

See discussions, stats, and author profiles for this publication at: <https://www.researchgate.net/publication/373605534>

Machine learning-based prediction of CO₂ fugacity coefficients: Application to estimation of CO₂ solubility in aqueous brines as a function of pressure, temperature, and salinity

Article in International Journal of Greenhouse Gas Control · September 2023

DOI: 10.1016/j.ijggc.2023.103971

CITATIONS

2

5 authors, including:

Rupom Bhattacherjee

Oklahoma State University - Stillwater

5 PUBLICATIONS 4 CITATIONS

[SEE PROFILE](#)

READS

73

Kodjo Botchway

Oklahoma State University - Stillwater

7 PUBLICATIONS 16 CITATIONS

[SEE PROFILE](#)

Goutam Chakraborty

Oklahoma State University - Stillwater

CITATIONS 42 PUBLICATIONS 607 CITATIONS

[SEE PROFILE](#)

Prem Bikkina

Oklahoma State University - Stillwater 157

PUBLICATIONS 3,241

[SEE PROFILE](#)

1 **Machine Learning-Based Prediction of CO_2 fugacity Coefficients: Application to Estimation of CO_2
2 Solubility in Aqueous Brines as a Function of Pressure, Temperature, and Salinity**
3

4 Rupom Bhattacherjee^{a,b}, Kodjo Botchway^a, Jack C. Pashin^c, Goutam Chakraborty^a, Prema
5 Bikkina^b

6 ^a Spears School of Business, Oklahoma State University, Stillwater, OK, 74078, United States

7 ^b School of Chemical Engineering, Oklahoma State University, Stillwater, OK, 74078, United States

8 ^c Boone Pickens School of Geology, Oklahoma State University, Stillwater, OK, 74078, United States

10 **Abstract**

11 Fugacity is a fundamental thermodynamical property of gas and gas mixtures to determine their
12 behavior and dynamics in complex systems. Fugacity can be deduced experimentally from the
13 measurements of volume as a function of pressure at constant temperature or calculated iteratively
14 using analytical equations of states (EOS). Experimental measurement is time-consuming, and
15 analytical models based on EOS are computationally demanding, especially when an approximate
16 but quick estimation is desired. In this work, machine learning (ML) is employed as a viable
17 alternative to analytical EOSs for quick and accurate approximation of CO_2 fugacity coefficients.
18 Five different ML algorithms are used to estimate the fugacity coefficients of pure CO_2 as a
19 function of pressure (≤ 2000 bar) and temperature (≤ 1000 °C). A combination of experimental
20 and pseudo-experimental (obtained from an analytical EOS) data of CO_2 fugacity coefficients is
21 used to train, validate, and test the model. The best results were found using the Extreme Gradient
22 Boosting algorithm, which showed a mean square error of only 0.0002 in the validation data and
23 an average deviation of only 1.3% in the test data (pure prediction). To quantify the effectiveness
24 of the machine learning techniques, results from the best-performing model are compared with
25 two state-of-the-art analytical models. The ML model with significantly less computational
26 complexity showed similar accuracy to the analytical models. The estimated fugacity data are then
27 used to compute the CO_2 solubility in aqueous NaCl solution of different concentrations, and a
28 maximum deviation of only $\sim 2\%$ from the experimental data is observed.

29 **1. Introduction**

30 The fugacity of gas, often expressed by the fugacity coefficient (ratio of fugacity and pressure), is
31 the pressure of the substance corrected for the non-ideality in its behavior (e.g., some level of
32 interaction exists between gas molecules). The real gas pressure and fugacity are connected with
33 fugacity coefficient, a dimensionless number that measures how far away the gas is from ideal
34 conditions. When the fugacity coefficient is 1, there would be no interaction between the
35 molecules, and the gas will behave as an ideal gas. If the fugacity coefficient is less than 1,
36 molecules are attraction dominant; hence the effective pressure exerted by the gas molecules will
37 be less than the ideal gas pressure. Similarly, fugacity coefficient greater than 1 indicates the

38 molecules are repulsion dominant, and the effective pressure is higher than the pressure exerted
39 by the ideal gas molecules.

40 The term fugacity was first coined by Lewis (1908) to replace the mechanical partial pressure of
41 gas or gas mixtures with effective partial pressure, and since then, it has been a very critical
42 thermodynamical property of gas or a mixture of gases to compute their chemical equilibrium.

43 Fugacity is directly related to the chemical potential (μ) of the substances (Eqs. 1 and 2), and thus
44 dictates the preference of the component for one phase over others. The differential change in the
45 chemical potential between two states of slightly different pressure but equal temperature for a real
46 gas can be explained by the ideal gas law if the pressure term is replaced by fugacity, as shown in
47 equations 1 and 2. Readers are referred to the study by Hurai et al. (2015) to get an in-depth
48 understanding of fugacity and fugacity coefficient.

49 (for ideal gas)
$$\int_{\mu_0}^{\mu} d\mu = \int_{P_0}^P V_m dP = \int_{P_0}^P \frac{RT}{P} dP = RT \ln P/P_0 \quad (1)$$

50 (for real gas)
$$d\mu = RT \ln f/f_0 \quad (2)$$

51 Where, R is the gas constant, V_m is fluid's molar volume, and P_0 and f_0 are reference pressure and
52 fugacity, respectively.

53 Fugacity can be measured experimentally (Bruno, 1993; Frost and Wood, 1997) or estimated using
54 different equations of state (EOS) (Duan et al., 1992; Holland and Powell, 1991; Spycher and
55 Reed, 1988). There have been a number of empirical or semi-empirical EOSs developed to
56 estimate the fugacity of gas in pure form or as a mixture with other fluids, such as Redlich-Kwong
57 EOS (Redlich and Kwong, 1949), several modifications of Redlich-Kwong (de Santis et al., 1974;
58 Flowers, 1979; Holloway, 1977), Peng-Robinson EOS (Peng and Robinson, 1976), and Virial EOS
59 (Mason and Spurling, 1969).

60 Redlich and Kwong equation is an empirical Van-der-Waals type cubic equation that relates
61 temperature, pressure, and volume of gases to estimate the thermodynamical properties of fluids.
62 Several modifications of the equations were proposed to improve the estimation. However, the
63 original Redlich-Kwong equation, along with some of its modifications, is reported to be less
64 accurate in estimating fugacity values near critical conditions (Tarakad et al., 1979). The Peng-
65 Robinson equations, another type of EOS devised to model gas fugacity, even though enables a
66 more accurate estimation of fugacity in the liquid-vapor boundary than the Redlich-Kwong
67 equations, they are more intricate in nature (Appelo et al., 2014). The only EOS with a better
68 theoretical foundation to represent the properties of pure and mixed gases is the Virial equations
69 (Mason and Spurling, 1969) which have been used extensively to estimate thermodynamical
70 properties, including gas fugacity or fugacity coefficients (Bai et al., 2021; Chueh and Prausnitz,
71 1973; Dhamu et al., 2021; Duan et al., 1992; Schultz et al., 2010; Spycher and Reed, 1988).
72 Spycher and Reed(1988) presented a second-order Virial EOS in terms of pressure and temperature
73 to estimate the fugacity of pure and mixture of gases. Their model has the ability to be efficiently

74 implemented in other numerical models where pressure and temperature are the primary variables
75 Duan et al. (1992) formulated a fifth-order Virial expansion to estimate the fugacity coefficient of
76 pure CO₂, CH₄, H₂O, and their mixtures. Comparison of their estimations with a large amount of
77 experimental data for pure systems revealed that the EOS is capable of providing a very accurate
78 estimation (deviation below 2.5%) of CO₂ fugacity coefficients for a wide range of temperatures
79 (up to 1000 °C) and pressure (up to 3500 bar). Their fugacity EOS was later used by Duan and
80 Sun (2003) and recently by Bhattacherjee et al. (2022) to estimate the CO₂ solubility in pure water
81 and aqueous NaCl solution for geological storage applications. However, the EOS was presented
82 in a very complex form and required a number of parameters to be evaluated.

83 Recently, machine learning or data-driven methods have become increasingly popular in various
84 fields, and chemical engineering is no exception. Machine learning models are computationally
85 less challenging to deploy than EOS-based models, and depending on the experimental data
86 available to train the models, these can be used for any regression or classification problems with
87 minimal error and less run-time requirement. Jirasek et al. (2020) developed a probabilistic matrix
88 factorization model to predict the activity coefficient, a measure of the non-ideality of liquid
89 mixtures. Their model had significantly less mean square error than UNIQUAC Functional-group
90 Activity Coefficients (UNIFAC), one of the most conventional physical methods of predicting
91 activity coefficients. Zhang et al. (2018) used a back-propagation neural network (BPNN) and a
92 general regression neural network (GRNN) to provide an ultra-fast prediction method for the
93 thermodynamic properties (e.g., solubility, density, and viscosity) of CO₂ in the solutions of
94 Potassium Lysinate.

95 The computational power of Machine Learning also provides the ability to try different in-house
96 algorithms on the same dataset, track their effectiveness, make necessary modifications, and select
97 the most appropriate model: a trial-and-error roadmap not readily possible with the EOS models.
98 Mohamadian et al. (2022) compared the performance of several machine learning algorithms,
99 including extreme gradient boosting (XGB), multilayer perceptron (MLP), K-nearest neighbor
100 (KNN), and internal genetic algorithm (GA) to estimate the solubility of CO₂ in the aqueous
101 solution of NaCl as a function of pressure, temperature, and salinity. Abdolbaghi et al. (2019)
102 applied four machine learning algorithms: particle swarm optimization (PSO), multilayer
103 perceptron (MLP), hybrid-adaptive neuro-fuzzy inference system (hybrid-ANFIS), and coupled
104 simulated annealing-least square support vector machine (CSA-LSSVM) to predict the viscosity
105 of pure CO₂ at high temperature and pressure conditions. Machine learning has also been used in
106 several other studies to estimate different thermodynamical and PVT properties of fluids such as
107 viscosity (Amar et al., 2020), solubility (Menad et al., 2019; Mesbah et al., 2018; Nabipour et al.,
108 2020), density (Tian and Seraj, 2022; Syah et al., 2021), diffusivities (Amar and Ghahfarokhi, 2020;
109 Anicet et al., 2021), and interfacial tension (Amooie et al., 2019; Safaei-Farouji et al., 2022; Vo-
110 Thanh et al., 2022).

111 In this study, five different machine learning algorithms are used to develop models to estimate
112 the fugacity coefficient of pure CO₂ as a function of temperature and pressure for the temperature

range of 0-1000 °C and pressure up to 2000 bar. Models are trained and validated on the experimental data collected by Angus et al. (1976) and Rhyzenko and Volkov (1971) and estimated data from Duan et al. (1992). The performance of the final model is tested on a separate dataset containing only experimental data, and the results are compared with two state-of-the-art thermodynamical models of estimating fugacity.

Predicted fugacity data are used to estimate the solubility of CO₂ in pure water and aqueous NaCl solutions using the solubility model developed by Duan and Sun (2003) at the temperature and pressure conditions usually reported in geological storage sites of CO₂. The original Duan and Sun model of solubility uses a fifth-order Virial EOS to estimate the CO₂ fugacity coefficients. This work intends to reduce the computational complexity of their model by estimating fugacity coefficients using machine learning frameworks. Such estimation can be used to understand the solubility trapping potential of CO₂ in depleted oil and gas reservoirs and saline aquifers.

2. Theory, Database, and Methods

The methodology used to develop the machine learning models for this study can be summarized in the following steps: (i) Database formation; (ii) learning algorithm selection; (iii) splitting data into training, validation, and test sets; (iv) data scaling; (v) hyper-parameter tuning; (vi) model evaluation; and (vii) selection of the best-performing model. Besides, predicted fugacity values are used to estimate the CO₂ solubility in pure water and aqueous NaCl solution using the solubility model developed by Duan and Sun (2003). Each of these steps is described in detail in the following subsections.

2.1 Database

The availability of experimental data on the CO₂ fugacity coefficient is very limited. Angus et al. (1976) reviewed and tabulated some available experimental PVT data for pure CO₂, including density, fugacity/pressure ratio (fugacity coefficient), and compressibility factor. However, these experimental data were limited to pressure up to 1000 bar only. Another great source of experimental data, provided by Rhyzenko and Volkov (1971) for CO₂ fugacity, also covers a shorter range of pressure (800-1000 bar only).

This work aims to develop a model that can estimate the fugacity coefficients for temperatures up to at least 200 °C and pressure up to 2000 bar. These temperature and pressure ranges are selected based on the typical reservoir pressure and temperature encountered on the subsurface CO₂ storage sites. Temperature-wise, the experimental data are adequate to build the models, but pressure-wise, the data would not be enough to meet the objective of this study. Planning ahead of this scenario, to complement the experimental data, we chose to generate pseudo-experimental data of CO₂ fugacity coefficient for P>1000 bar using a current state-of-the-art analytical model developed by Duan et al. (1992).

148 The analytical model developed by Duan et al. (1992) is one of the most accurate thermodynamical
149 models available to estimate the fugacity coefficients of pure CO₂. It covers an extensive range of
150 pressure (up to 3500 bar) and temperature (up to 1000 °C). Moreover, CO₂ solubility in pure water
151 and aqueous NaCl solutions estimated with their fugacity values reported to be very close to the
152 experimental uncertainty (Bhattacherjee et al., 2022; Duan and Sun, 2003). Therefore,
153 Duan's model was used to generate pseudo-experimental fugacity data for P > 1000 bar. These
154 estimated data were merged with the data from Angus et al. (1976) and Rhyzenko and Volkov
155 (1971) to create a database of 640 data points for training, validating, and testing the models. The
156 combined dataset covers a wide range of temperatures (up to 1000 °C) and pressures (up to 2000
157 bar). Table 1 shows the source, type, temperature, and pressure ranges of the data used to develop
158 the database for fugacity prediction.

159 Table 1: Source, type, and T&P ranges of the data used to develop the database for this study.

Source	Data Type	Temperature	Pressure
Angus et al., 1976	Experimental	0-820 °C	1-1000 bar
Rhyzenko and Volkov, 1971	Experimental	400-1000 °C	800-1000 bar
Duan et al., 1992	Estimated	0-1000 °C	1000-2000 bar

160

161 2.2. Machine Learning Model Development and Optimization

162 2.2.1. Machine Learning Algorithms

163 This study used five different Machine Learning algorithms to predict the fugacity coefficients of
164 CO₂. The algorithms employed were: Linear Regression (LR), Decision Tree (DT), Random Forest
165 (RF), Extreme Gradient Boosting (XGB), and different kernels (e.g., linear, polynomial, and
166 Radial Based Function (RBF)) of Support Vector Machines (SVM). These algorithms were
167 adopted using python libraries and packages for efficient utilization and further optimization. A
168 description of the logic behind each model is presented as follows.

169 2.2.1.1 Linear Regression

170 Linear regression (LR) is one of the simplest machine learning models employed in predicting
171 target values. The model makes a classification or regression calculation based on the value of a
172 linear combination of features and their associated weights or parameters.

173 The algorithm is mathematically represented as:

$$174 y = \beta_0 + \beta_1 * x_1 + \dots + \beta_n * x_n \quad (3)$$

175 where y is the set of output values from the algorithm, x is the set of input features fed into the
176 model, and β s are the best parameters assigned to the features in such a way that the model
177 prediction equation has the least amount of error between the predicted and actual target values.

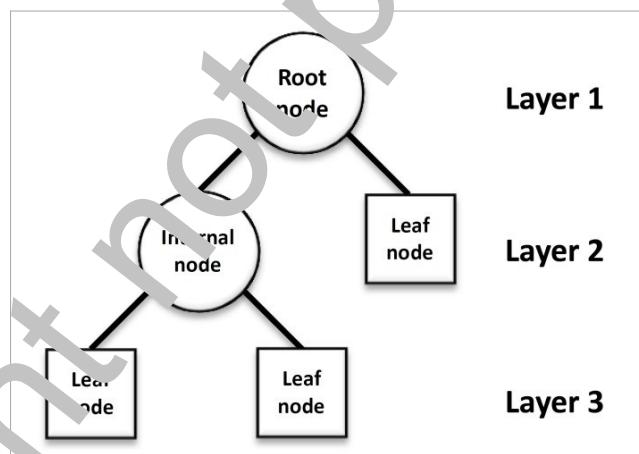
178 To confirm the optimum selection of these parameters, we would need to use the training data and
179 define a function that measures the quality of predictions for each value of β . This function is
180 called the cost function. The cost function helps us to figure out the best possible values for β_0 and
181 β_1 , which would provide the best fit line for the data points. Since we want the best values for β_0
182 and β_1 , we convert this search problem into a minimization problem where we would like to
183 minimize the error between the predicted value and the actual value. The function is given as.

184
$$J = \frac{1}{n} \sum_{i=1}^n (pred.y - y_i)^2 \quad (4)$$

185 where the idea is to minimize the sum of errors between the squared value of the difference
186 between the predicted and actual values. The final selected β values would have the least cost
187 function.

188 2.2.1.2. Decision Tree Regression

189 The decision tree (DT) is a supervised learning algorithm that builds the regressions or
190 classification models in a tree-like structure based on decisions and all possible results and
191 outcomes. The prediction of the target variable is followed through the tree, where the outputs at the
192 individual nodes are determined, and these estimates further determine the branches. This
193 modeling technique is generally preferred due to its ability to work well with data with missing or
194 noisy data points without compromising the accuracy of estimation or prediction. It can also be
195 ensembled like in random forest modeling to create even more efficient models.



196

197 Figure 1: Basic decision tree (Hoffman, 2020).

198 The decision tree works to define the splits in the node such that the information gained from the
199 resulting nodes is maximized. This information gain can be described as the net difference between
200 the impurity in the root node and all the branching leaf nodes from that root, as seen in Figure 1.
201 There are different criteria that can be used to mathematically determine this impurity difference:
202 the entropy and the Gini index or the Gini impurity.

203 2.2.1.3. Random Forest Regression

204 The random forest (RF) regression model is an algorithm employed using ensemble learning,
205 which essentially is a method that uses the combined predictions and estimations from multiple
206 machine learning models to result in a more accurate regression of a target variable. This algorithm
207 is based on constructing several trees in a particularly random manner and combining the
208 predictions from the resulting models.



209

210 Figure 2: Random Forest Tree Regression illustration (Bakshi, 2020).

211 The model for a random forest prediction from this tree can be denoted by a base regression tree
212 given as,

213 $\{r_n(X, \theta_m, D_n), m \geq 1\}, \quad (5)$

214 where values for θ are independently and identically distributed outputs of Θ based on the data
215 set D_n and the independent variable, X .

216 Assuming multiple decision trees, the predictions from all the different ensembles using different
217 hyperparameters are averaged, as shown in Figure 2.

218 The aggregated form of these random trees is estimated as

219 $\{r_n(X, D_n) = E_{\theta}[X, \theta_m, D_n]\}, \quad (6)$

220 where E_{θ} is representative of the expectation of the random variable, dependent on X and the
221 overall data, D_n . The averagely estimated prediction from all the models constitutes the random
222 forest prediction value.

223 2.2.1.4. Extreme Gradient Boost

224 The principle behind the Extreme Gradient Boost (XGB) algorithm also follows the same principle
225 as ensemble learning. XGB also trains many models to be able to arrive at an average prediction
226 across all the models. The Boosting process performs in such a way that it identifies and minimizes

227 the disadvantages of the individual decision trees. In this, the prediction of a target variable y is
228 given as,

229
$$y = \sum_{k=1}^K f_k(x_i), f_k \in F \quad (7)$$

230 where for calculations, the K represents the number of trees in the ensemble model, the f_k is a
231 function that maps the values of x to y in functional space F , and F is a set of possible Classification
232 and Regression Trees. The objective function that we want to maximize or minimize in the
233 prediction of the target variables is given as,

234
$$obj(\theta) = \sum_i^n l(y_i, y_{pi}) + \sum_{k=1}^K w(f_k) \quad (8)$$

235 where the first summation term is the training loss function which is the difference between the
236 predicted target value from the model and the actual value. The second summation term also
237 represents the complexity of the model in fitting the data. This function is defined by the
238 regularization parameter used to ensure that the model is not overfitting or underfitting to the
239 training datasets.

240 2.2.1.5. Support Vector Machines

241 The main ideas of support vector machines (SVM) are classification problems. However, the
242 packages and adaptations made in different software enable them to handle regression problems
243 properly and use the support vector regression algorithms. These adaptations are also contained in
244 Python's "sklearn" machine learning packages. The SVM algorithm works in such a way that it
245 finds a plane or, in this case, a hyperplane that can separate two sets of data points with the highest
246 possible sense of purity (or, in this case, the separation margins). These respective hyperplanes can
247 be expressed as $\pm y = \omega^T x + b$, the ω term represents the slope of the plane. Then the objective
248 function can change the optimization problem into:

249
$$(\omega^*, b^*) = \arg \max \frac{1}{2} \sum_i y_i * (\omega^T x_i + b_i) \geq 1 \quad (9)$$

250 This simplification of the overall optimization parameter reduces the computations required to
251 arrive at a global minimum. However, the solution for this is in a non-convex solution form, which
252 is not preferred for this solution since the algorithm can get stuck at a local minimum instead of
253 reaching the global minimum. Therefore, the non-convex equation is modified into a convex
254 solution as,

255
$$(\omega^*, b^*) = \arg \min \frac{\|\omega\|^2}{2} \sum_i y_i * (\omega^T x_i + b_i) \geq 1 \quad (10)$$

256 These approximation functions work for linear separators. However, the SVM package in the
257 python language employs the use of kernels. These kernels are the functions in which the data
258 points can be represented and would be separable. These could be linear, polynomial, or RBF
259 (radial basis function).

260 2.2.2. Data Splitting

261 In machine learning, the dataset is split into a training and validation set to prevent the model from
262 overfitting. The model is trained on the training data, and the validation set is never utilized during
263 the training process. Instead, the validation set is used to evaluate the performance of the trained
264 model on the unseen data and tune the model parameters accordingly. A separate test set is also
265 used to score the data with the final model. The test set is different from the validation set in a way
266 that it has never been used in tuning the model parameters and gives an unbiased estimate of the
267 skill of the final model.

268 In this study, first, the test set is formed by randomly sampling 10% of the experimental data. The
269 pseudo-experimental fugacity values estimated using the analytical model were not included in the
270 test set. This was done so that the performance of the ML models could be compared with Duan's
271 analytical model (Duan et al., 1992) on the test data. Because the pseudo-experimental data were
272 derived from Duan's model, the comparison would be skewed in favor of Duan's model if the test
273 set included the pseudo-experimental data.

274 Training and validation sets were created by randomly splitting 80% of the remaining data into the
275 training set and 20 % into validation. The random state was kept constant to keep the dataset
276 unaltered so that each model could be trained and validated on the same data. Table 2 summarizes
277 the data used to develop the models in this study.

278 Table 2: Summary of the database used to train, validate, and test the models used in this study.

	Train			Validation			Test		
	T/°C	P/bar	Fugacity coefficient	T/°C	P/bar	Fugacity coefficient	T/°C	P/bar	Fugacity coefficient
count	461	461	461	115	115	115	64	64	64
mean	280.9	786.5	0.76	336.4	625.2	0.79	509.2	400	0.99
std	349.6	610.9	0.42	378.3	626.1	0.41	301.5	305	0.2
min	0	1	0.13	0	1	0.14	80	50	0.38
25%	40	200	0.37	50	50	0.39	320	100	0.95
50%	90	700	0.77	100	400	0.97	455	300	1.02
75%	500	1200	1.06	500	1000	1.01	805	600	1.12
max	1000	2000	1.82	1000	2000	1.8	1000	1000	1.28

279

280 2.2.3 Feature Scaling

281 Scaling is a very critical part of data pre-processing in machine learning and is used to bring all
282 the features to the same standard so that the algorithm does not give any preference to any
283 significantly large number (Burkov, 2019). Some of the machine learning algorithms that utilize

284 the distance between two observations to make decisions (e.g., SVM, principal component
285 analysis, K-nearest neighbors) are very sensitive to the magnitude of the numbers and require
286 scaling. Scaling is also required for algorithms that use gradient descent as the optimization
287 technique, such as the case for linear regression, logistic regression, and neural networks. Rule
288 based algorithms such as decision tree, random forest, or gradient-boosted decision tree, however,
289 are not affected by scaling.

290 There are a number of ways scaling can be accomplished. The two most common methods are
291 normalization and standardization of data. Normalization works by transforming the range of the
292 values into a standard range, such as [0,1]. Standardization, on the other hand, transforms the data
293 so that they follow a standard normal distribution with a mean of zero and a standard deviation of
294 one. This study used standardization to scale the features using the StandardScaler feature of
295 Python's Scikit-learn library (Pedregosa et al., 2011). The mean and median of the training set are
296 used to scale the entire data.

297 2.2.4. Hyper-parameter Tuning

298 Hyper-parameters are different from the model parameters in the sense that they are not learned
299 from the data fitted to the algorithm and must be defined prior to training the model. Hyper-
300 parameter tuning is a model optimization technique that involves assigning different classes or
301 numerical values to the parameters required to configure the learning algorithms and choosing a
302 set of optimal hyper-parameters values to define the model architecture. In this work, optimal
303 hyper-parameters were chosen by searching the hyper-parameters space for optimal values using
304 the Grid Search technique (Pedregosa et al., 2011). Grid search evaluates different models
305 developed with each possible combination of given hyper-parameter values and selects the one
306 that produces the best results. This work uses GridSearchCV class from Python's Scikit-Learn
307 library for hyper-parameter optimization with 3-fold cross-validation. Table 3 lists all the hyper-
308 parameter values tested for each algorithm and the ones that produced the least validation error.
309 Linear Regression (LR) model was exempted from the hyper-parameter tuning because the
310 purpose of the LR model was just to set a base for the other models.

311 Table 3: Tested and best performing hyper-parameters values for each learning algorithm. Values for the
312 remaining parameters were set to default.

ML Algorithm	Hyper-parameter	Values Tested	Best
SVM	C*	1, 10, 100, 1000	100
	Gamma*	1, 0.1, 0.01, 0.001, scale	1
	Kernel	rbf, poly, linear	rbf
Decision tree	Selection criterion	mse*, mae*	mae
	Split strategy	best, random	best
	Minimum number of samples to split a node	2, 3, 4....10	2

	Maximum depth of each tree	8, 10, 12....20	14
	Minimum number of samples per leaf	1, 2, 3....10	1
	Maximum number of leaf nodes	5, 20, 100, None	None
Random Forest	Number of trees used	100, 200, 300....1000	700
	Maximum number of features for split	auto, sqrt	auto
	Maximum depth of each tree	10, 20, 30....110	100
	Minimum number of samples to split a node	2, 5, 10	2
	Minimum number of samples per leaf	1, 2, 4	1
	Bootstrap	True, False	True
XGBoost	Number of trees used	100, 500, 1000	100
	Maximum depth of each tree	3, 6, 10	6
	Learning rate	0.01, 0.05, 0.1, 0.2, 0.3	0.3
	Fraction of features used to train each tree	0.3, 0.7, 1	1
	Gamma*	0, 1, 2	0
	Reg alpha*	0, 1, 2	0
	Reg lambda*	1, 2, 3	1
	Fraction of training samples used to train tree	0.1, 0.5, 1	1
	Tree construction algorithm	Exact, approx., hist	exact

313 *Gamma (SVM) determines how far the influence of a single training example reaches; C trades off the
 314 accuracy of the model for the simplicity of the decision function to avoid overfitting. Details on the hyper-
 315 parameters can be found in the Scikit-learn documentation (Pedregosa et al., 2011). For XGB, gamma
 316 defines the minimum loss reduction required to make a split; Reg alpha and Reg lambda are the L1 and L2
 317 regularization terms, respectively (Chen et al., 2018).

318 *mse= mean squared error; mae= mean absolute error

319 2.3. Model Evaluation

320 The performances of the proposed models were evaluated using the mean squared error (MSE) in
 321 the training and validation data and the R² value in the validation data. Equations 11 and 12 are
 322 used to calculate MSE and R² values. In addition to that, predictions from the models are plotted
 323 against the validation data to graphically compare the performance of the models in estimating
 324 CO₂ fugacity coefficients.

325
$$MSE = \frac{1}{n} * \Sigma (actual - forecast)^2 \quad (11)$$

326
$$R^2 = 1 - \frac{RSS}{TSS} \quad (12)$$

327 Where,

328 actual = original or observed fugacity coefficients

329 forecast = Fugacity coefficients predicted using the developed models

330 n = number of observations
331 RSS= sum of squares of residuals, or the variability of the dataset explained by the model
332 TSS= Total sum of squares, or the total variability of the dataset

333
334 The best-performing model was then used to score the test data, and the results were compared
335 with two classic thermodynamical models developed by Spycher and Reed (1988) and Duan et al.
336 (1992) for CO₂ fugacity coefficients.

337 **2.4. CO₂ Solubility Estimation**

338 Predicted CO₂ fugacity data were used to estimate the solubility of CO₂ in different salinities of
339 NaCl brine using the correlations developed by Duan and Sun (2003). The results were then
340 compared with the available experimental data.

341 **2.4.1. Solubility Correlations by Duan and Sun**

342 Duan and Sun (2003) developed a set of thermodynamical correlations to estimate CO₂ solubility
343 in water and NaCl brine of different salinities at temperatures ranging from 273–533 K and
344 pressure from 0–200 MPa. According to their correlation, CO₂ solubility in brine or water can be
345 estimated from the following equation:

$$346 \ln \frac{y_{CO_2} P}{m_{CO_2}} = \frac{\mu_{CO_2}}{RT} - \ln \phi_{CO_2} + \sum_c 2\lambda_{CO_2-c} m_c + \sum_a 2\lambda_{CO_2-a} m_a + \sum_c \sum_a \zeta_{CO_2-a-c} m_c m_a \quad (13)$$

347 Where m_{CO_2} is the solubility of CO₂ expressed in moles of CO₂ per kg of water or brine, y_{CO_2} is
348 the mole fraction of CO₂ in the vapor phase and can be estimated using equation (13), P is the
349 pressure in bar, λ and ζ are second-order and third-order interaction parameters, respectively. $\frac{\mu_{CO_2}}{RT}$
350 is the dimensionless standard chemical potential, ϕ_{CO_2} is the fugacity potential of CO₂ in the vapor
351 phase of CO₂-H₂O mixture, m is the molality of the brine (for pure water m=0), and a and c are
352 the valence of anions and cations, respectively. Values for λ , ζ , and $\frac{\mu_{CO_2}}{RT}$ at different temperatures
353 and pressure can be calculated using equation 15 and table 4. Values for the fugacity coefficient
354 are estimated using the model developed in this study. It should be noted that, our model estimates
355 the fugacity coefficient of pure CO₂, whereas equation 5 requires CO₂ fugacity coefficients in the
356 vapor phase of the CO₂-H₂O mixture. However, the fugacity coefficient of pure CO₂ differs very
357 little from that in the vapor phase of CO₂-H₂O mixture in the temperature and pressure range of
358 this study (Duan et al., 1992). Therefore, fugacity coefficient data for solubility estimation can be
359 predicted using the fugacity model developed in this study.

$$360 y_{CO_2} = \frac{P - P_{H_2O}}{P} \quad (14)$$

361 $Par(T, P)$

$$= c_1 + c_2T + \frac{c_3}{T} + c_4T^2 + \frac{c_5}{630 - T} + c_6P + c_7PlnT + \frac{c_8P}{T} + \frac{c_9P}{630 - T} + \frac{c_{10}P^2}{(630 - T)^2} + c_{11}TlnP \quad (15)$$

362 In equation 14, P_{H_2O} is the pure water pressure in bar, which can be calculated using Eqn. (16) and
363 Eqn. (17). Values for c_1 to c_{11} for different interaction parameters are listed in table 4.

$$364 P_{H_2O} = \frac{P_c T}{T_c} [1 + c_1(-t)^{1.9} + c_2t + c_3t^2 + c_4t^3 + c_5t^4] \quad (16)$$

$$365 t = \frac{T - T_c}{T_c} \quad (17)$$

366 T in Eqn. (15) to Eqn. (17) is the temperature in K, T_c and P_c are the critical temperature and
367 pressure of water. Values for parameters c_1-c_5 are listed in table 5.

368 Table 4: T-P coefficient values for the interaction parameters in Eqn. (13) and Eqn. (15)

T-P coefficient	$\frac{\mu_{CO_2}}{RT}$	$\lambda_{CO_2 - Na}$	$\zeta_{CO_2 - Na - Cl}$
C_1	28.94	-0.41	3.36e-4
C_2	-0.04	6.08e-4	-1.98e-5
C_3	-4770.67	97.53	
C_4	1.03e-5		
C_5	33.81		
C_6	9.04e-3		
C_7	-1.15e-3		
C_8	-0.31	-0.02	2.12e-3
C_9	-0.09	0.02	-5.24e-3
C_{10}	9.33e-4		
C_{11}		1.41e-5	

369

370

Table 5: Parameters for Eqn. (16)

C_1	-38.64
C_2	5.89
C_3	59.88
C_4	26.65
C_5	10.64

371

372 **2.4.2. CO₂ Solubility Experimental Data**

373 Model estimated CO₂ solubility data for NaCl brines of different salinities were compared with
 374 the experimental data. The sources of our collection of solubility data for NaCl brines are listed in
 375 Table 6. These sources have solubility values presented in different units such as molality, mole
 376 fraction, mass fraction, etc. These solubility units were all converted to molality (mol/kg) to have
 377 a common unit. A reliability assessment of the sources was performed by comparing the data from
 378 different sources at similar temperatures, pressure, and salinities. Data sourced from Ellis and
 379 Golding (1963) were excluded from the comparison as the data points were significantly off the
 380 trend. Data by Kiepe et al. (2002) were not used as their experimental data were higher than others
 381 at similar temperatures and pressure. Zhao et al. (2015) had the data only at 50 °C and 150 bar.
 382 Since this pressure, temperature, and salinities of their dataset were already covered by other
 383 measurements, their data were also discarded. The solubility data of Duan and Sun (2003) were
 384 excluded as those data were estimated rather than experimentally measured.

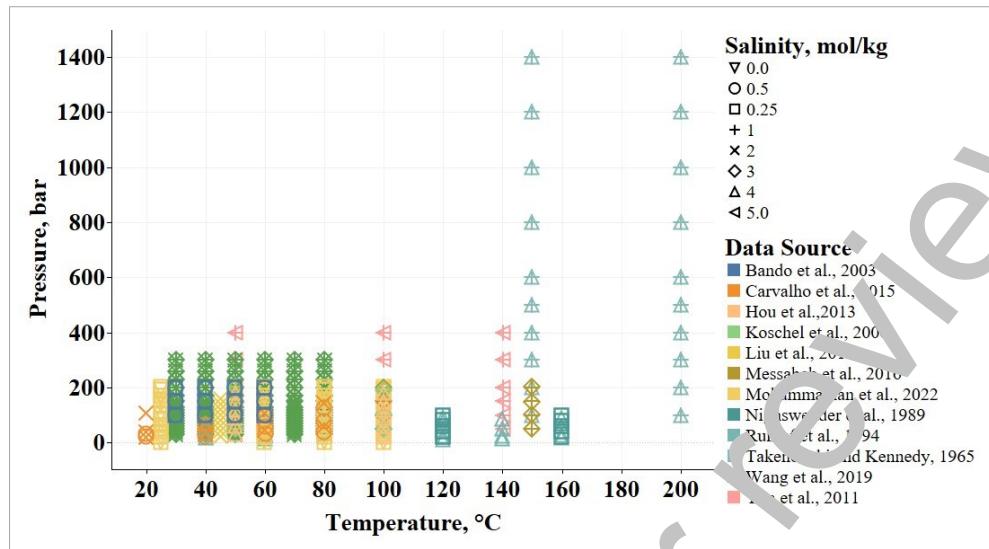
385 Table 6: Source of data collected for CO₂ solubility in NaCl brine of different salinities.

Source	T, °C	P, bar	Salinities, mol/kg
Bando et al. (2003)	30-60	100-200	0.2-0.5
Carvalho et al. (2015)	20-80	33-143	0.5-2
Duan and Sun (2003)	0-260	0-2000	0-4
Ellis and Golding (1963)	175-228	16-92	0-2
Hou et al. (2013)	50-100	30-182	4
Kiepe et al. (2002)	40-80	20-100	0.5-4.3
Koschel et al. (2006)	50-100	50-190	1-3
Liu et al. (2011)	45	21-158	1.9
Messabeb et al. (2016)	50-150	50-202	0-3
Mohammadian et al. (2022)	25-100	1-202	0-0.25
Nighswender et al. (1989)	80-160	20-100	0.17
Rumpf et al. (1994)	40-160	20-96	4
Takenouchi and Kennedy (1965)	150-200	100-1400	1.09-4.27
Wang et al. (2019)	30-80	30-300	1-3
Yan et al. (2011)	50-140	50-400	1-5
Zhao et al. (2015)	50	150	1-3

386

387 The final data set, comprising 890 experimental data points, covers pressure up to 1400 bar and
 388 temperature up to 200 °C. Out of the total 972 experimental data points collected, only 163
 389 observations have P ≥ 200 bar, and only 12 with P ≥ 1000 bar. In fact, the most high-pressure CO₂
 390 solubility data are from only four sources (Bando et al. (2003), Takenouchi and Kennedy (1965),

391 Yan et al. (2011), and Wang et al. (2019)) with only Takenouchi and Kennedy (1965) having the
392 solubility data at pressure \geq 1000 bar.



393

394 Figure 1: P and T range of accepted experimental CO_2 solubility data in NaCl brines of different
395 salinities.

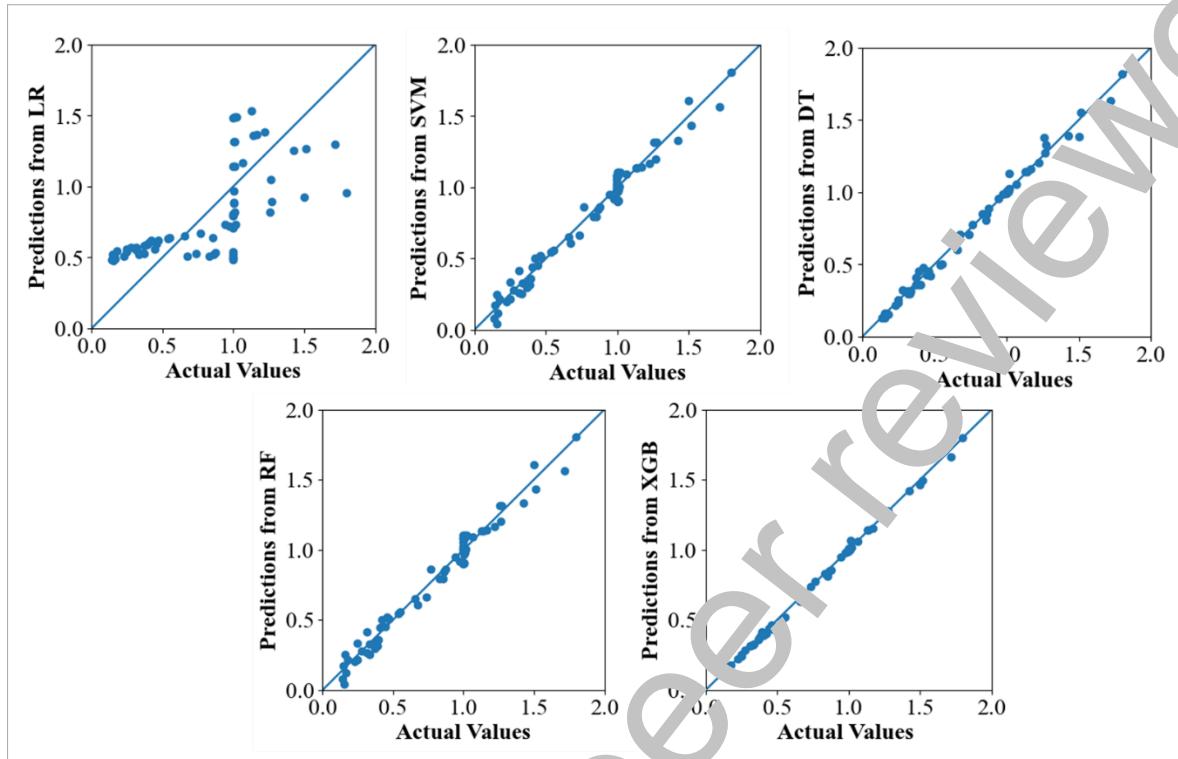
396 3. Results and Discussion

397 3.1. Machine Learning Model Selection

398 Five different supervised machine learning algorithms were used in this study to model CO_2 fugacity coefficient as a function of temperature and pressure: Linear Regression, Support Vector
399 Machines (SVM), Decision Tree (DT), Random Forest (RF: averaging ensemble method), and
400 Extreme Gradient Boosting (XGB: boosting ensemble method). The hyper-parameters of the
401 algorithms were optimized using the grid search cv technique mentioned in section 2.2.4.
402

403 Table 7 compares the value of matrices used to evaluate the performance of the developed models,
404 and figure 4 shows the plots for predicted fugacity coefficient values versus the actual values from
405 the validation set. Note that the validation data set is not used during the training; hence the plots
406 show pure prediction deviations from the actual values. Each developed model, except the naïve
407 linear regression, did a fair job approximating the CO_2 fugacity coefficients. The R^2 values were
408 close to 1, and the mean square errors (MSE) were also very minimum. However, there were some
409 instances of heavy overestimation and underestimation of fugacity coefficients from RBF SVM,
410 DT, and RF models, as appears in figure 3. The best fit to the diagonal line was obtained from the
411 XGB model. XGB model also produced the lowest validation MSE and highest R^2 value in the
412 validation data. The remaining models ranked based on validation MSE, from lower to higher as:
413 RF, DT, RBF SVM, and LR. The DT model even though exhibited the least MSE in the training
414 data among the models, the difference between the training and validation MSE is too high to rely
415 upon the model for final prediction. Hence, XGB is chosen as the best-performing model. Figure

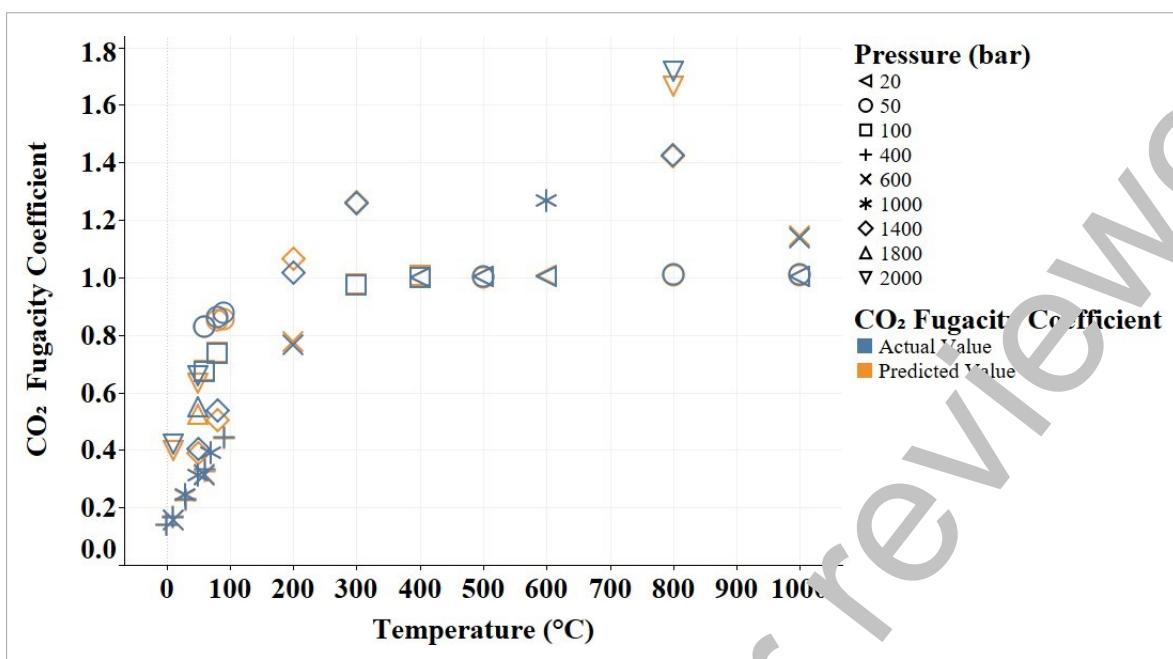
416 5 shows the fugacity coefficient prediction from the XGB model and its comparison with the
417 validation data.



418

419 Figure 2: Actual versus predicted fugacity coefficients values for the ML models developed in this study.

420



421

422 Figure 3: Prediction of CO₂ fugacity coefficient with the XGB model and its comparison with the actual
 423 data from validation set.

424 Table 7: Values of the evaluation matrices used to compare the machine learning models used in this
 425 study.

Model	Train MSE	Validation MSE	Validation R ²
Linear Regression	0.0129	0.0955	0.4297
RBF SVM	0.0035	0.0042	0.9748
Decision Tree	9.0×10^{-6}	0.0013	0.9923
Random Forest	0.0002	0.0008	0.9950
XGBoosting	2.02×10^{-5}	0.0002	0.9986

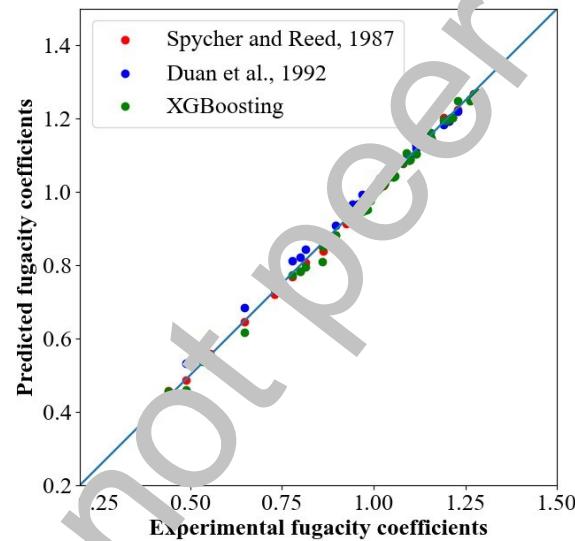
426

427 3.2. Comparison with Analytical Models

428 Figure 6 & Figure 7 compare the performance of the final proposed ML model (XGB) with two
 429 state-of-the-art analytical models developed by Spycher and Reed (1987) and Duan et al. (1992)
 430 for fugacity coefficients. The experimental data used in the comparison are from the test data set
 431 and have not been used in training or validating the models. Note that Spycher and Reed's model
 432 is applicable for temperature from 80 °C to 350 °C, up to 500 bars, and from 400 °C to 1000 °C,

433 up to 1000 bars. Duan's model has a broader range of temperature and pressure limit which is 0 to
434 1000 °C and 0 to 3500 bars, respectively. However, for the purpose of comparison, the pressure
435 and temperature limit mutually shared by both models are selected, which is temperature from 0
436 °C to 1000 °C and pressure up to 1000 bars.

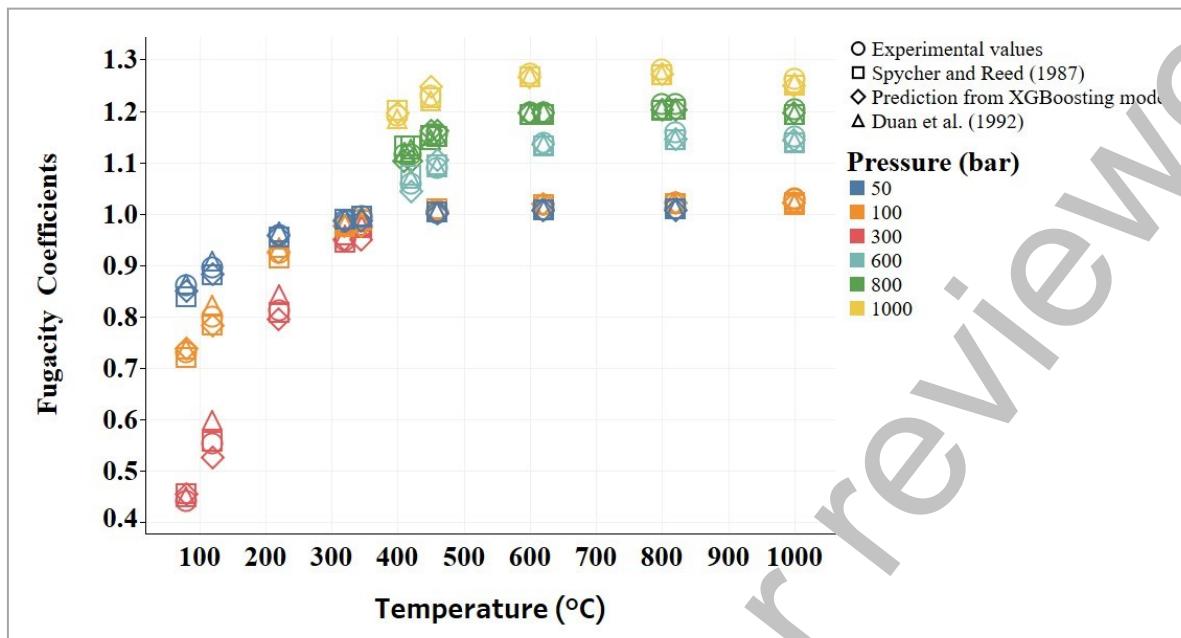
437 Overall, Spycher and Reed's model generates the fugacity values with the least deviation from the
438 experimental values. Predictions from the XGB model and the estimations from Duan's model are
439 slightly off at lower temperatures (<400 °C). The average deviation from the XGB model and
440 Duan's model is 1.13% and 1.19%, respectively, whereas, for Spycher and Reed's model, the
441 deviation is 0.78%. A slightly lower deviation from the Spycher and Reed's model¹ might be due
442 to the fact that the estimated values from Spycher and Reed's model are extracted from the plots
443 reported in their studies using a plot-digitizing software. Even though the method is
444 straightforward, a lack of precision can lead to some level of data extraction errors. Nevertheless,
445 the deviations from the XGB model were minor, and with significantly less computational
446 complexity it performed equally well as the two EOS-based analytical¹ models.



447

448

Figure 4: Experimental vs. predicted fugacity coefficients for test data.

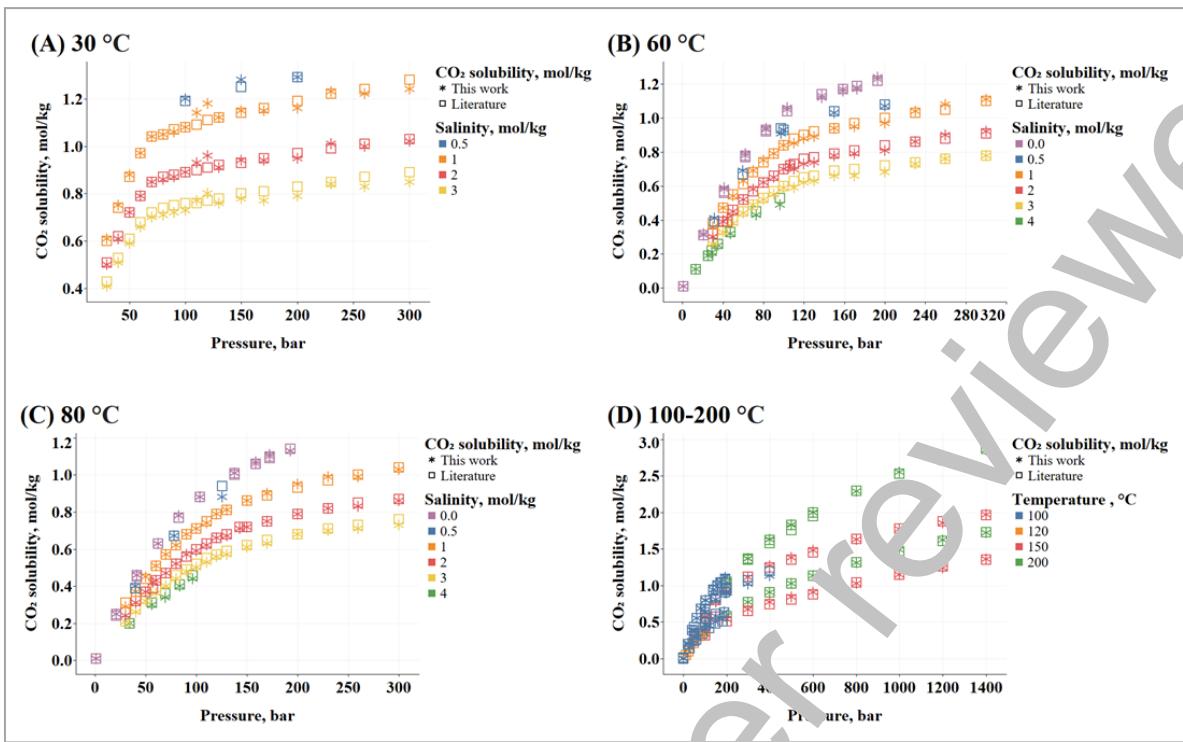


451 Figure 5: Comparison of the experimental data with the predictions from XGB model and two
 452 analytical models by Spycher and Reed (1987) and Duan et al. (1992).

453 3.3. Solubility Prediction

454 Fig. 8 (A, B, and C) compares the estimated CO_2 solubility data for different salinities of brine
 455 with the experimental data at 30 °C, 60 °C, and 80 °C, respectively. Due to the overall scarcity of
 456 experimental data at high pressure and temperature conditions, it was challenging to find enough
 457 isothermal data points (especially for $T \geq 100$ °C) representing different salinities. Therefore, to
 458 compare the estimated solubility data at a temperature ≥ 100 °C, data from different salinities (0-5
 459 mol/kg) and temperatures (100-200 °C) are combined (Fig. 8D).

460 The estimated solubility data are overall in good agreement with the available experimental data,
 461 indicating that fugacity coefficient values predicted from the XGB model are reliable for CO_2
 462 solubility estimation for at least up to 200 °C, 1400 bar, and 5 molal NaCl solution. The average
 463 deviation from the experimental data was 2.08%, 2.03%, 1.5%, and 3.2% for 30 °C, 60 °C, 80 °C,
 464 and 100-200 °C, respectively.



465

466 Figure 6: Comparison of estimated and experimental CO₂ solubility values at different pressures
 467 and temperatures

468 4. Conclusions

469 In this work, a machine learning approach for the prediction of CO₂ fugacity coefficient is
 470 developed to estimate CO₂ fugacity coefficient with similar accuracy but significantly lesser
 471 computational complexity than EOS based analytical models. Five different learning algorithms
 472 (Multilinear Regression, Support Vector Machine, Decision Tree, Random Forest, and Extreme
 473 Gradient Boost) are used to estimate the fugacity coefficient as a function of pressure and
 474 temperature. Extreme Gradient Boost model provided the prediction with the highest accuracy in
 475 the validation data. The developed model can be used to estimate CO₂ fugacity coefficient for
 476 temperature in the range of 0 to 1000 °C and pressure up to 2000 bars. The comparison between
 477 the ML model and the EOS-based analytical model suggest that the proposed model can be used
 478 as a substitution for the analytical models where a quick and approximate estimation of CO₂
 479 fugacity coefficient is required.

480 The estimated fugacity coefficients are used to compute CO₂ solubility, one of the major
 481 applications of fugacity data, in NaCl brines of different salinities. The maximum average
 482 deviation from the experimental data ranged from 2.08 % to 3.2 % for pressures up to 1400 bar,
 483 temperature up to 200 °C, and concentrations up to 5 molal NaCl solution. The model developed,
 484 scored data with predicted fugacity, and the codes required to make the prediction for fugacity
 485 coefficients are provided in the Supplementary Material section.

486 **5. Acknowledgements**

487 The National Energy Technology Laboratory (NETL) of the United States Department of Energy
488 (DOE) provided funding (Award No. DE-FE0031557) for this study through the Southern States
489 Energy Board. Cost share supporting this research was supplied by the project partners, including
490 the SAS Institute. This paper is based upon work supported by the Department of Energy, and was
491 prepared as an account of work sponsored by an agency of the United States Government.[†] Neither
492 the United States Government nor any agency thereof, nor any of their employees, makes any
493 warranty, express or implied, or assumes any legal liability or responsibility for the accuracy,
494 completeness, or usefulness of any information, apparatus, product, or process disclosed or
495 represented that its use would not infringe privately owned rights. Reference herein to any specific
496 commercial product, process, or service by trade name, trademark, manufacturer, or otherwise
497 does not necessarily constitute or imply its endorsement, recommendations, or favoring by the
498 United States Government or any agency thereof. The views and opinions of the authors expressed
499 herein do not necessarily state or reflect those of the United States Government or any agency
500 thereof.

501 **6. References**

502 Amar, M.N. and Ghahfarokhi, A.J., 2020. Prediction of CO₂ diffusivity in brine using white-box
503 machine learning. *Journal of Petroleum Science and Engineering*, 190: 107037.

504 Amar, M.N. et al., 2020. Modeling viscosity of CO₂ at high temperature and pressure conditions.
505 *Journal of Natural Gas Science and Engineering*, 77: 103271.

506 Amooie, M.A. et al., 2019. Data-driven modeling of interfacial tension in impure CO₂-brine
507 systems with implications for geological carbon storage. *International Journal of
508 Greenhouse Gas Control*, 90: 102811.

509 Angus, S., Armstrong, B. and De Reuck, K., 1976. Carbon dioxide: International thermodynamic
510 tables of the fluid state-3. Pergamon Press, New York, 3: 266.

511 Aniceto, J.P., Zézere, B. and Silveira, C.M., 2021. Machine learning models for the prediction of
512 diffusivities in supercritical CO₂ systems. *Journal of Molecular Liquids*, 326: 115281.

513 Appelo, C., Parkhurst, D.L. and Post, V., 2014. Equations for calculating hydrogeochemical
514 reactions of minerals and gases such as CO₂ at high pressures and temperatures.
515 *Geochimica et Cosmochimica Acta*, 125: 49-67.

516 Bai, J., Zhang, P., Zhou, C.-W. and Zhao, H., 2021. Theoretical studies of real-fluid oxidation of
517 hydrogen under supercritical conditions by using the virial equation of state. *Combustion and Flame*, 111945.

519 Bakshi, C., 2022. Random Forest Regression, <https://levelup.gitconnected.com/>.

520 Bhattacharya, R. et al., 2022. Evaluating CO₂ Storage Potential of Offshore Reservoirs and Saline
521 Formations in Central Gulf of Mexico by Employing Data-driven Models with SAS®
522 Viya, Western Users of SAS Software, San Francisco.

523 Bruno, T.J., 1985. An apparatus for direct fugacity measurements on mixtures containing
524 hydrogen. *Journal of Research of the National Bureau of Standards*, 90(2): 127.

525 Burkov, A., 2019. The hundred-page machine learning book, 1. Andriy Burkov Quebec City,
526 Canada.

527 Chen, T., He, T. and Benesty, M., 2018. XGBoost documentation.

528 Chueh, P. and Prausnitz, J., 1967. Vapor-liquid equilibria at high pressures. Vapor-phase fugacity
529 coefficients in nonpolar and quantum-gas mixtures. *Industrial & Engineering Chemistry
530 Fundamentals*, 6(4): 492-498.

531 Dhamu, V., Thakre, N. and Jana, A.K., 2021. Structure-H hydrate of mixed gases: Phase
532 equilibrium modeling and experimental validation. *Journal of Molecular Liquids*, 343:
533 117605.

534 Duan, Z., Møller, N. and Weare, J.H., 1992. An equation of state for the C₁₄-CO₂-H₂O system: I.
535 Pure systems from 0 to 1000 C and 0 to 8000 bar. *Geochimica et Cosmochimica Acta*,
536 56(7): 2605-2617.

537 Duan, Z. and Sun, R., 2003. An improved model calculating CO₂ solubility in pure water and
538 aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar. *Chemical geology*,
539 193(3-4): 257-271.

540 Frost, D.J. and Wood, B.J., 1997. Experimental measurements of the fugacity of CO₂ and
541 graphite/diamond stability from 35 to 77 kbar at 923 to 1650 C. *Geochimica et
542 Cosmochimica Acta*, 61(8): 1565-1574.

543 Hoffman, K., 2020. Decision Tree Hyperparameter Explained, ken-hoffman.medium.com.

544 Holland, T. and Powell, R., 1991. A Compensated-Redlich-Kwong (CORK) equation for volumes
545 and fugacities of CO₂ and H₂O in the range 1 bar to 50 kbar and 100–1600 C. *Contributions
546 to Mineralogy and Petrology*, 109(3): 265-273.

547 Hurai, V., Huraiová, M., Slobodník, M. and Thomas, R., 2015. Chapter 6 - Fluid Thermodynamics.
548 In: V. Hurai, M. Huraiová, M. Slobodník and R. Thomas (Editors), *Geofluids*. Elsevier,
549 pp. 171-230.

550 Jirasek, F. et al., 2020. Machine learning in thermodynamics: Prediction of activity coefficients by
551 matrix completion. *The journal of physical chemistry letters*, 11(3): 981-985.

552 Lewis, G.N., 1908. The osmotic pressure of concentrated solutions, and the laws of the perfect
553 solution. *Journal of the American Chemical Society*, 30(5): 668-683.

554 Lin, T. and Seraj, A., 2022. Evolving Machine Learning Methods for Density Estimation of Liquid
555 Alkali Metals over the Wide Ranges. *International Journal of Chemical Engineering*, 2022.

556 Mason, E.A. and Spurling, T.H., 1969. The virial equation of state, 2. Pergamon.

557 Menad, N.A., Hesamati-Sarapardeh, A., Varamesh, A. and Shamshirband, S., 2019. Predicting
558 solubility of CO₂ in brine by advanced machine learning systems: Application to carbon
559 capture and sequestration. *Journal of CO₂ Utilization*, 33: 83-95.

560 Mesbah, M., Shahsavari, S., Soroush, E., Rahaei, N. and Rezakazemi, M., 2018. Accurate
561 prediction of miscibility of CO₂ and supercritical CO₂ in ionic liquids using machine
562 learning. *Journal of CO₂ Utilization*, 25: 99-107.

563 Mohammadian, E., Liu, B. and Riazi, A., 2022. Evaluation of Different Machine Learning
564 Frameworks to Estimate CO₂ Solubility in NaCl Brines: Implications for CO₂ Injection
565 into Low-Salinity Formations. *Lithosphere*, 2022(Special 12): 1615832.

566 Nabipour, N., Mosavi, A., Baghban, A., Shamshirband, S. and Felde, I., 2020. Extreme learning
567 machine-based model for Solubility estimation of hydrocarbon gases in electrolyte
568 solutions. *Processes*, 8(1): 92.

569 Pedregosa, F. et al., 2011. Scikit-learn: Machine learning in Python. *the Journal of machine
570 Learning research*, 12: 2825-2830.

571 Peng, D.-Y. and Robinson, D.B., 1976. A new two-constant equation of state. *Industrial &
572 Engineering Chemistry Fundamentals*, 15(1): 59-64.

573 Redlich, O. and Kwong, J.N., 1949. On the thermodynamics of solutions. I. A new equation of state.
574 Fugacities of gaseous solutions. *Chemical reviews*, 44(1): 233-244.

575 Safaei-Farouji, M. et al., 2022. Application of robust intelligent schemes for accurate modelling
576 interfacial tension of CO₂ brine systems: Implications for structural CO₂ trapping. *Fuel*,
577 319: 123821.

578 Schultz, A.J., Shaul, K.R., Yang, S. and Kofke, D.A., 2010. Modeling solubility in supercritical
579 fluids via the virial equation of state. *The Journal of Supercritical Fluids*, 55(2): 479-484.

580 Spycher, N.F. and Reed, M.H., 1988. Fugacity coefficients of H₂, CO₂, CH₄, H₂O and of H₂O-
581 CO₂-CH₄ mixtures: A virial equation treatment for moderate pressures and temperatures
582 applicable to calculations of hydrothermal boiling. *Geochimica et Cosmochimica Acta*,
583 52(3): 739-749.

584 Syah, R. et al., 2021. Implementation of artificial intelligence and support vector machine learning
585 to estimate the drilling fluid density in high pressure high-temperature wells. *Energy
586 Reports*, 7: 4106-4113.

587 Tarakad, R.R., Spencer, C.F. and Adler, S.B., 1979. A comparison of eight equations of state to
588 predict gas-phase density and fugacity. *Industrial & Engineering Chemistry Process
589 Design and Development*, 18(4): 726-739.

590 Vo-Thanh, H., Amar, M.N. and Lee, K.-K., 2022. Robust machine learning models of carbon
591 dioxide trapping indexes at geological storage sites. *Fuel*, 316: 123391.

592 Zhang, Z., Li, H., Chang, H., Pan, Z. and Luo, X., 2018. Machine learning predictive framework
593 for CO₂ thermodynamic properties in solution. *Journal of CO₂ Utilization*, 26: 152-159.

594