wide range of tempere ‘ures
(up to 1000 °C) and pressure (up to 3500 bar). Their fugacity EOS was later used by Duc1 a..
Sun (2003) and recently by Bhattacherjee et al. (2022) to estimate the CQ solubilitv.in p.: water
and aqueous NaCl solution for geological storage applications. However, the EO’ w's | resented
in a very complex form and required a number of parameters to be evaluated.

Recently, machine learning or data-driven methods have become increasingly | opuiar in various
fields, and chemical engineering is no exception. Machine learning models arc computationally
less challenging to deploy than EOS-based models, and depending on the ex »erimental data
available to train the models, these can be used for any regression ¢ ¢ cl. =*“,cation problems with
minimal error and less run-time requirement. Jirasek et al. (2020) dc¢ ~loped a probabilistic matrix
factorization model to predict the activity coefficient, a meast .e of the non-ideality of liquid
mixtures. Their model had significantly less mean square erro: *han UNIQUAC Functional-group
Activity Coefficients (UNIFAC), one of the most conver 107 al vhysical methods of predicting
activity coefficients. Zhang et al. (2018) used a back-proy eat’on neural network (BPNN) and a
general regression neural network (GRNN) to provi de < aitra-fast prediction method for the
thermodynamic properties (e.g., solubility, densitv. & 4 v'scosity) of CO > in the solutions of
Potassium Lysinate.

The computational power of Machine | earning als - brovides the ability to try different in-house
algorithms on the same dataset, track thcn »ffectiveness, make necessary modifications, and select
the most appropriate model: a trial-ar u-c. -or toadmap not readily possible with the EOS models.
Mohamadian et al. (2022) compared he pe formance of several machine learning algorithms,
including extreme gradient boos .ing ‘XGB), multilayer perceptron (MLP), K-nearest neighbor
(KNN), and internal genetic alg. sithm (GA) to estimate the solubility of CO 2 in the aqueous
solution of NaCl as a fuction of pressure, temperature, and salinity. Abdolbaghi et al. (2019)
applied four machine learni. = algorithms: particle swarm optimization (PSO), multilayer
perceptron (MLP), hy sria- daptive neuro-fuzzy inference system (hybrid-ANFIS), and coupled
simulated annealmneo-le. -t square support vector machine (CSA-LSSVM) to predict the viscosity
of pure CO; at h7 ;h tc nperature and pressure conditions. Machine learning has also been used in
several other stua. < to estimate different thermodynamical and PVT properties of fluids such as
viscosity (A mar ¢ al., 2020), solubility (Menad et al., 2019; Mesbah et al., 2018; Nabipour et al.,
2020), dens1t, ‘171 and Seraj, 2022; Syah et al., 2021), diffusivities (Amar and Ghahfarokhi, 2020;
Anicet ) et’al 20.1), and interfacial tension (Amooie et al., 2019; Safaei-Farouji et al., 2022; Vo-
Tha .n ¢ 21.2022)

Ii this .sudy, five different machine learning algorithms are used to develop models to estimate
*1e fugacity coefficient of pure CO: as a function of temperature and pressure for the temperature
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range of 0-1000 °C and pressure up to 2000 bar. Models are trained and validated on the
experimental data collected by Angus et al. (1976) and Rhyzenko and Volkov (1971) and estimatc 1
data from Duan et al. (1992). The performance of the final model is tested on a separate datas_.
containing only experimental data, and the results are compared with two state-of-the-art
thermodynamical models of estimating fugacity.

Predicted fugacity data are used to estimate the solubility of COz in pure water and a¢;2o.s NaCl
solutions using the solubility model developed by Duan and Sun (2003) at the ter per ture and
pressure conditions usually reported in geological storage sites of CQ. The c¢rigin 1"Duz 1 and Sun
model of solubility uses a fifth-order Virial EOS to estimate the CO > fugacity «»etticients. This
work intends to reduce the computational complexity of their model by estima ‘ng tugacity
coefficients using machine learning frameworks. Such estimation can be nsea . understand the
solubility trapping potential of CO; in depleted oil and gas reservoirs  nd sa’‘ne aquifers.

2. Theory, Database, and Methods

The methodology used to develop the machine learning moc: s for this study can be summarized
in the following steps: (i) Database formation; (ii) learnir;'go1. hm selection; (iii) splitting data
into training, validation, and test sets; (iv) data scaling; ( 7)) iyp r-parameter tuning; (vi) model
evaluation; and (vii) selection of the best-performing ... dei. Besides, predicted fugacity values

are used to estimate the CQ solubility in pure watei 2*'d a. ueous NaCl solution using the solubility
model developed by Duan and Sun (2003). Eac’s o these steps is described in detail in the
following subsections.

2.1 Database

The availability of experimental date on ti.» CO2 fugacity coefficient is very limited. Angus et al.
(1976) reviewed and tabulated some . 7ail-ole experimental PVT data for pure CO 2, including
density, fugacity/pressure ratio.(ruga. ty coefficient), and compressibility factor. However, these
experimental data were limited tc aressure up to 1000 bar only. Another great source of
experimental data, provi~d by Rhyzenko and Volkov (1971) for CO  » fugacity, also covers a
shorter range of pressure. 801200 bar only.

This work aims {5 de. >lop a model that can estimate the fugacity coefficients for temperatures up
to at least 200 °C-and »ressure up to 2000 bar. These temperature and pressure ranges are selected
based on the typi. 2l reservoir pressure and temperature encountered on the subsurface CQstorage
sites. Tempe . atu, >-w.se, the experimental data are adequate to build the models, but pressure-wise,
the data wou.'d no’ be enough to meet the objective of this study. Planning ahead of this scenario,
to comler .ent . > experimental data, we chose to generate pseudo-experimental data of CO >
fugeit, oef icient for P>1000 bar using a current state-of-the-art analytical model developed by
Dua et al. (1992).
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The analytical model developed by Duan et al. (1992) is one of the most accurate thermodynamica’
models available to estimate the fugacity coefficients of pure COs.. It covers an extensive range oi
pressure (up to 3500 bar) and temperature (up to 1000 °C). Moreover, CQ solubility in pure v aw
and aqueous NaCl solutions estimated with their fugacity values reported to be very close to »r
within the experimental uncertainty (Bhattacherjee et al., 2022; Duan and Sun, 2003). Therc ‘ore,
Duan's model was used to generate pseudo-experimental fugacity data for P >1000 bar. i hes.
estimated data were merged with the data from Angus et al. (1976) and Rhyzenko and viit »v
(1971) to create a database of 640 data points for training, validating, and testing he .n¢ dels. The
combined dataset covers a wide range of temperatures (up to 1000 °C) and pre sui. ., to 2000
bar). Table 1 shows the source, type, temperature, and pressure ranges of the ('ata ¢ ed to develop
the database for fugacity prediction.

Table 1: Source, type, and T&P ranges of the data used to develop the dat’.oz ‘e for this study.

Source Data Type Tempera. re Pressure
Angus et al., 1976 Experimental 0-820 °C 1-1000 bar
Rhyzenko and Volkov, 1971 | Experimental | 40€ 1000 °C | 800-1000 bar
Duan et al., 1992 Estimated | <5 00 °C | 1000-2000 bar

2.2. Machine Learning Model Development and Jp un ization
2.2.1. Machine Learning Algorithms

This study used five different Machine ! .earning a., ~rithms to predict the fugacity coefficients of
CO:a. The algorithms employed were: Linc = Regression (LR), Decision Tree (DT), Random Forest
(RF), Extreme Gradient Boosting (X3B), nd different kernels (e.g., linear, polynomial, and
Radial Based Function (RBF)) of Su, nort ' 'ector Machines (SVM). These algorithms were
adopted using python libraries 2 1d . ckages for efficient utilization and further optimization. A
description of the logic behind €. ~h model is presented as follows.

2.2.1.1 Linear Regressior

Linear regression (LP is oi.> of the simplest machine learning models employed in predicting
target values. The i. ode. makes a classification or regression calculation based on the value of a
linear combinat’ n of 1 atures and their associated weights or parameters.

The algoritk' n 15 natuematically represented as:
y=PBo+PB1*x+ ..+ Lnxn 3)

whe ¢y < th: set of output values from the algorithm, x is the set of input features fed into the

1

“road’ and s are the best parameters assigned to the features in such a way that the model
p =diction equation has the least amount of error between the predicted and actual target values.
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To confirm the optimum selection of these parameters, we would need to use the training data and
define a function that measures the quality of predictions for each value of . This function is
called the cost function. The cost function helps us to figure out the best possible values forran.
B1, which would provide the best fit line for the data points. Since we want the best values.fo 3o
and B1, we convert this search problem into a minimization problem where we would li¥e tc
minimize the error between the predicted value and the actual value. The function is oive. as.

J= 5" (predy - y)? @)

where the idea is to minimize the sum of errors between the squared value oi ‘he :fference
between the predicted and actual values. The final selected B values wenld h ve the least cost
function.

2.2.1.2. Decision Tree Regression

The decision tree (DT) is a supervised learning algorithm that builds ti.> regressions or
classification models in a tree-like structure based on decisic: = and all possible results and
outcomes. The prediction of the target variable is followe X C - thi. tree, where the outputs at the
individual nodes are determined, and these estimates fur 1. d¢ ermine the branches. This
modeling technique is generally preferred due to its .u. 'ty w work well with data with missing or
noisy data points without compromising the accura. v of e timation or prediction. It can also be
ensembled like in random forest modeling to c?Cawc 2ven more efficient models.

Qi.e/{ Layer 1
L
(lh‘ +nal Leaf
i, 2 node Layer 2

[ Le.. Leaf
| ade node Layer 3

Figure 1: Basic decision tree (Hoffman, 2020).

The decisic  tree  sorks to define the splits in the node such that the information gained from the
resulting .. des « maximized. This information gain can be described as the net difference between
the im; ur.cy 1 the root node and all the branching leaf nodes from that root, as seen in Figure 1.
The e arc uirferent criteria that can be used to mathematically determine this impurity difference:

t1 » enw.>py and the Gini index or the Gini impurity.
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2.2.1.3. Random Forest Regression

The random forest (RF) regression model is an algorithm employed using ensemble learning.
which essentially is a method that uses the combined predictions and estimations from multi le
machine learning models to result in a more accurate regression of a target variable. This a. ot:.un
is based on constructing several trees in a particularly random manner and combining th
predictions form the resulting models.

Figure 2: Random Forest Tree Regression 7 lus’.at on (Bakshi, 2020).

The model for a random forest prediction from this *Lce zan ve denoted by a base regression tree
given as,

{ra(X, Om, Dy), m =1}, ()

where values for © are independently {n¢' identica.. - distributed outputs of © based on the data
set Dy, and the independent variable, X.

Assuming multiple decision trees, th » pred ctions from all the different ensembles using different
hyperparameters are averaged, 2. >. ~wu 1n Figure 2.

The aggregated form of these ranc »m trees is estimated as
{rn(a,0n) = Eg[X, O, Dnl}, (6)

where Eg is represer: 'tive ¢ " the expectation of the random variable, dependent on X and the
overall data, Dy. "1 aveoagely estimated prediction from all the models constitutes the random
forest prediction alue.

2.2.1.4. Ex* =me \ radient Boost

The pr'acile bern. ad the Extreme Gradient Boost (XGB) algorithm also follows the same principle
as e sei. vle‘earning. XGB also trains many models to be able to arrive at an average prediction
~~rosall the models. The Boosting process performs in such a way that it identifies and minimizes
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the disadvantages of the individual decision trees. In this, the prediction of a target variable y is
given as,

y=Yi_ fxCe) freF (7)

where for calculations, the K represents the number of trees in the ensemble model, the' ™. is a
function that maps the values of x to y in functional space F, and F is a set of possibl¢:“la sification
and Regression Trees. The objective function that we want to maximize or minim’.c : the
prediction of the target variables is given as,

0bj(0) = i l(ysyp) + X Wi ®)

where the first summation term is the training loss function which is th_ « ‘ference between the
predicted target value from the model and the actual value. The secen.’ <umr iation term also
represents the complexity of the model in fitting the data. This fui. ‘ion 1s defined by the
regularization parameter used to ensure that the model is not overfittin_ or underfitting to the
training datasets.

2.2.1.5. Support Vector Machines

The main ideas of support vector machines (SVM) -.¢ « ‘assirication problems. However, the
packages and adaptations made in different softwar. <nab ¢ them to handle regression problems
properly and use the support vector regression .go. thms. These adaptations are also contained in
Python's "sklearn" machine learning packages. The $ VM algorithm works in such a way that it
finds a plane or, in this case, a hyperpléne that can . narate two sets of data points with the highest
possible sense of purity (or, in this case, tho separation margins). These respective hyperplanes can
be expressed as +y = w'x + b, the'w te: n represents the slope of the plane. Then the objective
function can change the optimization >rob’sm into:
2

(w*,b*)=ary nax HW‘T”yi (W' + b)=1 9)
This simplification of the ¢ erall optimization parameter reduces the computations required to
arrive at a global mini au... However, the solution for this is in a non-convex solution form, which
is not preferred fur thi. solution since the algorithm can get stuck at a local minimum instead of
reaching the glot .l .. nimum. Therefore, the non-convex equation is modified into a convex
solution as,

[w Il

(o",b")=argmin —, y;* (wai + b)=>1 (10)

Thes= « »Uroy mation functions work for linear separators. However, the SVM package in the

nyi n language employs the use of kernels. These kernels are the functions in which the data
pt ints c.n be represented and would be separable. These could be linear, polynomial, or RBF

radial basis function).
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2.2.2. Data Splitting

In machine learning, the dataset is split into a training and validation set to prevent the model from
overfitting. The model is trained on the training data, and the validation set is never utilized during
the training process. Instead, the validation set is used to evaluate the performance of the trained
model on the unseen data and tune the model parameters accordingly. A separate test set is also
used to score the data with the final model. The test set is different from the validation set in a way

that it has never been used in tuning the model parameters and gives an unbiased estimate of the
skill of the final model.

In this study, first, the test set is formed by randomly sampling 10% of the experimental data. The
pseudo-experimental fugacity values estimated using the analytical model were not included in the
test set. This was done so that the performance of the ML models could be compared with Duan's
analytical model (Duan et al., 1992) on the test data. Because the pseudo-experimental data were
derived from Duan’s model, the comparison would be skewed in favor of Duan's model if the test
set included the pseudo-experimental data.

Training and validation sets were created by randomly splitting 80% of the remaining data into the
training set and 20 % into validation. The random state was kept constant to keep the dataset
unaltered so that each model could be trained and validated on the same data. Table 2 summarizes
the data used to develop the models in this study.

Table 2: Summary of the database used to train, validate, and test the models used in this study.

Train

Validation

Test

T/°C

P/bar

Fugacity
coefficient

T/°C

P/bar

Fugacity
coefficient

T/°C

P/bar

Fugacity
coefficient

count

461

461

461

115

115

115

64

64

64

mean

280.9

786.5

0.76

336.4

625.2

0.79

509.2

400

0.99

std

349.6

610.9

0.42

378.3

626.1

0.41

301.5

305

0.2

min

0

1

0.13

0

1

0.14

80

50

0.38

25%

40

200

0.37

50

50

0.39

320

100

0.95

50%

90

700

0.77

100

400

0.97

455

300

1.02

75%

500

1200

1.06

500

1000

1.01

805

600

1.12

max

1000

2000

1.82

1000

2000

1.8

1000

1000

1.28

2.2.3 Feature Scaling

Scaling is a very critical part of data pre-processing in machine learning and is used to bring all
the features to the same standard so that the algorithm does not give any preference to any
significantly large number (Burkov, 2019). Some of the machine learning algorithms that utilize
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the distance between two observations to make decisions (e.g., SVM, principal component
analysis, K-nearest neighbors) are very sensitive to the magnitude of the numbers and require
scaling. Scaling is also required for algorithms that use gradient descent as the optimization
technique, such as the case for linear regression, logistic regression, and neural networks. Ru =
based algorithms such as decision tree, random forest, or gradient-boosted decision tree_ho -ever,
are not affected by scaling.

There are a number of ways scaling can be accomplished. The two most common .uic ods are
normalization and standardization of data. Normalization works by transforiiing % rar ge of the
values into a standard range, such as [0,1]. Standardization, on the other han<', ti. astorms the data
so that they follow a standard normal distribution with a mean of zero and a st. ndard deviation of
one. This study used standardization to scale the features using the StandardSca.cr feature of
Python's Scikit-learn library (Pedregosa et al., 2011). The mean and n 2d*.nHf the training set are
used to scale the entire data.

2.2.4. Hyper-parameter Tuning

Hyper-parameters are different from the model parameters.in ti.. sense that they are not learned
from the data fitted to the algorithm and must be definec pr'or® o training the model. Hyper-
parameter tuning is a model optimization technique th=t 11, 2", es assigning different classes or
numerical values to the parameters required to conf gv ¢ i e learning algorithms and choosing a
set of optimal hyper-parameters values to define e 1,.-2¢l architecture. In this work, optimal
hyper-parameters were chosen by searching tl: hype -parameters space for optimal values using
the Grid Search technique (Pedregosa et al., 2011, urid search evaluates different models
developed with each possible combinati: > of given hyper-parameter values and selects the one
that produces the best results. This weiiiises ridSearchCV class from Python's Scikit-Learn
library for hyper-parameter optimize ion w th 3-fold cross-validation. Table 3 lists all the hyper-
parameter values tested for each .., ~riu.n and the ones that produced the least validation error.
Linear Regression (LR) model" -as exempted from the hyper-parameter tuning because the
purpose of the LR model was just v set a base for the other models.

Table 3: Tested and best perfor.. in5 hyper-parameters values for each learning algorithm. Values for the
remaining parameters w re soto default.

ML
. B~ oer-pc-ameter Values Tested Best
Algorithm
C- 1, 10, 100, 1000 100
SVM Gar jma* 1,0.1,0.01, 0.001, scale 1
_  ~Kciel rbf, poly, linear rbf
- Selection criterion mse*, mae* mae
D¢ ision .
oo Split strategy best, random best
Minimum number of samples to split a node 2,3,4....10 2
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318

319

320
321
322
323
324

325

326

327
328
32

Maximum depth of each tree 8,10,12....20 14 |

Minimum number of samples per leaf 1,2,3....10 1 |
Maximum number of leaf nodes 5, 20, 100, None N e
Number of trees used 100, 200, 300....1000 0 ‘
Maximum number of features for split auto, sqrt ato
Random Maximum depth of each tree 10, 20, 30....110 Iuvo
Forest Minimum number of samples to split a node 2,5,10 _
Minimum number of samples per leaf 1,2,4 1
Bootstrap True, False . True
Number of trees used 100, 500, 100 100
Maximum depth of each tree 3,6, 10 6
Learning rate 0.01,.05,¢1,0.2,03 0.3
Fraction of features used to train each tree 0.2 0., 1 1
XGBoost Gamma* 0, 1,2 0
Reg alpha* 0,1,2 0
Reg lambda* 1,2,3 1
Fraction of training samples used to train t ees - 0.1, 0.5, 1 1
Tree construction algorithm A Exact, approx., hist exact

*Gamma (SVM) determines how far the influence of a ¢ ng!_ t7aining example reaches; C trades off the
accuracy of the model for the simplicity of the decision 1. tctic.1 to avoid overfitting. Details on the hyper-
parameters can be found in the Scikit-learn docum¢ ntatic 1 (Pedregosa et al., 2011). For XGB, gamma
defines the minimum loss reduction required to ma.. > a s .it; Reg alpha and Reg lambda are the L1 and L2
regularization terms, respectively (Chen et al. 2018).

*mse= mean squared error; mae= mean ak=~lute > or

2.3. Model Evaluation

The performances of the propo. 4 mocels were evaluated using the mean squared error (MSE) in
the training and validation data ana the R 2 value in the validation data. Equations 11 and 12 are
used to calculate MSE ana 2.2 values. In addition to that, predictions from the models are plotted
against the validation /.di. *o giaphically compare the performance of the models in estimating
CO; fugacity cocificic ots.

MSE = é\* A‘T(actual—forecast)2 (11)
/
RE=1-2 12
T TSS (12)

Wi e,
.ctual = original or observed fugacity coefficients
forecast = Fugacity coefficients predicted using the developed models
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n = number of observations
RSS= sum of squares of residuals, or the variability of the dataset explained by the model
TSS= Total sum of squares, or the total variability of the dataset

The best-performing model was then used to score the test data, and the results were compared
with two classic thermodynamical models developed by Spycher and Reed (1988) and Duan et al.
(1992) for CO, fugacity coefficients.

2.4. CO; Solubility Estimation

Predicted CO, fugacity data were used to estimate the solubility of CO, in different salinities of
NaCl brine using the correlations developed by Duan and Sun (2003). The results were then
compared with the available experimental data.

2.4.1. Solubility Correlations by Duan and Sun

Duan and Sun (2003) developed a set of thermodynamical correlations to estimate CO, solubility
in water and NaCl brine of different salinities at temperatures ranging from 273-533 K and
pressure from 0-200 MPa. According to their correlation, CO, solubility in brine or water can be
estimated from the following equation:

yCOZP Heo,

Moo, = RT Ingco, + L 24co, - M + X, 22c0, - aMa + 2 8c0, - a- McMa (13)

In

Where mco, is the solubility of CO, expressed in moles of CO, per kg of water or brine, yco, is

the mole fraction of CO, in the vapor phase and can be estimated using equation (13), P is the
Heo,
pressure in bar, A and { are second-order and third-order interaction parameters, respectively. o

is the dimensionless standard chemical potential, ¢, 1s the fugacity potential of CO; in the vapor

phase of CO,-H,O mixture, m is the molality of the brine (for pure water m=0), and a and ¢ are

Heo,
the valence of anions and cations, respectively. Values for A, {, and - at different temperatures

and pressure can be calculated using equation 15 and table 4. Values for the fugacity coefficient
are estimated using the model developed in this study. It should be noted that, our model estimates
the fugacity coefficient of pure CO,, whereas equation 5 requires CO, fugacity coefficients in the
vapor phase of the CO,-H,0 mixture. However, the fugacity coefficient of pure CO, differs very
little from that in the vapor phase of CO,-H,0O mixture in the temperature and pressure range of
this study (Duan et al., 1992). Therefore, fugacity coefficient data for solubility estimation can be
predicted using the fugacity model developed in this study.

P-Py,o
Yeo,= " p (14)
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+c,T + = +c4T? + - + cgP + c7PInT + ol + of + c1oP”
—ava “lTe30-T T T T T 630-T T (630 - T)?2

T
+ c11TInP (15)

In equation 14, Py, ¢ is the pure water pressure in bar, which can be calculated using Eqn. (16) and

Eqn. (17). Values for c; to ¢, for different interaction parameters are listed in table 4.

P.T
Ph,0= T_[l +o(-OY + ot + cst? + gt + ostt] (16)
c

t=— (17)

T in Eqn. (15) to Eqn. (17) is the temperature in K, T, and P, are the critical temperature and
pressure of water. Values for parameters c,-cs are listed in table 5.

Table 4: T-P coefficient values for the interaction parameters in Eqn. (13) and Eqn. (15)

T-P coefficient | Hco, | Aco,-Na | §co,-Na-cl
RT

C; 28.94 -0.41 3.36e-4
C, -0.04 6.08e-4 -1.98e-5
C; -4770.67 | 97.53
Cy 1.03e-5
C, 33.81
Ce 9.04¢-3
C; -1.15¢-3
Cy -0.31 -0.02 2.12e-3
Cy -0.09 0.02 -5.24e-3
Co 9.33e-4
Cu 141e-5

Table 5: Parameters for Eqn. (16)

C, | -38.64
C, | 5.89

Cs | 59.88
C, | 26.65
Cs | 10.64




372

373
374
375
376
377
378
379
380
381
382
383
384

385

386

387
388
389
390

2.4.2. CO; Solubility Experimental Data

Model estimated CO, solubility data for NaCl brines of different salinities were compared with
the experimental data. The sources of our collection of solubility data for NaCl brines are listed in
Table 6. These sources have solubility values presented in different units such as molality, mole
fraction, mass fraction, etc. These solubility units were all converted to molality (mol/kg) to have
a common unit. A reliability assessment of the sources was performed by comparing the data from
different sources at similar temperatures, pressure, and salinities. Data sourced from Ellis and
Golding (1963) were excluded from the comparison as the data points were significantly off the
trend. Data by Kiepe et al. (2002) were not used as their experimental data were higher than others
at similar temperatures and pressure. Zhao et al. (2015) had the data only at 50 °C and 150 bar.
Since this pressure, temperature, and salinities of their dataset were already covered by other
measurements, their data were also discarded. The solubility data of Duan and Sun (2003) were
excluded as those data were estimated rather than experimentally measured.

Table 6: Source of data collected for CO, solubility in NaCl brine of different salinities.

Source T, °C P, bar Salinities, mol/kg
Bando et al. (2003) 30-60 100-200 0.2-0.5
Carvalho et al. (2015) 20-80 33-143 0.5-2
Duan and Sun (2003) 0-260 0-2000 0-4
Ellis and Golding (1963) 175-228 16-92 0-2
Hou et al. (2013) 50-100 30-182 4
Kiepe et al. (2002) 40-80 20-100 0.5-4.3
Koschel et al. (2006) 50-100 50-190 1-3
Liu et al. (2011) 45 21-158 1.9
Messabeb et al. (2016) 50-150 50-202 0-3
Mohammadian et al. (2022) 25-100 1-202 0-0.25
Nighswender et al. (1989) 80-160 20-100 0.17
Rumpf et al. (1994) 40-160 20-96 4
Takenouchi and Kennedy (1965) 150-200 100-1400 1.09-4.27
Wang et al. (2019) 30-80 30-300 1-3
Yan et al. (2011) 50-140 50-400 1-5
Zhao et al. (2015) 50 150 1-3

The final data set, comprising 890 experimental data points, covers pressure up to 1400 bar and
temperature up to 200 °C. Out of the total 972 experimental data points collected, only 163
observations have P > 200 bar, and only 12 with P >1000 bar. In fact, the most high-pressure CO,
solubility data are from only four sources (Bando et al. (2003), Takenouchi and Kennedy (1965),
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Yan et al. (2011), and Wang et al. (2019)) with only Takenouchi and Kennedy (1965) having the
solubility data at pressure >1000 bar.

| Salinity, mol/kg
1400 V00
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+1
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Figure 1: P and T range of accepted experimental CO: solubili*; " >ta 1. -NaCl brines of different
salinities.

3. Results and Discussion
3.1. Machine Learning Model Selection

Five different supervised machine leart ‘nz algorith. >s were used in this study to model CO 2
fugacity coefficient as a function of tempe. ture and pressure: Linear Regression, Support Vector
Machines (SVM), Decision Tree (D7 ), Ra "dom Forest (RF: averaging ensemble method), and
Extreme Gradient Boosting (XGB: b. astir 2 ensemble method). The hyper-parameters of the
algorithms were optimized usin, the ;rid search cv technique mentioned in section 2.2.4.

Table 7 compares the value of mati.zes used to evaluate the performance of the developed models,
and figure 4 shows the plu.: for predicted fugacity coefficient values versus the actual values from
the validation set. Not u.>t the validation data set is not used during the training; hence the plots
show pure prediction ‘eviations from the actual values. Each developed model, except the naive
linear regression dic  fa.. job approximating the CO > fugacity coefficients. The R ? values were
close to 1, and ti. - mean square errors (MSE) were also very minimum. However, there were some
instances of .iea. 7 overestimation and underestimation of fugacity coefficients from RBF SVM,
DT, and R} node s, as appears in figure 3. The best fit to the diagonal line was obtained from the
XGB p'ode .. XU model also produced the lowest validation MSE and highest R 2 value in the
validat. >« da a. The remaining models ranked based on validation MSE, from lower to higher as:
RE, YT, RBF SVM, and LR. The DT model even though exhibited the least MSE in the training

d: :a amung the models, the difference between the training and validation MSE is too high to rely
«pon the model for final prediction. Hence, XGB is chosen as the best-performing model. Figure
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5 shows the fugacity coefficient prediction from the XGB model and its comparison with the
validation data.

Predictions from LR
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Figure 2: Actual versus predicted fugacity coefficic >ts v7 ues for the ML models developed in this study.
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422  Figure 3: Prediction of CO» fugacity coefficient with the XGB ..l 'el o d its comparison with the actual
423  data from validation set.

424  Table 7: Values of the evaluation matrices used to comp/ re * e nachine learning models used in this
425  study.

Model Train MSE  V-=lidation MSE  vjlidation R2
Linear Regression 0.C,°9 0.0955 0.4297
RBF SVM 0.003 > 0.0042 0.9748
Decision Tree 9.0, % 10° 0.0013 0.9923
Random » rest 0.0002 0.0008 0.9950
XGFoosting  2.02 X 107 0.0002 0.9986

426

427  3.2. Compa 150, wich Analytical Models

428  Figure / o Figu = 7 compare the performance of the final proposed ML model (XGB) with two
429  state-o t'.e-a t analytical models developed by Spycher and Reed (1987) and Duan et al. (1992)
430 _for''1gacny coefficients. The experimental data used in the comparison are from the test data set
431 a1 ha.»>not been used in training or validating the models. Note that Spycher and Reed’s model
43. ., applicable for temperature from 80 °C to 350 °C, up to 500 bars, and from 400 °C to 1000 °C,
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up to 1000 bars. Duan's model has a broader range of temperature and pressure limit which is 0 to
1000 °C and 0 to 3500 bars, respectively. However, for the purpose of comparison, the pressure
and temperature limit mutually shared by both models are selected, which is temperature fror: o.
°C to 1000 °C and pressure up to 1000 bars.

Overall, Spycher and Reed's model generates the fugacity values with the least deviatic. %01 the
experimental values. Predictions from the XGB model and the estimations from Dua:'=.m ~del are
slightly off at lower temperatures (<400 °C). The average deviation from the XGF . del and
Duan's model is 1.13% and 1.19%, respectively, whereas, for Spycher and Rzed's = ode , the
deviation is 0.78%. A slightly lower deviation from the Spycher and Reed’s o ! might be due
to the fact that the estimated values from Spycher and Reed's model are extrac »d from the plots
reported in their studies using a plot-digitizing software. Even though the metucd is
straightforward, a lack of precision can lead to some level of data exti ict'on =rrors. Nevertheless,
the deviations from the XGB model were minor, and with significa itly .»2="computational
complexity it performed equally well as the two EOS-based analytic. ' models.

144 ® Spycherand Reed, 1987

e Duanetal., 1992
izl * XGBoosting /
1.0 2

L)
0.81 &%
()
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Figure 4: . -oerimental vs. predicted fugacity coefficients for test data.
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Figure 5: Comparison of the experimental data with the | =.dic’.ons from XGB model and two
analytical models by Spycher and Reed (1987) and "ue « et al. (1992).

3.3. Solubility Prediction

Fig. 8 (A, B, and C) compares the estimated CO colubility data for different salinities of brine
with the experimental data at 30 °C, 60 = . and 80 “, respectively. Due to the overall scarcity of
experimental data at high pressure and “>mpc wre conditions, it was challenging to find enough
isothermal data points (especially fo. T > 00 °C) representing different salinities. Therefore, to
compare the estimated solubility"+ta «.*Zmperature > 100 °C, data from different salinities (0-5
mol/kg) and temperatures (10C: 00 °C;, are combined (Fig. 8D).

The estimated solubilitic > <lata are overall in good agreement with the available experimental data,
indicating that fugacity coei.”cient values predicted from the XGB model are reliable for CO >
solubility estimation for av “»ast up to 200 °C, 1400 bar, and 5 molal NaCl solution. The average
deviation from the ~xp< imental data was 2.08%, 2.03%, 1.5%, and 3.2% for 30 °C, 60 °C, 80 °C,
and 100-200 °C. espc tively.
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Figure 6: Comparison of estimated and experimenta’ .2 soiubility values at different pressures
and temperatures

4. Conclusions

In this work, a machine learning approa. * for the prediction of CO 2 fugacity coefficient is
developed to estimate CO > fugacity ~=~ffic.> it with similar accuracy but significantly lesser
computational complexity than EOS basea analytical models. Five different learning algorithms
(Multilinear Regression, Support™>ctu.*.rachine, Decision Tree, Random Forest, and Extreme
Gradient Boost) are used to est” nate 1.2 fugacity coefficient as a function of pressure and
temperature. Extreme Gradient Bo. -t model provided the prediction with the highest accuracy in
the validation data. The ¢ . =loped model can be used to estimate CO > fugacity coefficient for
temperature in the ranc . £ 0 o 1000 °C and pressure up to 2000 bars. The comparison between
the ML model ard th EOS-cased analytical model suggest that the proposed model can be used
as a substitution for he a.alytical models where a quick and approximate estimation of CO 2
fugacity coeffici 1t is required.

The estimat :d fug ‘city coefficients are used to compute CO 2 solubility, one of the major
applications ¢ #:zacity data, in NaCl brines of different salinities. The maximum average

deviati "o 1 the experimental data ranged from 2.08 % to 3.2 % for pressures up to 1400 bar,
tem era. =2up to 200 °C, and concentrations up to 5 molal NaCl solution. The model developed,
. ored data with predicted fugacity, and the codes required to make the prediction for fugacity

¢ efficients are provided in the Supplementary Material section.
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