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10 Abstract 

11 Fugacity is a fundamental thermodynamical property of gas and gas mixtures to determine their  

12 behavior and dynamics in complex systems. Fugacity can be deduced experimentally from the  

13 measurements of volume as a function of pressure at constant temperature or calculated iteratively  

14 using analytical equations of states (EOS). Experimental measurement is time-consuming, and  

15 analytical models based on EOS are computationally demanding, especially when an approximate  

16 but quick estimation is desired. In this work, machine learning (ML) is employed as a viable  

17 alternative to analytical EOSs for quick and accurate approximation of CO 2  fugacity coefficients.  

18 Five different ML algorithms are used to estimate the fugacity coefficients of pure CO 2  as a  

19 function of pressure  ( ≤  2000 bar) and temperature  ( ≤  1000 °C). A combination of experimental  

20 and pseudo-experimental (obtained from an analytical EOS) data of CO 
  2 fugacity coefficients is  

21 used to train, validate, and test the models. The best results were found using the Extreme Gradient  

22 Boosting algorithm, which showed a mean square error of only 0.0002 in the validation data and  

23 an average deviation of only 1.3% in the test data (pure prediction). To quantify the effectiveness  

24 of the machine learning techniques, results from the best-performing model are compared with  

25 two state-of-the-art analytical models. The ML model with significantly less computational  

26 complexity showed similar accuracy to the analytical models. The estimated fugacity data are then  

27 used to compute the CO 2  solubility in aqueous NaCl solution of different concentrations, and a  

28 maximum deviation of only 3.2% from the experimental data is observed. 

29 . Introduction  1 

30 The fugacity of gas, often expressed by the fugacity coefficient (ratio of fugacity and pressure), is  

31 the pressure of the substance corrected for the non-ideality in its behavior (e.g., some level of  

32 interaction exists between gas molecules). The real gas pressure and fugacity are connected with  

33 fugacity coefficient, a dimensionless number that measures how far away the gas is from ideal  

34 conditions. When the fugacity coefficient is 1, there would be no interaction between the  

35 molecules, and the gas will behave as an ideal gas. If the fugacity coefficient is less than 1,  

36 molecules are attraction dominant; hence the effective pressure exerted by the gas molecules will  

37 be less than the ideal gas pressure. Similarly, fugacity coefficient greater than 1 indicates the  
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38 molecules are repulsion dominant, and the effective pressure is higher than the pressure exerted  

39 by the ideal gas molecules.   

40 The term fugacity was first coined by Lewis (1908) to replace the mechanical partial pressure of  

41 gas or gas mixtures with effective partial pressure, and since then, it has been a very critical  

42 thermodynamical property of gas or a mixture of gases to compute their chemical equilibrium.  

43 Fugacity is directly related to the chemical potential (µ) of the substances (Eqs. 1 and 2), and thus  

44 dictates the preference of the component for one phase over others. The differential change in the  

45 chemical potential between two states of slightly different pressure but equal temperature for a real  

46 gas can be explained by the ideal gas law if the pressure term is replaced by fugacity, as shown in  

47 equations 1 and 2. Readers are referred to the study by Hurai et al. (2015) to get an in-depth  

48 understanding of fugacity and fugacity coefficient.    

49 ( 𝑓𝑜𝑟   𝑖𝑑𝑒𝑎𝑙   𝑔𝑎𝑠 )      ∫ 

µ 

µ 0 
𝑑µ = ∫ 

𝑃 

𝑃 𝑜 
𝑉 𝑚 𝑑𝑃 = ∫ 

𝑃 

𝑃 𝑜 

𝑅𝑇 

𝑃 
𝑑𝑃 = 𝑅𝑇   𝑙𝑛 𝑃/ 𝑃 0          (1)  

          50   ( 𝑓𝑜𝑟   𝑟𝑒𝑎𝑙   𝑔𝑎𝑠 ) 𝑑µ = 𝑅𝑇 ln 𝑓/ 𝑓 0                  (2) 

51 Where, R is the gas constant, V m  is fluid’s molar volume, and P 0  and f 0  are reference pressure and  

52 fugacity, respectively.  

53 Fugacity can be measured experimentally (Bruno, 1985; Frost and Wood, 1997) or estimated using  

54 different equations of state (EOS) (Duan et al., 1992; Holland and Powell, 1991; Spycher and  

55 Reed, 1988). There have been a number of empirical or semi-empirical EOSs developed to  

56 estimate the fugacity of gas in pure form or as a mixture with other fluids, such as Redlich-Kwong  

57 EOS (Redlich and Kwong, 1949), several modifications of Redlich-Kwong (de Santis et al., 1974;  

58 Flowers, 1979; Holloway, 1977), Peng-Robinson EOS (Peng and Robinson, 1976), and Virial EOS   

59 ( Mason and Spurling, 1969).  

60 Redlich and Kwong equation is an empirical Van-der-Waals type cubic equation that relates  

61 temperature, pressure, and volume of gases to estimate the thermodynamical properties of fluids.  

62 Several modifications of his equations were proposed to improve the estimation. However, the  

63 original Redlich-Kwong equation, along with some of its modifications, is reported to be less  

64 accurate in estimating fugacity values near critical conditions (Tarakad et al., 1979). The Peng- 

65 Robinson equations, another type of EOS devised to model gas fugacity, even though enables a  

66 more accurate estimation of fugacity in the liquid-vapor boundary than the Redlich-Kwong  

67 equations, they are more intricate in nature (Appelo et al., 2014). The only EOS with a better  

68 theoretical foundation to represent the properties of pure and mixed gases is the Virial equations  

69 ( Mason and Spurling, 1969) which have been used extensively to estimate thermodynamical  

70 properties, including gas fugacity or fugacity coefficients (Bai et al., 2021; Chueh and Prausnitz,  

71 1967 ; Dhamu et al., 2021; Duan et al., 1992; Schultz et al., 2010; Spycher and Reed, 1988).  

72 Spycher and Reed(1988) presented a second-order Virial EOS in terms of pressure and temperature  

73 to estimate the fugacity of pure and mixture of gases. Their model has the ability to be efficiently  
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74 implemented in other numerical models where pressure and temperature are the primary variables.  

75 Duan et al. (1992) formulated a fifth-order Virial expansion to estimate the fugacity coefficient of  

76 pure CO 2 , CH 4 , H 2 O, and their mixtures. Comparison of their estimations with a large amount of  

77 experimental data for pure systems revealed that the EOS is capable of providing a very accurate  

78 estimation (deviation below 2.5%) of CO 2  fugacity coefficients for a wide range of temperatures  

79 ( up to 1000 °C) and pressure (up to 3500 bar). Their fugacity EOS was later used by Duan and  

80 Sun (2003) and recently by Bhattacherjee et al. (2022) to estimate the CO 2  solubility in pure water  

81 and aqueous NaCl solution for geological storage applications. However, the EOS was presented  

82 in a very complex form and required a number of parameters to be evaluated. 

83 Recently, machine learning or data-driven methods have become increasingly popular in various  

84 fields, and chemical engineering is no exception. Machine learning models are computationally  

85 less challenging to deploy than EOS-based models, and depending on the experimental data  

86 available to train the models, these can be used for any regression or classification problems with  

87 minimal error and less run-time requirement. Jirasek et al. (2020) developed a probabilistic matrix  

88 factorization model to predict the activity coefficient, a measure of the non-ideality of liquid  

89 mixtures. Their model had significantly less mean square error than UNIQUAC Functional-group  

90 Activity Coefficients (UNIFAC), one of the most conventional physical methods of predicting  

91 activity coefficients. Zhang et al. (2018) used a back-propagation neural network (BPNN) and a  

92 general regression neural network (GRNN) to provide an ultra-fast prediction method for the  

93 thermodynamic properties (e.g., solubility, density, and viscosity) of CO 2  in the solutions of  

94 Potassium Lysinate.  

95 The computational power of Machine Learning also provides the ability to try different in-house  

96 algorithms on the same dataset, track their effectiveness, make necessary modifications, and select  

97 the most appropriate model: a trial-and-error roadmap not readily possible with the EOS models.  

98 Mohamadian et al. (2022) compared the performance of several machine learning algorithms,  

99 including extreme gradient boosting (XGB), multilayer perceptron (MLP), K-nearest neighbor  

100 ( KNN), and internal genetic algorithm (GA) to estimate the solubility of CO 2  in the aqueous  

101 solution of NaCl as a function of pressure, temperature, and salinity. Abdolbaghi et al. (2019)  

102 applied four machine learning algorithms: particle swarm optimization (PSO), multilayer  

103 perceptron (MLP), hybrid-adaptive neuro-fuzzy inference system (hybrid-ANFIS), and coupled  

104 simulated annealing-least square support vector machine (CSA-LSSVM) to predict the viscosity  

105 of pure CO 2  at high temperature and pressure conditions. Machine learning has also been used in  

106 several other studies to estimate different thermodynamical and PVT properties of fluids such as  

107 viscosity (Amar et al., 2020), solubility (Menad et al., 2019; Mesbah et al., 2018; Nabipour et al.,  

108 , density (Lin and Seraj, 2022; Syah et al., 2021), diffusivities (Amar and Ghahfarokhi, 2020;  2020) 

109 Aniceto et al., 2021), and interfacial tension (Amooie et al., 2019; Safaei-Farouji et al., 2022; Vo- 

110 Thanh et al., 2022) 

111 In this study, five different machine learning algorithms are used to develop models to estimate  

112 the fugacity coefficient of pure CO 2  as a function of temperature and pressure for the temperature  
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113 range of 0-1000 °C and pressure up to 2000 bar. Models are trained and validated on the  

114 experimental data collected by Angus et al. (1976) and Rhyzenko and Volkov (1971) and estimated  

115 data from Duan et al. (1992). The performance of the final model is tested on a separate dataset  

116 containing only experimental data, and the results are compared with two state-of-the-art  

117 thermodynamical models of estimating fugacity.  

118 Predicted fugacity data are used to estimate the solubility of CO 2  in pure water and aqueous NaCl  

119 solutions using the solubility model developed by Duan and Sun (2003) at the temperature and  

120 pressure conditions usually reported in geological storage sites of CO 2 . The original Duan and Sun  

121 model of solubility uses a fifth-order Virial EOS to estimate the CO 2  fugacity coefficients. This  

122 work intends to reduce the computational complexity of their model by estimating fugacity  

123 coefficients using machine learning frameworks. Such estimation can be used to understand the  

124 solubility trapping potential of CO 2  in depleted oil and gas reservoirs and saline aquifers. 

125 2 . Theory, Database, and Methods 

126 The methodology used to develop the machine learning models for this study can be summarized  

127 in the following steps: (i) Database formation; (ii) learning algorithm selection; (iii) splitting data  

128 into training, validation, and test sets; (iv) data scaling; (v) hyper-parameter tuning; (vi) model  

129 evaluation; and (vii) selection of the best-performing model. Besides, predicted fugacity values  

130 are used to estimate the CO 2  solubility in pure water and aqueous NaCl solution using the solubility  

131 model developed by Duan and Sun (2003). Each of these steps is described in detail in the  

132 following subsections.  

133 2.1  Database 

134 The availability of experimental data on the CO 2  fugacity coefficient is very limited. Angus et al.  

135 (1976)  reviewed and tabulated some available experimental PVT data for pure CO 2 ,  including  

136 density, fugacity/pressure ratio (fugacity coefficient), and compressibility factor. However, these  

137 experimental data were limited to pressure up to 1000 bar only. Another great source of  

138 experimental data, provided by Rhyzenko and Volkov (1971) for CO 2  fugacity, also covers a  

139 shorter range of pressure, 800-1000 bar only. 

140 This work aims to develop a model that can estimate the fugacity coefficients for temperatures up  

141 to at least 200 °C and pressure up to 2000 bar. These temperature and pressure ranges are selected  

142 based on the typical reservoir pressure and temperature encountered on the subsurface CO 2  storage  

143 sites. Temperature-wise, the experimental data are adequate to build the models, but pressure-wise,  

144 the data would not be enough to meet the objective of this study. Planning ahead of this scenario,  

145 to complement the experimental data, we chose to generate pseudo-experimental data of CO 2   

146 fugacity coefficient for P>1000 bar using a current state-of-the-art analytical model developed by  

147 Duan et al. (1992). 
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148 The analytical model developed by Duan et al. (1992) is one of the most accurate thermodynamical  

149 models available to estimate the fugacity coefficients of pure CO 2 . It covers an extensive range of  

150 pressure (up to 3500 bar) and temperature (up to 1000 °C). Moreover, CO 2  solubility in pure water  

151 and aqueous NaCl solutions estimated with their fugacity values reported to be very close to or  

152 within the experimental uncertainty (Bhattacherjee et al., 2022; Duan and Sun, 2003). Therefore,  

153 Duan's model was used to generate pseudo-experimental fugacity data for P >1000 bar. These  

154 estimated data were merged with the data from Angus et al. (1976) and Rhyzenko and Volkov  

155 (1971)  to create a database of 640 data points for training, validating, and testing the models. The  

156 combined dataset covers a wide range of temperatures (up to 1000 °C) and pressure (up to 2000  

157 bar). Table 1 shows the source, type, temperature, and pressure ranges of the data used to develop  

158 the database for fugacity prediction. 

159 Table 1: Source, type, and T&P ranges of the data used to develop the database for this study. 

Source Data Type Temperature Pressure 

Angus et al., 1976 Experimental 0-820  °C 1-1000  bar 

Rhyzenko and Volkov, 1971 Experimental  °C 400-1000  bar 800-1000 

Duan et al., 1992 Estimated  °C 0-1000  bar 1000-2000 

160 

161 2.2 . Machine Learning Model Development and Optimization 

162 . Machine Learning Algorithms 2.2.1 

163 This study used five different Machine Learning algorithms to predict the fugacity coefficients of  

164 CO 2 . The algorithms employed were: Linear Regression (LR), Decision Tree (DT), Random Forest  

165 ( RF), Extreme Gradient Boosting (XGB), and different kernels (e.g., linear, polynomial, and  

166 Radial Based Function (RBF)) of Support Vector Machines (SVM). These algorithms were  

167 adopted using python libraries and packages for efficient utilization and further optimization. A  

168 description of the logic behind each model is presented as follows. 

169  Linear Regression 2.2.1.1 

170 Linear regression (LR) is one of the simplest machine learning models employed in predicting  

171 target values. The model makes a classification or regression calculation based on the value of a  

172 linear combination of features and their associated weights or parameters. 

173 The algorithm is mathematically represented as: 

174                             (3) 𝑦 = 𝛽 0 + 𝛽 1 ∗ 𝑥 + … +   𝛽 𝑛 𝑥 𝑛 

175 where y is the set of output values from the algorithm, x is the set of input features fed into the  

176 model, and  βs  are the best parameters assigned to the features in such a way that the model  

177 prediction equation has the least amount of error between the predicted and actual target values.  
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178 To confirm the optimum selection of these parameters, we would need to use the training data and  

179 define a function that measures the quality of predictions for each value of  β.  This function is  

180 called the cost function.   The cost function helps us to figure out the best possible values for  β 0  and  

181 β 1 , which would provide the best fit line for the data points. Since we want the best values for  β 0   

182 and  β 1 , we convert this search problem into a minimization problem where we would like to  

183 minimize the error between the predicted value and the actual value. The function is given as: 

184                                (4) 𝐽 =   
1 
𝑛 ∑ 

𝑛 
𝑖 = 1 ( 𝑝𝑟𝑒𝑑.𝑦   ‒   𝑦 𝑖 ) 2 

185 where the idea is to minimize the sum of errors between the squared value of the difference  

186 between the predicted and actual values. The final selected  β  values would have the least cost  

187 function. 

188 2.2.1.2 . Decision Tree Regression 

189 The decision tree (DT) is a supervised learning algorithm that builds the regressions or  

190 classification models in a tree-like structure based on decisions and all possible results and  

191 outcomes. The prediction of the target variable is followed by this tree, where the outputs at the  

192 individual nodes are determined, and these estimates further determine the branches. This  

193 modeling technique is generally preferred due to its ability to work well with data with missing or  

194 noisy data points without compromising the accuracy of estimation or prediction. It can also be  

195 ensembled like in random forest modeling to create even more efficient models.   

196 

197 Figure 1: Basic decision tree (Hoffman, 2020). 

198 The decision tree works to define the splits in the node such that the information gained from the  

199 resulting nodes is maximized. This information gain can be described as the net difference between  

200 the impurity in the root node and all the branching leaf nodes from that root, as seen in Figure 1.  

201 There are different criteria that can be used to mathematically determine this impurity difference:  

202 the entropy and the Gini index or the Gini impurity. 
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203 2.2.1.3 . Random Forest Regression 

204 The random forest (RF) regression model is an algorithm employed using ensemble learning,  

205 which essentially is a method that uses the combined predictions and estimations from multiple  

206 machine learning models to result in a more accurate regression of a target variable. This algorithm  

207 is based on constructing several trees in a particularly random manner and combining the  

208 predictions form the resulting models. 

209 

210 Figure 2: Random Forest Tree Regression illustration (Bakshi, 2020). 

211 The model for a random forest prediction from this idea can be denoted by a base regression tree  

212 given as,  

213 , (5) { 𝑟 𝑛 ( 𝑋,   𝛩 𝑚 ,  𝐷 𝑛 ) ,  𝑚 ≥ 1 } 

214 where values for  Θ  are independently and identically distributed outputs of  Θ  based on the data  

215 set   and the independent variable, X. 𝐷 𝑛 

216 Assuming multiple decision trees, the predictions from all the different ensembles using different  

217 hyperparameters are averaged, as shown in Figure 2. 

218 The aggregated form of these random trees is estimated as 

219 (6) , { 𝑟 𝑛 ( 𝑋,   𝐷 𝑛 ) =   𝐸 𝛩 [ 𝑋,   𝛩 𝑚 ,  𝐷 𝑛 ] } 

220 where   is representative of the expectation of the random variable, dependent on X and the  𝐸 𝛩 

221 overall data,  . The averagely estimated prediction from all the models constitutes the random  𝐷 𝑛 

222 forest prediction value. 

223 2.2.1.4 . Extreme Gradient Boost 

224 The principle behind the Extreme Gradient Boost (XGB) algorithm also follows the same principle  

225 as ensemble learning. XGB also trains many models to be able to arrive at an average prediction  

226 across all the models. The Boosting process performs in such a way that it identifies and minimizes  
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227 the disadvantages of the individual decision trees. In this, the prediction of a target variable y is  

228 given as, 

229                                      (7) 𝑦 = ∑ 
𝐾 
𝑘 = 1 𝑓 𝑘 ( 𝑥 𝑖 ) ,  𝑓 𝑘   𝜖   𝐹 

230 where for calculations, the K represents the number of trees in the ensemble model, the f k  is a  

231 function that maps the values of x to y in functional space F, and F is a set of possible Classification  

232 and Regression Trees. The objective function that we want to maximize or minimize in the  

233 prediction of the target variables is given as, 

234                (8) 𝑜𝑏𝑗 ( 𝜃 ) =   ∑ 
𝑛 
𝑖 𝑙( 𝑦 𝑖 , 𝑦 𝑝𝑖 ) + ∑ 

𝐾 
𝑘 = 1 𝑤( 𝑓 𝑘 ) 

235 where the first summation term is the training loss function which is the difference between the  

236 predicted target value from the model and the actual value. The second summation term also  

237 represents the complexity of the model in fitting the data. This function is defined by the  

238 regularization parameter used to ensure that the model is not overfitting or underfitting to the  

239 training datasets. 

240 2.2.1.5 . Support Vector Machines 

241 The main ideas of support vector machines (SVM) are classification problems. However, the  

242 packages and adaptations made in different software enable them to handle regression problems  

243 properly and use the support vector regression algorithms. These adaptations are also contained in  

244 Python's "sklearn" machine learning packages. The SVM algorithm works in such a way that it  

245 finds a plane or, in this case, a hyperplane that can separate two sets of data points with the highest  

246 possible sense of purity (or, in this case, the separation margins). These respective hyperplanes can  

247 , the w term represents the slope of the plane. Then the objective  be expressed as  ± 𝑦 = 𝜔 𝑇 𝑥 + 𝑏 

248 function can change the optimization problem into: 

249                          (9) ( 𝜔 ∗ , 𝑏 ∗ ) = 𝑎𝑟𝑔𝑚𝑎𝑥   
2 

|| 𝑤 𝑇 || 
𝑦 𝑖 ∗ ( 𝜔 𝑇 𝑥 𝑖 +   𝑏 𝑖 ) ≥ 1 

250 This simplification of the overall optimization parameter reduces the computations required to  

251 arrive at a global minimum. However, the solution for this is in a non-convex solution form, which  

252 is not preferred for this solution since the algorithm can get stuck at a local minimum instead of  

253 reaching the global minimum. Therefore, the non-convex equation is modified into a convex  

254 solution as, 

255                         (10) ( 𝜔 ∗ , 𝑏 ∗ ) = 𝑎𝑟𝑔𝑚𝑖𝑛   
|| 𝑤 𝑇 || 2 

2 𝑦 𝑖 ∗ ( 𝜔 𝑇 𝑥 𝑖 +   𝑏 𝑖 ) ≥ 1 

256 These approximation functions work for linear separators. However, the SVM package in the  

257 python language employs the use of kernels. These kernels are the functions in which the data  

258 points can be represented and would be separable. These could be linear, polynomial, or RBF  

259 ( radial basis function ). 
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284 the distance between two observations to make decisions (e.g., SVM, principal component  

285 analysis, K-nearest neighbors) are very sensitive to the magnitude of the numbers and require  

286 scaling. Scaling is also required for algorithms that use gradient descent as the optimization  

287 technique, such as the case for linear regression, logistic regression, and neural networks. Rule- 

288 based algorithms such as decision tree, random forest, or gradient-boosted decision tree, however,  

289 are not affected by scaling.  

290 There are a number of ways scaling can be accomplished. The two most common methods are  

291 normalization and standardization of data. Normalization works by transforming the range of the  

292 values into a standard range, such as [0,1]. Standardization, on the other hand, transforms the data  

293 so that they follow a standard normal distribution with a mean of zero and a standard deviation of  

294 one. This study used standardization to scale the features using the StandardScaler feature of  

295 Python's Scikit-learn library (Pedregosa et al., 2011). The mean and median of the training set are  

296 used to scale the entire data.  

297 2.2.4 . Hyper-parameter Tuning 

298 Hyper-parameters are different from the model parameters in the sense that they are not learned  

299 from the data fitted to the algorithm and must be defined prior to training the model. Hyper- 

300 parameter tuning is a model optimization technique that involves assigning different classes or  

301 numerical values to the parameters required to configure the learning algorithms and choosing a  

302 set of optimal hyper-parameters values to define the model architecture. In this work, optimal  

303 hyper-parameters were chosen by searching the hyper-parameters space for optimal values using  

304 the Grid Search technique (Pedregosa et al., 2011). Grid search evaluates different models  

305 developed with each possible combination of given hyper-parameter values and selects the one  

306 that produces the best results. This work uses GridSearchCV class from Python's Scikit-Learn  

307 library for hyper-parameter optimization with 3-fold cross-validation. Table 3 lists all the hyper- 

308 parameter values tested for each algorithm and the ones that produced the least validation error.  

309 Linear Regression (LR) model was exempted from the hyper-parameter tuning because the  

310 purpose of the LR model was just to set a base for the other models.  

311 Table 3: Tested and best performing hyper-parameters values for each learning algorithm. Values for the  

312 remaining parameters were set to default. 

ML  

Algorithm 
Hyper-parameter Values Tested Best 

C* 1 1000 , 10, 100,  100 

Gamma* 1 , 0.1, 0.01, 0.001, scale 1 SVM 

Kernel rbf, poly, linear rbf 

Selection criterion mse*, mae* mae 

Split strategy best, random best 
Decision  

Tree 
Minimum number of samples to split a node , 3,  2 4….10 2 
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Maximum depth of each tree 8 12….20 , 10,  14 

Minimum number of samples per leaf 1 3….10 , 2,  1 

Maximum number of leaf nodes 5 , 20, 100, None None 

Number of trees used 100 300.…1000 , 200,  700 

Maximum number of features for split auto, sqrt auto 

Maximum depth of each tree 10 20, 30....110 ,  100 

Minimum number of samples to split a node , 5,  10 2 2 

Minimum number of samples per leaf 1 4 , 2,  1 

Random  

Forest 

Bootstrap True, False True 

Number of trees used 100 1000 , 500,  100 

Maximum depth of each tree 10 , 6,  3 6 

Learning rate 0.01 0.3 , 0.05, 0.1, 0.2,  0.3 

Fraction of features used to train each tree 0.3 1 , 0.7,  1 

Gamma* 2 , 1,  0 0 

Reg alpha* 0 2 , 1,  0 

Reg lambda* 1 3 , 2,  1 

Fraction of training samples used to train trees , 0.5,  0.1 1 1 

XGBoost 

Tree construction algorithm Exact, approx., hist exact 

313 *Gamma (SVM) determines how far the influence of a single training example reaches; C trades off the  

314 accuracy of the model for the simplicity of the decision function to avoid overfitting.  Details on the hyper- 

315 parameters can be found in the Scikit-learn documentation (Pedregosa et al., 2011). For XGB, gamma  

316 defines the minimum loss reduction required to make a split; Reg alpha and Reg lambda are the L1 and L2  

317 regularization terms, respectively (Chen et al., 2018). 

318 *mse= mean squared error; mae= mean absolute error 

319 2.3 . Model Evaluation 

320 The performances of the proposed models were evaluated using the mean squared error (MSE) in  

321 the training and validation data and the R   2 value in the validation data. Equations 11 and 12 are  

322 used to calculate MSE and R 2  values. In addition to that, predictions from the models are plotted  

323 against the validation data to graphically compare the performance of the models in estimating  

324 CO 2  fugacity coefficients. 

325 𝑀𝑆𝐸   =   ( 

1 

𝑛 ) 
∗   𝛴 ( 𝑎𝑐𝑡𝑢𝑎𝑙  –  𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 ) 2              (11) 

326 𝑅 2 = 1 ‒ 
𝑅𝑆𝑆 

𝑇𝑆𝑆 
                            (12) 

327 Where, 

328 actual = original or observed fugacity coefficients 

329 forecast = Fugacity coefficients predicted using the developed models 
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391 Yan et al. (2011), and Wang et al. (2019)) with only Takenouchi and Kennedy (1965) having the  

392 solubility data at pressure  ≥1000  bar.  

393 

394 Figure 1: P and T range of accepted experimental CO 2  solubility data in NaCl brines of different  

395 salinities. 

396 3 . Results and Discussion 

397 3.1 . Machine Learning Model Selection 

398 Five different supervised machine learning algorithms were used in this study to model CO 2   

399 fugacity coefficient as a function of temperature and pressure: Linear Regression, Support Vector  

400 Machines (SVM), Decision Tree (DT), Random Forest (RF: averaging ensemble method), and  

401 Extreme Gradient Boosting (XGB: boosting ensemble method). The hyper-parameters of the  

402 algorithms were optimized using the grid search cv technique mentioned in section 2.2.4.  

403 Table 7 compares the value of matrices used to evaluate the performance of the developed models,  

404 and figure 4 shows the plots for predicted fugacity coefficient values versus the actual values from  

405 the validation set. Note that the validation data set is not used during the training; hence the plots  

406 show pure prediction deviations from the actual values. Each developed model, except the naïve  

407 linear regression, did a fair job approximating the CO 2  fugacity coefficients. The R 2  values were  

408 close to 1, and the mean square errors (MSE) were also very minimum. However, there were some  

409 instances of heavy overestimation and underestimation of fugacity coefficients from RBF SVM,  

410 DT, and RF models, as appears in figure 3. The best fit to the diagonal line was obtained from the  

411 XGB model. XGB model also produced the lowest validation MSE and highest R 2  value in the  

412 validation data. The remaining models ranked based on validation MSE, from lower to higher as:  

413 RF, DT, RBF SVM, and LR. The DT model even though exhibited the least MSE in the training  

414 data among the models, the difference between the training and validation MSE is too high to rely  

415 upon the model for final prediction. Hence, XGB is chosen as the best-performing model. Figure  
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416 5  shows the fugacity coefficient prediction from the XGB model and its comparison with the  

417 validation data.  

418 

419 Figure 2: Actual versus predicted fugacity coefficients values for the ML models developed in this study. 

420 
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421 

422 Figure 3: Prediction of CO 2  fugacity coefficient with the XGB model and its comparison with the actual  

423 data from validation set. 

424 Table 7: Values of the evaluation matrices used to compare the machine learning models used in this  

425 study. 

Model Train MSE Validation MSE Validation R 
2 

Linear Regression 0.0789 0.0955 0.4297 

RBF SVM 0.0036 0.0042 0.9748 

Decision Tree   9.07  10 -6 × 0.0013 0.9923 

Random Forest 0.0002 0.0008 0.9950 

XGBoosting    10 2.02 -5 × 0.0002 0.9986 

426 

427 3.2 . Comparison with Analytical Models 

428 Figure 6 & Figure 7 compare the performance of the final proposed ML model (XGB) with two  

429 state-of-the-art analytical models developed by Spycher and Reed (1987) and Duan et al. (1992)  

430 for fugacity coefficients. The experimental data used in the comparison are from the test data set  

431 and have not been used in training or validating the models. Note that Spycher and Reed’s model  

432 is applicable for temperature from 80 °C to 350 °C, up to 500 bars, and from 400 °C to 1000 °C,  
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433 up to 1000 bars. Duan's model has a broader range of temperature and pressure limit which is 0 to  

434 1000  °C and 0 to 3500 bars, respectively. However, for the purpose of comparison, the pressure  

435 and temperature limit mutually shared by both models are selected, which is temperature from 80  

436 °C to 1000 °C and pressure up to 1000 bars.  

437 Overall, Spycher and Reed's model generates the fugacity values with the least deviation from the  

438 experimental values. Predictions from the XGB model and the estimations from Duan's model are  

439 slightly off at lower temperatures (<400 °C). The average deviation from the XGB model and  

440 Duan's model is 1.13% and 1.19%, respectively, whereas, for Spycher and Reed's model, the  

441 deviation is 0.78%. A slightly lower deviation from the Spycher and Reed’s model might be due  

442 to the fact that the estimated values from Spycher and Reed's model are extracted from the plots  

443 reported in their studies using a plot-digitizing software. Even though the method is  

444 straightforward, a lack of precision can lead to some level of data extraction errors. Nevertheless,  

445 the deviations from the XGB model were minor, and with significantly less computational  

446 complexity it performed equally well as the two EOS-based analytical models. 

447 

448 Figure 4: Experimental vs. predicted fugacity coefficients for test data. 
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449 

450 

451 Figure 5: Comparison of the experimental data with the predictions from XGB model and two  

452 analytical models by Spycher and Reed (1987) and Duan et al. (1992). 

453 3.3 . Solubility Prediction 

454 Fig. 8 (A, B, and C) compares the estimated CO 2  solubility data for different salinities of brine  

455 with the experimental data at 30 °C, 60 °C, and 80 °C, respectively. Due to the overall scarcity of  

456 experimental data at high pressure and temperature conditions, it was challenging to find enough  

457 isothermal data points (especially for T   ≥  100 °C) representing different salinities.  Therefore, to  

458 compare the estimated solubility data at temperature  ≥  100 °C, data from different salinities (0-5  

459 mol/kg) and temperatures (100-200 °C) are combined (Fig. 8D).  

460 The estimated solubilities data are overall in good agreement with the available experimental data,  

461 indicating that fugacity coefficient values predicted from the XGB model are reliable for CO 2   

462 solubility estimation for at least up to 200 °C, 1400 bar, and 5 molal NaCl solution. The average  

463 deviation from the experimental data was 2.08%, 2.03%, 1.5%, and 3.2% for 30 °C, 60 °C, 80 °C,  

464 and 100-200 °C, respectively.  
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465 

466 Figure 6: Comparison of estimated and experimental CO 2  solubility values at different pressures  

467 and temperatures   

468 4 . Conclusions 

469 In this work, a machine learning approach for the prediction of CO 2  fugacity coefficient is  

470 developed to estimate CO 2  fugacity coefficient with similar accuracy but significantly lesser  

471 computational complexity than EOS-based analytical models. Five different learning algorithms  

472 Multilinear Regression, Support Vector Machine, Decision Tree, Random Forest, and Extreme  ( 

473 Gradient Boost) are used to estimate the fugacity coefficient as a function of pressure and  

474 temperature. Extreme Gradient Boost model provided the prediction with the highest accuracy in  

475 the validation data. The developed model can be used to estimate CO 2  fugacity coefficient for  

476 temperature in the range of 0 to 1000 °C and pressure up to 2000 bars. The comparison between  

477 the ML model and the EOS-based analytical model suggest that the proposed model can be used  

478 as a substitution for the analytical models where a quick and approximate estimation of CO 2   

479 fugacity coefficient is required.  

480 The estimated fugacity coefficients are used to compute CO 2  solubility, one of the major  

481 applications of fugacity data, in NaCl brines of different salinities. The maximum average  

482 deviation from the experimental data ranged from 2.08 % to 3.2 % for pressures up to 1400 bar,  

483 temperature up to 200 °C, and concentrations up to 5 molal NaCl solution. The model developed,  

484 scored data with predicted fugacity, and the codes required to make the prediction for fugacity  

485 coefficients are provided in the Supplementary Material section.  
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