
Decentralized Gradient Methods with Time-varying Uncoordinated
Stepsizes: Convergence Analysis and Privacy Design

Yongqiang Wang, Angelia Nedić

Abstract—Decentralized optimization enables a network of
agents to cooperatively optimize an overall objective function
without a central coordinator and is gaining increased attention
in domains as diverse as control, sensor networks, data mining,
and robotics. However, the information sharing among agents
in decentralized optimization also discloses agents’ information,
which is undesirable or even unacceptable when involved data
are sensitive. This paper proposes two gradient based decen-
tralized optimization algorithms that can protect participating
agents’ privacy without compromising optimization accuracy or
incurring heavy communication/computational overhead. Both
algorithms leverage a judiciously designed mixing matrix and
time-varying uncoordinated stepsizes to enable privacy, one
using diminishing stepsizes while the other using non-diminishing
stepsizes. In both algorithms, when interacting with any one of its
neighbors, a participating agent only needs to share one message
in each iteration, which is in contrast to most gradient-tracking
based algorithms requiring every agent to share two messages (an
optimization variable and a gradient-tracking variable) under
non-diminishing stepsizes. Furthermore, both algorithms can
guarantee the privacy of a participating agent even when all
information shared by the agent are accessible to an adversary,
a scenario in which most existing accuracy-maintaining privacy
approaches will fail to protect privacy. Simulation results confirm
the effectiveness of the proposed algorithms.

I. INTRODUCTION

Distributed optimization is gaining increased attention
across disciplines due to its fundamental importance and
vast applications in areas ranging from cooperative control
[1], distributed sensing [2], multi-agent systems [3], sensor
networks [4], to large-scale machine learning [5]. In many
of these applications, the problem can be formulated in the
following general form, in which a network of m agents
cooperatively solve a common optimization problem through
on-node computation and local communication:

min
θ∈Rd

F (θ) ≜
1

m

m∑
i=1

fi(θ) (1)

where θ is common to all agents but fi : Rd → R is a local
objective function private to agent i. We denote an optimal
solution to this problem by θ∗, which we assume to be finite.

Since the 1980s, the above decentralized optimization prob-
lem has been intensively studied. To date, various algorithms
have been proposed. Some of the commonly used algorithms

The work was supported in part by the National Science Foundation
under Grants ECCS-1912702, CCF-2106293, CCF-2106336, CCF-2215088,
and CNS-2219487.

Yongqiang Wang is with the Department of Electrical and Com-
puter Engineering, Clemson University, Clemson, SC 29634, USA
yongqiw@clemson.edu

Angelia Nedić is with the School of Electrical, Computer and En-
ergy Engineering, Arizona State University, Tempe, AZ 85281, USA
angelia.nedich@asu.edu

include decentralized gradient methods (e.g., [6], [7], [8], [9]),
distributed alternating direction method of multipliers (e.g.,
[10], [11]), and distributed Newton methods (e.g., [12]). We
focus on the gradient based approach due to its simplicity in
computation, which is particularly appealing when agents have
limited computational capabilities.

Over the past decade, plenty of gradient based algorithms
have been developed for decentralized optimization. Early
results combine consensus and gradient method by directly
concatenating gradient based step with a consensus operation
of the optimization variable. Typical examples include [6],
[13]. However, to find an exact optimal solution, these ap-
proaches have to use a diminishing stepsize, which slows down
the convergence. To guarantee both a fast convergence speed
and exact optimization result, algorithms have been proposed
to replace the local gradient in decentralized gradient methods
with an auxiliary variable which tracks the gradient of the
global objective function. Typical examples include Aug-DGM
[8], DIGing [14], AsynDGM [15], AB [9], Push-Pull [16], [17]
and ADD-OPT [18], etc. While these algorithms can converge
to an exact optimal solution under a fixed stepsize, they have
to exchange both the optimization variable and the additional
auxiliary variable in every iteration.

All aforementioned algorithms explicitly share optimization
variables and/or gradients in every iteration, which becomes a
problem in applications involving sensitive data. For example,
in the rendezvous problem where a group of agents use decen-
tralized optimization to cooperatively find an optimal assembly
point, participating agents may want to keep their initial posi-
tions private in unfriendly environments [11]. In fact, without
an effective privacy mechanism in place, the results in [11],
[19], [20] show that a participating agent’s position can be
easily inferred by an adversary in decentralized-optimization
based rendezvous and parameter estimation. Another case
underscoring the importance of privacy preservation in decen-
tralized optimization is machine learning where training data
may contain sensitive information such as medical records
and salary information [21], [22]. In fact, recent results in
[23] show that without a privacy mechanism, an adversary can
precisely recover the raw data (pixel-wise accurate for images
and token-wise matching for texts) through shared gradients.

Recently results have been reported on privacy-preserving
decentralized optimization [11], [19], [24], [25], [26], [27],
[28], [29], [30], [31]. For example, differential-privacy based
approaches have been proposed to obscure information in
decentralized optimization by injecting noise to exchanged
messages [19], [24], [25] or objective functions [32]. How-
ever, the added noise in differential privacy also unavoidably
compromises the accuracy of optimization results. To enable
privacy protection without sacrificing optimization accuracy,

partially homomorphic encryption has been employed in both
our own prior results [11], [26], and others’ [27], [28].
However, such approaches incur heavy communication and
computation overhead. Employing the structural properties of
decentralized optimization, results have also been reported
on privacy protection in decentralized optimization without
using differential privacy or encryption. For example, [21],
[33] showed that privacy can be enabled by adding a constant
uncertain parameter in the projection step or stepsizes. The
authors of [29] showed that network structure can be leveraged
to construct spatially correlated “structured” noise to cover in-
formation. Although these approaches can ensure convergence
to an exact optimal solution, their enabled privacy is restricted:
projection based privacy depends on the size of the projection
set – a large projection set nullifies privacy protection whereas
a small projection set requires a priori knowledge of the
optimal solution; “structured” noise based approach requires
each agent to have a certain number of neighbors which
do not share information with the adversary. In fact, such a
structure constraint is required in most privacy solutions with
guaranteed optimization accuracy, including encryption based
privacy approaches [11].

Inspired by our recent results that privacy can be en-
abled in consensus by manipulating inherent dynamics [34],
[35], [36], we propose to enable privacy in decentralized
gradient methods by judiciously manipulating the inherent
dynamics of information mixing and gradient operations. More
specifically, leveraging a judiciously designed mixing matrix
and time-varying uncoordinated stepsizes, we propose two
privacy-preserving decentralized gradient based algorithms,
one with diminishing stepsizes and the other one with non-
diminishing stepsizes. Not only do our algorithms maintain
the accuracy of decentralized optimization, they also enable
privacy even when an adversary has access to all messages
shared by a participating agent. This is in contrast to most
existing accuracy-guaranteed privacy approaches for decen-
tralized optimization which cannot protect an agent against
adversaries having access to all shared messages. Furthermore,
even in the non-diminishing stepsize case, our algorithm only
requires a participating agent to share one variable with
any one of its neighboring agents in each iteration, which
is extremely appealing when communication bandwidth is
limited. In fact, to our knowledge, our algorithm is the first
privacy-preserving decentralized gradient based algorithm that
uses non-diminishing stepsizes to reach accurate optimization
results but requires each participating agent to share only one
message with a neighboring agent in every iteration. Note that
most existing gradient-tracking based algorithms (e.g., [8], [9],
[15], [16], [17], [18], [37], [38], [39], [40], [41]) require an
agent to share two messages (the optimization variable and a
gradient-tracking variable) in every iteration.

The main contributions are as follows: 1) We propose two
accuracy-guaranteed decentralized gradient based algorithms
that can protect the privacy of participating agents even
when all shared messages are accessible to an adversary,
a scenario which fails existing accuracy-guaranteed privacy-
preserving approaches for decentralized optimization; 2) The
two inherently privacy-preserving algorithms are efficient in

communication/computation in that they are encryption-free
and only require a participating agent to share one message
with a neighboring agent in every iteration. This is significant
in that, as a comparison, existing gradient-tracking based
decentralized optimization algorithms require a participating
agent to share both the optimization variable and a gradient-
tracking variable in every iteration1. In fact, the sharing of
the additional gradient-tracking variable will lead to privacy
breaches, as detailed in Sec. IV-B; 3) Even without considering
privacy, to our knowledge, our convergence analysis is the
first to characterize decentralized gradient methods in the
presence of time-varying heterogeneity in stepsizes, which is
in contrast to existing results only addressing constant or fixed
heterogeneity in stepsizes [8], [33], [42].

The organization of the paper is as follows. Sec. II gives
the problem formulation. Sec. III presents PDG-DS, an in-
herently privacy-preserving decentralized gradient algorithm
with proven converge to the exact optimization solution under
diminishing uncoordinated stepsizes. Sec. IV presents PDG-
NDS, an inherently privacy-preserving decentralized gradient
algorithm with proven converge to the exact optimization so-
lution under non-diminishing and time-varying uncoordinated
stepsizes. Sec. V gives simulation results and comparison with
existing works. Finally Sec. VI concludes the paper.

Notations: Id denotes identity matrix of dimension d. 1d

denotes a d dimensional column vector will all entries equal
to 1 and we omit the dimension when clear from the context.
For a vector x, xi denotes the ith element. For two matrices A
and B with the same dimension, we say A < B (resp. A ≤ B)
if all entries of A − B are negative (resp. non-positive). AT

denotes the transpose of A and ⟨·, ·⟩ denotes the inner product.
∥ · ∥ denotes the Euclidean norm for a vector or the induced
Euclidean norm for a matrix. Matrix A is column-stochastic
(resp. row-stochastic) when its entries are nonnegative and
elements in every column (resp. row) add up to one. A is
doubly stochastic when it is both column-stochastic and row-
stochastic. ⊗ represents the Kronecker product.

II. PROBLEM FORMULATION

We consider a network of m agents. The agents interact
on an undirected graph, which can be described by a weight
matrix W = {wij}. More specifically, if agents i and j can
interact with each other, then wij is positive. Otherwise, wij

will be zero. We assume that an agent is always able to affect
itself, i.e., wii > 0 for all 1 ≤ i ≤ m. The neighbor set Ni

of agent i is defined as the set of agents {j|wij > 0}. So the
neighbor set of agent i always includes itself.

Assumption 1. W = {wij} ∈ Rm×m satisfies 1TW = 1T ,
W1 = 1, and η = ∥W − 11T

m ∥ < 1.

The optimization problem (1) can be reformulated as the
following equivalent multi-agent optimization problem:

min
x∈Rmd

f(x) ≜
1

m

m∑
i=1

fi(xi) s.t. x1 = x2 = · · · = xm (2)

1Some gradient-tracking based algorithms may be transformed to a one-
variable form like EXTRA [7]; however, such an implementation becomes
infeasible when the stepsizes or coupling weights are uncoordinated to enable
privacy. See Remark 7 and Sec. IV-B for detailed explanations.

where xi ∈ Rd is the local estimate of agent i about the
optimization solution and x = [xT1 , x

T
2 , · · · , xTm]T ∈ Rmd.

We make the following standard assumption on objective
functions:

Assumption 2. Problem (1) has at least one optimal solution
θ∗. Every fi has Lipschitz continuous gradients, i.e., for some
L > 0, ∥∇fi(u) − ∇fi(v)∥ ≤ L∥u − v∥, ∀i and ∀u, v ∈
Rd. Every fi is convex, i.e., fi(u) ≥ fi(v) + ∇fi(v)T (u −
v), ∀i and ∀u, v ∈ Rd.

Under Assumption 2, we know that (2) always has an
optimal solution x∗ = [(θ∗)T , (θ∗)T , · · · , (θ∗)T]T .

In decentralized optimization applications, gradients usually
carry sensitive information. For example, in decentralized-
optimization based rendezvous and localization, disclosing
the gradient of an agent amounts to disclosing its (initial)
position [11], [19]. In machine learning, gradients are directly
calculated from and carry information of raw training data
[23]. Therefore, in this paper, we define privacy as preventing
disclosing agents’ gradients in each iteration.

We consider two potential attacks [43]:
• Honest-but-curious attacks are attacks in which a partic-

ipating agent or multiple participating agents (colluding
or not) follows all protocol steps correctly but is curious
and collects all received intermediate data to learn the
sensitive information about other participating agents.

• Eavesdropping attacks are attacks in which an external
eavesdropper wiretaps all communication channels to
intercept exchanged messages so as to learn sensitive
information about sending agents.

III. AN INHERENTLY PRIVACY-PRESERVING
DECENTRALIZED GRADIENT ALGORITHM WITH

DIMINISHING STEPSIZES

Conventional decentralized gradient algorithms usually take
the following form:

xk+1
i =

∑
j∈Ni

wijx
k
j − λkgki (3)

where λk is a positive scalar denoting the stepsize and gki
denotes the gradient of agent i evaluated at xki . It is well-
known that under Assumption 1 and Assumption 2, when λk

satisfies
∑∞

k=0 λ
k = ∞ and

∑∞
k=0(λ

k)2 < ∞, all xki will
converge to a same optimal solution. However, in (3), agent
i has to share xki with all its neighbors. If an adversary has
access to xki and the updates that agent i receives from all its
neighbors, then the adversary can easily infer gki based on the
update rule (3) and publicly known W and λk.

Motivated by this observation and inspired by our recent
finding that interaction dynamics can be judiciously manip-
ulated to enable privacy [34], [35], [36], we propose the
following decentralized gradient algorithm (with per-agent
version given in Algorithm PDG-DS) to enable privacy by
adapting the stochastic optimization algorithm in [44]:

xk+1 = (W ⊗ Id)x
k − ((BkΛk)⊗ Id)g

k (4)

where Bk = {bkij} is a column-stochastic nonnegative
matrix, Λk = diag[λk1 , λ

k
2 , · · · , λkm] with λki ≥ 0 de-

noting the stepsize of agent i at iteration k and gk =

[(gk1)
T , (gk2)

T , · · · (gkm)T]T . Different from [44] which uses
a matrix-valued stepsize for each agent, we here require the
stepsize λkj for each agent to be a scalar, which is necessary to
prove deterministic convergence to an exact optimal solution.
It is worth noting that our scalar stepsize here cannot be
viewed as a special case of the matrix-valued stepsize in [44]
since the stepsize matrix in [44] explicitly requires all diagonal
entries to be statistically independent of each other, which
prohibits it from having the form of λkj Id.

The detailed implementation procedure for individual agents
is provided in Algorithm PDG-DS. Compared with the con-
ventional decentralized gradient algorithm, it can be seen that
we equip each agent j with two private variables bkij and λkj
to cover its gradient information gkj . The two variables are
generated by and only known to agent j. Therefore, the two
variables can ensure that a neighboring agent i cannot infer
gkj based on received information wijx

k
j − bkijλ

k
j g

k
j as agent

i does not know xkj , λkj , or bkij . It is worth noting that since
agent j determines bkij > 0 for all i ∈ Nj (bkij = 0 for i /∈ Nj),
as long as every agent j ensures

∑
i∈Nj

bkij = 1 locally, the
column-stochastic condition for matrix Bk will be satisfied.

PDG-DS: Privacy-preserving decentralized gradient
method with diminishing stepsizes

Public parameters: W
Private parameters for agent i: bkji ≥ 0, λki ≥ 0, and x0i

1) for k = 0, 1, · · · do
a) Every agent j computes and sends to agent i ∈ Nj

vkij ≜ wijx
k
j − bkijλ

k
j g

k
j (5)

b) After receiving vkij from all j ∈ Ni, agent i updates its
state as follows:

xk+1
i =

∑
j∈Ni

vkij =
∑

j∈Ni

(wijx
k
j −bkijλkj gkj) (6)

c) end

A. Convergence Analysis

We define x̄k =
∑m

i=1 xk
i

m . Because Bk and W are column
stochastic, from (4), we can obtain

x̄k+1 = x̄k − 1
m

∑m
i=1 λ

k
i g

k
i (7)

To analyze PDG-DS, we first introduce a theorem that
applies to general decentralized algorithms for solving (1).

Proposition 1. Assume that problem (1) is convex and has
a solution. Suppose that a distributed algorithm generates
sequences {xki } ⊆ Rd such that the following relation is
satisfied for any optimal solution θ∗ and for all k,

vk+1 ≤
([

1 1
0 η

]
+ ak11T

)
vk + bk1− ck

[
ζ
0

]
(8)

where vk =

[
vk
1

vk
2

]
≜

[
∥x̄k − θ∗∥2∑m
i=1 ∥xki − x̄k∥2

]
, ζ ≜∑m

i=1

(
fi(x̄

k)− fi(θ
∗)
)
, and the scalar sequences {ak},

{bk}, and {ck} are nonnegative and satisfy
∑∞

k=0 a
k <

∞,
∑∞

k=0 b
k < ∞, and

∑∞
k=0 c

k = ∞. Then, we have
limk→∞ ∥xki − x̄k∥ = 0 for all i and there exists an optimal
solution θ̃∗ such that limk→∞ ∥x̄k − θ̃∗∥ = 0.

Proof. Since θ∗ is an optimal solution of problem (1), we
always have

∑m
i=1

(
fi(x̄

k)− fi(θ
∗)
)
≥ 0.

From (8) it follows that for all k ≥ 0,

vk+1 ≤
([

1 1
0 η

]
+ ak11T

)
vk + bk1 (9)

Consider the vector π = [1, 1
1−η]

T and note πT

[
1 1
0 η

]
=

πT . Thus, the sequence {πTvk} satisfies all conditions
of Lemma 3 in the Appendix. Therefore, it follows that
limk→∞ πTvk exists and that {∥x̄k − θ∗∥} and {

∑m
i=1 ∥xk −

x̄k∥2} are bounded.
We use M > 0 to represent an upper bound on {∥x̄k−θ∗∥}

and {
∑m

i=1 ∥xk−x̄k∥2}, i.e., ∥x̄k−θ∗∥ ≤M and
∑m

i=1 ∥xk−
x̄k∥2 ≤M hold ∀k ≥ 0. Thus, for all k ≥ 0, we have

m∑
i=1

∥xk+1
i − x̄k+1∥2 ≤ η

m∑
i=1

∥xki − x̄k∥2 + 2akM + bk

=
m∑
i=1

∥xki − x̄k∥2 − (1− η)
m∑
i=1

∥xki − x̄k∥2 + 2akM + bk

(10)
By summing (10) over k and using the fact

∑∞
k=0(2a

kM +
bk) <∞, we obtain

(1− η)
∑∞

k=0

∑m

i=1
∥xki − x̄k∥2 <∞ (11)

which implies limk→∞ ∥xki − x̄k∥2 = 0 for all i.
Next, we consider the first element of vk, i.e., ∥x̄k − θ∗∥2.

From (8) we have

∥x̄k+1 − θ∗∥2 ≤ (1 + ak)
(
∥x̄k − θ∗∥2 +

∑m

i=1
∥xki − x̄k∥2

)
+ bk − ck

∑m

i=1

(
fi(x̄

k)− fi(θ
∗)
)

≤ ∥x̄k − θ∗∥2 +
∑m

i=1
∥xki − x̄k∥2 + 2akM

+ bk − ck
∑m

i=1

(
fi(x̄

k)− fi(θ
∗)
)

We can see that the preceding relation satisfies the relation
in Lemma 5 in the Appendix with ϕ =

∑m
i=1 fi, z

∗ = θ∗,
zk = x̄k, αk = 0, γk = ck, and βk =

∑m
i=1 ∥xki − x̄k∥2 +

2akM + bk. By our assumption, we have
∑∞

k=0 a
k < ∞,∑∞

k=0 b
k < ∞, and

∑∞
k=0 c

k = ∞. Thus, in view of
relation (11), it follows

∑∞
k=0 β

k <∞. Hence, all conditions
of Lemma 5 in the Appendix are satisfied, and it follows that
{x̄k} converges to some optimal solution.

Now, we are in position to prove convergence of PDG-DS.

Theorem 1. Under Assumption 1 and Assumption 2, if
the stepsize of every agent i is non-negative and satisfies∑∞

k=0 λ
k
i = ∞ and

∑∞
k=0(λ

k
i)

2 < ∞, and the stepsize
heterogeneity satisfies∑∞

k=0

∑
i,j∈{1,2,··· ,m}, i ̸=j

|λki − λkj | <∞ (12)

then we have limk→∞ ∥xki −x̄k∥ = 0 for all i, and there exists
an optimal solution θ̃∗ such that limk→∞ ∥x̄k−θ̃∗∥ = 0 holds.

Proof. The basic idea is to show that Proposition 1 applies.
So we have to establish necessary relationships for ∥x̄k−θ∗∥2
and

∑m
i=1 ∥xki − x̄k∥2, which are fulfilled in Step I and Step

II below, respectively.
Step I: Relationship for ∥x̄k − θ∗∥2. Using (7), we have for

any optimal solution θ∗

x̄k+1 − θ∗ = x̄k − θ∗ − 1
m

∑m
i=1 λ

k
i g

k
i

which further implies∥∥x̄k+1 − θ∗
∥∥2 =

∥∥x̄k − θ∗
∥∥2 − 2

m

∑m
i=1⟨λki gki , x̄k − θ∗⟩

+ 1
m2

∥∥∑m
i=1 λ

k
i g

k
i

∥∥2
(13)

We next estimate the inner product term, for which we have

⟨λki gki , x̄k − θ∗⟩ =⟨λki (gki −∇fi(x̄k)), x̄k − θ∗⟩
+ ⟨λki∇fi(x̄k), x̄k − θ∗⟩

(14)

By the Lipschitz continuous property of ∇fi, we obtain

⟨λki (gki −∇fi(x̄k)), x̄k − θ∗⟩ ≥ −Lλki ∥xki − x̄k∥∥x̄k − θ∗∥
≥ − 1

2∥x
k
i − x̄k∥2 − 1

2L
2(λki)

2∥x̄k − θ∗∥2
(15)

Defining the average stepsize λ̄k =
∑

λk
i

m , we have

⟨λki∇fi(x̄k), x̄k − θ∗⟩ =
⟨(λki − λ̄k)∇fi(x̄k), x̄k − θ∗⟩+ ⟨λ̄k∇fi(x̄k), x̄k − θ∗⟩

(16)

Defining λk = [λk1 , · · · , λkm]T and combining (14)-(16)
yield∑m

i=1⟨λki gki , x̄k − θ∗⟩
m

≥ −
∑m

i=1 ∥xki − x̄k∥2

2m
− L2∥λk∥2∥x̄k − θ∗∥2

2m
+∑m

i=1⟨(λki − λ̄k)∇fi(x̄k), x̄k − θ∗⟩
m

+ λ̄k⟨∇F (x̄k), x̄k − θ∗⟩

≥ −
∑m

i=1 ∥xki − x̄k∥2

2m
− L2∥λk∥2∥x̄k − θ∗∥2

2m
+∑m

i=1⟨(λki − λ̄k)∇fi(x̄k), x̄k − θ∗⟩
m

+ λ̄k(F (x̄k)− F (θ∗)

(17)
where we used the convexity of F (·) in the last inequality.

Noting λk = [λk1 , · · · , λkm]T , we always have∑m
i=1⟨(λki − λ̄k)∇fi(x̄k), x̄k − θ∗⟩

m

≥ −
∥
∑m

i=1(λ
k
i − λ̄k)∇fi(x̄k)∥ ∥x̄k − θ∗∥

m

= −
∥
(
(λk − λ̄k1m)⊗ 1d

)T
m∇f(1⊗ x̄k)∥ ∥x̄k − θ∗∥
m

≥ −
√
d∥λk − λ̄k1m∥ ∥∇f(1⊗ x̄k)∥ ∥x̄k − θ∗∥

(18)
where we used Cauchy-Schwarz inequality and m∇f(1 ⊗
x̄k)) = [(∇f1(x̄k))T , · · · , (∇fm(x̄k))T]T in the last equal-
ity. Furthermore, ∥∇f(1 ⊗ x̄k)∥ can be bounded by using
∇f(x∗) = 0 at x∗ = 1⊗ θ∗ as follows:

∥∇f(1⊗ x̄k)∥ = ∥∇f(1⊗ x̄k)−∇f(x∗)∥
≤ L∥1⊗ x̄k − x∗∥ = L

√
m ∥x̄k − θ∗∥

(19)

Combining (17), (18), and (19) yields∑m
i=1⟨λki gki , x̄k − θ∗⟩

m

≥ −
∑m

i=1 ∥xki − x̄k∥2

2m
− L2∥λk∥2∥x̄k − θ∗∥2

2m
−

L
√
md∥λk − λ̄k1m∥ ∥x̄k − θ∗∥2 + λ̄k(F (x̄k)− F (θ∗)

(20)

We next estimate the last term in relation (13), for which
we use 1

mg
k = ∇f(xk), the notation λk = [λk1 , · · · , λkm]T ,

and the Cauchy-Schwarz inequality:∥∥∑m
i=1 λ

k
i g

k
i

∥∥2
m2

=
∥∥(λk ⊗ 1)T∇f(xk)

∥∥2 ≤ d∥λk∥2∥∇f(xk)∥2

We then add and subtract ∇f(x∗) = 0 to obtain∥∥∑m
i=1 λ

k
i g

k
i

∥∥2
m2

≤ 2d∥λk∥2∥∇f(xk)−∇f(x∗)∥2

≤ 2d∥λk∥2L2∥xk − x∗∥2
(21)

where the last inequality follows by the Lipschitz continuity
of ∇f . Further using the inequality

∥xk − x∗∥2 ≤ ∥xk − 1⊗ x̄k + 1⊗ x̄k − x∗∥2

≤ 2∥xk − 1⊗ x̄k∥2 + 2∥1⊗ x̄k − x∗∥2

≤ 2
m∑
i=1

∥xki − x̄k∥2 + 2m∥x̄k − θ∗∥2
(22)

we have from (21)∥∥∑m
i=1 λ

k
i g

k
i

∥∥2
m2

≤4d∥λk∥2L2
m∑
i=1

∥xki − x̄k∥2

+ 4md∥λk∥2L2∥x̄k − θ∗∥2
(23)

Substituting (20) and (23) into (13) yields∥∥x̄k+1 − θ∗
∥∥2 ≤

∥∥x̄k − θ∗
∥∥2

+

∑m
i=1 ∥xki − x̄k∥2

m
+
L2∥λk∥2∥x̄k − θ∗∥2

m
+

2L
√
md∥λk − λ̄k1m∥∥x̄k − θ∗∥2 − 2λ̄k(F (x̄k)− F (θ∗)

+ 4d∥λk∥2L2
m∑
i=1

∥xki − x̄k∥2 + 4md∥λk∥2L2∥x̄k − θ∗∥2

(24)
We can group the common terms on the right hand side of

the preceding relation and obtain∥∥x̄k+1 − θ∗
∥∥2 ≤

∥∥x̄k − θ∗
∥∥2 ×(

1 +
L2∥λk∥2 + 2Lm

√
md∥λk − λ̄k1∥

m
+ 4md∥λk∥2L2

)

+ (
1

m
+ 4d∥λk∥2L2)

m∑
i=1

∥xki − x̄k∥2 − 2λ̄k(F (x̄k)− F (θ∗)

(25)
Step II: Relationship for

∑m
i=1 ∥xki − x̄k∥2. For the con-

venience of analysis, we write PDG-DS on per-coordinate
expressions. Define for all ℓ = 1, . . . , d, and k ≥ 0,

xk(ℓ) =
[
[xk1]ℓ, . . . , [x

k
m]ℓ
]T
, gk(ℓ) =

[
[gk1]ℓ, . . . , [g

k
m]ℓ
]T

In this per-coordinate view, (4) and (7) have the following
form for all ℓ = 1, . . . , d, and k ≥ 0:

xk+1(ℓ) =Wxk(ℓ)−BkΛkgk(ℓ)

[x̄k+1]ℓ = [x̄k]ℓ −
1

m
1TΛkgk(ℓ)

(26)

From (26), we obtain

xk+1(ℓ)− [x̄k+1]ℓ1 =Wxk(ℓ)− [x̄k]ℓ1

−
(
BkΛkgk(ℓ)− 1

m
1TΛkgk(ℓ)1

)
Noting that [x̄k]ℓ1 = 1

m11Txk(ℓ) and 1
m1TΛkgk(ℓ)1 =

1
m11TΛkgk(ℓ), we have

xk+1(ℓ)− [x̄k+1]ℓ1 =W̄xk(ℓ)− B̄kΛkgk(ℓ)

where W̄ =W − 11T

m and B̄k = Bk − 11T

m .
Noticing W̄ [x̄k]ℓ1 =

(
W − 1

m11T
)
[x̄k]ℓ1 = 0, by sub-

tracting this expression from the right hand side of the
preceding relation, we obtain

xk+1(ℓ)− [x̄k+1]ℓ1 =W̄ (xk(ℓ)− [x̄k]ℓ1)− B̄kΛkgk(ℓ)

Taking norm on both sides and using η = ∥W − 1
m11T ∥

from Assumption 1, we obtain

∥xk+1(ℓ)−[x̄k+1]ℓ1∥ ≤η∥xk(ℓ)−[x̄k]ℓ1∥+
∥∥B̄k

∥∥ ∥Λk∥ ∥gk(ℓ)∥
(27)

The column stochastic property of Bk implies∥∥B̄k
∥∥ ≤

∥∥B̄k
∥∥
F
≤ m (28)

where ∥ · ∥F denotes the Frobenius matrix norm, yielding

∥xk+1(ℓ)− [x̄k+1]ℓ1∥ ≤η∥xk(ℓ)− [x̄k]ℓ1∥+m∥Λk∥ ∥gk(ℓ)∥

By taking squares on both sides and using the inequality
2ab ≤ ϵa2 + ϵ−1b2 valid for any a, b, and ϵ > 0, we obtain

∥xk+1(ℓ)− [x̄k+1]ℓ1∥2 ≤η2(1 + ϵ)∥xk(ℓ)− [x̄k]ℓ1∥2

+m2(1 + ϵ−1)∥Λk∥2∥gk(ℓ)∥2

Summing these relations over ℓ = 1, . . . , d, and not-
ing

∑d
ℓ=1 ∥xk(ℓ) − [x̄k]ℓ1∥2 =

∑m
i=1 ∥xki − x̄k∥2 and∑d

ℓ=1 ∥gk(ℓ)∥2 =
∑m

i=1 ∥gki ∥2, we obtain

m∑
i=1

∥xk+1
i − x̄k+1∥2 ≤η2(1 + ϵ)

m∑
i=1

∥xki − x̄k∥2

+m2(1 + ϵ−1)∥Λk∥2∥gk∥2
(29)

We next focus on estimating ∥gk∥2. Noting that gk =
m∇f(xk), ∇f(x∗) = 0, and f has Lipschitz continuous
gradients, we have

∥gk∥2 = m2∥∇f(xk)−∇f(x∗)∥2 ≤ m2L2∥xk − x∗∥2

≤ 2m2L2
m∑
i=1

∥xki − x̄k∥2 + 2m3L2∥x̄k − θ∗∥2

(30)
where the last inequality used (22).

Substituting (30) into (29) and grouping terms yield
m∑
i=1

∥xk+1
i − x̄k+1∥2 ≤ 2m5L2(1 + ϵ−1)∥Λk∥2∥x̄k − θ∗∥2

+
(
η2(1 + ϵ) + 2m4L2(1 + ϵ−1)∥Λk∥2)

) m∑
i=1

∥xki − x̄k∥2

By letting ϵ = 1−η
η with ϵ > 0, and noting η ∈ (0, 1),

1 + ϵ = η−1, 1 + ϵ−1 = (1 − η)−1, and ∥Λk∥ = maxi λ
k
i ≤

∥λk∥, we arrive at
m∑
i=1

∥xk+1
i − x̄k+1∥2 ≤ 2m5L2(1− η)−1∥λk∥2∥x̄k − θ∗∥2

+
(
η + 2m4L2(1− η)−1∥λk∥2)

) m∑
i=1

∥xki − x̄k∥2

(31)
Combining (25) and (31), we have

vk+1 ≤
([

1 1
m

0 η

]
+Ak

)
vk − 2λ̄k

[
(F (x̄k)− F (θ∗)

0

]
(32)

where vk =

[
∥x̄k − θ∗∥2∑m
i=1 ∥xki − x̄k∥2

]
, Ak =

[
A11 A12

A21 A22

]
with A11 ≜ L2∥λk∥2+2Lm

√
md∥λk−λ̄k1∥

m + 4md∥λk∥2L2,
A12 = 4d∥λk∥2L2, A21 = 2m5L2(1 − η)−1∥λk∥2, and
A22 = 2m4L2(1− η)−1∥λk∥2.

Because
[

1 1
m

0 η

]
≤
[

1 1
0 η

]
and Ak ≤ ak11T holds

when ak is set to ak = max {A11, A12, A21, A22}, we can see
that (8) in Proposition 1 is satisfied. Further note that under
the conditions in the statement, all conditions for {ak}, {bk},
and {ck} in Proposition 1 are also satisfied (bk is always 0
here). Therefore, we have the claimed results.

Remark 1. To our knowledge, for decentralized gradient
methods with diminishing stepsizes, our result is the first to
prove exact convergence under general time-varying stepsize
heterogeneity. In fact, the condition in (12) can be satisfied
even when the stepsize differences in a finite number of
iterations are arbitrarily large. This can enable strong privacy,
as detailed in Sec. III-B.

B. Privacy Analysis

Recall that in Sec. II we identify the gradients of agents as
information to be protected in decentralized optimization. In
this subsection, we will show that the PDG-DS algorithm can
effectively protect the gradients of all participating agents from
being inferable by honest-but-curious adversaries and external
eavesdroppers. To this end, we first give a privacy metric and
our definition of privacy protection.

We define the difference from x to x′ as follows (in the log
scale, could be positive or negative):

ζ = log ∥x∥
∥x′∥ (33)

Definition 1. For a network of m agents in decentralized
optimization, the privacy of agent i is preserved if for any
finite number of iterations T , its gradient values g1i , · · · , gTi

always have alternative realizations ĝ1i , · · · , ĝTi which allow
each ĝki (1 ≤ k ≤ T) to have an arbitrarily large difference
(could be different for different k) from gki , but lead to the
same shared information in inter-agent communications.

The above privacy definition requires that when an agent’s
gradient is perturbed by an arbitrary value ζ, its shared
information can still be the same, i.e., an alteration to an
agent’s gradient value is not distinguishable by an adversary
having access to all information shared by the agent. Since
the alteration in gradient can be arbitrarily large, our privacy
definition requires that an adversary cannot even find a range
for a protected value, and hence is more stringent than many
existing privacy definitions (e.g., [11], [29]) that only require
an adversary unable to uniquely determine a protected value.

Theorem 2. In the presence of honest-but-curious or eaves-
dropping adversaries, PDG-DS can protect the privacy of all
participating agents defined in Definition 1.

Proof. Without loss of generality, we first consider the pro-
tection of the gradient of agent i at any single time instant k,
and then show that the argument also applies to any finite
number of time instants (iterations). When the gradient is gki ,
we represent the information that agent i shares with neigh-
boring agents when participating PDG-DS as Ii. According to
Definition 1, we have to prove that when the gradient is altered
from gki to ĝki = eζ

k

gki with ζk difference from gki according
to the metric in (33), the corresponding shared information Îi
of agent i could be identical to Ii under any ζk > 0.

According to Algorithm PDG-DS, agent i shares the fol-
lowing information in decentralized optimization:

Ii = Isent
i

⋃
Ipublic
i

with Isent
i =

{
vkji ≜ wk

jix
k
i − bkjiλ

k
i g

k
i |k = 1, 2, · · ·

}
and

Ipublic
i =

{
W
⋃∑

j∈Ni
bkji = 1|k = 0, 1, · · ·

}
. One can ob-

tain that at some iteration k, if the gradient is changed to
ĝki = eζ

k

gki , the difference defined in (33) is ζk. However,
in this case, if we set the stepsize λ̂ki to λ̂ki = e−ζk

λki ,
then the corresponding shared information will still be vkji.
Since other parameters are not changed and changing the
stepsize from λki to λ̂ki = e−ζk

λki will not violate the
summable stepsize heterogeneity condition in (12) for any
given ζk < ∞, according to Theorem 1, convergence to the
optimal solution will still be guaranteed. Therefore, changes in
an agent’s gradient can be completely covered by the agent’s
flexibility in changing its stepsize, which does not affect the
convergence. Thus, privacy of any agent’s gradient will be
protect when running PDG-DS. Given that the summable
stepsize heterogeneity condition in (12) allows the stepsize
of agent i to change by any finite amount for any finite
number of iterations, one can obtain that the privacy of
every agent’s gradients in any number of iterations can be
completely covered by the flexibility in changing the agent’s
stepsize in these iterations, as long as the number of these
iterations is finite. It is worth noting that the perturbation
does not violate the convexity and Lipschitz conditions in
Assumption 2. This is because in order for an adversary to

check if Assumption 2 is violated, it has to know xki and
L, which, however, are not available to adversaries: before
convergence, xki is inaccessible to the adversary because the
information shared by agent i is wjix

k
i − bkjiλ

k
i g

k
i , avoiding

xki from being inferable; L is inaccessible to the adversary
either because Assumption 2 only requires all fi to have finite
Lipschitz constants, and agents do not share their Lipschitz
constants in the implementation of the algorithm. In fact,
even with the gradient gki unchanged, the value of observation
wk

jix
k
i −bkjiλki gki in Algorithm 1 can be changed by an arbitrary

finite value by changing the stepsize λki . Therefore, before
convergence, an adversary cannot use Assumption 2 to confine
the change in observed values and further confine the change
in the value of gki . After convergence, the perturbation does
not violate the convexity and Lipschitz conditions, either. In
fact, although xki becomes accessible to the adversary after
convergence, gradient is eliminated in adversary’s observation
(the shared wjix

k
i − bkjiλ

k
i g

k
i becomes wjix

k
i) because λki

converges to zero. So after convergence, the adversary still
cannot use Assumption 2 to confine changes in gradients.

Remark 2. Even after convergence when gki becomes a
constant, an adversary still cannot infer gradients from shared
messages in PDG-DS. More specifically, when gki converges
to a constant value, the stepsize λki also converges to zero,
which completely eliminates the information of gki in observed
information (the observed information becomes wjix

k
i after

convergence). This can also be understood intuitively as fol-
lows: Even if the adversary can collect T → ∞ observations
wjix

k
i −bkjiλki gki in the neighborhood of the optimal point and

establish a system of T equations to solve for gki (which can be
viewed to be approximately time-invariant in the neighborhood
of the optimal point), the number of unknowns bkji, λ

k
i , and

gki in the system of T equations is 3T (even if we view λki
and gki approximately as constants in the neighborhood of the
optimal point, the number of unknowns is still T + 2), which
makes it impossible for the adversary to solve for gki using
the system of T equations established from observations.

Remark 3. Different from existing privacy solutions for de-
centralized optimization that patch a privacy mechanism (e.g.,
differential-privacy noise or encryption) with a pre-designed
decentralized optimization algorithm, our proposed algorithm
uses stepsize and coupling coefficients that are inherent to the
decentralized optimization algorithm to perturb gradients, and
hence has inherent privacy.

Remark 4. Existing accuracy-maintaining privacy ap-
proaches for decentralized optimization can only protect the
privacy of participating agents when the interaction topology
meets certain conditions. For example, the approach in [29]
assumes that an adversary cannot have access to messages
sent on at least one communication channel of an agent to
guarantee the privacy of this agent. The approach in [26]
requires that an adversary cannot be the only neighbor of a
target agent. To the contrary, our PDG-DS can protect the
privacy of an agent without any constraint on the interaction
topology. In fact, to our knowledge, our algorithm is the first
decentralized gradient based algorithm that can guarantee

both optimization accuracy and privacy defined in Definition
1 when an adversary has access to all shared information.

IV. AN INHERENTLY PRIVACY-PRESERVING
DECENTRALIZED GRADIENT ALGORITHM WITH

NON-DIMINISHING STEPSIZES

Because diminishing stepsizes in decentralized gradient
methods may slow down convergence, plenty of efforts have
been devoted to developing algorithms that can achieve ac-
curate optimization results under a non-diminishing stepsize.
Typical examples include gradient-tracking based algorithms
such as Aug-DGM [8], DIGing [14], AsynDGM [15], AB [9],
Push-Pull [16], [17], and ADD-OPT [18], etc. However, these
algorithms will lead to privacy breaches in implementation.
For example, DIGing [14] implements the following update
rule (note that under our assumption, i ∈ Ni):x

k+1
i =

∑
j∈Ni

wijx
k
j − λyki

yk+1
i =

∑
j∈Ni

wij(y
k
j + gk+1

j − gkj)

At iteration k = 0, agent j sets y0j = g0j and sends wij(y
0
i +

g1j−g0j) = wijg
1
j to its neighboring agent i. At iteration k = 1,

agent j further sends x1j to agent i. Given that wijs are publicly
known, agent i can easily determine the gradient of agent j at
x1j . Using a similar argument, we can see that other commonly
used gradient-tracking based algorithms also have the same
issue of leaking agents’ gradient information, even when the
stepsizes are heterogeneous (see Sec. IV.B for details).

The EXTRA algorithm [7] can also ensure convergence to
the exact optimal solution under non-diminishing stepsizes:

xk+2
i =

∑
j∈Ni

w1,ijx
k+1
j −

∑
j∈Ni

w2,ijx
k
j −λ(gk+1

i − gki)

However, since λ,w1,ij , w2,ij are publicly known, and an
agent i has to share xki directly, one can see that the gradient
information of participating agent i will also be disclosed.

Motivated by the observation that the main sources of
information leakage in decentralized optimization are constant
parameters and the sharing of two messages by every agent in
every iteration, we propose the following inherently privacy-
preserving decentralized gradient based algorithm which can
protect the gradients of participating agents while ensur-
ing convergence to the exact optimal solution under non-
diminishing stepsizes (the per-agent version is given in Al-
gorithm PDG-NDS):

xk+2 = 2(W ⊗ Id)x
k+1 − (W 2 ⊗ Id)x

k

−
((
(BkΛk+1)⊗ Id

)
gk+1 −

(
(BkΛk)⊗ Id

)
gk
) (34)

where Bk = {bkij} ∈ Rm×m is a column-stochastic matrix,
Λk = diag[λk1 , λ

k
2 , · · · , λkm] with λki ≥ 0 denoting the stepsize

of agent i at iteration k, gk = [(gk1)
T , (gk2)

T , · · · (gkm)T]T , and
⊗ denotes Kronecker product.

Remark 5. PDG-NDS requires one agent to share only one
variable with every neighboring agent at each iteration. This is
different from all existing gradient-tracking based algorithms
which have to exchange two variables between two neigh-
boring agents in every iteration (one optimization variable

and one auxiliary variable tracking the gradient of the global
objective function). This difference is key to 1) reduce com-
munication overhead; 2) enable privacy because exchanging
the additional gradient-tracking variable will disclose gradient
information, as detailed in Sec. IV.B.

PDG-NDS: Privacy-preserving decentralized gradient
method with non-diminishing stepsizes

Public parameters: W
Private parameters for agent i: bkji ≥ 0, λki ≥ 0, and x0i

1) At iteration k = 1: Agent i shares x0i (randomly selected)
with neighbors and updates its state as follows

x1i =
∑

j∈Ni
wijx

0
j − λ0i∇fi(x0i)

2) for k = 2, 3, · · · do
a) Every agent j computes and sends vkij (defined in (35))

to all agents i ∈ Nj where {W 2}ij denotes the (i, j)th
entry of matrix W 2:

vkij = 2wijx
k−1
j + {W 2}ijxk−2

j

− bk−2
ij (λk−1

j gk−1
j − λk−2

j gk−2
j)

(35)

b) After receiving vkij from all j ∈ Ni, agent i updates its
state as follows:

xki =
∑

j∈Ni

vkij (36)

c) end

A. Convergence analysis

We define an auxiliary variable

yk ≜ (W ⊗ Id)x
k − xk+1 (37)

It can be verified that

yk+1 = (W ⊗ Id)y
k+((

(BkΛk+1)⊗ Id
)
gk+1 −

(
(BkΛk)⊗ Id

)
gk
) (38)

Define mean vectors of xki and yki as x̄k = 1
m

∑m
i=1 x

k
i and

ȳk = 1
m

∑m
i=1 y

k
i , respectively. Then from (37), we have

x̄k+1 = x̄k − ȳk (39)

Further using (38) and the initialization condition x1 =Wx0−
Λ0g0 in PDG-NDS, we have ȳ0 = 1

m

∑m
i=1 λ

0
i g

0
i and

ȳk = 1
m

∑m
i=1 λ

k
i g

k
i (40)

To prove convergence of our algorithm, we first present
two lemmas and one proposition. The proposition applies
to general distributed algorithms for solving optimization
problem (1).

Lemma 1. Let {vk} ⊂ Rd and {uk} ⊂ Rp be sequences of
non-negative vectors such that

vk+1 ≤ (V k + ak11T)vk + bk1− Ckuk, ∀k ≥ 0 (41)

where {V k} is a sequence of non-negative matrices, and
{ak} and {bk} are non-negative scalar sequences satisfying

∑∞
k=0 a

k < ∞ and
∑∞

k=0 b
k < ∞. Assume that there exists

a vector π > 0 such that πTV k ≤ πT and πTCk ≥ 0 hold
for all k ≥ 0. Then, limk→∞ πTvk exists, the sequence {vk}
is bounded, and

∑∞
k=1 π

TCkuk <∞.

Proof. By multiplying (41) with πT and using the assumptions
πTV k ≤ πT and vk ≥ 0, we obtain for ∀k ≥ 0

πTvk+1 ≤ πTvk + ak(πT1)(1Tvk) + bkπT1− πTCkuk

Since π > 0, we have πmin = mini πi > 0, and hence
1Tvk = 1

πmin
πmin1

Tvk ≤ 1
πmin

πTvk, where the inequality
holds since vk ≥ 0. Therefore,

πTvk+1 ≤
(
1 + ak

πT1

πmin

)
πTvk+bkπT1−πTCkuk, ∀k ≥ 0

(42)
By our assumption, πTCkuk ≥ 0 for all k, so (42) implies that
the conditions of Lemma 3 in the Appendix are satisfied with
vk = πTvk, αk = akπT1/πmin, and βk = bkπT1. Thus, by
Lemma 3, it follows that limk→∞ πT vk exists. Consequently,
{πT vk} is bounded, and under π > 0, implying that {vk} is
also bounded. Moreover, by summing the relations in (42), we
find

∑∞
k=1 π

TCkuk <∞.

Lemma 2. Let {vk} ⊂ Rd be a sequence of non-negative
vectors such that for ∀k ≥ 0

vk+1 ≤ V kvk + bk1 (43)

where {V k} is a sequence of non-negative matrices. Assume
that there exist a vector π > 0 and a scalar sequence {αk}
such that αk ∈ (0, 1),

∑∞
k=0 α

k = ∞, limk→∞ bk/αk = 0,
and πTV k ≤ (1−αk)πT for all k ≥ 0. Then, limk→∞ vk = 0.

Proof. We use Lemma 4 in the Appendix to establish the
result. By multiplying (43) with πT and using the assumptions
πTV k ≤ (1− αk)πT and vk ≥ 0, we obtain

πTvk+1 ≤ (1− αk)πTvk + bkπT1, ∀k ≥ 0

Since αk ∈ (0, 1),
∑∞

k=0 α
k = ∞, limk→∞ bk/αk = 0, the

conditions of Lemma 4 in the Appendix are satisfied with vk =
πTvk and βk = bkπT1. Thus, it follows limk→∞ πTvk = 0
and further (because π > 0) limk→∞ vk = 0.

Proposition 2. Assume that problem (1) has an optimal
solution and that F (·) in (1) is continuously differentiable.
Suppose that a distributed algorithm generates sequences
{xki } ⊆ Rd and {yki } ⊆ Rd such that the following relation
is satisfied for any optimal solution θ∗ and for all k ≥ 0,

vk+1 ≤
(
V + ak11T

)
vk + bk1− C

[
∥∇F (x̄k)∥2

∥ȳk∥2
]

(44)

where ν > 0,

vk ≜

ν(F (x̄k)− F (θ∗))∑m
i=1 ∥xki − x̄k∥2∑m
i=1 ∥yki − ȳk∥2

 , C =

 γk 1−τk

τk

0 0
0 −(1− η)2(1− c)


V =

 1 1− η 0
0 η 1

1−η

0 (1− η)2(1− c)(1− δ) c



with η, c, δ ∈ (0, 1), while the scalar sequences {ak}, {bk},
{τk}, {γk} are nonnegative satisfying τk ∈ (0, 1), 1−τk

τk δ ≥ 1
for all k ≥ 0, and

∑∞
k=0 a

k < ∞,
∑∞

k=0 b
k < ∞. Then, we

have:
(a) limk→∞ F (x̄k) exists and

lim
k→∞

∥ȳk∥ = lim
k→∞

∥xki − x̄k∥ = lim
k→∞

∥yki − ȳk∥ = 0, ∀i

(b) If {γk} satisfies
∑∞

k=0 γ
k = ∞ and limk→∞ γk > 0,

then limk→∞ ∥∇F (x̄k)∥ = 0. Moreover, if {x̄k} is
bounded, then every accumulation point of {x̄k} is an
optimal solution, and limk→∞ F (xki) = F (θ∗) for all i.

Proof. (a) The idea is to show that Lemma 1 applies. Setting
up the equation πTV = πT , we have (1−η)π1+(1−η)2(1−
c)(1− δ)π3 = (1− η)π2 and π2 = (1− η)(1− c)π3. Dividing
the first equation with 1− η, we find

π1 + (1− η)(1− c)(1− δ)π3 = π2

which in view of π2 = (1−η)(1−c)π3 implies π1+(1−δ)π2 =
π2, and hence π1 = δπ2.

Thus, for the vector π satisfying πT = V πT , we have

π1 = δπ2, π2 = (1− η)(1− c)π3 (45)

Hence, we can find such a vector π with π > 0. We next
verify that such a vector also satisfies πTC > 0. We have
πTC = [γkπ1,

1−τk

τk π1−(1−η)2(1−c)π3], which, under (45),
implies the second coordinate of πTC satisfying [πTC]2 =
1−τk

τk δπ2 − (1− η)π2 =
(

1−τk

τk δ − 1 + η
)
π2.

The condition 1−τk

τk δ ≥ 1 implies [πTC]2 ≥ ηπ2 > 0. Thus,
Lemma 1’s conditions are satisfied, and it follows that for the
three elements of vk, i.e., vk

1 , vk
2 , and vk

3 , we have that

lim
k→∞

π1v
k
1 + π2v

k
2 + π3v

k
3 (46)

exists and
∑∞

k=0 π
TCuk < ∞ holds with uk =

[∥∇F (x̄k)∥2, ∥ȳk∥2]T . Since πTC ≥ [γkπ1, ηπ2], one has∑∞
k=0 γ

k∥∇F (x̄k)∥2 <∞,
∑∞

k=0 ∥ȳk∥2 <∞ (47)

and hence,
lim
k→∞

∥ȳk∥ = 0 (48)

If we had that
∑m

i=1 ∥xki − x̄k∥2 and
∑m

i=1 ∥yki − ȳk∥2 are
convergent, then it would follow from (46) that the limit
limk→∞ F (x̄k) exists.

Now, we focus on proving that both vk
2 =

∑m
i=1 ∥xki −x̄k∥2

and vk
3 =

∑m
i=1 ∥yki − ȳk∥2 converge to 0. The idea is to show

that we can apply Lemma 2. By focusing on the elements vk
2

and vk
3 , from (44) we have[

vk+1
2

vk+1
3

]
≤
(
Ṽ + ak11T

)[
vk
2

vk
3

]
+ b̂k1+

[
0
ĉk

]
where b̂k = bk + akν(F (x̄k) − F (θ∗)), ĉk = (1 − η)2(1 −

c)∥ȳk∥2, and Ṽ =

[
η 1

1−η

(1− η)2(1− c)(1− δ) c

]
.

By separating the first term on the right hand side and
bounding the last vector by (1− η)2(1− c)∥ȳk∥21, we obtain[

vk+1
2

vk+1
3

]
≤ Ṽ

[
vk
2

vk
3

]
+ b̃k1 (49)

where

b̃k = bk + (1− η)2(1− c)∥ȳk∥2 + ak×(
ν(F (x̄k)− F (θ∗)) +

m∑
i=1

∥xki − x̄k∥2 +
m∑
i=1

∥yki − ȳk∥2
)

(50)
To apply Lemma 2, we show that the equation πT Ṽ =

(1 − α)πT has a solution in π = [π2, π3]
T with [π2, π3] > 0

and α ∈ (0, 1). Note that, if we have such a solution,
then we will let αk = α > 0 for all k, so that the
condition

∑∞
k=0 α

k = ∞ of Lemma 2 will be satisfied. In
this case, the condition limk→∞ b̃k/αk = 0 of Lemma 2 will
also be satisfied. This is because by our assumption on the
sequences {ak} and {bk}, it follows that limk→∞ ak = 0
and limk→∞ bk = 0. We also have limk→∞ ∥ȳk∥ = 0
(see (48)). Moreover, in view of relation (46), the sequences
{F (x̄k) − F (θ∗)},

∑m
i=1 ∥xki − x̄k∥2, and

∑m
i=1 ∥yki − ȳk∥2

are bounded. Hence, it follows that b̃k defined in (50) will
converge to 0 as k tends to infinity. Thus, all the conditions
of Lemma 2 will be satisfied.

It remains to show that the system of equations πT Ṽ =
(1 − α)πT has a solution in π = [π2, π3]

T with [π2, π3] > 0
and α ∈ (0, 1). The system is equivalent to

(1−η)2(1−c)(1−δ)π3=(1−η−α)π2, π2=(1−η)(1−c−α)π3

which gives π2 > 0 with arbitrary π3 > 0, and imposes that
α satisfies (1− η)(1− c)(1− δ) = (1− η−α)(1− c−α), or
equivalently,

α2 − (2− η − c)α+ δ(1− η)(1− c) = 0 (51)

Letting ψ(α) = α2 − (2 − η − c)α + δ(1 − η)(1 − c) for all
α ∈ R, we note that ψ(·) is strongly convex and its minimum
is attained at α0 = 1

2 (2− η − c).
For the minimum value we have

ψ(α0) =
1
4 (2− η − c)2 − 1

2 (2− η − c)2 + δ(1− η)(1− c)

= − 1
4 (2− η − c)2 + δ(1− η)(1− c)

= − 1
4 (1− η + 1− c)2 + δ(1− η)(1− c)

Since δ < 1, it follows that ψ(α0) < − (1−η+1−c)2

4 + (1−
η)(1 − c) = − ((1−η)−(1−c))2

4 ≤ 0. We also have ψ(0) =
δ(1 − η)(1 − c) > 0 since δ > 0 and c, η ∈ (0, 1). Thus, we
have ψ(0) > 0 and ψ(α0) < 0, implying that there exists some
α∗ ∈ (0, α0) satisfying ψ(α∗) = 0 with α0 = 2−η−c

2 . Since
c, η ∈ (0, 1), we have α0 ∈ (0, 1). Hence, (51) has a solution
α∗ ∈ (0, 1). So there is a vector π > 0 and α ∈ (0, 1) that
satisfy πT Ṽ = (1 − α)πT , and we can apply Lemma 2 with
αk = α for all k. By Lemma 2, we have limk→∞ ∥xki −x̄k∥ =
0 and limk→∞ ∥yki − ȳk∥ = 0.
(b) Since

∑∞
k=0 γ

k∥∇F (x̄k)∥2 < ∞ (see (47)), from∑∞
k=0 γ

k = ∞ and limk→∞ γk > 0, it follows
limk→∞ ∥∇F (x̄k)∥ = 0.

Now, if {x̄k} is bounded, then it has accumulation points.
Let {x̄ki} be a sub-sequence such that limi→∞ ∥∇F (x̄ki)∥ =
0. Without loss of generality, we may assume that {x̄ki} is
convergent, for otherwise we would choose a sub-sequence of

{x̄ki}. Let limi→∞ x̄ki = x̂. Then, by continuity of the gradi-
ent ∇F (·), it follows ∇F (x̂) = 0, implying that x̂ is an opti-
mal point. Since F is continuous, it follows limi→∞ F (x̄ki) =
F (x̂) = F (θ∗). By part (a), limk→∞ F (x̄k) exists, so we must
have limk→∞ F (x̄k) = F (θ∗).

Finally, by part (a) we have limk→∞ ∥xki − x̄k∥2 = 0
for every i. Thus, it follows that each {xki } has the same
accumulation points as {x̄k}, implying by continuity of the
objective function F that limk→∞ F (xki) = F (θ∗) for all i.

Theorem 3. Under Assumption 1 and Assumption 2, if there
exists some T ≥ 0 such that for all k ≥ T , the stepsize vector
λk = [λk1 , · · · , λkm]T (with all elements non-negative) satisfies

∞∑
k=T

λ̄k = ∞,
∞∑

k=T

∥λk+1−λk∥2 <∞,
∞∑

k=T

∥λk − λ̄k1∥2

λ̄k
<∞

with λ̄k =
∑m

i=1 λk
i

m , and

2L

mλ̄k
(λkmax)

2 ≤ 1− η, λ̄k ≤ δ

1 + δ
, η +

6m2L2

1− η
∥λk+1∥2 ≤ c,

max{m3r2,m2}6L2∥λk+1∥2 ≤ (1− η)3(1− c)(1− δ)

for some δ ∈ (0, 1), c ∈ (0, 1), then, the results of Proposi-
tion 2 hold for the proposed PDG-NDS.

Proof. The idea is to prove that we can establish the relation-
ship in (44). To this end, we divide the derivation into four
steps: in Step I, Step II, and Step III, we establish relation-
ships for 2

L

(
F (x̄k+1)− F (θ∗)

)
,
∑m

i=1 ∥x
k+1
i − x̄k+1∥2, and∑m

i=1 ∥y
k+1
i − ȳk+1∥2, respectively, and in Step IV, we prove

that (44) holds. To help the exposition of the main idea, we
put Step I, Step II, and Step III in Appendix B, and only give
the derivation of Step IV here.

Step IV: We summarize the relationships obtained in Steps
I-III in Appendix B and prove the theorem. Defining vk =[
2
L (F (x̄

k+1)−F (θ∗)),
∑m

i=1 ∥x
k+1
i − x̄k+1∥2,

∑m
i=1 ∥y

k+1
i −

ȳk+1∥2
]T

, we have the following relations from (65), (68),
and (75) in Appendix B:

vk+1 ≤ (V k +Ak)vk − Ck

[∥∥∇F (x̄k)∥∥2
∥ȳk∥2

]
+Bk (52)

where

V k =

 1 2L
mλ̄k (λ

k
max)

2 0
0 η 1

1−η

0 6m2r2L2

1−η

∥∥λk+1
∥∥2 η + 6m2L2

1−η ∥λk+1∥2

 ,
Ak =

 c1
λ̄k ∥λk − λ̄k1∥2 0 0

0 0 0
8m3L2

1−η

∥∥λk+1 − λk
∥∥2 4m2L2

1−η

∥∥λk+1 − λk
∥∥2 0

 ,
Ck =

 λ̄k

L
1−λ̄kL
λ̄kL

0 0

0 − 6m3r2L2

1−η

∥∥λk+1
∥∥2
 ,

Bk =

 c1
λ̄k ∥λk − λ̄k1∥2

∑m
i=1 ∥∇fi(θ∗)∥2

0
8m2

1−η

∥∥λk+1 − λk
∥∥2∑m

i=1 ∥∇fi(θ∗)∥2



Now using the conditions of the theorem, we bound the entries
in V k, Ak, Ck, and Bk. It can be seen that

Ak ≤ ak11T , Bk ≤ bk1 (53)

hold where

ak = max

{
c1
λ̄k

∥λk − λ̄k1∥2, 8m
3L2

1− η

∥∥λk+1 − λk
∥∥2} (54)

bk=max

{
c1
λ̄k

∥λk−λ̄k1∥2, 8m
2

1− η

∥∥λk+1−λk
∥∥2} m∑

i=1

∥∇fi(θ∗)∥2

(55)
Using η + 6m2L2

1−η ∥λk+1∥2 ≤ c with c ∈ (0, 1),
2L
mλ̄k (λ

k
max)

2 ≤ 1 − η, and m2r26L2∥λk+1∥2 ≤
m3r26L2∥λk+1∥2 ≤ (1− η)3(1− c)(1− δ) from the theorem
conditions, we can bound V k:

V k ≤ V ≜

 1 1− η 0
0 η 1

1−η

0 (1− η)2(1− c)(1− δ) c

 (56)

Furthermore, we can bound Ck using the condition
max{m3r2,m2}6L2∥λk+1∥2 ≤ (1− η)3(1− c)(1− δ) which
implies m3r26L2

1−η ∥λk+1∥2 ≤ (1− η)2(1− c):

Ck ≥ C ≜

 λ̄k

L
1−λ̄kL
λ̄kL

0 0
0 −(1− η)2(1− c)

 (57)

Combining (52), (53), (56), and (57) leads to

vk+1 = (V + ak11T)vk − C

[∥∥∇F (x̄k)∥∥2
∥ȳk∥2

]
+ bk1 (58)

We note that Proposition 2 applies to the relations in
(58) for k ≥ T , with γk = λ̄k

L , τk = λ̄kL, and ak and
bk given by (54) and (55), respectively. By our assumption∑∞

k=T ∥λk+1 − λk∥2 < ∞ and
∑∞

k=T
∥λk−λ̄k1∥2

λ̄k < ∞, it
follows that {ak} and {bk} are nonegative and summable. The
condition λ̄kL ≤ δ/(1 + δ) is equivalent to λ̄kL+ δλ̄kL ≤ δ,
implying 1 ≤ δ(1−λ̄kL)

λ̄kL
. Thus, with τk = λ̄kL, we see that

the condition 1−τk

τk δ ≥ 1 of Proposition 2 is satisfied for all
k ≥ T . Additionally, by our assumption

∑∞
k=T λ̄

k = ∞ we
see that the condition of Proposition 2(b) also holds for k ≥ T .
Since the results of Proposition 2 are asymptotic, the results
remain valid when the starting index is shifted from k = 0 to
k = T , for an arbitrary T ≥ 0.

Remark 6. In implementations, to satisfy the condition in the
statement of Theorem 3, all agents can be given the same
baseline value of stepsize λ. Then, every agent can set its
λki by deviating from the baseline value in a finite number
of iterations, the indices of which are private to agent i. As
long as the deviation in each of these iterations is finite, the
heterogeneity condition of Theorem 3 will be satisfied.

Remark 7. It is worth noting that although some gradient-
tracking based algorithms can be reduced to the x-variable
only form by eliminating the auxiliary variable, such a con-
version is infeasible when the stepsizes are heterogeneous and
not shared across agents (for the purpose of, e.g., privacy

preservation). For example, the Aug-DGM algorithm in [8]
has the following form{

xk+1 =W (xk − Λyk)

yk+1 =W (yk + gk+1 − gk)

Although we can eliminate the y variable and convert it to

xk+2 = (W +WΛWΛ−1W−1)xk+1 −WΛWΛ−1xk

−WΛW (gk+1 − gk)

we cannot let agent j share (W +WΛWΛ−1W−1)ijx
k+1
j −

(WΛWΛ−1)ijx
k
j − (WΛW)ij(g

k+1
j − gkj) in each iter-

ation when the stepsizes are not shared across agents.
This is because calculating (W + WΛWΛ−1W−1)ij and
(WΛWΛ−1)ij requires agent j to know all stepsizes Λ,
which however, were assumed to be private to individual
agents. Therefore, even though some existing gradient-tracking
based algorithms can use heterogeneous stepsizes to hide
information, they have to exchange two messages between
interacting agents. In fact, privacy enabled in this way is quite
weak, as detailed in Sec. IV-B.

B. Privacy analysis

Theorem 4. In the presence of honest-but-curious or eaves-
dropping adversaries, PDG-NDS can protect the privacy of
all participating agents defined in Definition 1.

Proof. Without loss of generality, we first consider the pro-
tection of the gradient of agent i at any single time instant
k, and then show that the argument also applies to any finite
number of time instants (iterations). When the gradient is gki ,
we represent the information that agent i shares with others in
PDG-DS as Ii. According to Definition 1, we have to prove
that at some iteration k, if the gradient is altered from gki to
ĝki = eζ

k

gki , the shared information Îi could be identical to
Ii under any ζk > 0.

According to Algorithm PDG-NDS, agent i shares the
following information in decentralized optimization:

Ii = Isent
i

⋃
Ipublic
i

with Isent
i =

{
vkji|k = 1, 2, · · ·

}
, vkji = 2wjix

k−1
i +

{W 2}jixk−2
i − bk−2

ji (λk−1
i gk−1

i − λk−2
i gk−2

i) , and Ipublic
i ={

W
⋃∑

j∈Ni
bkji = 1|k = 0, 1, · · ·

}
.

It can be obtained that when the gradient is altered to
ĝki = eζ

k

gki , the difference defined in (33) is ζk. However,
in this case, if we set the stepsize λ̂ki to λ̂ki = e−ζk

λki ,
then the corresponding shared information will still be vkji.
Since other parameters are not changed and changing the
stepsize from λki to λ̂ki = e−ζk

λki at k will not violate the
summable stepsize heterogeneity conditions in Theorem 3 for
any given |ζk| < ∞, convergence to the optimal solution
will still be guaranteed. Similarly, if the gradient of agent
i is altered at iteration k and iteration k + 1 to ĝki = eζ

k

gki
and ĝk+1

i = eζ
k+1

gk+1
i , respectively, these alterations can be

covered by a stepsize alteration of λ̂ki = e−ζk

λki at iteration
k and λ̂k+1

i = e−ζk+1

λk+1
i at iteration k + 1. Given that the

convergence condition in the statement of Theorem 3 allows

the stepsize of agent i to change by any finite amount for any
finite number of iterations, one can obtain that the variations
of every agent’s gradients in any number of iterations can
be completely covered by the flexibility in changing the
agent’s stepsizes in these iterations, as long as the number
of these iterations is finite. Therefore, privacy of the gradient
information of any agent will be protected when running PDG-
NDS. It is worth noting that the perturbation does not violate
the convexity and Lipschitz conditions in Assumption 2. This
is because in order for an adversary to check if Assumption
2 is violated, it has to know xki , which, however, is not
available to adversaries: before convergence, xki is inaccessible
to the adversary because the information shared by agent i
is 2wjix

k−1
i + {W 2}jixk−2

i − bk−2
ji (λk−1

i gk−1
i − λk−2

i gk−2
i),

avoiding xk−1
i and xk−2

i from being inferrable. In fact, even
with the gradient gk−1

i and gk−2
i unchanged, the value of

observation 2wjix
k−1
i + {W 2}jixk−2

i − bk−2
ji (λk−1

i gk−1
i −

λk−2
i gk−2

i) can be changed by an arbitrary finite value by
changing the stepsize λk−1

i or λk−2
i . After convergence, the

perturbation does not violate the convexity and Lipschitz
conditions, either. In fact, although xki becomes accessible
to the adversary after convergence, gradient information is
eliminated in adversary’s observation (the shared information
2wjix

k−1
i + {W 2}jixk−2

i − bk−2
ji (λk−1

i gk−1
i − λk−2

i gk−2
i)

becomes 2wjix
k−1
i + {W 2}jixk−2

i because λk−1
i and λk−2

i

converge to the same constant value).

Remark 8. Even after convergence when gki becomes a
constant, an adversary still cannot infer gradients from shared
messages in PDG-NDS. More specifically, when gki converges
to a constant value, the stepsize λki also converges to a
constant value, which completely eliminates the information of
gki in observed information (the observed information becomes
2wjix

k−1
i + {W 2}jixk−2

i after convergence). This can also
be understood intuitively as follows: Even if the adversary
can collect T → ∞ observations 2wjix

k−1
i + {W 2}jixk−2

i −
bk−2
ji (λk−1

i gk−1
i − λk−2

i gk−2
i) in the neighborhood of the

optimal point and establish a system of T equations to solve
for gk−1

i and gk−2
i (which can be viewed to be approximately

time-invariant in the neighborhood of the optimal point), the
number of unknowns bk−2

ji , λk−1
i , λk−2

i , gk−1
i and gk−2

i in
the system of T equations is 5T (even if we view λk−1

i and
λk−2
i to be approximately constant and equal to each other,
gk−1
i and gk−2

i to be constant and equal to each other, in the
neighborhood of the optimal point, the number of unknowns
is still T + 2), which makes it impossible for the adversary
to solve for gk−1

i or gk−2
i using the system of T equations

established from T observations.

Remark 9. Similar to PDG-DS, our PDG-NDS algorithm
can protect the privacy of every participating agent against
honest-but-curious and eavesdropping adversaries without any
constraint on the interaction topology.

We next show that directly making stepsize and coupling
matrices time-varying in existing gradient-tracking based al-
gorithms cannot provide the defined privacy. We use the AB
algorithm in [9] as an example to show this since it allows
a column-stochastic coupling matrix, which allows individual

agents to keep their coupling coefficients private. The AB
algorithm has the following form [9]:{

xk+1 = Rxkj − λyk

yk+1 = C(yk + gk+1 − gk)

where R = {rij} is row-stochastic and C = {cij} is column-
stochastic.

Directly making its stepsize and coupling coefficients time-
varying leads to the following algorithm (we also introduce
heterogeneity in the stepsize):{

xk+1 = Rkxkj − Λkyk

yk+1 = Ck(yk + gk+1 − gk)

where Rk = {rkij} should be row-stochastic and Ck = {ckij}
should be column-stochastic. At each iteration k, an agent j
will share xkj and ckij(y

k
j + gk+1

j − gkj) with its neighboring
agent i. Also, all agents initialize as y0i = g0i .

Because for all i ∈ Nj , ckij are generated by agent j, it
seems that agent j can keep ckij confidential and hence uses
them to cover shared information ckij(y

k
j + gk+1

j − gkj). Next,
we show that this is not true.

We consider the case where agent i is the only neighbor of
agent j. In this case, agent i knows agent j’s update rule

yk+1
j = ckjj(y

k
j + gk+1

j − gkj) + ckji(y
k
i + gk+1

i − gki)

Using the fact ckjj + ckij = 1, the above update rule can be
rewritten as

yk+1
j − ykj = gk+1

j − gkj

− ckij(y
k
j + gk+1

j − gkj) + ckji(y
k
i + gk+1

i − gki)
(59)

Note that ckij(y
k
j +g

k+1
j −gkj) is shared with agent i by agent j

and ckji(y
k
i +g

k+1
i −gki) is generated by agent i, hence the last

two terms on the right hand side of (59) are known to agent
i. We represent −ckij(ykj + gk+1

j − gkj) + ckji(y
k
i + gk+1

i − gki)

as mk
i and add (59) from k = 0 to t to obtain yt+1

j = gt+1
j +∑t

k=0m
k
i where we used the relationship y0j = g0j .

When t → ∞, we have ytj → 0 and xki → xkj in the AB
algorithm, resulting in gt+1

j = −
∑t

k=0m
k
i . Therefore, agent

i can infer the gradient of agent j based on its accessible
information mk

i . Note that the above derivation is independent
of the evolution of xk and stepsize Λk, so the same privacy
leakage will occur even if the stepzies are uncoordinated (not
shared across agents) such as in [8], [42].

One may wonder if we can reduce the AB algorithm to the
x-variable only form to avoid information leakage. Given that
when the stepsizes are heterogeneous and not shared across
agents, such reduction is impossible, as detailed in Remark 7,
we only consider the homogeneous stepsize case. In fact, after
eliminating the yk variable, the AB algorithm reduces to

xk+2 = (Rk +Ck)xk+1 −CkRkxk −λCk(gk+1 − gk) (60)

Note that for privacy-preserving purposes, agent j should
keep ckij private and send (Rk +Ck)ijx

k+1
j − (CkRk)ijx

k
j −

λCk(gk+1
j − gkj) to agent i where (·)ij represents the (i, j)th

element of a matrix. Given (CkRk)ij =
∑m

p=1 c
k
ipr

k
pj , agent

j has to know all elements of Ck to implement the algorithm
in the x-variable only form (60), which contradicts the as-
sumption that the elements of Ck are kept private to cover
information. In other words, if the column-stochastic matrix
Ck is used to cover information, the AB algorithm cannot
be implemented in an x-variable only form. In summary,
gradient-tracking based decentralized optimization algorithms
cannot be used to enable the privacy defined in this paper
even under time-varying coupling weights and heterogeneous
stepsizes.

V. NUMERICAL SIMULATIONS

We consider the canonical distributed estimation problem
where a sensor network of m sensors are used to collectively
estimate an unknown parameter θ ∈ Rd. Each sensor has a
noisy measurement of the parameter zi = Miθ + wi where
Mi ∈ Rs×d is the measurement matrix and wi is Gaussian
noise. The maximum likelihood estimation problem can be
formulated as the decentralized optimization problem (1) with
each fi given by fi(θ) = ∥zi−Miθ∥2+σi∥θ∥2 where σi ≥ 0
is the regularization parameter [15].

We considered a network of m = 5 sensors interacting
on the graph depicted in Fig. 1. We set s = 3 and d = 2.
To evaluate the performance of our PDG-DS algorithm, we
set the stepsize of agent i as λki =

1−ϱk
i /k

2

k where ϱki was
randomly chosen by agent i from the interval [0, 1] for each
iteration. Given that different agents i chose ϱki independently,
the stepsizes are heterogeneous across the agents. Each agent
i also chose bkji for all j ∈ Ni randomly and independently
of each other under the sum-one condition (to make Bk

column-stochastic). The evolution of the optimization error
of PDG-DS is given by the dashed magenta line in Fig.
2. When we fixed the Bk matrix to an identity matrix, we
also obtained convergence to the optimal solution, which is
illustrated by the solid green line in Fig. 2. The evolution of
the conventional decentralized gradient algorithm (3) under
homogeneous diminishing stepsize 1

k is also presented in
Fig. 2 by the dotted blue line for comparison. It can be
seen that our PDG-DS algorithm has a comparable (in fact
faster) convergence speed with the conventional decentralized
gradient algorithm which does not take privacy into account.
Furthermore, comparing the case with Bk and the case without
Bk, we can see that by using the mixing matrix Bk in PDG-
DS, we get faster convergence. This is intuitive since the Bk

matrix enhances mixing of information across the agents.
We also simulated our PDG-NDS algorithm with non-

diminishing stepsizes. More specifically, we set the stepsize
of agent i to 0.02(1− ϱk

i

k2) with ϱki randomly chosen by agent
i from [0, 1] for each iteration. Again, since each agent i chose
ϱki randomly and independently of each other, the stepsizes are
heterogeneous across the network. Each agent i also randomly
chose bkji for all j ∈ Ni under the sum-one condition (to make
Bk column-stochastic). The evolution of the optimization error
of PDG-NDS is illustrated by the solid line in Fig. 3. For
the purpose of comparison, we also plotted the optimization
results of gradient-tracking algorithms DIGing [14], Push-Pull
[16], and ADD-OPT [18] under homogeneous stepsize 0.02.

1

5

43

2

Fig. 1. The interaction topology of the network.

0 50 100 150 200 250 300
10

−2

10
−1

10
0

10
1

10
2

Iteration Index

O
p
ti
m

iz
a
ti
o
n
 E

rr
o
r

PDG−DS

PDG−DS−without−B

Conventional gradient method

Fig. 2. Comparison of PDG-DS with the conventional decentralized gradient
method under diminishing-stepsizes.

It can be seen that PDG-NDS provides similar convergence
performance besides enabling privacy protection.

VI. CONCLUSIONS

This paper proposes two inherently privacy-preserving de-
centralized optimization algorithms which can guarantee the
privacy of all participating agents without compromising op-
timization accuracy. This is in distinct difference from dif-
ferential privacy based approaches which trade optimization
accuracy for privacy. The two algorithms are also efficient in

0 50 100 150 200 250 300
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Iteration Index

O
p
ti
m

iz
a
ti
o
n
 E

rr
o
r

PDG−NDS

DIGing

Push−Pull

ADD−OPT

Fig. 3. Comparison of PDG-NDS with some gradient-tracking based decen-
tralized optimization algorithms under non-diminishing-stepsizes.

communication and computation in that they are encryption-
free and only require an agent to share one message with
a neighboring agent in every iteration. The two approaches
can protect the privacy of every agent even if all information
shared by an agent is accessible to an adversary, in which
case most existing accuracy-maintaining privacy-preserving
decentralized optimization solutions fail to provide privacy
protection. In fact, even without considering privacy, the con-
vergence analyses of the two algorithms under time-varying
uncoordinated stepsizes are also of interest by themselves
since existing results only consider constant or fixed hetero-
geneity in stepsizes. Numerical simulation results show that
both approaches have similar convergence speeds compared
with their respective privacy-violating counterparts.

APPENDIX A
Lemma 3. ([45], Lemma 11, page 50) Let {vk}, {αk},
and {βk} be sequences of nonnegative scalars such that∑∞

k=0 α
k <∞,

∑∞
k=0 β

k <∞, and vk+1 ≤ (1+αk)vk+βk

holds for all k ≥ 0. Then, the sequence {vk} is convergent,
i.e., limk→∞ vk = v for some v ≥ 0.

Lemma 4. ([45], Lemma 10, page 49) Let {vk}, {αk},
and {βk} be sequences of nonnegative scalars such that∑∞

k=0 α
k = ∞, limk→∞ βk/αk = 0, and vk+1 ≤ (1 −

αk)vk + βk and αk ≤ 1 hold for all k. Then, the sequence
{vk} converges to 0, i.e., limk→∞ vk = 0.

Lemma 5. [46] Consider a minimization problem
minz∈Rd ϕ(z), where ϕ : Rd → R is a continuous function.
Assume that the optimal solution set Z∗ of the problem is
nonempty. Let {zk} be a sequence such that for any optimal
solution z∗ ∈ Z∗ and for all k ≥ 0,

∥zk+1−z∗∥2 ≤ (1+αk)∥zk−z∗∥2−γk
(
ϕ(zk)− ϕ(z∗)

)
+βk,

where αk ≥ 0, βk ≥ 0, and γk ≥ 0 for all k ≥ 0, with∑∞
k=0 α

k < ∞,
∑∞

k=0 γ
k = ∞, and

∑∞
k=0 β

k < ∞. Then,
the sequence {zk} converges to some optimal solution z̃∗ ∈
Z∗.

APPENDIX B
In this section, we establish the relations in Step I, Step II,

and Step III of Theorem 3’s proof.
Step I: Relationship for 2

L

(
F (x̄k+1)− F (θ∗)

)
.

Since F is convex with a Lipschitz gradient, we have:

F (y) ≤ F (x) + ⟨∇F (x), y − x⟩+ L

2
∥y − x∥2, ∀y, x ∈ Rd

Letting y = x̄k+1 and x = x̄k in the preceding relation and
using (39) as well as F (x̄k) = 1

m

∑m
i=1 fi(x̄

k), we obtain

F (x̄k+1) ≤ F (x̄k)− 1

m

m∑
i=1

⟨∇fi(x̄k), ȳk⟩+
L

2
∥ȳk∥2

Subtracting F (θ∗) from both sides and multiplying 2λ̄k

yield

2λ̄k
(
F (x̄k+1)− F (θ∗)

)
≤ 2λ̄k

(
F (x̄k)− F (θ∗)

)
− 2λ̄k

m

m∑
i=1

⟨∇fi(x̄k), ȳk⟩+ λ̄kL∥ȳk∥2
(61)

The term − 2λ̄k

m

∑m
i=1⟨∇fi(x̄k), ȳk⟩ satisfies

− 2

〈
λ̄k

m

m∑
i=1

⟨∇fi(x̄k), ȳk
〉

=

∥∥∥∥∥ λ̄km
m∑
i=1

∇fi(x̄k)− ȳk

∥∥∥∥∥
2

−

∥∥∥∥∥ λ̄km
m∑
i=1

∇fi(x̄k)

∥∥∥∥∥
2

−
∥∥ȳk∥∥2

(62)
For the first term on the right hand side of (62), by adding
and subtracting 1

m

∑m
i=1 λ

k
i∇fi(x̄k), we obtain∥∥∥ λ̄k

m

∑m
i=1 ∇fi(x̄k)− ȳk

∥∥∥2
=
∥∥ 1
m

∑m
i=1(λ̄

k − λki)∇fi(x̄k) + 1
m

∑m
i=1 λ

k
i∇fi(x̄k)− ȳk

∥∥2
≤ 2

∥∥ 1
m

∑m
i=1(λ̄

k − λki)∇fi(x̄k)
∥∥2

+ 2
∥∥ 1
m

∑m
i=1 λ

k
i

(
∇fi(x̄k)−∇fi(xki)

)∥∥2
where we used ȳk = 1

m

∑m
i=1 λ

k
i∇fi(xki) in (40). Using the

assumption that each ∇fi(·) is Lipschitz continuous with a
constant L, we can further rewrite the preceding inequality as∥∥∥∥∥ λ̄km

m∑
i=1

∇fi(x̄k)− ȳk

∥∥∥∥∥
2

≤ 2

m

m∑
i=1

(λ̄k − λki)
2∥∇fi(x̄k)∥2

+
2

m

m∑
i=1

(λki)
2∥∇fi(x̄k)−∇fi(xki)∥2

≤ 2

m
∥λk−λ̄k1∥2

m∑
i=1

∥∇fi(x̄k)∥2+
2L2

m
(λkmax)

2
m∑
i=1

∥x̄k − xki ∥2

(63)
We next proceed to analyze

∑m
i=1 ∥∇fi(x̄k)∥2.

By Assumption 2, each ∇fi(·) is Lipschitz continuous with
a constant L, so we have

fi(v)+⟨∇fi(v), u−v⟩+
1

2L
∥∇fi(v)−∇fi(u)∥2 ≤ fi(u), ∀u, v

Letting v = θ∗ and u = x̄k, and summing the resulting
relations over i = 1, . . . ,m yield F (θ∗)+⟨∇F (θ∗), x̄k−θ∗⟩+∑m

i=1 ∥∇fi(θ
∗)−∇fi(x̄

k)∥2

2mL ≤ F (x̄k). Using ∇F (θ∗) = 0, we
have

∑m
i=1 ∥∇fi(θ∗)−∇fi(x̄k)∥2 ≤ 2mL(F (x̄k)− F (θ∗)).

Thus, it follows
m∑
i=1

∥∇fi(x̄k)∥2≤
m∑
i=1

2
(
∥∇fi(x̄k)−∇fi(θ∗)∥2+∥∇fi(θ∗)∥2

)
≤ 4mL(F (x̄k)− F (θ∗)) + 2

m∑
i=1

∥∇fi(θ∗)∥2

(64)
Combining (61), (62), (63), and (64) leads to

2

L

(
F (x̄k+1)− F (θ∗)

)
≤ 2

L

(
F (x̄k)− F (θ∗)

)
+
c1
λ̄k

∥λk − λ̄k1∥2
(

2

L
(F (x̄k)− F (θ∗)) +

m∑
i=1

∥∇fi(θ∗)∥2
)

+
2L

mλ̄k
(λkmax)

2
m∑
i=1

∥x̄k − xki ∥2

− λ̄k

L
∥∇F (x̄k)∥2 + λ̄kL− 1

λ̄kL
∥ȳk∥2

(65)

where c1 = max{4L, 4/(mL)}.
Step II: Relationship for

∑m
i=1 ∥x

k+1
i − x̄k+1∥ and∑m

i=1 ∥x
k+1
i − xki ∥2.

For the convenience of analysis, we write the iterates of
algorithm PDG-NDS on per-coordinate expressions. Define for
all ℓ = 1, . . . , d, and k ≥ 0,

xk(ℓ) = ([xk1]ℓ, . . . , [x
k
m]ℓ)

T , yk(ℓ) = ([yk1]ℓ, . . . , [y
k
m]ℓ)

T ,

gk(ℓ) = ([gk1]ℓ, . . . , [g
k
m]ℓ)

T .

In this per-coordinate view, (37) and (38) has the following
form for all ℓ = 1, . . . , d, and k ≥ 0,

xk+1(ℓ) =Wxk(ℓ)− yk(ℓ)

yk+1(ℓ) =Wyk(ℓ) +Bk
(
Λk+1gk+1(ℓ)− Λkgk(ℓ)

)
(66)

From the definition of xk+1(ℓ) in (66), and the relation for
the average x̄k+1 in (39), we obtain for all ℓ = 1, . . . , d,

xk+1(ℓ)− [x̄k+1]ℓ1 =W
(
xk(ℓ)− [x̄k]ℓ1

)
− (yk(ℓ)− [ȳk]ℓ1)

where we use W1 = 1. Noting that [x̄k]ℓ is the average of
xk(ℓ), i.e., 1

m11T
(
xk(ℓ)− [x̄k]ℓ1

)
= 0, we have

xk+1(ℓ)− [x̄k+1]ℓ1 =W̄
(
xk(ℓ)− [x̄k]ℓ1

)
− (yk(ℓ)− [ȳk]ℓ1)

where W̄ =W − 11T

m . So it follows

∥xk+1(ℓ)− [x̄k+1]ℓ1∥ ≤ η∥xk − x̄k1∥+ ∥yk(ℓ)− [ȳk]ℓ1∥

with η = ∥W − 1
m11T ∥ < 1. Taking squares on both sides

of the preceding relation, and using the inequality (a+ b)2 ≤
(1 + ϵ)a2 + (1 + ϵ−1)b2, valid for any scalars a and b, and
ϵ > 0, we obtain

∥xk+1(ℓ)− [x̄k+1]ℓ1∥2 ≤η2(1 + ϵ)∥xk(ℓ)− [x̄k]ℓ1∥2

+ (1 + ϵ−1)∥yk(ℓ)− [ȳk]ℓ1∥2

By using η ∈ (0, 1) and letting ϵ = 1−η
η which implies 1+ϵ =

η−1 and 1 + ϵ−1 = (1− η)−1, we have

∥xk+1(ℓ)− [x̄k+1]ℓ1∥2 ≤η∥xk(ℓ)− [x̄k]ℓ1∥2

+ (1− η)−1∥yk(ℓ)− [ȳk]ℓ1∥2

Summing the preceding relations over ℓ = 1, . . . , d, and
noting

∑d
ℓ=1 ∥xk+1(ℓ) − [x̄k+1]ℓ1∥2 =

∑m
i=1 ∥x

k+1
i −

x̄k+1∥2,
∑d

ℓ=1 ∥xk(ℓ) − [x̄k]ℓ1∥2 =
∑m

i=1 ∥xki − x̄k∥2, and∑d
ℓ=1 ∥yk(ℓ)− [ȳk]ℓ1∥2 =

∑m
i=1 ∥yki − ȳk∥2, we obtain

m∑
i=1

∥xk+1
i − x̄k+1∥2 ≤η

m∑
i=1

∥xk+1
i − x̄k+1∥2

+ (1− η)−1
m∑
i=1

∥yki − ȳk∥2
(67)

Next we proceed to analyze
∑m

i=1 ∥x
k+1
i − xki ∥2. Using

(37), we have for every coordinate index ℓ = 1, . . . , d

xk+1(ℓ)− xk(ℓ) =Wxk(ℓ)− yk(ℓ)− xk(ℓ)

= (W − I)xk(ℓ)− yk(ℓ) = (W − I)(xk(ℓ)− [x̄k]ℓ1)− yk(ℓ)

where we used the fact (W−I)1 = 0. By letting r = ∥W−I∥,
we obtain

∥xk+1(ℓ)− xk(ℓ)∥ ≤ r∥xk(ℓ)− [x̄k]ℓ1∥+ ∥yk(ℓ)∥
≤ r∥xk(ℓ)− [x̄k]ℓ1∥+ ∥yk − [ȳk]ℓ1∥+

√
m|[ȳk]ℓ|

where the last inequality is obtained by adding and subtracting
[ȳk]ℓ1 to yk(ℓ), and using the triangle inequality for the norm.
Thus, we have

∥xk+1(ℓ)− xk(ℓ)∥2 ≤3r2∥xk(ℓ)− [x̄k]ℓ1∥2+
3∥yk − [ȳk]ℓ1∥2 + 3m|[ȳk]ℓ|2

By summing over ℓ = 1, . . . , d, we obtain
m∑
i=1

∥xk+1
i − xki ∥2 ≤3r2

m∑
i=1

∥xki − x̄k∥2

+ 3
m∑
i=1

∥yki − ȳk∥2 + 3m∥ȳk∥2
(68)

Step III: Relationship for
∑m

i=1 ∥y
k+1
i − ȳk+11∥.

Using the column stochastic property of Bk, from (38), the
ℓth entries of [ȳk]ℓ satisfy

[ȳk+1]ℓ = [ȳk]ℓ +
1

m
1TΛk+1gk+1(ℓ)− 1

m
1TΛkgk(ℓ)

Then, using (66), we obtain for all ℓ = 1, . . . , d,

yk+1(ℓ)− [ȳk+1]ℓ1 =W̄ (yk(ℓ)− [ȳk]ℓ1)+

B̄kΛk+1gk+1(ℓ)− B̄kΛkgk(ℓ)

where W̄ =W − 1
m11T and B̄k =

(
Bk − 1

m11T
)
.

By adding and subtracting B̄kΛk+1gk(ℓ), and taking the
Euclidean norm, we find that for all ℓ = 1, . . . , d,

∥yk+1(ℓ)− [ȳk+1]ℓ1∥ ≤ η∥yk(ℓ)− [ȳk]ℓ1∥
+ τ

∥∥Λk+1
(
gk+1(ℓ)− gk(ℓ)

)∥∥+ τ
∥∥(Λk+1 − Λk

)
gk(ℓ)

∥∥
(69)

where η = ∥W̄∥ and τ = ∥B̄k∥.
Since we always have

∥∥B̄k
∥∥ ≤

∥∥B̄k
∥∥
F
≤ m where ∥ · ∥F

denotes the Frobenius matrix norm, we have

τ ≤ m (70)

Using the fact that Λk is a diagonal matrix for all k ≥ 0,
i.e., Λk = diag(λk), we have∥∥Λk+1

(
gk+1(ℓ)− gk(ℓ)

)∥∥ ≤ ∥λk+1∥ ∥gk+1(ℓ)− gk(ℓ)∥,∥∥(Λk+1 − Λk
)
gk(ℓ)

∥∥ ≤ ∥λk+1 − λk∥ ∥gk(ℓ)∥
(71)

Therefore, combining (69), (70), and (71) leads to

∥yk+1(ℓ)− [ȳk+1]ℓ1∥ ≤ η∥yk(ℓ)− [ȳk]ℓ1∥+
m∥λk+1∥ ∥gk+1(ℓ)− gk(ℓ)∥+m

∥∥λk+1 − λk
∥∥ ∥gk(ℓ)∥

Thus, by taking squares and using (a + b)2 ≤ (1 + ϵ)a2 +
(1 + ϵ−1)b2 holding for any ϵ > 0, we obtain the following
inequality by setting ϵ = 1−η

η :

∥yk+1(ℓ)− [ȳk+1]ℓ1∥2 ≤ η∥yk(ℓ)− [ȳk]ℓ1∥2 +
2m2

1− η
×(

∥λk+1∥2 ∥gk+1(ℓ)− gk(ℓ)∥2 +
∥∥λk+1 − λk

∥∥2 ∥gk(ℓ)∥2
)

By summing these relations over ℓ = 1, . . . , d, we find
m∑
i=1

∥yk+1
i − ȳk+1∥2 ≤ η

m∑
i=1

∥yki − ȳk∥2 + 2m2

1− η
×(

∥λk+1∥2
m∑
i=1

∥gk+1
i − gki ∥2 +

∥∥λk+1 − λk
∥∥2 m∑

i=1

∥gki ∥2
)

(72)

Next we bound
∑m

i=1 ∥g
k+1
i − gki ∥2 and

∑m
i=1 ∥gki ∥2.

Since every ∇fi is Lipschitz continuous with L > 0, we
have

m∑
i=1

∥gk+1
i − gki ∥2 ≤ L2

m∑
i=1

∥xk+1
i − xki ∥2

which, in combination with (68), leads to
m∑
i=1

∥gk+1
i −gki ∥2 ≤ 3r2L2

m∑
i=1

∥xki − x̄k∥2

+ 3L2
m∑
i=1

∥yki − ȳk∥2 + 3mL2∥ȳk∥2
(73)

Using the Lipschitz continuity of each gki , we obtain
m∑
i=1

∥gki ∥2 =
m∑
i=1

∥∇fi(xki)∥2

≤ 2L2
m∑
i=1

∥xki − x̄k∥2 + 2
m∑
i=1

∥∇fi(x̄k)∥2

which, in combination with (64), leads to
m∑
i=1

∥gki ∥2 ≤2L2
m∑
i=1

∥xki − x̄k∥2 + 8mL(F (x̄k)− F (θ∗))

+ 4

m∑
i=1

∥∇fi(θ∗)∥2

(74)
By substituting (73) and (74) into (72), we obtain
m∑
i=1

∥yk+1
i − ȳk+1∥2 ≤ (η +

6m2L2

1− η
∥λk+1∥2)

m∑
i=1

∥yki − ȳk∥2

+
6m2r2L2

1− η

(∥∥λk+1
∥∥2 m∑

i=1

∥xki − x̄k∥2 +m
∥∥λk+1

∥∥2 ∥ȳk∥2)

+
2m2

1− η

∥∥λk+1 − λk
∥∥2 (2L2

m∑
i=1

∥xki − x̄k∥2+

8mL(F (x̄k)− F (θ∗)) + 4
m∑
i=1

∥∇fi(θ∗)∥2
)
(75)

REFERENCES

[1] T. Yang, X. Yi, J. Wu, Y. Yuan, D. Wu, Z. Meng, Y. Hong, H. Wang,
Z. Lin, and K. Johansson. A survey of distributed optimization. Annual
Reviews in Control, 47:278–305, 2019.

[2] J. Bazerque and G. Giannakis. Distributed spectrum sensing for
cognitive radio networks by exploiting sparsity. IEEE Transactions on
Signal Processing, 58(3):1847–1862, 2009.

[3] R. Raffard, C. Tomlin, and S. Boyd. Distributed optimization for
cooperative agents: Application to formation flight. In 2004 43rd IEEE
Conference on Decision and Control (CDC), volume 3, pages 2453–
2459. IEEE, 2004.

[4] C. Zhang and Y. Wang. Distributed event localization via alternating di-
rection method of multipliers. IEEE Transactions on Mobile Computing,
17(2):348–361, 2017.

[5] K. Tsianos, S. Lawlor, and M. Rabbat. Consensus-based distributed
optimization: Practical issues and applications in large-scale machine
learning. In 50th Annual Allerton Conference on Communication,
Control, and Computing, pages 1543–1550. IEEE, 2012.

[6] A. Nedić and A. Ozdaglar. Distributed subgradient methods for multi-
agent optimization. IEEE Transactions on Automatic Control, 54(1):48–
61, 2009.

[7] W. Shi, Q. Ling, G. Wu, and W. Yin. Extra: An exact first-order
algorithm for decentralized consensus optimization. SIAM Journal on
Optimization, 25(2):944–966, 2015.

[8] J. Xu, S. Zhu, Y. Soh, and L. Xie. Augmented distributed gradient
methods for multi-agent optimization under uncoordinated constant
stepsizes. In 54th IEEE Conference on Decision and Control, pages
2055–2060. IEEE, 2015.

[9] R. Xin and U. Khan. A linear algorithm for optimization over directed
graphs with geometric convergence. IEEE Control Systems Letters,
2(3):315–320, 2018.

[10] W. Shi, Q. Ling, K. Yuan, G. Wu, and W. Yin. On the linear
convergence of the ADMM in decentralized consensus optimization.
IEEE Transactions on Signal Processing, 62(7):1750–1761, 2014.

[11] C. Zhang, M. Ahmad, and Y. Wang. ADMM based privacy-preserving
decentralized optimization. IEEE Transactions on Information Forensics
and Security, 14(3):565–580, 2019.

[12] E. Wei, A. Ozdaglar, and A. Jadbabaie. A distributed newton method
for network utility maximization–i: Algorithm. IEEE Transactions on
Automatic Control, 58(9):2162–2175, 2013.

[13] K. Yuan, Q. Ling, and W. Yin. On the convergence of decentralized
gradient descent. SIAM Journal on Optimization, 26(3):1835–1854,
2016.

[14] A. Nedić, A. Olshevsky, and W. Shi. Achieving geometric convergence
for distributed optimization over time-varying graphs. SIAM Journal on
Optimization, 27(4):2597–2633, 2017.

[15] J. Xu, S. Zhu, Y. Soh, and L. Xie. Convergence of asynchronous dis-
tributed gradient methods over stochastic networks. IEEE Transactions
on Automatic Control, 63(2):434–448, 2017.

[16] S. Pu, W. Shi, J. Xu, and A. Nedić. Push-pull gradient methods for
distributed optimization in networks. IEEE Transactions on Automatic
Control, 2020.

[17] W. Du, L. Yao, D. Wu, X. Li, G. Liu, and T. Yang. Accelerated
distributed energy management for microgrids. In IEEE Power & Energy
Society General Meeting, pages 1–5. IEEE, 2018.

[18] C. Xi, R. Xin, and U. Khan. Add-opt: Accelerated distributed directed
optimization. IEEE Transactions on Automatic Control, 63(5):1329–
1339, 2017.

[19] Z. Huang, S. Mitra, and N. Vaidya. Differentially private distributed op-
timization. In 2015 International Conference on Distributed Computing
and Networking, pages 1–10, 2015.

[20] D. Burbano-L, J. George, R. Freeman, and K. Lynch. Inferring
private information in wireless sensor networks. In IEEE International
Conference on Acoustics, Speech and Signal Processing, pages 4310–
4314. IEEE, 2019.

[21] F. Yan, S. Sundaram, S. Vishwanathan, and Y. Qi. Distributed
autonomous online learning: Regrets and intrinsic privacy-preserving
properties. IEEE Transactions on Knowledge and Data Engineering,
25(11):2483–2493, 2012.

[22] K. Wei, J. Li, M. Ding, C. Ma, H. Yang, F. Farokhi, S. Jin, T. Quek,
and V. Poor. Federated learning with differential privacy: Algorithms
and performance analysis. IEEE Transactions on Information Forensics
and Security, 15:3454–3469, 2020.

[23] L. Zhu, Z. Liu, and S. Han. Deep leakage from gradients. In Advances
in Neural Information Processing Systems, pages 14774–14784, 2019.

[24] J. Cortés, G. Dullerud, S. Han, J. Le Ny, S. Mitra, and G. Pappas.
Differential privacy in control and network systems. In IEEE 55th
Conference on Decision and Control, pages 4252–4272. IEEE, 2016.

[25] Y. Xiong, J. Xu, K. You, J. Liu, and L. Wu. Privacy preserving
distributed online optimization over unbalanced digraphs via subgradient
rescaling. IEEE Transactions on Control of Network Systems, 2020.

[26] C. Zhang and Y. Wang. Enabling privacy-preservation in decentralized
optimization. IEEE Transactions on Control of Network Systems,
6(2):679–689, 2018.

[27] N. Freris and P. Patrinos. Distributed computing over encrypted
data. In Annual Allerton Conference on Communication, Control, and
Computing, pages 1116–1122. IEEE, 2016.

[28] Y. Lu and M. Zhu. Privacy preserving distributed optimization using
homomorphic encryption. Automatica, 96:314–325, 2018.

[29] S. Gade and N. Vaidya. Private optimization on networks. In 2018
Annual American Control Conference (ACC), pages 1402–1409. IEEE,
2018.

[30] Y. Wang and T. Başar. Quantization enabled privacy protection in
decentralized stochastic optimization. IEEE Transactions on Automatic
Control, 68(7):4038 – 4052, 2023.

[31] Y. Wang and A. Nedić. Tailoring gradient methods for differentially-
private distributed optimization. IEEE Transactions on Automatic
Control, 2023.

[32] E. Nozari, P. Tallapragada, and J. Cortés. Differentially private dis-
tributed convex optimization via functional perturbation. IEEE Trans-
actions on Control of Network Systems, 5(1):395–408, 2016.

[33] Y. Lou, L. Yu, S. Wang, and P. Yi. Privacy preservation in distributed
subgradient optimization algorithms. IEEE transactions on cybernetics,
48(7):2154–2165, 2017.

[34] M. Ruan, H. Gao, and Y. Wang. Secure and privacy-preserving
consensus. IEEE Transactions on Automatic Control, 64(10):4035–4049,
2019.

[35] Y. Wang. Privacy-preserving average consensus via state decomposition.
IEEE Transactions on Automatic Control, 64(11):4711–4716, 2019.

[36] H. Gao and Y. Wang. Algorithm-level confidentiality for average
consensus on time-varying directed graphs. IEEE Transactions on
Network Science and Engineering, 9(2):918–931, 2022.

[37] P. Di Lorenzo and G. Scutari. Next: In-network nonconvex optimization.
IEEE Transactions on Signal and Information Processing over Networks,
2(2):120–136, 2016.

[38] A. Daneshmand, G. Scutari, and V. Kungurtsev. Second-order guarantees
of distributed gradient algorithms. SIAM Journal on Optimization,
30(4):3029–3068, 2020.

[39] R. Xin, S. Pu, A. Nedić, and U. Khan. A general framework for
decentralized optimization with first-order methods. Proceedings of the
IEEE, 108(11):1869–1889, 2020.

[40] M. Bin, I. Notarnicola, L. Marconi, and G. Notarstefano. A system
theoretical perspective to gradient-tracking algorithms for distributed
quadratic optimization. In 58th Conference on Decision and Control,
pages 2994–2999. IEEE, 2019.

[41] J. Zhang, K. You, and K. Cai. Distributed dual gradient tracking for
resource allocation in unbalanced networks. IEEE Transactions on
Signal Processing, 68:2186–2198, 2020.

[42] A. Nedić, A. Olshevsky, W. Shi, and C. Uribe. Geometrically conver-
gent distributed optimization with uncoordinated step-sizes. In 2017
American Control Conference (ACC), pages 3950–3955. IEEE, 2017.

[43] O. Goldreich. Foundations of Cryptography: volume 2, Basic Applica-
tions. Cambridge University Press, 2001.

[44] Y. Wang and V. Poor. Decentralized stochastic optimization with
inherent privacy protection. IEEE Transactions on Automatic Control,
68(4):2293–2308, 2023.

[45] B. Polyak. Introduction to optimization. Optimization software Inc.,
Publications Division, New York, 1, 1987.

[46] A. Nedić and A. Olshevsky. Distributed optimization over time-varying
directed graphs. IEEE Transactions on Automatic Control, 60(3):601–
615, 2014.

Yongqiang Wang was born in Shandong, China. He
received dual B.S. degrees in electrical engineering
& automation and computer science & technology
from Xi’an Jiaotong University, Xi’an, Shaanxi,
China, in 2004, and the Ph.D. degree in control
science and engineering from Tsinghua University,
Beijing, China, in 2009. From 2007-2008, he was
with the University of Duisburg-Essen, Germany,
as a visiting student. He was a Project Scientist at
the University of California, Santa Barbara before
joining Clemson University, SC, USA, where he

is currently an Associate Professor. His current research interests include
distributed control, optimization, and learning, with an emphasis on privacy
protection. He currently serves as an associate editor for IEEE Transactions
on Automatic Control and IEEE Transactions on Control of Network Systems.

Angelia Nedić holds a Ph.D. from Moscow
State University, Moscow, Russia, in Computational
Mathematics and Mathematical Physics (1994), and
a Ph.D. from Massachusetts Institute of Technol-
ogy, Cambridge, USA in Electrical and Computer
Science Engineering (2002). She has worked as
a senior engineer in BAE Systems North Amer-
ica, Advanced Information Technology Division at
Burlington, MA. She is a recipient (jointly with her
co-authors) of the Best Paper Award at the Winter
Simulation Conference 2013 and the Best Paper

Award at the International Symposium on Modeling and Optimization in
Mobile, Ad Hoc and Wireless Networks (WiOpt) 2015 (with co-authors). Her
current interest is in large-scale optimization, games, control and information
processing in networks.

