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Abstract—The distributed computation of a Nash equilibrium
in aggregative games is gaining increased traction in recent years.
Of particular interest is the coordinator-free scenario where
individual players only access or observe the decisions of their
neighbors due to practical constraints. Given the non-cooperative
relationship among participating players, protecting the privacy
of individual players becomes imperative when sensitive infor-
mation is involved. We propose a fully distributed equilibrium-
seeking approach for aggregative games that can achieve both
rigorous differential privacy and guaranteed computation accu-
racy of the Nash equilibrium. This is in sharp contrast to existing
differential-privacy solutions for aggregative games that have to
either sacrifice the accuracy of equilibrium computation to gain
rigorous privacy guarantees, or allow the cumulative privacy
budget to grow unbounded, hence losing privacy guarantees, as
iteration proceeds. Our approach uses independent noises across
players, thus making it effective even when adversaries have
access to all shared messages as well as the underlying algorithm
structure. The encryption-free nature of the proposed approach,
also ensures efficiency in computation and communication. The
approach is also applicable in stochastic aggregative games, able
to ensure both rigorous differential privacy and guaranteed
computation accuracy of the Nash equilibrium when individual
players only have stochastic estimates of their pseudo-gradient
mappings. Numerical comparisons with existing counterparts
confirm the effectiveness of the proposed approach.

Index Terms –Aggregative games, distributed Nash equilibrium
seeking, differential privacy

I. INTRODUCTION

The distributed seeking of a Nash equilibrium over net-
works has gained increased attention in recent years. It has
found applications in various domains where multiple players
(agents) compete to maximize their individual payoff func-
tions, with typical examples including energy management in
smart grids [1], congestion control in communication networks
[2], market analysis in economics [3], and route coordination
in road networks [4]. In many of these application scenar-
ios, a participating player’s payoff function depends on the
aggregate (e.g., total sum) of all players’ decisions, but such
an aggregate is inaccessible to individual players. Namely, no
central coordinator exits to collect and distribute the aggregate
information, and a player can only access the decisions of its
immediate neighbors. Consequently, individual players cannot
compute their accurate payoff functions, but instead, they
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share information among neighboring players to estimate the
aggregate decision [5], [6], [7], [8].

Despite recent progress in such aggregative games where
distributed computation can be conducted under partial-
decision information obtained through local information shar-
ing [5], [6], [7], [8], [9], all these distributed algorithms explic-
itly share estimate/decision variables in every iteration, which
can lead to a disclosure of players’ sensitive information. This
problem is significant in that the players are non-cooperative
and have every reason to protect their individual private
information in competition. Take the Nash-Cournot game as an
example, players’ cost functions could be market sensitive and
every player is well motivated to protect its cost function to
gain an edge over its competitors [10]. Moreover, sometimes
privacy legislations require the privacy of players’ information
to be protected during equilibrium-behavior implementation in
a game. For example, in routing games [11], California Privacy
Rights Act forbids disclosing the spatiotemporal information
of drivers because these information can be used as the basis
for inferences of a person’s activities [12].

To address the urgent need of privacy protection in ag-
gregative games, some efforts have been reported in recent
years (see, e.g., [13], [14], [15]). However, these efforts
mainly address Nash-equilibrium seeking in the presence of
a coordinator which greatly simplifies the privacy design
problem. The work [16] proposes a privacy approach for fully
distributed Nash-equilibrium seeking, but the use of corre-
lated noise restricts its applicability when players can have
arbitrary communication patterns. The paper [17] proposes
to use an uncertain parameter to obscure the pseudo-gradient
mapping in continuous-time Nash-equilibrium seeking algo-
rithms. However, the fact that the uncertain parameter is
a constant scalar restricts its privacy-protection strength. In
fact, the approach can only avoid the payoff function from
being uniquely identifiable, while the relations among private
parameters are still revealed. Given that differential privacy
can provide strong protection against arbitrary post-processing
and auxiliary information [18], and is becoming the de facto
standard for privacy protection, the recent works [19] and
[20] propose differential-privacy mechanisms for equilibrium
seeking in fully distributed aggregative games. However, to
ensure rigorous ϵ-differential privacy (with finite cumulative
privacy budget), these approaches have to sacrifice provable
convergence to the exact Nash equilibrium.

To avoid the problem of trading convergence accuracy
for differential privacy that is plaguing existing differential-
privacy approaches for aggregative games, this paper presents
the first distributed Nash-equilibrium seeking approach that
can simultaneously achieve both rigorous ϵ-differential privacy
(with finite cumulative privacy budget) and guaranteed conver-



gence to the Nash equilibrium. Motivated by the observation
that persistent differential-privacy noise has to be repeatedly
injected in every iteration of information sharing, which results
in significant reduction in algorithmic accuracy, our key idea
is to gradually weaken the coupling strength to attenuate the
effect of differential-privacy noise added on shared messages.
We judiciously design the weakening factor sequence to ensure
that convergence to the Nash equilibrium is guaranteed even in
the presence of persistent differential-privacy noise. It is worth
noting that compared with our recent result for differentially-
private distributed optimization [21], [22], the results here are
significantly different: 1) In distributed optimization, agents
cooperate to minimize a common objective function, whereas
in aggregative games players are non-cooperative and only
mind their own payoff functions; 2) Adding differential-
privacy noise can easily alter the equilibrium of a game (just
as evidenced by the loss of accurate convergence in existing
differential-privacy approaches for aggregative games [19]),
and hence we have to judiciously design our noise-adding
mechanism to avoid perturbing the equilibrium.

Contributions: The main contributions are summarized as
follows:

1) By judiciously designing the aggregate estimation mech-
anism, we propose a fully distributed equilibrium-seeking
approach for aggregative games that can ensure rigorous ϵ-
differential privacy without losing guaranteed convergence to
the Nash equilibrium. The algorithm can ensure both a finite
cumulative privacy budget and accurate convergence, which is
in sharp contrast to existing differential-privacy approaches for
aggregative games (see, e.g., [19] and [20]) that have to trade
accurate convergence for differential privacy. To the best of our
knowledge, this is the first such algorithm in the literature.

2) We propose a new proof technique for the convergence
analysis of the fully distributed equilibrium-seeking approach
for aggregative games in the presence of information-sharing
noise (caused by, e.g., differential-privacy design). The new
convergence derivation does not impose the restriction that the
pseudo-gradient mapping is uniformly bounded, an assumption
that is used in existing distributed algorithms (e.g., [19]
and [20]) for aggregative games subject to noises. Note that
avoiding the uniformly bounded pseudo-gradient assumption
is significant since in the presence of differential-privacy noise
(e.g., Laplacian or Gaussian noise) which are not uniformly
bounded, the aggregative estimation may become unbounded,
which makes the pseudo-gradient mapping unbounded in many
common games such as the Nash-Cournot game under a price
governed by the linear inverse-demand function.

3) Even without taking privacy into consideration, the pro-
posed algorithms and theoretical derivations are of interest
themselves. The convergence analysis for the proposed al-
gorithms has fundamental differences from existing proof
techniques. More specifically, existing convergence analysis of
distributed (generalized) Nash-equilibrium seeking algorithms
for aggregative games (e.g., [5], [23], [24], [25], [26]) and
their stochastic variants (e.g., [20] and [27]) rely on the
geometric (exponential) decreasing of the aggregate-estimation
error (consensus error) among the players, which is possible

only when all nonzero coupling weights are lower bounded by
a positive constant. Such geometric (exponential) decreasing of
aggregate-estimation error is key to proving exact convergence
of all players’ iterates to the Nash equilibrium. In our case,
since the coupling strength decays to zero, such geometric
(exponential) decreasing of players’ aggregate-estimation error
does not exist any more, which makes it impossible to use the
proof techniques in existing results.

4) We extend the approach to the case where the pseudo-
gradient mapping is stochastic, and prove that rigorous ϵ-
differential privacy and guaranteed convergence can still be
achieved simultaneously in this case. Note that different from
[20], [27] which consider stochastic pseudo-gradients with
decreasing variances (via increasing sample sizes), we allow
the variance of the stochastic pseudo-gradient to be constant,
or even increasing with time, as specified in Remark 12.

The organization of the paper is as follows. Sec. II gives
the problem formulation and some results for a later use. Sec.
III presents a differentially-private distributed equilibrium-
seeking algorithm for aggregative games. This section also
proves that the algorithm can ensure all players’ convergence
to the exact Nash equilibrium while ensuring rigorous ϵ-
differential privacy with a finite cumulative privacy budget,
even when the number of iterations goes to infinity. Sec. IV ex-
tends the approach to the case of stochastic aggregative games
and prove that it can ensure both guaranteed computation
accuracy of the Nash equilibrium and differential privacy with
guaranteed finite cumulative privacy budget when individual
players only have stochastic estimates of their pseudo-gradient
mappings. Sec. V presents numerical comparisons with exist-
ing distributed computation approaches for aggregative games
to confirm the obtained results. Finally, Sec. VI concludes the
paper.

Notations: We use Rd to denote the Euclidean space of
dimension d. We write Id for the identity matrix of dimension
d, and 1d for the d-dimensional column vector will all entries
equal to 1; in both cases we suppress the dimension when it
is clear from the context. For a vector x, [x]i denotes its ith
element. We write x > 0 (resp. x ≥ 0) if all elements of x
are positive (resp. non-negative). We use ⟨·, ·⟩ to denote the
inner product and ∥x∥ for the standard Euclidean norm of a
vector x. We use ∥x∥1 to represent the L1 norm of a vector
x. We write ∥A∥ for the matrix norm induced by the vector
norm ∥ · ∥. We let AT denote the transpose of a matrix A. For
two vectors u and v with the same dimension, we use u ≤ v
to represent the relationship that every entry of the vector u
is no greater than the corresponding entry of v. Often, we
abbreviate almost surely by a.s.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. On Aggregative Games

We consider a set of m players (or agents), i.e., [m] =
{1, 2, . . . ,m}, which are indexed by 1, 2, · · · ,m. Player i is
characterized by a strategy set Ki ⊆ Rd and a payoff function
fi(xi, x̄) where xi denotes the decision of player i and x̄ =
1
m

∑m
i=1 xi denotes the average of all players’ decisions. Note

that sometimes the payoff function depends on the aggregate



decision mx̄ =
∑m

i=1 xi rather than the average decision x̄. In
these cases, all algorithms and analysis in this paper are still
valid by replacing x̄ with mx̄.

Since each decision variable xi is restricted in Ki, the
average x̄ is restricted to the set that is the 1/m-scaling
of the Minkowski sum1 of the sets Ki, denoted by K̄, i.e.,
K̄ = 1

m (K1 + K2 + · · · + Km). With this notation, we can
formalize fi(xi, x̄) as a mapping from Ki × K̄ to R, and
further formulate the game that player i faces as the following
parameterized optimization problem:

min fi(xi, x̄) s.t. xi ∈ Ki and x̄ ∈ K̄. (1)

The constraint set Ki and the function fi(·) are assumed to
be known to player i only.

To characterize a Nash equilibrium of the aggregative game
(1), following [5], we introduce the following notations

Fi(xi, x̄) ≜ ∇xi
fi(xi, x̄), K ≜ Πm

i=1Ki, (2)

and x ≜
[
xT
1 , · · · , xT

m

]T
.

These notions allow us to define two mappings

F (x, u) ≜

 F1(x1, u)
...

Fm(xm, u)

 , (3)

ϕ(x) = F (x, x̄), ∀x ∈ K. (4)

Similar to [5], we make the following assumptions on the
constraint sets Ki and the functions fi:

Assumption 1. Each Ki ∈ Rd is compact and convex. Each
function fi(xi, y) is continuously differentiable in (xi, y) over
some open set containing the set Ki× K̄, while each function
fi(xi, x̄) is convex in xi over the set Ki. The mapping ϕ(x) is
strictly monotone over K, i.e., for all x ̸= x′ in K, we always
have

(ϕ(x)− ϕ(x′))
T
(x− x′) > 0.

Remark 1. It is worth noting that the strictly monotone as-
sumption on ϕ(x) is weaker than the commonly used strongly
monotone assumption in [7], [19], [20], [27], [28], [29].

According to [5], Assumption 1 ensures that the ag-
gregative game (1) has a unique Nash equilibrium x∗ =
[(x∗

1)
T , (x∗

2)
T , . . . , (x∗

m)T ]T ∈ Rmd. Moreover, following [5],
we also make the following assumption:

Assumption 2. Each mapping Fi(xi, u) satisfies the following
Lipschitz continuous condition with respect to u: for all
xi ∈ Ki, all u1, u2 ∈ K̄, and all i ∈ [m], we always have
∥Fi(xi, u1)− Fi(xi, u2)∥ ≤ L̃∥u1 − u2∥ for some L̃ > 0.

We consider distributed algorithms for equilibrium seeking
of the game in (1). Namely, no player has a direct access
to the average decision x̄ or the aggregate decision mx̄.
Instead, each player has to construct a local estimate of the
average/aggregate through local interactions with its neigh-
bors. We describe the local interaction using a weight matrix

1A scaling tX of a set X with a scalar t is the set given by tX = {tx |
x ∈ X}. A Minkowski sum of two sets X and Y is the set X + Y =
{x+ y | x ∈ X, y ∈ Y }.

L = {Lij}, where Lij > 0 if players j and i can directly
communicate with each other, and Lij = 0 otherwise. For a
player i ∈ [m], its neighbor set Ni is the collection of players j
such that Lij > 0 holds. We define Lii ≜ −

∑
j∈Ni

Lij for all
i ∈ [m], where Ni is the neighbor set of agent i. Furthermore,
we make the following assumption on L:

Assumption 3. The matrix L = {wij} ∈ Rm×m is symmetric
and satisfies 1TL = 0T , L1 = 0, and ∥I + L− 11T

m ∥ < 1.

Remark 2. I + L here corresponds to the commonly-used
weight matrix W in the literature (see, e.g., [30], [31], where
in Sec. 2.4 of [30] several examples of local interaction
patterns satisfying Assumption 3 are given). We decompose
the commonly-used weight matrix W into I and L because
this will facilitate convergence analysis under our differential-
privacy oriented design, which gradually attenuates inter-
player interaction (represented by L) while keeping intact self-
interaction (i.e., the influence of a player’s state at k to its own
state at k+1, which corresponds to the “I” matrix in I+W ).
Please see Algorithms 1 and 2 for details.

One can verify ∥I +L− 11T

m ∥ = max{|1+ ρ2|, |1+ ρm|},
where {ρi, i ∈ [m]} are the eigenvalues of L, with ρm ≤
. . . ≤ ρ2 ≤ ρ1 = 0. Hence, the inequality in Assumption 3
ensures |1 + ρ2| < 1 and further ρ2 ̸= 0. Given that −L
corresponds to the conventional weighted Laplacian matrix,
the inequality ∥I + L − 11T

m ∥ < 1 in Assumption 3 ensures
that the second smallest eigenvalue of −L is greater than zero,
i.e., the interaction graph induced by L is connected (there is
a path from each player to every other player) [32]. Moreover,
this inequality also ensures ρm > −2, which can be enforced
by requiring

∑
j∈Ni

Lij < 1 for all i ∈ [m]. It is worth noting
that in algorithms with a constant stepsize (see, e.g., [7]), the
condition of ρm > −2 (and hence

∑
j∈Ni

Lij < 1 for all
i ∈ [m]) can be relaxed.

In the analysis of our methods, we use the following results:

Lemma 1. [21] Let {vk},{αk}, and {pk} be random non-
negative scalar sequences, and {qk} be a deterministic non-
negative scalar sequence satisfying

∑∞
k=0 α

k < ∞ almost
surely,

∑∞
k=0 q

k = ∞,
∑∞

k=0 p
k < ∞ almost surely, and the

following inequality:

E
[
vk+1|Fk

]
≤ (1 + αk − qk)vk + pk, ∀k ≥ 0 a.s.

where Fk = {vℓ, αℓ, pℓ; 0 ≤ ℓ ≤ k}. Then,
∑∞

k=0 q
kvk < ∞

and limk→∞ vk = 0 hold almost surely.

Lemma 2. [21] Let {vk} ⊂ Rd and {uk} ⊂ Rp be random
nonnegative vector sequences, and {ak} and {bk} be random
nonnegative scalar sequences such that

E
[
vk+1|Fk

]
≤ (V k + ak11T )vk + bk1−Hkuk, ∀k ≥ 0

holds almost surely, where {V k} and {Hk} are random
sequences of nonnegative matrices and E

[
vk+1|Fk

]
denotes

the conditional expectation given vℓ,uℓ, aℓ, bℓ, V ℓ, Hℓ for ℓ =
0, 1, . . . , k. Assume that {ak} and {bk} satisfy

∑∞
k=0 a

k < ∞
and

∑∞
k=0 b

k < ∞ almost surely, and that there exists a
(deterministic) vector π > 0 such that πTV k ≤ πT and
πTHk ≥ 0 hold almost surely for all k ≥ 0. Then, we have



1) {πTvk} converges to some random variable πTv ≥ 0
almost surely; 2) {vk} is bounded almost surely; and 3)∑∞

k=0 π
THkuk < ∞ holds almost surely.

B. On Differential Privacy

We adopt the notion of ϵ-differential privacy for continuous
bit streams [33], which has recently been applied to distributed
optimization algorithms (see [34] as well as our work [21]).
A commonly used approach to enabling differential privacy
is injecting Laplace noise to shared messages. For a constant
ν > 0, we use Lap(ν) to denote a Laplace distribution of a
scalar random variable with the probability density function
x 7→ 1

2ν e
− |x|

ν . It can be verified that Lap(ν) has zero mean
and variance 2ν2. Following the formulation of distributed op-
timization in [34], for the convenience of differential-privacy
analysis, we represent the distributed game P in (1) by three
parameters (K,F, L), where K defined in (2) is the domain
of decision variables, F ≜ {f1, · · · , fm}, and L is the inter-
player interaction weight matrix L. Then we define adjacency
between two games as follows:

Definition 1. Two distributed Nash-equilibrium seeking prob-
lems P = (K,F, L) and P ′ = (K ′,F′, L′) are adjacent if the
following conditions hold:

• K = K ′ and L = L′, i.e., the domains of decision vari-
ables and the interaction weight matrices are identical;

• there exists an i ∈ [m] such that fi ̸= f ′
i but fj = f ′

j for
all j ∈ [m], j ̸= i;

• the different payoff functions fi and f ′
i have similar

behaviors around x∗, the Nash equilibrium of P . More
specifically, there exits some δ > 0 such that for all ι and
ι′ in Bδ(x

∗
i ) ≜ {u : u ∈ Rd, ∥u − x∗

i ∥ < δ}, we have
ΠKi

[ι− λ∇ιfi(ι, ·)] − ι = ΠK′
i
[ι′ − λ∇ι′f

′
i(ι

′, ·)] − ι′

for all λ > 0, where ΠKi
[·] denotes the Euclidean

projection of a vector onto the set Ki.

In Definition 1, since the change of a payoff function from
fi to f ′

i in the second condition can be arbitrary, additional
restrictions have to be imposed to ensure rigorous DP in
distributed Nash equilibrium seeking. Different from [19]
which restricts all pseudo-gradients to be uniformly bounded,
we use the third condition, which, as shown later, allows us to
ensure rigorous DP while maintaining provable convergence
to the exact Nash equilibrium. It is worth noting that in
the constraint-free case, the condition reduces to requiring
∇ιfi(ι, ·) = ∇ι′f

′
i(ι

′, ·) for ι and ι′ in the neighborhood of
the Nash equilibrium of P .

Given a distributed Nash-equilibrium seeking problem P ,
we represent an iterative distributed Nash-equilibrium seeking
algorithm as a mapping RP(ϑ0) : ϑ

0 7→ O, where ϑ0 is the
initial state and O is the observation sequence (the sequence of
shared messages). Under a fixed distributed Nash-equilibrium
seeking algorithm, for a given distributed Nash-equilibrium
seeking problem P , observation sequence O, and initial state
ϑ0, we denote the corresponding internal state at iteration k
as AP,O,ϑ0 [k].

Definition 2. (ϵ-differential privacy, adapted from [34]). For
a given ϵ > 0, an iterative distributed algorithm solving

problem (1) is ϵ-differentially private if for any two adjacent
P and P ′, any set of observation sequences Os ⊆ O (with O
denoting the set of all possible observation sequences), and
any initial state ϑ0, we always have

P[RP(ϑ
0) ∈ Os] ≤ eϵ[RP′(ϑ0) ∈ Os], (5)

where the probability P is taken over the randomness over
iteration processes.

The above definition of ϵ-differential privacy ensures that an
adversary having access to all shared messages in the network
cannot gain information with a significant probability of any
participating player’s payoff function. It can also be seen that
a smaller ϵ means a higher level of privacy protection. It is
also worth noting that the considered notion of ϵ-differential
privacy is more stringent than other relaxed (approximate)
differential privacy notions such as (ϵ, δ)-differential privacy
[35], zero-concentrated differential privacy [36], or Rényi
differential privacy [37].

III. A DIFFERENTIALLY-PRIVATE DISTRIBUTED
EQUILIBRIUM-SEEKING ALGORITHM FOR AGGREGATIVE

GAMES

To achieve strong differential privacy, independent noise
should be injected repeatedly in every round of message
sharing and, hence, constantly affecting the algorithm through
inter-player interactions and leading to significant reduction
in algorithmic accuracy. Motivated by this observation, we
propose to gradually weaken inter-player interactions to reduce
the influence of differential-privacy noise on computation
accuracy. Interestingly, we prove that by judiciously designing
the interaction weakening mechanism, we can ensure con-
vergence of all players to the Nash equilibrium even in the
presence of persistent differential-privacy noise.

Algorithm 1: Differentially-private distributed algorithm
for aggregative games with guaranteed convergence

Parameters: Stepsize λk > 0 and weakening factor γk > 0.
Every player i maintains one decision variable xk

i , which is
initialized with a random vector in Ki ⊆ Rd, and an estimate
of the aggregate decision vki , which is initialized as v0i = x0

i .
for k = 1, 2, . . . do

a) Every player j adds persistent differential-privacy noise ζkj
to its estimate vkj , and then sends the obscured estimate
vkj + ζkj to player i ∈ Nj .

b) After receiving vkj + ζkj from all j ∈ Ni, player i updates
its decision variable and estimate as follows:

xk+1
i =ΠKi

[
xk
i − λkFi(x

k
i , v

k
i )
]
,

vk+1
i =vki + γk

∑
j∈Ni

Lij(v
k
j + ζkj − vki − ζki )

+ xk+1
i − xk

i ,

(6)

where ΠKi
[·] denotes the Euclidean projection of a vector

onto the set Ki.
c) end



Remark 3. In the iterates in (6), we judiciously let player i use
vki +ζki that it shares with its neighbors in its interaction terms
(Lij(v

k
j +ζkj −vki −ζki ) for j ∈ Ni) to cancel out the influence

of noises on the aggregate estimation (average estimation,
more precisely). As shown latter in Lemma 3, player i using
vki + ζki in its interaction terms rather than vki is key to
ensure that the average vki among all players can accurately
track the average decision xk

i among all players. Note that
different from [16] where players use correlated noise which
restricts the strength of privacy protection, here the noises ζki
(i = 1, 2, · · · ,m) of all players are completely independent of
each other, and hence can enable strong differential privacy.
However, it is worth noting that when a player i has only
one neighboring player (say, player j), then according to the
update rule in (6), the dynamics of the two players could be
correlated, which may allow the neighboring player j to infer
certain information of player i. This is a limitation of the con-
ventional differential privacy framework which implicitly relies
on a data curator/aggregator to collect data and inject noises,
and hence, in the decentralized setting, implicitly assumes
that players trust each other to cooperatively decide (like
a data curator/aggregator) how to mask shared information.
To completely avoid correlated dynamics among interacting
players, the local differential privacy framework (see, e.g.,
[38]) can be exploited.

The sequence {γk}, which diminishes with time, is used to
suppress the influence of persistent differential-privacy noise
ζkj on the convergence point of the iterates. The stepsize
sequence {λk} and attenuation sequence {γk} have to be
designed appropriately to guarantee the accurate convergence
of the iterate vector xk ≜ [(xk

1)
T , · · · , (xk

m)T ]T to the Nash
equilibrium point x∗ ≜ [(x∗

1)
T , · · · , (x∗

m)T ]T . It is worth
noting that they are hard-coded into all players’ programs and
need no adjustment/coordination in implementation. The per-
sistent differential-privacy noise sequences {ζki }, i ∈ [m] have
zero-mean and γk-bounded (conditional) variances, which will
be specified later in Assumption 4.

A. Convergence Analysis

To prove the convergence of the decision vector xk to the
Nash equilibrium x∗, we have to present some properties of
the iterates. The first property pertains to the average of the
estimates vki , which is defined as v̄k ≜ 1

m

∑m
i=1 v

k
i . More

specifically, we will prove that v̄k is equal to the average
of decisions x̄k ≜ 1

m

∑m
i=1 x

k
i . Namely, v̄k captures the

exact average decision. Such a property has been proven and
employed in [5] in the absence of noise. Now we prove that
this relationship still holds under our proposed Algorithm
1 even all agents add independent noises to their shared
messages.

Lemma 3. Under Assumption 3, we have v̄k = x̄k for all
k ≥ 0.

Proof. According to the definitions of v̄k and x̄k, we only
have to prove

m∑
i=1

vki =
m∑
i=1

xk
i . (7)

We prove the relationship in (7) using induction.
For k = 0, the relationship holds trivially since we have

initialized all vki as v0i = x0
i .

Next we proceed to prove that if (7) holds for some iteration
k > 0, i.e.,

m∑
i=1

vki =
m∑
i=1

xk
i , (8)

then it also holds for iteration k + 1.
According to (6), we have
m∑
i=1

vk+1
i =

m∑
i=1

vki + γk
m∑
i=1

∑
j∈Ni

Lij(v
k
j + ζkj − vki − ζki )

+
m∑
i=1

xk+1
i −

m∑
i=1

xk
i .

(9)
Plugging (8) into (9) leads to

m∑
i=1

vk+1
i =γk

m∑
i=1

∑
j∈Ni

Lij(v
k
j + ζkj − vki − ζki ) +

m∑
i=1

xk+1
i .

(10)
We decompose the first term (excluding γk) on the right

hand side of (10) as
m∑
i=1

∑
j∈Ni

Lij(v
k
j + ζkj − vki − ζki )

=

m∑
i=1

∑
j∈Ni

Lijv
k
j −

m∑
i=1

∑
j∈Ni

Lijv
k
i +

m∑
i=1

∑
j∈Ni

Lijζ
k
j

−
m∑
i=1

∑
j∈Ni

Lijζ
k
i .

(11)

Using the symmetric property of Lij in Assumption 3, the
preceding relationship can be rewritten as

m∑
i=1

∑
j∈Ni

Lij(v
k
j + ζkj − vki − ζki )

=
m∑
i=1

∑
j∈Ni

Lijv
k
j −

m∑
i=1

∑
i∈Nj

Ljiv
k
i +

m∑
i=1

∑
j∈Ni

Lijζ
k
j

−
m∑
i=1

∑
i∈Nj

Ljiζ
k
i

= 0.

(12)

Plugging (12) into (10) leads to
∑m

i=1 v
k+1
i =

∑m
i=1 x

k+1
i ,

which completes the proof.

Using Lemma 3, we have the following results under
Assumption 1:

Lemma 4. Under Assumption 1, and vki governed by Algo-
rithm 1, the following inequalities hold for some C > 0 and
all k ≥ 0:

∥Fi(x
k
i , v̄

k)∥ ≤ C, ∥Fi(x
k
i , v

k
i )∥ ≤ C + L̃∥vki − v̄k∥. (13)

Proof. According to Lemma 3, we have v̄k = x̄k for all k ≥ 0,
where x̄k ≜

∑m
i=1 xk

i

m . Hence, v̄k ∈ K̄, where K̄ is compact
since each Ki is compact according to Assumption 1. From



Assumption 1, Fi(x
k
i , x̄

k) is continuous over Ki × K̄, so we
have the first inequality.

To show the second inequality, we use the following rela-
tionship

∥Fi(x
k
i , v

k
i )∥ = ∥Fi(x

k
i , v

k
i )− Fi(x

k
i , x̄

k) + Fi(x
k
i , x̄

k)∥
≤ ∥Fi(x

k
i , v

k
i )− Fi(x

k
i , v̄

k)∥+ ∥Fi(x
k
i , v̄

k)∥.

Then using the Lipschitz continuous condition in Assumption
2 and the proven fact that ∥Fi(x

k
i , v̄

k)∥ is bounded, we can
arrive at the second inequality in (13).

Remark 4. Note that different from [19], [20] whose conver-
gence analysis requires Fi(xi, v

k
i ) to be uniformly bounded

in the presence of noise, we will provide a new proof
technique that removes the uniformly bounded constraint in
convergence analysis. This relaxation is significant in that
under differential-privacy design, vki will be subject to un-
bounded noise, such as Laplace noise or Gaussian noise, and
becomes unbounded. Therefore, restricting Fi(xi, v

k
i ) to be

uniformly bounded with respect to vki will significantly limit
the applicability of the algorithm. For example, in the Nash-
Cournot market game considered in the numerical simulations
in Sec. V, the sale price function (the inverse demand function)
is usually modeled as a function decreasing linearly with
the aggregative production, which will result in a mapping
Fi(xi, v

k
i ) that is not uniformly bounded.

We now apply Lemma 2 to arrive at a general convergence
theory for distributed algorithms for the problem in (1):

Proposition 1. Assume that problem (1) has a Nash equilib-
rium x∗ = [(x∗

1)
T , (x∗

2)
T , . . . , (x∗

m)T ]T ∈ Rmd. Suppose that
a distributed algorithm generates sequences {xk

i } ⊆ Rd and
{vki } ⊆ Rd such that almost surely we have[

E
[∑m

i=1 ∥x
k+1
i − x∗

i ∥2|Fk
]

E
[∑m

i=1 ∥v
k+1
i − v̄k+1∥2|Fk

] ]
≤

([
1 κ1γ

k

0 1− κ2γ
k

]
+ ak11T

)[ ∑m
i=1 ∥xk

i − x∗
i ∥2∑m

i=1 ∥vki − v̄k∥2
]

+ bk1− ck
[ (

ϕ(xk)− ϕ(x∗)
)T

(xk − x∗)
0

]
, ∀k ≥ 0

(14)
where v̄k = 1

m

∑m
i=1 v

k
i , Fk = {xℓ

i , v
ℓ
i , i ∈ [m], 0 ≤ ℓ ≤ k},

the random nonnegative scalar sequences {ak}, {bk} satisfy∑∞
k=0 a

k < ∞ and
∑∞

k=0 b
k < ∞ almost surely, the

deterministic nonnegative sequences {ck} and {γk} satisfy∑∞
k=0 c

k = ∞ and
∑∞

k=0 γ
k = ∞, and the scalars κ1 and

κ2 satisfy κ1 > 0 and 0 < κ2γ
k < 1, respectively, for all

k ≥ 0. Then, we have limk→∞ ∥vki − v̄k∥ = 0 almost surely
for all i, and limk→∞ ∥xk

i − x∗
i ∥ = 0 almost surely.

Proof. According to Assumption 1, we always have(
ϕ(xk)− ϕ(x∗)

)T
(xk − x∗) > 0 for all k. Hence, by

letting vk =
[∑m

i=1 ∥xk
i − x∗

i ∥2,
∑m

i=1 ∥vki − v̄k∥2
]T

, from
relation (14) it follows that almost surely for all k ≥ 0,

E
[
vk+1|Fk

]
≤

([
1 κ1γ

k

0 1− κ2γ
k

]
+ ak11T

)
vk + bk1.

(15)

Consider the vector π = [1, κ1

κ2
]T and note

πT

[
1 κ1γ

k

0 1− κ2γ
k

]
= πT .

Thus, relation (15) satisfies all conditions of Lemma 2. By
Lemma 2, it follows that limk→∞ πTvk exists almost surely,
and that the sequences {

∑m
i=1 ∥xk

i −x∗
i ∥2} and {

∑m
i=1 ∥vki −

v̄k∥2} are bounded almost surely. From (15), we have the
following relationship almost surely for the second element of
vk:

E

[
m∑
i=1

∥vk+1
i − v̄k+1∥2|Fk

]

≤ (1 + ak − κ2γ
k)

m∑
i=1

∥vki − v̄k∥2 + βk ∀k ≥ 0,

where βk = ak
(∑m

i=1

(
∥xk

i − x∗
i ∥2 + ∥vki − v̄k∥2

))
. Since∑∞

k=0 a
k < ∞ holds almost surely by our assumption, and

the sequences {
∑m

i=1 ∥xk
i − x∗

i ∥2} and {
∑m

i=1 ∥vki − v̄k∥2}
are bounded almost surely, it follows that

∑∞
k=0 β

k < ∞ holds
almost surely. Thus, the preceding relation satisfies the condi-
tions of Lemma 1 with vk =

∑m
i=1 ∥vki − v̄k∥2, qk = κ2γ

k,
and pk = βk due to our assumptions

∑∞
k=0 b

k < ∞ almost
surely and

∑∞
k=0 γ

k = ∞. By Lemma 1, it follows that almost
surely

∞∑
k=0

κ2γ
k

m∑
i=1

∥vki − v̄k∥2 < ∞, lim
k→∞

m∑
i=1

∥vki − v̄k∥2 = 0.

(16)
It remains to show that

∑m
i=1 ∥xk

i − x∗
i ∥2 → 0 al-

most surely. For this, we use Lemma 2. Under the as-
sumption that {ak} and {bk} are summable, we have that
the inequality in (14) satisfies the relationship in Lemma 2
with vk =

[∑m
i=1 ∥xk

i − x∗
i ∥2,

∑m
i=1 ∥vki − v̄k∥2

]T
, V k =[

1 κ1γ
k

0 1− κ2γ
k

]
, Hk =

[
ck 0
0 0

]
, and πT = [1, κ1

κ2
]T .

Therefore, according to Lemma 2, we know that πTvk con-
verges almost surely, i.e.,

∑m
i=1 ∥xk

i −x∗
i ∥2+ κ1

κ2

∑m
i=1 ∥vki −

v̄k∥2 converges almost surely. Given that we have proven that∑m
i=1 ∥vki − v̄k∥2 converges almost surely (see (16)), we have

that
∑m

i=1 ∥xk
i −x∗

i ∥2 (or ∥xk−x∗∥2) converges almost surely.
According to Lemma 2, we also have

∑∞
k=0 π

THkuk < ∞
almost surely, i.e.,
∞∑
k=0

[
1,

κ1

κ2

]T[
ck 0
0 0

][ (
ϕ(xk)− ϕ(x∗)

)T
(xk − x∗)

0

]
<∞,

or ∞∑
k=0

ck
(
ϕ(xk)− ϕ(x∗)

)T
(xk − x∗) < ∞. (17)

Now using (17) and the proven fact that ∥xk − x∗∥2 con-
verges almost surely, we proceed to prove that xk converges
to x∗ almost surely. Because the augmented state decision
vector xk belongs to the compact set K defined in (2), we
know that the sequence {xk} must have accumulation points
in K. So the condition

∑∞
k=0 c

k = ∞ and (17) mean that
there exists a subsequence of {xk}, say {xkℓ}, along which(
ϕ(xk)− ϕ(x∗)

)T
(xk − x∗) converges to zero almost surely.



Recalling that ϕ(·) is strictly monotone (see Assumption 1),
one has that the subsequence {xkℓ} must converge to x∗

almost surely. This and the fact that ∥xk − x∗∥2 converges
almost surely imply that xk converges to x∗ almost surely.

We also need the following Lemma about matrix L:

Lemma 5. Under Assumption 3 and a positive sequence {γk}
satisfying

∑∞
k=0 γ

k = ∞ and
∑∞

k=0(γ
k)2 < ∞, there always

exists a T > 0 such that when k ≥ T , we always have

∥I + γkL− 11T

m
∥ ≤ 1− γk|ρ2|,

where ρ2 is the second largest eigenvalue of L.

Proof. Under Assumption 3, the matrix L is symmetric, so
we have that all eigenvalues of L are real numbers. Since L
has non-negative off-diagonal entries and the diagonal entries
Lii are given by Lii = −

∑
j∈Ni

Lij , we know that all
eigenvalues of L are non-positive (according to the Gershgorin
circle theorem), and there is always an eigenvalue equal to
0. Arrange the eigenvalues of L as ρm ≤ ρm−1 ≤ · · · ≤
ρ2 ≤ ρ1 = 0. It can be verified that the eigenvalues of
I + L are given by 1 + ρm ≤ 1 + ρm−1 ≤ · · · ≤ 1 + ρ2 ≤
1 + ρ1 = 1, and the eigenvalues of I +L− 11T

m are given by
{1+ρm, 1+ρm−1, · · · , 1+ρ2, 0}. Furthermore, the condition
∥I + L − 11T

m ∥ < 1 in Assumption 3 implies that only one
eigenvalue of L is zero, and its all other eigenvalues are strictly
less than 0. Hence, we have ρm ≤ ρm−1 ≤ · · · ≤ ρ2 < 0, i.e.,
|ρm| ≥ |ρm−1| ≥ · · · ≥ |ρ2| > 0. Since the eigenvalues of
I+γkL− 11T

m are {1+γkρm, 1+γkρm−1, · · · , 1+γkρ2, 0},
we have the norm ∥I + γkL − 11T

m ∥ being no larger than
|1 + γkρm| or |1 + γkρ2|. Further taking into account the
fact that {γk} is square summable and hence γk decays to
zero, we have that there always exists a T > 0 such that
|1 + γkρm| = 1 − γk|ρm| and |1 + γkρ2| = 1 − γk|ρ2| hold
for k ≥ T . Given |ρm| ≥ |ρ2|, we have the stated result of the
Lemma.

Using Proposition 1, we are in position to establish con-
vergence of Algorithm 1 assuming that persistent differential-
privacy noise satisfies the following assumption:

Assumption 4. For every i ∈ [m] and every k, condi-
tional on Fk = {v0, . . . , vk}, the random noise ζki satisfies
E
[
ζki | Fk

]
= 0 and E

[
∥ζki ∥2 | Fk

]
= (σk

i )
2 for all k ≥ 0,

and
∞∑
k=0

(γk)2 max
i∈[m]

(σk
i )

2 < ∞, (18)

where {γk} is the attenuation sequence from Algorithm 1. The
initial random vectors satisfy

E
[
∥v0i ∥2

]
< ∞, ∀i ∈ [m].

Remark 5. Given that γk decreases with time, (18) can be
satisfied even when {σk

i } increases with time. For example,
under γk = O( 1

k0.9 ), an increasing {σk
i } with increasing rate

no faster than O(k0.3) still satisfies the summable condition
in (18). Allowing {σk

i } to be increasing with time is key to
enabling the strong ϵ-differential privacy in Theorem 2. In

addition, this assumption allows σk
i to be different for different

i, i.e., it allows different players to inject noises with different
variances.

Theorem 1. Under Assumptions 1, 2, 3, and 4, if there exists
some T ≥ 0 such that γk and λk satisfy the following
conditions:

∞∑
k=T

γk = ∞,
∞∑

k=T

λk = ∞,
∞∑

k=T

(γk)2 < ∞,
∞∑

k=T

(λk)2

γk
< ∞,

then Algorithm 1 converges to the Nash equilibrium of the
game in (1) almost surely.

Proof. The basic idea is to apply Proposition 1 to the quan-
tities

∑m
i=1 ∥x

k+1
i − x∗

i ∥2 and
∑m

i=1 ∥v
k+1
i − v̄k+1∥2. Since

the results of Proposition 1 are asymptotic, they remain valid
when the starting index is shifted from k = 0 to k = T , for an
arbitrary T ≥ 0. We divide the proof into two parts to analyze∑m

i=1 ∥x
k+1
i − x∗

i ∥2 and
∑m

i=1 ∥v
k+1
i − v̄k+1∥2, respectively.

Part I: We first analyze
∑m

i=1 ∥v
k+1
i − v̄k+1∥2. For the

convenience of analysis, we write the iterates of vki on per-
coordinate expressions. Define for all ℓ = 1, . . . , d, and
k ≥ 0, vk(ℓ) =

[
[vk1 ]ℓ, . . . , [v

k
m]ℓ

]T
where [vki ]ℓ repre-

sents the ℓth element of the vector vki . Similarly, we define
xk(ℓ) =

[
[xk

1 ]ℓ, . . . , [x
k
m]ℓ

]T
and ζk(ℓ) =

[
[ζk1 ]ℓ, . . . , [ζ

k
m]ℓ

]T
.

In this per-coordinate view, (6) has the following form for all
ℓ = 1, . . . , d, and k ≥ 0:

vk+1(ℓ) = vk(ℓ) + γkLvk(ℓ) + γkLζk(ℓ) + xk+1(ℓ)− xk(ℓ).
(19)

Note that the diagonal entries of L are defined as Lii ≜
−
∑

j∈Ni
Lij .

The dynamics of the average vki , i.e., v̄k, is given by

[v̄k+1]ℓ =
1T

m
vk+1(ℓ)

=
1T

m

(
vk(ℓ) + γkLvk(ℓ) + γkLζk(ℓ) + xk+1(ℓ)− xk(ℓ)

)
,

(20)
where [v̄k+1]ℓ represents the ℓ-th element of v̄k+1.

Under Assumption 3, we have 1TL = 0, which simplifies
the preceding equation (20) to:

[v̄k+1]ℓ =
1T

m

(
vk(ℓ) + xk+1(ℓ)− xk(ℓ)

)
, (21)

where [x̄k+1]ℓ represents the ℓ-th element of the vector x̄k+1.
Combining (19), (20), and (21) yields

vk+1(ℓ)− 1[v̄k+1]ℓ =

(
I + γkL− 11T

m

)
vk(ℓ) + γkLζk(ℓ)

+

(
I − 11T

m

)(
xk+1(ℓ)− xk(ℓ)

)
.

(22)
For the sake of notational simplicity, we define

W k ≜ I + γkL− 11T

m
, Πk ≜ I − 11T

m
. (23)



It can be verified that W k1 = 0 holds, and hence W k1[v̄k]ℓ =
0 always holds for any 1 ≤ ℓ ≤ m under Assumption 3.
Therefore, (22) can be rewritten as

vk+1(ℓ)− 1[v̄k+1]ℓ =W k
(
vk(ℓ)− 1[v̄k]ℓ

)
+ γkLζk(ℓ)

+ Πk
(
xk+1(ℓ)− xk(ℓ)

)
,

(24)
which further implies

∥vk+1(ℓ)− 1[v̄k+1]ℓ∥2

=
∥∥W k(vk(ℓ)− 1[v̄k]ℓ) + Πk(xk+1(ℓ)− xk(ℓ))

∥∥2
+ 2

〈
W k(vk(ℓ)− 1[v̄k]ℓ) + Πk(xk+1(ℓ)− xk(ℓ)), γkLζk(ℓ)

〉
+ ∥γkLζk(ℓ)∥2

≤
∥∥W k(vk(ℓ)− 1[v̄k]ℓ) + Πk(xk+1(ℓ)− xk(ℓ))

∥∥2
+ 2

〈
W k(vk(ℓ)− 1[v̄k]ℓ) + Πk(xk+1(ℓ)− xk(ℓ)), γkLζk(ℓ)

〉
+ (γk)2∥L∥2ζk(ℓ)∥2.

(25)
Taking the conditional expectation, given Fk =

{v0, . . . , vk}, and using Assumption 4, from the preceding
relation we obtain for all k ≥ 0:

E
[
∥vk+1(ℓ)− 1[v̄k+1]ℓ∥2Fk

]
≤

∥∥W k(vk(ℓ)− 1[v̄k]ℓ) + Πk(xk+1(ℓ)− xk(ℓ))
∥∥2

+ (γk)2∥L∥2E
[
∥ζk(ℓ)∥2

]
≤

(
∥W k∥∥vk(ℓ)− 1[v̄k]ℓ∥+ ∥Πk∥∥xk+1(ℓ)− xk(ℓ)∥

)2
+ (γk)2∥L∥2E

[
∥ζk(ℓ)∥2

]
.

(26)
Now we analyze the first term on the right hand side of the
preceding inequality. Combined with the facts that ∥Πk∥ = 1
and there exists a T ≥ 0 such that 0 < ∥W k∥ ≤ 1 − γk|ρ2|
holds for k ≥ T (see Lemma 5), equation (26) implies that
there always exists a T ≥ 0 such that the following inequality
always holds for k ≥ T :

E
[
∥vk+1(ℓ)− 1[v̄k+1]ℓ∥2Fk

]
≤

(
(1− γk|ρ2|)∥vk(ℓ)− 1[v̄k]ℓ∥+ ∥xk+1(ℓ)− xk(ℓ)∥

)2
+ (γk)2∥L∥2E

[
∥ζk(ℓ)∥2

]
.

(27)
Using the inequality (a + b)2 ≤ (1 + ϵ)a2 + (1 + ϵ−1)b2

valid for any scalars a, b, and ϵ > 0, we further have

E
[
∥vk+1(ℓ)− 1[v̄k+1]ℓ∥2Fk

]
≤ (1 + ϵ)(1− γk|ρ2|)2∥vk(ℓ)− 1[v̄k]ℓ∥2

+ (1 + ϵ−1)∥ xk+1(ℓ)− xk(ℓ)∥2 + (γk)2∥L∥2E
[
∥ζk(ℓ)∥2

]
.

(28)
Setting ϵ = γk|ρ2|

1−γk|ρ2| (which leads to (1 + ϵ) = 1
1−γk|ρ2| and

1 + ϵ−1 = 1
γk|ρ2| ) yields

E
[
∥vk+1(ℓ)− 1[v̄k+1]ℓ∥2|Fk

]
≤ (1− γk|ρ2|)∥vk(ℓ)− 1[v̄k]ℓ∥2

+
1

γk|ρ2|
∥xk+1(ℓ)− xk(ℓ)∥2 + (γk)2∥L∥2E

[
∥ζk(ℓ)∥2

]
.

(29)
Summing these relations over ℓ = 1, . . . , d, and not-
ing

∑d
ℓ=1 ∥vk(ℓ) − [v̄k]ℓ1∥2 =

∑m
i=1 ∥vki − v̄k∥2,

∑d
ℓ=1 ∥xk+1(ℓ) − xk(ℓ)∥2 =

∑m
i=1 ∥x

k+1
i − xk

i ∥2, and∑d
ℓ=1 ∥ζk(ℓ)∥2 =

∑m
i=1 ∥ζki ∥2, we obtain

E

[
m∑
i=1

∥vk+1
i − v̄k+1∥2Fk

]

≤ (1− γk|ρ2|)
m∑
i=1

∥vki − v̄k∥2

+
1

γk|ρ2|

m∑
i=1

∥xk+1
i − xk

i ∥2 + (γk)2∥L∥2
m∑
i=1

(σk
i )

2.

(30)

Next, we characterize
∑m

i=1 ∥x
k+1
i − xk

i ∥2. According to (6),
we have

∥xk+1
i − xk

i ∥ =
∥∥ΠKi

[
xk
i − λkFi(x

k
i , v

k
i )
]
− xk

i

∥∥
≤

∥∥xk
i − λkFi(x

k
i , v

k
i )− xk

i

∥∥
= λk∥Fi(x

k
i , v

k
i )∥ ≤ λkC + λkL̃∥vki − v̄k∥,

(31)
where in the last inequality we used Lemma 4. The preceding
inequality further implies

∥xk+1
i − xk

i ∥2 ≤ 2(λk)2C2 + 2(λk)2L̃2∥vki − v̄k∥2. (32)

Plugging (32) into (30) yields

E

[
m∑
i=1

∥vk+1
i − v̄k+1∥2Fk

]

≤ (1− γk|ρ2|)
m∑
i=1

∥vki − v̄k∥2 + 2(λk)2L̃2

γk|ρ2|

m∑
i=1

∥vki − v̄k∥2

+
2m(λk)2C2

γk|ρ2|
+ (γk)2∥L∥2

m∑
i=1

(σk
i )

2.

(33)
Part II: Next, we analyze

∑m
i=1 ∥x

k+1
i − x∗

i ∥2.
At the Nash equilibrium x∗ = [(x∗

1)
T , (x∗

2)
T , . . . , (x∗

m)T ]T ,
we always have x∗

i = ΠKi

[
x∗
i − λkFi(x

∗
i , x̄

∗)
]
, where x̄∗ =

1
m

∑m
i=1 x

∗
i . Therefore, using (6), we have∥∥xk+1

i − x∗
i

∥∥2
=

∥∥ΠKi

[
xk
i − λkFi(x

k
i , v

k
i )
]
− x∗

i

∥∥2
=

∥∥ΠKi

[
xk
i − λkFi(x

k
i , v

k
i )
]
−ΠKi

[
x∗
i − λkFi(x

∗
i , x̄

∗)
]∥∥2

≤
∥∥xk

i − x∗
i − λk(Fi(x

k
i , v

k
i )− Fi(x

∗
i , x̄

∗))
∥∥2

≤
∥∥xk

i − x∗
i

∥∥2 + (λk)2
∥∥Fi(x

k
i , v

k
i )− Fi(x

∗
i , x̄

∗)
∥∥2

− 2
〈
xk
i − x∗

i , λ
k(Fi(x

k
i , v

k
i )− Fi(x

∗
i , x̄

∗))
〉
.

(34)
By adding and subtracting Fi(x

k
i , v̄

k) to the inner-product
term, we arrive at∥∥xk+1

i − x∗
i

∥∥2
≤

∥∥xk
i − x∗

i

∥∥2 + (λk)2
∥∥Fi(x

k
i , v

k
i )− Fi(x

∗
i , x̄

∗)
∥∥2︸ ︷︷ ︸

Term 1

− 2
〈
xk
i − x∗

i , λ
k(Fi(x

k
i , v

k
i )− Fi(x

k
i , v̄

k))
〉︸ ︷︷ ︸

Term 2

− 2
〈
xk
i − x∗

i , λ
k(Fi(x

k
i , v̄

k)− Fi(x
∗
i , x̄

∗))
〉︸ ︷︷ ︸

Term 3

.

(35)



Next, we characterize the three terms on the right hand side
of (35), i.e., Term 1, Term 2, and Term 3, respectively.

Using Lemma 4, we can bound Term 1 as follows:

Term 1 ≤ 2(λk)2
∥∥Fi(x

k
i , v

k
i )
∥∥2 + 2(λk)2 ∥Fi(x

∗
i , x̄

∗)∥2

≤ 2(λk)2
(
C + L̃∥vki − v̄k∥

)2

+ 2(λk)2C2

≤ 4(λk)2C2 + 4(λk)2L̃2∥vki − v̄k∥2 + 2(λk)2C2

= 6(λk)2C2 + 4(λk)2L̃2∥vki − v̄k∥2.
(36)

Applying Cauchy–Schwarz inequality to Term 2 yields

Term 2

≥ −2λk∥xk
i − x∗

i ∥
∥∥Fi(x

k
i , v

k
i )− Fi(x

k
i , v̄

k)
∥∥

≥ − (λk)2∥xk
i − x∗

i ∥2

γk
− γk

∥∥Fi(x
k
i , v

k
i )− Fi(x

k
i , v̄

k)
∥∥2

≥ − (λk)2∥xk
i − x∗

i ∥2

γk
− γkL̃2

∥∥vki − v̄k
∥∥2 ,

(37)
where in the last inequality we used Assumption 2, and in the
second inequality we used the inequality 2ab ≤ a2

ϵ + ϵb2 valid
for any a ∈ R, b ∈ R, and ϵ > 0.

We use Lemma 3 to treat Term 3. According to Lemma 3,
we always have v̄k = x̄k, which further leads to

Term 3 = 2
〈
xk
i − x∗

i , λ
k(Fi(x

k
i , x̄

k)− Fi(x
∗
i , x̄

∗))
〉

= 2λk
(
Fi(x

k
i , x̄

k)− Fi(x
∗
i , x̄

∗)
)T

(xk
i − x∗

i ).
(38)

Plugging (36), (37), and (38) into (35) yields∥∥xk+1
i − x∗

i

∥∥2 ≤
∥∥xk

i − x∗
i

∥∥2 + 4(λk)2L̃2∥vki − v̄k∥2

+ 6(λk)2C2 +
(λk)2∥xk

i − x∗
i ∥2

γk
+ γkL̃2

∥∥vki − v̄k
∥∥2

− 2λk
(
Fi(x

k
i , x̄

k)− Fi(x
∗
i , x̄

∗)
)T

(xk
i − x∗

i ).
(39)

Summing (39) from i = 1 to i = m yields

m∑
i=1

∥∥xk+1
i − x∗

i

∥∥2≤ m∑
i=1

∥∥xk
i − x∗

i

∥∥2+4(λk)2L̃2
m∑
i=1

∥vki − v̄k∥2

+
(λk)2

∑m
i=1 ∥xk

i − x∗
i ∥2

γk
+ γkL̃2

m∑
i=1

∥∥vki − v̄k
∥∥2

+ 6m(λk)2C2 − 2λk
(
ϕ(xk)− ϕ(x∗)

)T
(xk − x∗).

(40)
From Assumption 1, we know that

(
ϕ(xk)− ϕ(x∗)

)T
(xk−

x∗) in the last term on the right hand side of the proceeding
inequality is positive for all xk ̸= x∗.

Next, we combine Step I and Step II to prove the theorem.
Defining vk =

[∑m
i=1 ∥xk

i − x∗
i ∥2,

∑m
i=1 ∥vki − v̄k∥2

]T
,

we have the following relations from (33) and (40):

E
[
vk+1|Fk

]
≤ (V k +Ak)vk − 2λkΦk +Bk, (41)

where

V k =

[
1 L̃2γk

0 1− γk|ρ2|

]
,

Ak =

[
(λk)2

γk 4(λk)2L̃2

0 2(λk)2L̃2

γk|ρ2|

]
,

Φk =

[ (
ϕ(xk)− ϕ(x∗)

)T
(xk − x∗)

0

]
,

Bk =

[
6m(λk)2C2

2m(λk)2C2

γk|ρ2| + (γk)2∥L∥2
∑m

i=1(σ
k
i )

2

]
.

Using Assumption 4 and the conditions of the theorem∑∞
k=T (γ

k)2 < ∞ and
∑∞

k=T
(λk)2

γk < ∞, we have that all ele-
ments of the matrices of Ak and Bk are summable. Therefore,
we have

∑m
i=1 ∥xk

i − x∗
i ∥2 and

∑m
i=1 ∥vki − v̄k∥2 satisfying

the conditions of Proposition 1 with κ1 = L̃2, κ2 = |ρ2|,
ck = 2λk, ak = max{ (λk)2

γk , 4(λk)2L̃2, 2(λk)2L̃2

γk|ρ2| }, and bk =

max{6m(λk)2C2, 2m(λk)2C2

γk|ρ2| + (γk)2∥L∥2
∑m

i=1(σ
k
i )

2}.

Remark 6. The conditions for {γk} and {λk} can be satisfied,
e.g., by setting λk = c1

1+c2k
and γk = c3

1+c4kϱ with any 0.5 <
ϱ < 1, c1 > 0, c2 > 0, c3 > 0, and c4 > 0.

Remark 7. In the derivation, it can be seen that the aggregate-
estimation error

∑m
i=1 ∥vki − v̄k∥ does not decrease geo-

metrically with k, which makes it impossible to use existing
proof techniques for distributed Nash-equilibrium computation
algorithms. In fact, in existing distributed Nash-equilibrium
computation algorithms (e.g., [5], [23], [24], [25], [26]) and
their stochastic variants (e.g., [27] and [20]), because the
inter-player interaction is persistent, the aggregate-estimation
error

∑m
i=1 ∥vki − v̄k∥ always decreases geometrically, which

makes it possible to separate the evolution analysis of the
aggregate-estimation error and the decision distance from
the Nash equilibrium. However, in the proposed algorithm,
the diminishing γk leads to a non-geometric decreasing of
the aggregate-estimation error, which makes it impossible to
analyze the evolution of the aggregate estimate vki and the
decision xk

i separately, and hence makes the proposed proof
technique fundamentally different from existing analysis.

Remark 8. Communication imperfections can be modeled as
channel noises, which can be regarded as the differential-
privacy noise here. Therefore, Algorithm 1 can also counteract
such communication imperfections in distributed equilibrium
seeking of aggregative games.

Remark 9. Using Lemma 4 in [21], we can obtain from
(33) that

∑m
i=1 ∥vki − v̄k∥2 decreases to zero with a rate of

O((λ
k

γk )
2). Similarly, when ϕ(x) is strongly monotone, i.e.,

((ϕ(x)− ϕ(x′))
T
(x − x′) > c∥x − x′∥2 for some c > 0

and all x, x′ ∈ K, we can obtain that
∑m

i=1 ∥x
k+1
i − x∗

i ∥2
decreases to zero with a rate of O(λ

k

γk ). Moreover, from (33),
it can be seen that the decreasing speed of

∑m
i=1 ∥vki − v̄k∥2

increases with an increase in |ρ2|, which corresponds to the
second largest eigenvalue of L. Therefore, the decreasing
speed of

∑m
i=1 ∥vki − v̄k∥2 to zero increases with an increase



in the absolute value of the second largest eigenvalue of L in
Assumption 3. Given that −L corresponds to the conventional
Laplacian weight matrix and an increase in |ρ2| implies
a stronger network connectivity according to the algebraic
graph theory [32], we have that the converging speed of∑m

i=1 ∥vki − v̄k∥2 to zero increases with an increase in
network connectivity. Of course, since the algorithm requires
each agent to share its noisy estimate with all its neighbors,
a stronger connectivity could also mean more information
exchange.

B. Privacy Analysis for Algorithm 1

Note that in the proposed algorithm, the output is the estima-
tion of the aggregate decision, i.e., vk ≜ [(vk1 )

T , · · · , (vkm)T ]T .
Then, following the idea of differential-privacy design for
distributed optimization in [34], we define the sensitivity of
a distributed Nash-equilibrium seeking algorithm to problem
(1) as follows (see Sec. II.B. for the definition of the mapping
AP,O,ϑ0 [k]):

Definition 3. At each iteration k, for any initial state ϑ0 and
any adjacent distributed games P and P ′, the sensitivity of a
Nash-equilibrium seeking algorithm is

∆k ≜ sup
O∈O

{
sup

vk∈AP,O,ϑ0 [k], v′k∈AP′,O,ϑ0 [k]

∥vk − v′k∥1

}
. (42)

Then, we have the following lemma:

Lemma 6. In Algorithm 1, at each iteration k, if each player
adds a noise vector ζki ∈ Rd consisting of d independent
Laplace noises with parameter νk to shared messages vki such
that

∑T0

k=1
∆k

νk ≤ ϵ̄, then the iterative distributed Algorithm 1
is ϵ-differentially private with the cumulative privacy budget
for iterations from k = 0 to k = T0 less than ϵ̄.

Proof. The lemma can be obtained following the same line of
reasoning of Lemma 2 in [34] (also see Theorem 3 in [19]).

Remark 10. By replacing the ℓ1 norm in the sensitivity
Definition 3 with the ℓ2 norm, we can also employ Gaus-
sian noise to achieve a given differential-privacy protection
(budget) ϵk for iteration k (see Appendix A of [18]). Then,
as long as the added noises are independent across differ-
ent iterations, we can leverage the sequential composition
property of differential privacy (see Theorem 3.20 of [18])
to compute the cumulative privacy budget and obtain a result
similar to Lemma 6 under Gaussian-noise based differential-
privacy design.

Theorem 2. Under Assumptions 1, 2 3, if {λk} and {γk}
satisfy the conditions in Theorem 1, and all elements of ζki
are drawn independently from Laplace distribution Lap(νk)
with (σk

i )
2 = 2(νk)2 satisfying Assumption 4, then all players

will converge almost surely to the Nash equilibrium. Moreover,
1) For any finite number of iterations T0, Algorithm 1

is ϵ-differentially private with the cumulative privacy
budget bounded by ϵ ≤

∑T0

k=1
Cςk

νk where ςk ≜∑k−1
p=1(Π

k−1
q=p(1 − L̄γq)) + 1, L̄ ≜ mini{|Lii|}, and

C ≜ maxi∈[m],0≤k≤T0−1{∥xk+1
i −xk

i −(x′k+1
i −x′k

i )∥1}
(note that C is always finite since the algorithm ensures
convergence in both P and P ′);

2) The cumulative privacy budget is always finite for T0 →
∞ when the sequence {λk

νk } is summable.

Proof. Because the Laplace noise satisfies Assumption 4, it
follows from Theorem 1 that the iterate xk

i of every player i
will converge to the Nash equilibrum x∗

i almost surely.
To prove the statements on differential privacy, we first

analyze the sensitivity of Algorithm 1. Given two adjacent
distributed games P and P ′, for any given fixed observation O
and initial state

[
(x0)T , (v0)T

]T
, the sensitivity is determined

by ∥vk − v′k∥1 according to Definition 3. Since in P and P ′,
there is only one payoff function that is different, we represent
this different payoff function as the ith one, i.e., fi(·), without
loss of generality.

Because the initial conditions, payoff functions, and obser-
vations of P and P ′ are identical for j ̸= i, we have vkj = v′j

k

for all j ̸= i and k. Therefore, ∥vk − v′k∥1 is always equal to
∥vki − v′i

k∥1.
Since the sensitivity is independent of the magnitude of

Laplace noises added for differential privacy, we calculate
sensitivity in the noise-free case. Then, according to the update
rule in (6), we have

vk+1
i − v′i

k+1
=(1 + Liiγ

k)(vki − v′i
k
)

+ xk+1
i − xk

i − (x′k+1
i − x′k

i ).

Note that we have used the definition Lii ≜ −
∑

j∈Ni
Lij and

the fact that the observations vkj and v′j
k are the same.

Hence, the sensitivity ∆k satisfies

∆k+1 ≤ (1− |Lii|γk)∆k + ∥xk+1
i − xk

i − (x′k+1
i − x′k

i )∥1.

which, implies the first statement by iteration using Lemma 6.
For the infinite horizon result in the second statement, we

exploit the fact that our algorithm ensures convergence in both
P and P ′. This means that ∥xk+1

i −xk
i − (x′k+1

i −x′k
i )∥1 = 0

will be satisfied when k is large enough using the third con-
dition in Definition 1. Furthermore, the ensured convergence
also means that ∥xk+1

i − xk
i − (x′k+1

i − x′k
i )∥1 is always

bounded. Hence, there always exists some constant C such
that the sequence {∥xk+1

i − xk
i − (x′k+1

i − x′k
i )∥1} is upper

bounded by the sequence {Cγkλk}.
Therefore, according to Lemma 4 in [21], there always

exists a constant C̄ such that ∆k ≤ C̄λk holds. Using Lemma
6, we can easily obtain ϵ ≤

∑T0

k=1
C̄λk

νk . Hence, ϵ will be
finite even when T0 tends to infinity if the sequence {λk

νk } is
summable, i.e.,

∑∞
k=0

λk

νk < ∞.

Note that to ensure that the cumulative differential-privacy
budget is finite (an unbounded privacy budget means complete
loss of privacy protection), [19] and [34] have to use a
summable stepsize (geometrically-decreasing stepsize, more
specifically), which, however, also makes it impossible to
ensure convergence to the exact desired equilibrium. In our
approach, by allowing the stepsize sequence to be non-
summable, we achieve both accurate convergence and finite



cumulative privacy budget, even when the number of iterations
goes to infinity. In fact, to our knowledge, this is the first time
that almost-sure convergence to a Nash equilibrium is achieved
under rigorous ϵ-differential privacy even with the number of
iterations going to infinity.

Remark 11. It is worth noting that to ensure the boundedness
of the cumulative privacy budget ϵ =

∑∞
k=1

C̄λk

νk when
k → ∞, our algorithm uses Laplace noise with parameter
νk increasing with time (since we require λk

νk to be summable
while {λk} is non-summable). Because the strength of shared
signal is always vki , an increasing νk makes the relative level
between noise ζki and signal vki increase with time. However,
since what actually feeds into the algorithm is γkLap(νk),
and the increase in the noise level νk is outweighed by the
decrease of γk (see Assumption 4), the actual noise fed into the
algorithm still decays with time, which makes it possible for
Algorithm 1 to ensure every player’s almost sure convergence
to the Nash equilibrium. Moreover, according to Theorem 1,
such almost sure convergence is not affected by scaling νk by
any constant coefficient 1

ϵ > 0 so as to achieve any desired
level of ϵ-differential privacy, as long as the Laplace noise
parameter νk (with associated variance (σk

i )
2 = 2(νk)2)

satisfies Assumption 4.

It is worth noting that our algorithms’ simultaneous achieve-
ment of both provable accuracy and ϵ-differential privacy does
not contradict the fundamental trade-off between utility and
privacy in the differential-privacy theory [18]. In fact, despite
avoiding trading off convergence accuracy, our approach does
pay a utility price in convergence speed. More specifically,
in order to reduce ϵ to enhance privacy, we can use a faster-
increasing {νk} according to Theorem 2, which requires {γk}
to decrease faster from Assumption 4. Given that according
to Remark 9, the convergence speed is determined by O(λ

k

γk ),
whose decreasing speed to zero reduces with an increase in
the decreasing speed of γk, we arrive at the conclusion that
a stronger privacy protection comes with a price of a slower
convergence speed.

IV. EXTENSION TO STOCHASTIC AGGREGATIVE GAMES

In this section, we prove that the proposed distributed
algorithm can ensure the almost sure convergence of all agents
to the Nash equilibrium even when individual agents only have
access to a stochastic estimate of their payoff functions. Such
stochastic Nash-equilibrium seeking problems arise frequently
in practical applications like electricity markets [8], [28] and
transportation systems [39] where the payoff functions are
subject to stochastic uncertainties.

Representing the stochastic version of the payoff functions
as fi(xi, x̄, ξi) for player i, where x̄ ≜

∑m
i=1 xi

m , and ξi ∈
Rd is a random vector, we can formulate the stochastic game
that player i faces as the following parameterized optimization
problem:

minE [fi(xi, x̄, ξi)] s.t. xi ∈ Ki and x̄ ∈ K̄, (43)

where the expected value is taken with respect to ξi. The
constraint set Ki and the function fi(·) are assumed to be
known to player i only.

When the payoff functions are given through the expecta-
tion, the pseudo-gradients that individual players can access
become stochastic, i.e., the gradient mapping F (x, x̄) has
components

Fi(x, x̄) = E [∇xi
fi(xi, x̄, ξi)] , ∀i ∈ [m].

In this case, in Algorithm 1, the mapping Fi(x
k
i , v

k
i ) is

replaced with a sampled mapping

F̃i(x
k
i , v

k
i , ξ

k
i ) = ∇xi

fi(x
k
i , v

k
i , ξ

k
i ), ∀i ∈ [m].

Accordingly, our privacy-preserving distributed algorithm re-
duces to:

Algorithm 2: Differentially-private distributed algorithm
for stochastic aggregative games with guaranteed
convergence

Parameters: Stepsize λk > 0 and weakening factor γk > 0.
Every player i maintains one decision variable xk

i , which is
initialized with a random vector in Ki ⊆ Rd, and an estimate
of the aggregate decision vki , which is initialized as v0i = x0

i .
for k = 1, 2, . . . do

a) Every player j adds persistent differential-privacy noise ζkj
to its estimate vkj , and then sends the obscured estimate
vkj + ζkj to agent i ∈ Nj .

b) After receiving vkj + ζkj from all j ∈ Ni, player i updates
its decision variable and estimate as follows:

xk+1
i = ΠKi

[
xk
i − λk∇F̃i(x

k
i , v

k
i , ξ

k
i )
]
,

vk+1
i = vki + γk

∑
j∈Ni

Lij(v
k
j + ζkj − vki − ζki ) + xk+1

i − xk
i .

(44)
c) end

A. Convergence Analysis

Next, we prove that Algorithm 2 can ensure the convergence
of the decision vector xk ≜ [(xk

1)
T , · · · , (xk

m)T ]T to the exact
Nash equilibrium point x∗ ≜ [(x∗

1)
T , · · · , (x∗

m)T ]T , even in
the presence of differential-privacy noise ζki and stochastic
pseudo-gradient F̃i(xi, v

k
i , ξ

k
i ). To this end, similar to [28],

we first formalize the noise in pseudo-gradients:

Assumption 5. Let Fk ≜ {ξ0, · · · , ξk} be the family of
sigma algebra with ξk = [(ξk1 )

T , · · · , (ξkm)T ]T , we have the
following relationship almost surely:

E
[
F̃i(x

k
i , v

k
i , ξ

k
i )|Fk

]
= Fi(x

k
i , v

k
i ), (45)

E
[∥∥∥F̃i(x

k
i , v

k
i , ξ

k
i )− Fi(x

k
i , v

k
i )
∥∥∥2 |Fk

]
≤ (µk)2, (46)

where µk is some positive scalar.

Theorem 3. Under Assumptions 1, 2, 3, 4, 5, if there exists
some T ≥ 0 such that for all k ≥ T , γk and λk satisfy the
following conditions:
∞∑

k=T

γk = ∞,
∞∑

k=T

λk = ∞,
∞∑

k=T

(γk)2 < ∞,
∞∑

k=T

(λk)2

γk
< ∞,



and
∑∞

k=T (λ
kµk)2 < ∞, then Algorithm 2 converges to the

Nash equilibrium of the game in (43) almost surely.

Proof. Similar to the proof of Theorem 1, the basic idea is still
to apply Proposition 1 to the quantities

∑m
i=1 ∥x

k+1
i −x∗

i ∥2 and∑m
i=1 ∥v

k+1
i − v̄k+1∥2. Since the stochasticity in F̃i(xi, x̄, ξ

k
i )

does not affect the dynamics of vki , the relationship for∑m
i=1 ∥v

k+1
i − v̄k+1∥2 in Algorithm 1 still holds under Al-

gorithm 2, i.e., we still have

E

[
m∑
i=1

∥vk+1
i − v̄k+1∥2Fk

]

≤ (1− γk|ρ2|)
m∑
i=1

∥vki − v̄k∥2 + 2(λk)2L̃2

γk|ρ2|

m∑
i=1

∥vki − v̄k∥2

+
2m(λk)2C2

γk|ρ2|
+ (γk)2∥L∥2

m∑
i=1

(σk
i )

2

(47)
for Fk = {x0, v0, · · · , xk, vk}.

Therefore, we only characterize
∑m

i=1 ∥x
k+1
i −x∗

i ∥2, whose
evolution is affected by the replacement of Fi(x

k
i , v

k
i ) with

F̃i(x
k
i , v

k
i , ξ

k
i ).

Using the relation x∗
i = ΠKi

[
x∗
i − λkFi(x

∗
i , x̄

∗)
]

with
x̄∗ = 1

m

∑m
i=1 x

∗
i , from (44), we can arrive at∥∥xk+1

i − x∗
i

∥∥2
=

∥∥∥ΠKi

[
xk
i − λkF̃i(x

k
i , v

k
i , ξ

k
i )
]
− x∗

i

∥∥∥2
=

∥∥∥ΠKi

[
xk
i − λkF̃i(x

k
i , v

k
i , ξ

k
i )
]
−ΠKi

[
x∗
i − λkFi(x

∗
i , x̄

∗)
]∥∥∥2

≤
∥∥∥xk

i − x∗
i − λk(F̃i(x

k
i , v

k
i , ξ

k
i )− Fi(x

∗
i , x̄

∗))
∥∥∥2

≤
∥∥xk

i − x∗
i

∥∥2 + (λk)2
∥∥∥F̃i(x

k
i , v

k
i , ξ

k
i )− Fi(x

∗
i , x̄

∗)
∥∥∥2

− 2
〈
xk
i − x∗

i , λ
k(F̃i(x

k
i , v

k
i , ξ

k
i )− Fi(x

∗
i , x̄

∗))
〉
.

(48)
For the second term on the right hand side of the above

inequality, we can bound it by adding and subtracting
Fi(x

k
i , v

k
i ):∥∥∥F̃i(x
k
i , v

k
i , ξ

k
i )− Fi(x

∗
i , x̄

∗)
∥∥∥2

=
∥∥∥F̃i(x

k
i , v

k
i , ξ

k
i )− Fi(x

k
i , v

k
i ) + Fi(x

k
i , v

k
i )− Fi(x

∗
i , x̄

∗)
∥∥∥2

≤2
∥∥∥F̃i(x

k
i , v

k
i , ξ

k
i )− Fi(x

k
i , v

k
i )
∥∥∥2

+ 2
∥∥Fi(x

k
i , v

k
i )− Fi(x

∗
i , x̄

∗)
∥∥2 .

(49)
Plugging (49) into (48) yields∥∥xk+1

i − x∗
i

∥∥2
≤

∥∥xk
i − x∗

i

∥∥2 + 2(λk)2
∥∥∥F̃i(x

k
i , v

k
i , ξ

k
i )− Fi(x

k
i , v

k
i )
∥∥∥2

+ 2(λk)2
∥∥Fi(x

k
i , v

k
i )− Fi(x

∗
i , x̄

∗)
∥∥2

− 2
〈
xk
i − x∗

i , λ
k(F̃i(x

k
i , v

k
i , ξ

k
i )− Fi(x

∗
i , x̄

∗))
〉
.

(50)

Taking the conditional expectation, given Fk =
{v0, x0, . . . , vk, xk }, from the preceding relation we
obtain for all k ≥ 0:

E
[∥∥xk+1

i − x∗
i

∥∥2 |Fk
]
≤

∥∥xk
i − x∗

i

∥∥2 + 2(λkµk)2

+ 2(λk)2
∥∥Fi(x

k
i , v

k
i )− Fi(x

∗
i , x̄

∗)
∥∥2

− 2
〈
xk
i − x∗

i , λ
k(Fi(x

k
i , v

k
i )− Fi(x

∗
i , x̄

∗))
〉
,

(51)

where we used the assumption that F̃i(x
k
i , v

k
i , ξ

k
i ) is an

unbiased estimate of Fi(x
k
i , v

k
i ) with variance (µk)2 (see

Assumption 5).
By adding and subtracting Fi(x

k
i , v̄

k) to the inner-product
term, we arrive at

E
[∥∥xk+1

i − x∗
i

∥∥2 |Fk
]
≤

∥∥xk
i − x∗

i

∥∥2 + 2(λkµk)2

+ 2 (λk)2
∥∥Fi(x

k
i , v

k
i )− Fi(x

∗
i , x̄

∗)
∥∥2︸ ︷︷ ︸

Term 1

− 2
〈
xk
i − x∗

i , λ
k(Fi(x

k
i , v

k
i )− Fi(x

k
i , v̄

k))
〉︸ ︷︷ ︸

Term 2

− 2
〈
xk
i − x∗

i , λ
k(Fi(x

k
i , v̄

k)− Fi(x
∗
i , x̄

∗))
〉︸ ︷︷ ︸

Term 3

.

(52)

The three terms on the right hand side of (52) can be
bounded in a similar way to Theorem 1:

Term 1 ≤ 12(λk)2C2 + 8(λk)2L̃2∥vki − v̄k∥2, (53)

Term 2 ≥ − (λk)2∥xk
i − x∗

i ∥2

γk
,−γkL̃2

∥∥vki − v̄k
∥∥2 , (54)

Term 3 = 2λk
(
Fi(x

k
i , x̄

k)− Fi(x
∗
i , x̄

∗)
)T

(xk
i − x∗

i ).
(55)

Plugging (53), (54), and (55) into (52) yields

E
[∥∥xk+1

i − x∗
i

∥∥2 |Fk
]
≤

∥∥xk
i − x∗

i

∥∥2 + 2(λkµk)2

+ 12(λk)2C2 + 8(λk)2L̃2∥vki − v̄k∥2 + (λk)2∥xk
i − x∗

i ∥2

γk

+ γkL̃2
∥∥vki − v̄k

∥∥2−2λk
(
Fi(x

k
i , x̄

k)−Fi(x
∗
i , x̄

∗)
)T
(xk

i − x∗
i ).

(56)
Summing (39) from i = 1 to i = m yields

E

[
m∑
i=1

∥∥xk+1
i − x∗

i

∥∥2 |Fk

]

≤
m∑
i=1

∥∥xk
i − x∗

i

∥∥2 + 2m(λkµk)2 + 12m(λk)2C2

+ 8(λk)2L̃2
m∑
i=1

∥vki − v̄k∥2 +
(λk)2

∑m
i=1 ∥xk

i − x∗
i ∥2

γk

+ γkL̃2
m∑
i=1

∥∥vki − v̄k
∥∥2 − 2λk

(
ϕ(xk)− ϕ(x∗)

)T
(xk − x∗).

(57)
Similar to the derivation in Theorem 1, we have

the following relations from (47) and (57) for vk =[∑m
i=1 ∥xk

i − x∗
i ∥2,

∑m
i=1 ∥vki − v̄k∥2

]T
:

E
[
vk+1|Fk

]
≤ (V k +Ak)vk − 2λkΦk +Bk, (58)



where

V k =

[
1 L̃2γk

0 1− γk|ρ2|

]
,

Ak =

[
(λk)2

γk 8(λk)2L̃2

0 2(λk)2L̃2

γk|ρ2|

]
,

Φk =

[ (
ϕ(xk)− ϕ(x∗)

)T
(xk − x∗)

0

]
,

Bk =

[
2m(λkµk)2 + 12m(λk)2C2

2m(λk)2C2

γk|ρ2| + (γk)2∥L∥2
∑m

i=1(σ
k
i )

2

]
.

Using Assumption 4 and the conditions of the the-
orem

∑∞
k=T (γ

k)2 < ∞,
∑∞

k=T
(λk)2

γk < ∞, and∑∞
k=T (λ

kµk)2 < ∞, we have that all elements of the
matrices of Ak and Bk are summable. Therefore, we
have

∑m
i=1 ∥xk

i − x∗
i ∥2 and

∑m
i=1 ∥vki − v̄k∥2 satisfying

the conditions of Proposition 1 with κ1 = L̃2, κ2 =

|ρ2|, ck = 2λk, ak = max{ (λk)2

γk , 8(λk)2L̃2, 2(λk)2L̃2

γk|ρ2| },

and bk = max{2m(λkµk)2 + 12m(λk)2C2, 2m(λk)2C2

γk|ρ2| +

(γk)2∥L∥2
∑m

i=1(σ
k
i )

2}.

Remark 12. Note that different from [20], [27] which deal
with stochastic pseudo-gradients with decreasing variances
(by increasing sample sizes), our Algorithm 2 allows the
variance (µk)2 to be constant and even increasing with
time. For example, when λk is set as c1

1+c2k
, the condition∑∞

k=T (λ
kµk)2 < ∞ in Theorem 3 can be satisfied for

µk = c3 + c4k
ν with any 0 < ν < 0.5 and positive constants

c1, c2, c3, and c4.

Remark 13. We can obtain that the convergence of∑m
i=1 ∥x

k+1
i − x∗

i ∥2 follows

E

[
m∑
i=1

∥xk+1
i − x∗

i ∥2|Fk

]
≤ (1 + ak)

m∑
i=1

∥x̄k
i − x∗

i ∥2 + b̂k,

(59)
where all parameters are from Proposition 1 and b̂k =(
κ1γ

k + ak
)∑m

i=1 ∥vki −v̄k∥2+bk. Given that the stochasticty
in F̃i(x

k
i , v

k
i , ξ

k
i ) only increases the value of bk but does not

affect its order (still summable), we can use an argument
similar to Remark 9 to obtain that the convergence of all
players to the Nash equilibrium is still no slower than the
order of O(λ

k

γk ). Moreover, since the evolution of vki is not
affected by the stochasticity in F̃i(x

k
i , v

k
i , ξ

k
i ) and still follows

(33), we have that the decreasing speed of
∑m

i=1 ∥vki − v̄k∥2
still increases with an increase in |ρ2|, which corresponds to
the second largest eigenvalue of L. Therefore, the decreasing
speed of

∑m
i=1 ∥vki − v̄k∥2 to zero increases with an increase

in the absolute value of the second largest eigenvalue of L in
Assumption 3.

B. Privacy Analysis for Algorithm 2

Similar to the privacy analysis in Sec. III-B, we can also
analyze the strength of differential privacy for Algorithm 2:

Theorem 4. Under Assumptions 1, 2, 3, and 5, if {λk}, {γk},
and {µk} satisfy the conditions in Theorem 3, and all elements
of ζki are drawn independently from Laplace distribution
Lap(νk) with (σk

i )
2 = 2(νk)2 satisfying Assumption 4, then

all players will converge almost surely to the Nash equilibrium.
Moreover,

1) For any finite number of iterations T0, Algorithm 2
is ϵ-differentially private with the cumulative privacy
budget bounded by ϵ ≤

∑T0

k=1
Cςk

νk where ςk ≜∑k−1
p=1(Π

k−1
q=p(1 − L̄γq)) + 1, L̄ ≜ mini{|Lii|}, and

C ≜ maxi∈[m],0≤k≤T0−1{∥xk+1
i −xk

i −(x′k+1
i −x′k

i )∥1}
(note that C is always finite since the algorithm ensures
convergence in both P and P ′);

2) The cumulative privacy budget is always finite for T0 →
∞ when the sequence {λk

νk } is summable.

Proof. The derivation follows the proof of Theorem 2, and
hence is omitted here.

V. NUMERICAL SIMULATIONS

In this section, we evaluate the performance of the pro-
posed differentially-private distributed Nash-equilibrium seek-
ing algorithms using a networked Nash-Cournot game. More
specifically, we consider m firms producing a homogeneous
commodity competing over N markets, which has been con-
sidered recently in [5], [7], [9]. Fig. 1 presents a schematic
of the problem involving N = 7 markets (represented by
M1, · · · ,M7) and m = 20 firms (represented by circles). In
the figure, an edge from circle i to Mj means that firm i
participates in market Mj .

We consider the setting where a firm can only see partial
decision information of the network. Namely, every firm can
only communicate with its immediate neighbors and no central
coordinator exists which can communicate with all firms. As in
[5], [7], we allow firms to communicate with their immediate
neighbors to share their production decisions. In the considered
scenario, we use xi ∈ RN to represent the amount of firm i’
products. Note that a firm i is allowed to participate in 1 ≤
ni ≤ N markets, and if firm i does not participate in market j,
then the jth entry of xi will be forced to be 0 all the time. So
a firm participating in 1 ≤ ni ≤ N markets will have ni non-
zero entries in the production vector xi. For the convenience
of bookkeeping, we use an adjacency matrix Bi ∈ RN×N

to describe the association relationship between firm i and
all the markets. More specifically, Bi has zero off-diagonal
elements and its (j, j)th entry is 1 when firm i participates in
market j, otherwise, its (j, j)th entry is zero. Every firm i has
a maximal capacity for each market j it participates in, which
is represented by Cij . Denoting Ci ≜ [Ci1, · · · , CiN ]T , we
always have xi ≤ Ci. Represent B as B ≜ [B1, · · · , BN ].
It can be seen that Bx ∈ RN =

∑N
i=1 Bixi represents the

total product supply to all markets, given firm i’s production
amount xi. As in [7], the commodity’s price in every market
Mi follows a linear inverse demand function, i.e., it is a linear
function of the total amount of commodity supplied to the
market: pi(x) = P̄i − χi[Bx]i, where P̄i and χi > 0 are
constants and [Bx]i denotes the ith element of the vector Bx.
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Fig. 1. Nash-Cournot game of 20 players (firms) competing over 7 locations
(markets). Each firm is represented by a circular and each market is repre-
sented by a square. An edge between firm i (1 ≤ i ≤ 20) and market j
(1 ≤ j ≤ 7) means that firm i participates in market j.
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Fig. 2. The randomly generated interaction patten of the 20 firms.

It can be seen that the price decreases with an increase in the
amount of supplied commodity.

We let p ≜ [p1, · · · , pN ]T represent the price vector of all
markets, which can be verified to satisfy p = P̄−ΞBx, where
P̄ ≜ [P̄1, · · · , P̄N ]T and Ξ ≜ diag(χ1, · · · , χN ). The total
payoff of firm i can then be expressed as pTBixi. Firm i’s
production cost is assumed to be a strongly convex, quadratic
function ci(xi) = xT

i Qixi + qTi xi, where Qi ∈ RN×N is a
positive definite matrix and qi ∈ RN .

Therefore, firm i’s local objective function, which is de-
termined by its production cost ci and payoff, is given by
fi(xi, x) = ci(xi) − (P̄ − ΞBx)TBT

i xi. And it can be
verified that the gradient the objective function is Fi(xi, x) =
2Qixi + qi +BT

i ΞBixi −Bi(P̄ −ΞBx). It is clear that both
firm i’s local objective function and gradient are dependent on
other firms’ actions.

In the implementation, we consider N = 7 markets and 20
firms. Since no firm can communicate with all the other firms,
we generate local communication patterns randomly, with the
interaction graph given in Fig. 2. The maximal capacities
for firm i (elements in Ci) are randomly selected from the
interval [8, 10]. Qi in the production cost function is set as
νI with ν randomly selected from [1, 10]. qi in ci(xi) is
randomly selected from a uniform distribution in [1, 2]. In the
price function, P̄i and χi are randomly chosen from uniform
distributions in [10, 20] and [1, 3], respectively.

To evaluate the performance of the proposed Algorithm
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Fig. 3. Comparison of Algorithm 1 with the existing distributed Nash-
equilibrium seeking algorithm by Koshal et al. in [5] (under the same
noise) and the existing differential-privacy approach for distributed aggregative
games by Ye et al. in [19] (under the same privacy budget ϵ).

1, for every firm i, we inject differential-privacy noise ζki
in every message it shares in all iterations. Each element of
the noise vector follows Laplace distribution with parameter
νk = 1 + 0.1k0.2. We set the stepsize λk and diminishing
sequence γk as λk = 0.1

1+0.1k and γk = 1
1+0.1k0.9 , respectively,

which satisfy the conditions in Theorem 1 and Theorem
2. In the evaluation, we run our algorithm for 100 times
and calculate the average as well as the variance of the
gap ∥xk − x∗∥ between generated iterate xk and the Nash
equilibrium x∗ as a function of the iteration index k. The
result is given by the red curve and error bars in Fig. 3.
For comparison, we also run the existing distributed Nash-
equilibrium seeking algorithm proposed by Koshal et al. in
[5] under the same noise, and the existing differential-privacy
approach for networked aggregative games proposed by Ye
et al. in [19] under the same cumulative privacy budget
ϵ. Note that the differential-privacy approach in [19] uses
geometrically decreasing stepsizes (to be summable) to ensure
a finite privacy budget, but the fast decreasing stepsize also
leads to the loss of guaranteed convergence to the exact Nash
equilibrium. The evolution of the average error/variance of the
approaches in [5] and [19] are given by the blue and black
curves/error bars in Fig. 3, respectively. It is clear that the
proposed algorithm has a comparable convergence speed but
much better accuracy.

Based a similar setup, we also test the proposed Algorithm
2 when individual players only have access to a stochastic
version of the payoff functions and pseudo-gradients. More
specifically, we add Gaussian noise of zero mean and unit
variance in every dimension of the pseudo-gradient vector
Fi(x

k
i , v

k
i ). The differential-privacy noise still follows Laplace

distribution with parameter νk = 1+0.1k0.2. The stepsize λk

and diminishing sequence γk are still set as λk = 0.1
1+0.1k and

γk = 1
1+0.1k0.9 , respectively, which satisfy the conditions in

Theorem 3 and Theorem 4. The result is given by the red
curve and error bars in Fig. 4. For comparison, we also run
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Fig. 4. Comparison of Algorithm 2 with the existing stochastic distributed
Nash-equilibrium seeking algorithm by Koshal et al. in [5] (under the same
noise) and the existing differential-privacy approach for distributed aggregative
games by Ye et al. in [19] (under the same privacy budget ϵ).

the existing distributed Nash-equilibrium seeking algorithm
proposed by Koshal et al. in [5] under the same noise,
and the existing differential-privacy approach for networked
aggregative games proposed by Ye et al. in [19] under the same
cumulative privacy budget ϵ. The evolution of the average
error/variance of the approaches in [5] and [19] are given by
the blue and black curves/error bars in Fig. 4, respectively.
It is clear that the proposed algorithm has a comparable
convergence speed but much better accuracy.

VI. CONCLUSIONS

Although differential privacy is becoming the de facto
standard for publicly sharing information, its direct incorpora-
tion into coordinator-free fully distributed aggregative games
leads to errors in equilibrium computation due to the need
to iteratively and repeatedly inject independent noises. This
paper proposes a fully distributed Nash-equilibrium seeking
approach for networked aggregative games that ensures both
accurate convergence to the exact Nash equilibrium and rig-
orous ϵ-differential privacy with bounded cumulative privacy
budget, even when the number of iterations goes to infinity.
The simultaneous achievement of both goals is a sharp contrast
to existing differential-privacy solutions for aggregative games
that have to trade convergence accuracy for privacy, and to
our knowledge, has not been achieved before. The approach
can also be extended to stochastic aggregative games and is
proven able to ensure both accurate convergence to the Nash
equilibrium and rigorous differential privacy, even when every
player’s stochastic estimate of the pseudo-gradient is subject to
a constant or even increasing variance. Numerical simulation
results confirm that the proposed algorithms have a better
accuracy compared with existing approaches.
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