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Abstract—We propose a distributed Nash equilibrium seeking
approach that can achieve both almost sure convergence and
rigorous differential privacy with finite cumulative privacy bud-
get, which is in sharp contrast to existing differential-privacy
solutions for networked games that have to trade provable
convergence for differential privacy. The approach is applicable
when the communication graph is directed and unbalanced.
Numerical comparison results with existing counterparts confirm
the effectiveness of the proposed approach.

I. INTRODUCTION

Nash equilibrium (NE) seeking in game theory addresses
the problem where multiple players compete to minimize their
individual cost functions [1]. In many application scenarios,
individual players only have access to the decisions of their
local neighbors, which is usually termed as games in the
partial-decision information setting [2], [3]. In contrast to
the classical full-decision information setting where a player
knows the past actions of all other players, in the partial-
decision information setting, individual players cannot eval-
uate their cost functions or gradients due to lack of necessary
information. Consequently, players have to exchange action
information with their local neighbors for NE seeking.

Significant inroads have been made in fully distributed
NE seeking (see, e.g., [4], [5], [6], [7]). However, all of
these distributed algorithms require players to share explicit
(estimated) decisions in every iteration, which is problematic
when sensitive information is involved. In fact, given that in
noncooperative games the players are not fully cooperative,
it is important for individual players to protect their private
information, which, otherwise, might be exploited by others.
Recently, several results have been reported on privacy pro-
tection in NE seeking (see, e.g., [8], [9]). However, most of
these results assume the presence of a coordinator. In the fully
distributed case, the authors in [10] exploit spatially-correlated
noise to protect the privacy of players. However, their approach
is only effective when the communication graph satisfies
certain properties. Recently, the authors of [11] have used a
constant uncertain parameter to obfuscate individual players’
pseudo-gradients. However, the privacy strength enabled by
such a constant scalar is weak in the sense that only the
exact value of the cost function is prevented from being
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uniquely identifiable. As differential privacy has emerged as
the de facto standard for privacy protection due to its strong
resilience against arbitrary post-processing [12], recent results
in [13] and [14] propose differential-privacy mechanisms for
aggregative games, which, however, have to sacrifice provable
convergence to the exact Nash equilibrium.

In this paper, we introduce a distributed NE seeking ap-
proach on directed graphs that can ensure both almost sure
convergence and rigorous ϵ-differential privacy. We propose to
gradually weaken the inter-player interaction to attenuate the
effect of differential-privacy noise in shared messages on NE
seeking. Note that inter-player interaction is necessary for all
players’ convergence to the NE (which exists and is unique in
our case), and thus we judiciously design the weakening factor
sequence and the stepsize sequence, under which we prove that
our approach can ensure provable convergence to the exact
unique NE even in the presence of differential-privacy noise.
We prove that the algorithm is ϵ-differentially private with a
finite cumulative privacy budget, even when the number of
iterations tends to infinity. It is worth noting that compared
with our recent results on differentially-private distributed
optimization [15], [16], the results here for NE seeking are
fundamentally different: agents in distributed optimization
are cooperative in computing a common objective function,
whereas players in games are competitive and only mind their
own individual cost functions. Moreover, different from our
recent results in [17] which address aggregative games on
symmetric communication graphs, this paper addresses general
networked games (that are not necessarily aggregative) on
directed communication graphs that could be unbalanced.

Notations: We use Rd to denote the Euclidean space of
dimension d. We write Id for the identity matrix of dimension
d, and 1d for the d-dimensional column vector with all entries
equal to 1. For a vector x, [x]i denotes its ith element. We
write x > 0 (resp. x ≥ 0) if all elements of x are positive
(resp. non-negative). We use ⟨·, ·⟩ to denote the inner product
and ∥x∥2 for the standard Euclidean norm of a vector x. We
use ∥x∥1 to represent the ℓ1 norm of a vector x. We write ∥A∥
for the matrix norm induced by a vector norm ∥ · ∥. For two
vectors u and v with the same dimension, we write u ≤ v to
mean that each entry of u is no larger than the corresponding
entry of v. We use a.s. to denote almost surely or almost sure,
depending on the syntax context.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. On Networked Games

We consider a networked game among a set of m players,
i.e., [m] = {1, 2, . . . ,m}. Player i is characterized by a
feasible action set Ωi ⊆ Rdi and a cost function fi(xi, x−i)



where xi ∈ Ωi is the decision of player i and x−i ≜
[xT

1 , · · · , xT
i−1, x

T
i+1, · · · , xT

m]T denotes the joint decisions of
all players except player i. Note that we allow different xi to
have different dimensions di.

Traditionally when a mediator/coordinator exists, every
player i can access all other players’ decisions x−i. Then,
the game that player i faces can be formulated as:

min fi(xi, x−i) s.t. xi ∈ Ωi and x−i ∈ Ω−i. (1)

The function fi(·) is assumed to be known to player i only.
At the NE x∗ = [(x∗

1)
T , . . . , (x∗

m)T ]T ∈ RD with D =∑m
i=1 di, each player has fi(x∗

i , x
∗
−i) ≤ fi(xi, x

∗
−i), ∀xi ∈ Ωi.

Namely, at the NE, no player can unilaterally reduce its cost
by changing its own decision.

We consider a scenario where no mediator/coordinator
exists, and players share decisions locally among neighbors,
which is commonly referred to as the partial-decision infor-
mation scenario [2]. We use a directed graph G = ([m], E) to
denote the communication pattern where [m] = {1, 2, . . . ,m}
is the set of nodes (players) and E ⊆ [m] × [m] is the
edge set of ordered node pairs describing the interactions
among players. We also use the notion of directed graph
induced by a weight matrix L = {Lij} ∈ Rm×m, denoted
as GL = ([m], EL). More specifically, in GL = ([m], EL),
a directed edge (i, j) from agent j to agent i exists, i.e.,
(i, j) ∈ EL if and only if Lij > 0. For a player i ∈ [m],
its in-neighbor set Nin

i is defined as the collection of players
j such that Lij > 0; similarly, the out-neighbor set Nout

i of
player i is the collection of players j such that Lji > 0.

Assumption 1. For all i ∈ [m], fi(xi, x−i) is convex and
differentiable in xi over Rdi under each given x−i.

To characterize the NE of the game (1), we also define

ϕ(x) ≜
(
FT
1 (x1, x−1), · · · , FT

m(xm, x−m)
)T

, (2)

where Fi(xi, x−i) ≜ ∇xifi(xi, x−i).

Assumption 2. ϕ(x) is strongly monotone over Ω ≜ Ω1 ×
· · ·×Ωm, i.e., for all x ̸= x′ in Ω, (ϕ(x)− ϕ(x′))

T
(x−x′) ≥

µ∥x − x′∥ holds for some µ > 0. Each mapping Fi(xi, x−i)
is Lipschitz continuous in both of its arguments, xi and x−i.
Namely, for all xi, yi ∈ Rdi and x−i, y−i ∈ RD−di , where
D =

∑m
i=1 di, ∥Fi(xi, x−i)− Fi(yi, x−i)∥2 ≤ K1∥xi − yi∥2

and ∥Fi(xi, x−i)−Fi(xi, y−i)∥2 ≤ K2∥x−i−y−i∥2 hold for
all i ∈ [m], where K1 , K2 are some constants.

Assumption 2 ensures that (1) has a unique NE x∗ [18].

Assumption 3. The off-diagonal entries of the matrix L =
{Lij} ∈ Rm×m are non-negative and its diagonal entries
Lii = −

∑m
j=1 Lij satisfy Lii > −1 for all i ∈ [m]. Moreover,

the digraph GL is strongly connected.

In the analysis of our approach, we use the following results:

Lemma 1. (Lemma 2 of [15]) Let {vk},{αk}, and {pk} be
random nonnegative scalar sequences, and {qk} be a deter-
ministic nonnegative scalar sequence satisfying

∑∞
k=0 α

k <
∞ a.s.,

∑∞
k=0 q

k = ∞,
∑∞

k=0 p
k < ∞ a.s., and

E
[
vk+1|Fk

]
≤ (1 + αk − qk)vk + pk, ∀k ≥ 0 a.s.

where Fk = {vℓ, αℓ, pℓ; 0 ≤ ℓ ≤ k}. Then,
∑∞

k=0 q
kvk < ∞

and limk→∞ vk = 0 hold almost surely.

Lemma 2. (Lemma 5 of [15]) Let {vk} ⊂ Rd and {uk} ⊂ Rp

be random nonnegative vector sequences, and {ak} and {bk}
be random nonnegative scalar sequences such that

E
[
vk+1|Fk

]
≤ (V k + ak11T )vk + bk1−Hkuk, ∀k ≥ 0

holds a.s., where {V k} and {Hk} are random sequences
of nonnegative matrices and E

[
vk+1|Fk

]
denotes the con-

ditional expectation given vℓ,uℓ, aℓ, bℓ, V ℓ, Hℓ for ℓ =
0, 1, . . . , k. Assume that {ak} and {bk} satisfy

∑∞
k=0 a

k < ∞
and

∑∞
k=0 b

k < ∞ a.s., and that there exists a (deterministic)
vector π > 0 such that πTV k ≤ πT and πTHk ≥ 0 hold a.s.
for all k ≥ 0. Then, we have 1) {πTvk} converges to some
random variable πTv ≥ 0 a.s.; 2) {vk} is bounded a.s.; and
3)

∑∞
k=0 π

THkuk < ∞ holds almost surely.

Lemma 3. [15] Let {vk} be a nonnegative sequence, and
{αk} and {βk} be positive sequences satisfying

∑∞
k=0 α

k =

∞ and limk→∞ αk = 0, and βk

αk converges to 0 with a
polynomial decay rate. If there exists a K ≥ 0 such that
vk+1 ≤ (1−αk)vk+βk holds for all k ≥ K, then we always
have vk ≤ C βk

αk for all k, where C is some constant.

B. On Differential Privacy
We adopt the notion of ϵ-differential privacy (DP) for

continuous bit streams [19], which has recently been applied
to distributed optimization (see, e.g., [20] as well as our work
[15]). To enable DP, we inject Laplace noise Lap(ν) to all
shared messages, where ν > 0 is a constant parameter of
the probability density function 1

2ν e
− |x|

ν . One can verify that
Lap(ν) has mean zero and variance 2ν2. We represent the
networked game P in (1) by three parameters (Ω,F,GL),
where Ω ≜ Ω1×· · ·×Ωm is the domain of decision variables,
F ≜ {f1, · · · , fm}, and GL denotes the communication graph.
We define “adjacency” between two games as follows:

Definition 1. Two networked games P ≜ (Ω,F,GL) and P ′ ≜
(Ω′,F′,G′

L) are adjacent if the following conditions hold:
• Ω = Ω′ and GL = G′

L;
• there exists an i ∈ [m] such that fi ̸= f ′

i but fj = f ′
j for

all j ∈ [m], j ̸= i;
• fi and f ′

i , which are not the same, have similar behaviors
around x∗, the NE of P . More specifically, there exits
some δ > 0 such that for all v and v′ in Bδ(x

∗) ≜ {u :
u ∈ RD, ∥u− x∗∥ < δ}, we have fi(v) = f ′

i(v
′).

Remark 1. Note that in Definition 1, for the sake of notational
simplicity, we use fi(v) to represent fi(vi, v−i). Moreover,
in Definition 1, since the difference between fi and f ′

i can
be arbitrary, additional restrictions have to be imposed to
ensure rigorous DP. Different from [13], [20] which restrict all
gradients to be uniformly bounded, we add the third condition,
which, together with the proposed noise-robust algorithm,
allows us to ensure rigorous DP while maintaining accurate
convergence.

Given a distributed algorithm, we represent an execution
of this algorithm as A, which is an infinite sequence of the



iteration variable ϑ, i.e., A = {ϑ0, ϑ1, · · · }. We consider ad-
versaries that can observe all communicated messages. Thus,
the observation part of an execution is the infinite sequence
of shared messages, which is represented by O. We define the
mapping from execution sequence to observation sequence by
RP,ϑ0(A) ≜ O, where ϑ0 denotes the initial condition. Given
a networked game P , an initial condition ϑ0, and observation
sequence O, R−1

P,ϑ0(O) is the set of executions A that can
generate the observation O.

Definition 2. (ϵ-DP, [20]). For a given ϵ > 0, an algorithm
A is ϵ-differentially private if for any two adjacent networked
games P and P ′, any set of observation sequences Os ⊆
O (O is the set of all possible observation sequences), and
any initial state ϑ0, we always have P[RP,ϑ0(A) ∈ Os] ≤
eϵP[RP′,ϑ0(A) ∈ Os, ], where the probability P is taken over
the randomness over iteration processes.

III. A DIFFERENTIALLY-PRIVATE NE SEEKING ALGORITHM

We present in this section a fully distributed NE seeking
algorithm (Algorithm 1 below).

Algorithm 1: Distributed NE seeking with
provable convergence and differential privacy

Parameters: Stepsize sequence {λk > 0} and decreasing
sequence {γk > 0}.
Every player i maintains one decision vari-

able xk
(i)i, and m − 1 estimates xk

(i)−i ≜
[(xk

(i)1)
T , · · · , (xk

(i)i−1)
T , (xk

(i)i+1)
T , · · · , (xk

(i)m)T ]T

of other players’ decision variables. Player i sets x0
(i)ℓ

randomly in Rdℓ for all ℓ ∈ [m].
for k = 1, 2, . . . do

a) For both its decision variable xk
(j)j and estimate vari-

ables xk
(j)1, · · · , x

k
(j)j−1, x

k
(j)j+1, · · · , x

k
(j)m, every player

j adds respective persistent DP noise ζk(j)1, · · · , ζ
k
(j)m, and

then sends the obscured values xk
(j)1 + ζk(j)1, · · · , x

k
(j)m +

ζk(j)m to all players i ∈ Nout
j .

b) After receiving xk
(j)1 + ζk(j)1, · · · , x

k
(j)m + ζk(j)m from all

j ∈ Nin
i , player i updates its decision and estimate variables:

xk+1
(i)i =xk

(i)i+γk
∑
j∈Nin

i

Lij(x
k
(j)i+ζk(j)i−xk

(i)i)−λkFi(x
k
(i)i,x

k
(i)−i),

xk+1
(i)ℓ =xk

(i)ℓ+γk
∑
j∈Nin

i

Lij(x
k
(j)ℓ + ζk(j)ℓ − xk

(i)ℓ), ∀ℓ ̸= i.

(3)
c) end

Remark 2. The sequences {γk} and {λk}, and the DP noise
parameter are hard-coded into players’ programs and need no
adjustment/coordination in implementation. This enables our
algorithm to be implementable in a fully distributed manner.

IV. A GENERAL CONVERGENCE RESULT

We first have to establish some general results necessary for
the convergence analysis of Algorithm 1.

Lemma 4. Under Assumption 3, we have the following
properties when γk > 0 in Algorithm 1 is sufficiently small:

1) the eigenvectors of the matrix I+γkL are time-invariant;
2) I + γkL has a unique positive left eigenvector uT

(associated with eigenvalue 1) satisfying uT1 = m;
3) the spectral radius of I + γkL − 1uT

m is upper-bounded
by 1− αγk, where 0 < α < 1;

4) there exists an L-dependent matrix norm ∥ · ∥L such that
∥I + γkL − 1uT

m ∥L ≤ 1 − αγk for 0 < α < 1 when γk

is small enough. Moreover, this norm has an associated
inner product ⟨·, ·⟩L, i.e., ∥x∥2L = ⟨x, x⟩L.

Proof. 1) Representing the eigenvalues and associated
eigenvectors of L as {ϱ1, · · · , ϱm} and {v1, · · · , vm}, re-
spectively, we can verify that the eigenvalues and associated
eigenvectors of I+γkL are given by {1+γkϱ1, · · · , 1+γkϱm}
and {v1, · · · , vm}, respectively.

2) One can obtain from [21] (or Lemma 1 in [22]) that
I+L has a unique positive left eigenvector uT (associated with
eigenvalue 1) satisfying uT1 = m. Hence, using statement 1),
I + γkL has a unique positive left eigenvector uT (associated
with eigenvalue 1) satisfying uT1 = m.

3) Representing the eigenvalues of L by {ϱ1, · · · , ϱm}, the
eigenvalues of I + L can be expressed as {1 + ϱ1, · · · , 1 +
ϱm}. Under Assumption 3, I + L is irreducible. Using the
Perron–Frobenius theorem, one can obtain that I +L has one
unique eigenvalue equal to one and all its other eigenvalues
strictly less than one in absolute value, implying that one and
only one of ϱi is zero. Represent this eigenvalue of L as ϱm =
0 without loss of generality. Then we have |1 + ϱi| < 1 for
all 1 ≤ i ≤ m− 1. One can verify that the eigenvalues of I +
γkL− 1uT

m are given by {1+γkϱ1, · · · , 1+γkϱm−1, 0}. Next,
we prove the third statement by showing that there exists an α
satisfying |1+γkϱi| < 1−αγk for every i = 1, 2, · · · ,m−1.

We represent ϱi as ϱi = ai + ibi, where ai and bi are real
numbers, and i is the imaginary unit. Because |1 + ϱi| < 1
holds for all i = 1, 2, · · · ,m − 1, we have ai < 0 for i =
1, 2, · · · ,m−1. Under the new representation of ϱi, |1+γkϱi|
becomes

√
(1− |ai|γk)2 + (biγk)2. So we only have to prove√

(1− |ai|γk)2 + (biγk)2 < 1 − γkα for some 0 < α < 1
when γk is small enough. Squaring both sides of the inequality
yields α2(γk)2 − 2αγk > (γk)2(a2i + b2i )− 2γk|ai|, i.e.,

α2 − 2
γkα > (a2i + b2i )−

2|ai|
γk . (4)

When γk is less than 2|ai|
a2
i+b2i

(note ai < 0 for i = 1, · · · ,m−1),
the right hand side of (4) is negative whereas the left hand
side is a quadratic function of α with two x-intercepts given
by α = 0 and α = 2

γk . So there always exits an α in the
interval (0, 1) making the left hand side of (4) larger than its
right hand side, and hence making (4) hold. Therefore, there
always exists an 0 < α < 1 making |1 + γkϱi| < 1 − αγk

hold when γk > 0 is less than 2|ai|
a2
i+b2i

.
Given that the above derivation is independent of i, we have

|1 + γkϱi| < 1 − αγk for some 0 < α < 1 and all i =
1, · · · ,m− 1, and hence the third statement in the Lemma.

4) According to [23], there exits a matrix norm ∥ · ∥L,
which only depends on the eigenvectors (or unitary Schur-
decomposition matrix in the more general complex-matrix



case) of I+γkL− 1uT

m , such that the norm of I+γkL− 1uT

m
is arbitrarily close to its spectral radius. Statement 2) proves
that the eigenvectors of I + γkL − 1uT

m are time-invariant
and independent of γk. Hence, the matrix norm ∥ · ∥L is
independent of γk. Using Statement 3) yields that ∥I +

γkL − 1uT

m ∥L < 1 − αγk holds for some 0 < α < 1 when
γk is smaller than min{ 2|a1|

a2
1+b21

, · · · , 2|am−1|
a2
m−1+b2m−1

}. Moreover,

from [23], ∥ · ∥L can be expressed as ∥x∥L = ∥L̂x∥2 for
some L̂ determined by L. Thus, the norm ∥ · ∥L satisfies
the Parallelogram Law and, hence, has an associated inner
product ⟨·, ⟩L. We refer the reader to Sec. II.B of [24] for
an instantiation of this norm and inner product (which only
depends on the left eigenvector uT ) for directed graphs.

Using the time-invariant positive left eigenvector u ≜
[u1, · · · , um]T of I + γkL from Lemma 3, we define a
weighted average x̄k

i ≜ 1
m

∑m
ℓ=1 uℓx

k
(ℓ)i of player i’s decision

variable xk
(i)i and other players’ estimates xk

(j)i (j ̸= i) of
this decision variable. We also define the assembly of the ith
decision variable xk

i as well as the assembly of the weighted
average x̄k

i as

xk
i =

(x
k
(1)i)

T

...
(xk

(m)i)
T

∈ Rm×di , x̄k
i =

(x̄
k
i )

T

...
(x̄k

i )
T

∈ Rm×di . (5)

To measure the distance between matrix variables xk
i and

x̄k
i , we define a matrix norm for an arbitrary vector norm

∥ · ∥L. Specifically, for a matrix X ∈ Rm×di , we define
∥X∥L ≜

∥∥[∥X(1)∥L, · · · , ∥X(di)∥L
]∥∥

2
, where X(i) denotes

the ith column of X . ∥xk
i − x̄k

i ∥L measures the distance
between all players’ xk

(j)i for j ∈ [m] and their average x̄k
i .

Based on the inner product ⟨·, ·⟩L for vectors, we also define
an inner product for matrices consistent with the ∥ · ∥L norm
for matrices. More specifically, for a matrix X in Rm×di ,
we define ⟨X,X⟩L as: ⟨X,X⟩L =

∑di

i=1⟨X(i), X(i)⟩L, where
X(i) denotes the ith column of X . Since for any column
X(i) of a matrix X , we have ∥X(i)∥2L = ⟨X(i), X(i)⟩L,
one can verify that ∥X∥2L = ⟨X,X⟩L holds for any matrix
X ∈ Rm×di . In addition, we have the following result:

Lemma 5. For any norm ∥ · ∥L, X ∈ Rm×di , and W ∈
Rm×m, we always have ∥WX∥L ≤ ∥W∥L∥X∥L. Further-
more, there exist constants δL,2 and δ2,L such that ∥X∥L ≤
δL,2∥X∥2 and ∥X∥2 ≤ δ2,L∥X∥L hold for any X ∈ Rm×di .

Proof. The proof follows from the line of reasoning in Lemma
5 and Lemma 6 in [22], and hence is not included here.

Based on the above results, we have the following conver-
gence result for general distributed algorithms for problem (1):

Proposition 1. Under Assumptions 1 and 2, let x∗ =
[(x∗

1)
T , . . . , (x∗

m)T ]T be the unique NE of (1). If, under inter-
action matrix L, a distributed NE-seeking algorithm generates

sequences {xk
i } for all i ∈ [m] such that there exists some

T ≥ 0 to make the following relations hold a.s. for all k ≥ T :[
E
[∑m

i=1 ∥x̄
k+1
i − x∗

i ∥22|Fk
]

E
[∑m

i=1 ∥x
k+1
i − x̄k+1

i ∥2L|Fk
] ]

≤
([

1 κ1γ
k

0 1− κ2γ
k

]
+ ak11T

)[ ∑m
i=1 ∥x̄k

i − x∗
i ∥22∑m

i=1 ∥xk
i − x̄k

i ∥2L

]
+ bk1− ck

[ (
ϕ(x̄k)− ϕ(x∗)

)T
(x̄k − x∗)

0

]
,

(6)
where

• ∥ · ∥L is an L-dependent norm, Fk = {xℓ
i , i ∈ [m], 0 ≤

ℓ ≤ k}, x̄k =
[
(x̄k

1)
T , · · · , (x̄k

m)T
]T

;
• the random nonnegative scalar sequences {ak}, {bk}

satisfy
∑∞

k=0 a
k < ∞ and

∑∞
k=0 b

k < ∞, respectively,
a.s., and the deterministic nonnegative sequences {ck}
and {γk} satisfy

∑∞
k=0 c

k = ∞ and
∑∞

k=0 γ
k = ∞;

• the scalars κ1 and κ2 satisfy κ1 > 0 and 0 < κ2γ
k < 1,

respectively, for all k ≥ 0.
Then, limk→∞ ∥xk

i −x̄k
i ∥L = 0 and limk→∞ ∥x̄k

i −x∗
i ∥ = 0

a.s. for all i, implying limk→∞ ∥xk
(i)i −x∗

i ∥ = 0 a.s. for all i.

Proof. Since we have
(
ϕ(x̄k)− ϕ(x∗)

)T
(x̄k − x∗) >

0 for all k from Assumption 2, by letting vk =[∑m
i=1 ∥x̄k

i − x∗
i ∥22,

∑m
i=1 ∥xk

i − x̄k
i ∥2L

]T
, we can arrive at

the following relationship from (6) a.s. for all k ≥ T :

E
[
vk+1|Fk

]
≤

([
1 κ1γ

k

0 1− κ2γ
k

]
+ ak11T

)
vk+bk1. (7)

By setting π = [1, κ1

κ2
]T , we have πT

[
1 κ1γ

k

0 1− κ2γ
k

]
= πT .

Since the results of Lemma 1 and Lemma 2 are asymptotic,
they remain valid when the starting index is shifted from k = 0
to k = T , for an arbitrary T ≥ 0. Thus, relation (7) implies
that limk→∞ πTvk exists a.s., and that {

∑m
i=1 ∥x̄k

i − x∗
i ∥22}

and {
∑m

i=1 ∥xk
i − x̄k

i ∥2L} are bounded almost surely.
Consider the second element of vk in (7), which

should satisfy E
[∑m

i=1 ∥x
k+1
i − x̄k+1

i ∥2L|Fk
]

≤ (1 −
κ2γ

k)
∑m

i=1 ∥xk
i − x̄k

i ∥2L + βk ∀k ≥ 0, a.s., where βk ≜
ak

(∑m
i=1

(
∥x̄k

i − x∗
i ∥22 + ∥xk

i − x̄k
i ∥2L

))
+ bk. Using the as-

sumption that
∑∞

k=0 a
k < ∞ holds a.s., and the proven

results that {
∑m

i=1 ∥x̄k
i − x∗

i ∥22} and {
∑m

i=1 ∥xk
i − x̄k

i ∥2L} are
bounded a.s., one obtains

∑∞
k=0 β

k < ∞ a.s.Thus, under
the assumption of the proposition,

∑m
i=1 ∥xk

i − x̄k
i ∥2L satisfies

the conditions of Lemma 1 with qk = κ2γ
k and pk = βk.

Therefore, we have the following relationship a.s.:
∞∑
k=0

κ2γ
k

m∑
i=1

∥xk
i − x̄k

i ∥2L < ∞, lim
k→∞

m∑
i=1

∥xk
i − x̄k

i ∥2L = 0.

(8)
We next proceed to prove

∑m
i=1 ∥x̄k

i − x∗
i ∥2 → 0

almost surely. One can verify that under∑∞
k=0 a

k < ∞ and
∑∞

k=0 b
k < ∞, the inequality

in (6) satisfies the relationship in Lemma 2 with
vk =

[∑m
i=1 ∥x̄k

i − x∗
i ∥22,

∑m
i=1 ∥xk

i − x̄k
i ∥2L

]T
,

V k =

[
1 κ1γ

k

0 1− κ2γ
k

]
, Hk =

[
ck 0
0 0

]
, and

πT = [1, κ1

κ2
]T . Therefore, from Lemma 2, we arrive



at the conclusion that πTvk converges a.s., i.e.,∑m
i=1 ∥x̄k

i − x∗
i ∥22 + κ1

κ2

∑m
i=1 ∥xk

i − x̄k
i ∥2L converges

almost surely. Since
∑m

i=1 ∥xk
i − x̄k

i ∥2L has been proven to
converge a.s. (see (8)), we know that

∑m
i=1 ∥x̄k

i − x∗
i ∥22

(equivalent to ∥x̄k − x∗∥22) converges almost surely.
Lemma 2 also implies

∑∞
k=0 π

THkuk < ∞ a.s., i.e.,∑∞
k=0

[
1, κ1

κ2

]T[ ck 0
0 0

] [(
ϕ(x̄k)− ϕ(x∗)

)T
(x̄k − x∗)

0

]
<∞,

or ∞∑
k=0

ck
(
ϕ(x̄k)− ϕ(x∗)

)T
(x̄k − x∗) < ∞. (9)

Next, using (9) and the proven a.s. convergence of ∥x̄k −
x∗∥2, we prove that x̄k converges a.s. to x∗. The condi-
tion

∑∞
k=0 c

k = ∞, the property
(
ϕ(x̄k)− ϕ(x∗)

)T
(x̄ −

x∗) > 0 (see Assumption 2), and (9) imply that there
exists a subsequence of {x̄k}, say {x̄kℓ}, along which(
ϕ(x̄k)− ϕ(x∗)

)T
(x̄k − x∗) converges a.s. to zero. The

strongly monotone condition on ϕ(·) in Assumption 2 implies
that {x̄kℓ} must converge a.s. to x∗. This and the fact that
∥x̄k−x∗∥2 converges a.s. imply that x̄k converges a.s. to x∗.
Further note that ∥xk

i − x̄k
i ∥2L converging to zero implies xk

(ℓ)i

converging to x̄k
i for all ℓ ∈ [m]. Therefore, we have xk

(i)i

converging to x∗
i a.s. for all i ∈ [m].

V. CONVERGENCE ANALYSIS FOR ALGORITHM 1
In this section, based on Proposition 1, we establish the

convergence of Algorithm 1 to the unique NE under persistent
DP noise satisfying the following assumption:

Assumption 4. For every i, ℓ ∈ [m] and every k, conditional
on the state xk

(i)ℓ, the DP noise ζk(i)ℓ that player i adds to
its shared decision (or estimates of other players’ decisions)
satisfies E

[
ζk(i)ℓ | x

k
(i)ℓ

]
= 0, E

[
∥ζk(i)ℓ∥

2 | xk
(i)ℓ

]
= (σk

i )
2,

and
∑∞

k=0(γ
k)2 maxi∈[m](σ

k
i )

2 < ∞, where {γk} is from

Algorithm 1. Furthermore, E
[
∥x0

(i)ℓ∥
2
]
< ∞, ∀i, ℓ ∈ [m].

Remark 3. Since γk decreases with time, Assumption 4 even
allows the sequence {σk

i } to increase with time. For example,
for γk = O( 1

k0.9 ), if {σk
i } increases with time with a rate

no larger than O(k0.3), the summable condition still holds.
Allowing {σk

i } to increase with time is key to enabling strong
ϵ-DP, which will be detailed later in Theorem 2.

Theorem 1. Under Assumptions 1-4, if there exists some T ≥
0 such that the sequences {γk} and {λk} satisfy
∞∑

k=T

γk = ∞,
∞∑

k=T

λk = ∞,
∞∑

k=T

(γk)2 < ∞,
∞∑

k=T

(λk)2

γk
< ∞,

Algorithm 1 converges a.s. to the unique NE of problem (1).

Proof. The basic idea is to prove that
∑m

i=1 ∥x̄k
i − x∗

i ∥2 and∑m
i=1 ∥xk

i − x̄k
i ∥2L satisfy the conditions in Proposition 1.

Part I: The evolution of
∑m

i=1 ∥xk
i − x̄k

i ∥2L.
From Algorithm 1, one can obtain the dynamics of xk

i :

xk+1
i = (I+γkL)xk

i +γkLoζ
k
i −λkeiF

T
i (xk

(i)i, x
k
(i)−i), (10)

where ei ∈ Rm is a unitary vector with the ith element equal
to 1 and all the other elements equal to zero, Lo ∈ Rm×m is

the matrix obtained by replacing all diagonal entries of matrix
L with zero, and ζk

i = [ζk(1)i, · · · ζ
k
(m)i]

T ∈ Rm×di .

One can obtain that x̄k
i =

1uTxk
i

m always holds, which, in
combination with (10), yields

x̄k+1
i = x̄k

i + γk 1uTLo

m ζk
i − λk1uiF

T
i (xk

(i)i,x
k
(i)−i)

m , (11)

where ui is the ith entry of u. Note that in the last equality
we used the property uT (I + γkL) = uT from Lemma 4.

Combining (10) with (11) yields

xk+1
i − x̄k+1

i = W kxk
i + γkΠLo

ζk
i − λkΠeiF

T
i (xk

(i)i, x
k
(i)−i),

(12)
where we have defined W k ≜ I + γkL − 1uT

m , ΠLo ≜ Lo −
1uTLo

m , and Πei ≜ ei − ui1
m .

The second statement of Lemma 4 implies W k1 = 0 and
further W kx̄k

i = 0. Hence, we can subtract W kx̄k
i = 0 from

the right hand side of (12) to obtain

xk+1
i −x̄k+1

i =W k(xk
i −x̄k

i )+γkΠLoζ
k
i−λkΠeiF

T
i (x

k
(i)i,x

k
(i)−i).

(13)
Taking the ∥ · ∥L norm on both sides leads to

∥xk+1
i −x̄k+1

i ∥2L ≤ ∥W k(xk
i −x̄k

i )−λkΠeiF
T
i (xk

(i)i, x
k
(i)−i)∥

2
L

+ (γk)2∥ΠLo
∥2L∥ζ

k
i ∥2L

+ 2
〈
W k(xk

i − x̄k
i )− λkΠeiF

T
i (xk

(i)i, x
k
(i)−i), γ

kΠLo
ζk
i

〉
L
.

(14)
Taking the conditional expectation on both sides, with

respect to Fk = {xℓ
i ; 0 ≤ ℓ ≤ k, i ∈ [m]}, leads to

E
[
∥xk+1

i − x̄k+1
i ∥2L|Fk

]
≤ (γk)2∥ΠLo

∥2Lδ2L,2m(σk
i )

2

+ ∥W k(xk
i − x̄k

i )− λkΠeiF
T
i (xk

(i)i, x
k
(i)−i)∥

2
L,

(15)

where we have used Assumption 4 and the property ∥ζk
i ∥2L ≤

δ2L,2∥ζ
k
i ∥22 (see Lemma 5).

Further using Lemma 5, we can simplify (15) as

E
[
∥xk+1

i − x̄k+1
i ∥2L|Fk

]
≤(γk)2∥ΠLo∥2Lδ2L,2m(σk

i )
2

+
(
∥W k∥L∥xk

i − x̄k
i ∥L+λk∥Πei∥L∥FT

i (xk
(i)i, x

k
(i)−i)∥L

)2

.

(16)
According to Lemma 4, we have ∥W k∥L ≤ 1 − αγk for

some 0 < α < 1 when γk is sufficiently small. Given that
{γk} is square summable, we have ∥W k∥L ≤ 1 − αγk for
some 0 < α < 1 when k is larger than some T . Therefore,
(16) means that there always exists a T ≥ 0 such that we have

E
[
∥xk+1

i − x̄k+1
i ∥2L|Fk

]
≤ (γk)2∥ΠLo∥2Lδ2L,2m(σk

i )
2

+
(
(1− αγk)∥xk

i − x̄k
i ∥L+λk∥Πei∥L∥FT

i (xk
(i)i, x

k
(i)−i)∥L

)2

(17)
for k ≥ T .

Applying to the second term on the right hand side of (17)
the inequality (a + b)2 ≤ (1 + ϵ)a2 + (1 + ϵ−1)b2, valid for
any scalars a, b, and ϵ > 0 [25], we can obtain the following
relationship by setting ϵ as γkα

1−γkα
(which further results in

1 + ϵ = 1
1−γkα

and 1 + ϵ−1 = 1
γkα

):

E
[
∥xk+1

i − x̄k+1
i ∥2L|Fk

]
≤ (γk)2∥ΠLo∥2Lδ2L,2m(σk

i )
2

+(1−αγk)∥xk
i −x̄k

i ∥2L +
(λk)2∥Πei∥2L

γkα
∥FT

i (xk
(i)i, x

k
(i)−i)∥

2
L.

(18)



Next, we use Assumption 2 to bound ∥FT
i (xk

(i)i, x
k
(i)−i)∥

2
L.

At the NE point x∗, we always have Fi(x
∗
i , x

∗
−i) = 0 for

all i ∈ [m], which implies

∥Fi(x
k
(i)i, x

k
(i)−i)∥

2
L

≤ δ2L,2∥Fi(x
k
(i)i, x

k
(i)−i)− Fi(x

k
(i)i, x

∗
−i) + Fi(x

k
(i)i, x

∗
−i)

− Fi(x
∗
i , x

∗
−i)∥22

≤ 2K2
2δ

2
L,2∥xk

(i)−i − x∗
−i∥22 + 2K2

1δ
2
L,2∥xk

(i)i − x∗
i ∥22,

(19)
where in the last inequality we used Assumption 2.

Using inequalities ∥xk
(i)−i − x∗

−i∥22 ≤ 2∥xk
(i)−i −

x̄k
−i∥22 + 2∥x̄k

−i − x∗
−i∥22 and ∥xk

(i)i − x∗
i ∥22 ≤

2∥xk
(i)i − x̄k

i ∥22 + 2∥x̄k
i − x∗

i ∥22, where x̄k
−i ≜

[(x̄k
1)

T , · · · , (x̄k
i−1)

T , (x̄k
i+1)

T , · · · , (x̄k
m)T ]T , we can obtain

∥Fi(x
k
(i)i, x

k
(i)−i)∥

2
L ≤ 4K2

1δ
2
L,2(∥xk

(i)i − x̄k
i ∥22 + ∥x̄k

i − x∗
i ∥22)

+ 4K2
2δ

2
L,2(∥xk

(i)−i − x̄k
−i∥22 + ∥x̄k

−i − x∗
−i∥22).

(20)
Plugging (20) into (18) leads to

E
[
∥xk+1

i − x̄k+1
i ∥2L|Fk

]
≤ (1− αγk)∥xk

i − x̄k
i ∥2L + (γk)2∥ΠLo∥2Lδ2L,2m(σk

i )
2

+
4(λk)2∥Πei

∥2
LK2

2δ
2
L,2

γkα
(∥xk

(i)−i − x̄k
−i∥22 + ∥x̄k

−i − x∗
−i∥22)

+
4(λk)2∥Πei

∥2
LK2

1δ
2
L,2

γkα
(∥xk

(i)i − x̄k
i ∥22 + ∥x̄k

i − x∗
i ∥22).

(21)
Summing (21) from i = 1 to i = m and noting

∑m
i=1 ∥xk

i −
x̄k
i ∥22 =

∑m
i=1(∥xk

(i)i − x̄k
i ∥22 + ∥xk

(i)−i − x̄k
−i∥22) and∑m

i=1 ∥x̄k
−i − x∗

−i∥22 = (m− 1)
∑m

i=1 ∥x̄k
i − x∗

i ∥22, we obtain

E
[∑m

i=1 ∥x
k+1
i −x̄k+1

i ∥2L|Fk
]
≤ (1−αγk)

∑m
i=1 ∥xk

i − x̄k
i ∥2L

+ (γk)2∥ΠLo∥2Lδ2L,2m
∑m

i=1(σ
k
i )

2

+
4m(λk)2∥Πei

∥2
LK̃2δ2L,2

γkα

∑m
i=1 ∥x̄k

i − x∗
i ∥22

+
4(λk)2∥Πei

∥2
LK̃2δ2L,2δ

2
2,L

γkα

∑m
i=1 ∥xk

i − x̄k
i ∥2L,

(22)
where we have defined K̃ ≜ max{K1,K2}.

Part II: The evolution of
∑m

i=1 ∥x̄k
i − x∗

i ∥2.
Subtracting x∗

i from both sides of (11) yields

∥x̄k+1
i − x∗

i ∥22 ≤ ∥x̄k
i − x∗

i ∥2 + 2(γk)2
∥uTLo∥2

2

m2 ∥ζk
i ∥22

+
2(λk)2u2

i

m2 ∥Fi(x
k
(i)i, x

k
(i)−i)∥

2
2

+ 2
〈
x̄k
i − x∗

i , γ
k (uTLoζ

k
i )

T

m − 1
mλkuiFi(x

k
(i)i, x

k
(i)−i)

〉
.

(23)
Taking the conditional expectation on both sides, with respect
to Fk = {xℓ

i ; 0 ≤ ℓ ≤ k, i ∈ [m]}, leads to

E
[
∥x̄k+1

i − x∗
i ∥22|Fk

]
≤ ∥x̄k

i − x∗
i ∥22 +

2(γk)2∥uTLo∥2
2(σ

k
i )

2

m

+
2(λk)2u2

i ∥Fi(x
k
(i)i,x

k
(i)−i)∥

2
2

m2 − 2uiλ
k⟨x̄k

i −x∗
i ,Fi(x

k
(i)i,x

k
(i)−i)⟩

m .
(24)

Next we bound the last two terms in (24). For the second
last term, we can bound it similarly to (20):

∥Fi(x
k
(i)i, x

k
(i)−i)∥

2
2 ≤ 4K2

2∥xk
(i)−i − x̄k

−i∥22
+ 4K2

2∥x̄k
−i − x∗

−i∥22 + 4K2
1∥xk

(i)i − x̄k
i ∥22 + 4K2

1∥x̄k
i − x∗

i ∥22.
(25)

For the inner-product term in (24), we bound it using
Fi(x

∗
i , x

∗
−i) = 0 and split it as follows:

2λk
〈
x̄k
i − x∗

i , Fi(x
k
(i)i, x

k
(i)−i)− Fi(x̄

k
i , x̄

k
−i)

〉
+ 2λk

〈
x̄k
i − x∗

i , Fi(x̄
k
i , x̄

k
−i)− Fi(x

∗
i , x

∗
−i)

〉
.

(26)

For the first inner-product term on the right hand side of (26),
using the Cauchy-Schwarz inequality yields

2λk
〈
x̄k
i − x∗

i , Fi(x
k
(i)i, x

k
(i)−i)− Fi(x̄

k
i , x̄

k
−i)

〉
≥ − (λk)2∥x̄k

i −x∗
i ∥

2
2

γk − γk∥Fi(x
k
(i)i, x

k
(i)−i)− Fi(x̄

k
i , x̄

k
−i)∥22.

(27)
The Lipschitz assumption in Assumption 2 implies

∥Fi(x
k
(i)i, x

k
(i)−i)− Fi(x̄

k
i , x̄

k
−i)∥22

≤ 2∥Fi(x
k
(i)i, x

k
(i)−i)− Fi(x̄

k
i , x

k
(i)−i)∥

2
2

+ 2∥Fi(x̄
k
i , x

k
(i)−i)− Fi(x̄

k
i , x̄

k
−i)∥22

≤ 2K2
1∥xk

(i)i − x̄k
i ∥22 + 2K2

2∥xk
(i)−i − x̄k

−i∥22.

(28)

Combining (26), (27), and (28) leads to

2λk
〈
x̄k
i − x∗

i , Fi(x
k
(i)i, x

k
(i)−i)

〉
≥ − (λk)2∥x̄k

i −x∗
i ∥

2
2

γk − 2K2
1γ

k∥xk
(i)i − x̄k

i ∥22
− 2K2

2γ
k∥xk

(i)−i − x̄k
−i∥22

+ 2λk
〈
x̄k
i − x∗

i , Fi(x̄
k
i , x̄

k
−i)− Fi(x

∗
i , x

∗
−i)

〉
.

(29)

Further substituting (25) and (29) into (24) yields

E
[
∥x̄k+1

i − x∗
i ∥22|Fk

]
≤ ∥x̄k

i − x∗
i ∥22 + 2(γk)2

∥uTLo∥2
2

m (σk
i )

2

+
8(λk)2u2

iK
2
2

m2 (∥xk
(i)−i − x̄k

−i∥22 + ∥x̄k
−i − x∗

−i∥22)

+
8(λk)2u2

iK
2
1

m2 (∥xk
(i)i − x̄k

i ∥22 + ∥x̄k
i − x∗

i ∥22)

+
ui(λ

k)2∥x̄k
i −x∗

i ∥
2
2

mγk +
2uiK

2
1γ

k

m ∥xk
(i)i − x̄k

i ∥22

+
2uiK

2
2γ

k

m ∥xk
(i)−i − x̄k

−i∥22
− 2uiλ

k

m

〈
x̄k
i − x∗

i , Fi(x̄
k
i , x̄

k
−i)− Fi(x

∗
i , x

∗
−i)

〉
.

(30)
Summing (30) from i = 1 to i = m, and

using the relationship
∑m

i=1 ∥x̄k
−i − x∗

−i∥22 =
(m − 1)

∑m
i=1 ∥x̄k

i − x∗
i ∥22 and

∑m
i=1 ∥xk

i − x̄k
i ∥22 =∑m

i=1

(
∥xk

(i)i − x̄k
i ∥22 + ∥xk

(i)−i − x̄k
−i∥22

)
lead to

E
[∑m

i=1 ∥x̄
k+1
i − x∗

i ∥22|Fk
]

≤
∑m

i=1 ∥x̄k
i − x∗

i ∥22 + 2(γk)2
∥uTLo∥2

2

m

∑m
i=1(σ

k
i )

2

+
8(λk)2u2

i K̃
2

m2

∑m
i=1 ∥xk

i − x̄k
i ∥22+

8(λk)2u2
i K̃

2

m

∑m
i=1 ∥x̄k

i − x∗
i ∥22

+
ui(λ

k)2
∑m

i=1 ∥x̄k
i −x∗

i ∥
2
2

mγk + 2uiK̃
2γk

m

∑m
i=1 ∥xk

i − x̄k
i ∥22

− 2uiλ
k

m

(
ϕ(x̄k)− ϕ(x∗)

)T
(x̄k − x∗),

(31)
where x̄k =

[
(x̄k

1)
T , · · · , (x̄k

m)T
]T

and K̃ ≜ max{K1,K2}.
Part III: Combination of Step I and Step II.
By combining (22) and (31), and using Assumption

4, we have
∑m

i=1 ∥xk
i − x̄k

i ∥2L and
∑m

i=1 ∥x̄k
i − x∗

i ∥22
satisfying the conditions in Proposition 1 with κ1 =
2uiK̃

2δ2L,2

m , κ2 = α, ak = max{ak1 , ak2 , ak3 , ak4 , ak5}, ak1 ≜



4(λk)2∥Πei
∥2
LK̃2δ2L,2δ

2
2,L

γkα
, ak2 ≜

4m(λk)2∥Πei
∥2
LK̃2δ2L,2

γkα
, ak3 ≜

8(λk)2u2
i K̃

2δ2L,2

m2 , ak4 ≜ 8(λk)2u2
i K̃

2

m , ak5 ≜ ui(λ
k)2

mγk , bk =

max{bk1 , bk2}, bk1 ≜ (γk)2∥ΠLo∥2Lδ2L,2m
∑m

i=1(σ
k
i )

2, bk2 ≜

2(γk)2
∥uTLo∥2

2

m

∑m
i=1(σ

k
i )

2, and ck = 2uiλ
k

m .

Remark 4. The requirement on γk and λk in the statement
of Theorem 1 can be satisfied, for example, by setting γk =
O( 1

ka ) and λk = O( 1
kb ) with a, b ∈ R satisfying 0.5 < a <

b ≤ 1 and 2b− a > 1.

VI. PRIVACY ANALYSIS OF ALGORITHM 1
Definition 3. For any initial state ϑ0 and any adjacent
networked games P and P ′, the sensitivity of an NE seeking
algorithm at iteration k is

∆k ≜ sup
O∈O

 sup
ϑ∈R−1

P,ϑ0 (O), ϑ′∈R−1

P′,ϑ0 (O)

∥ϑk − ϑ′k∥1

 . (32)

Based on this definition, we obtain the following result:

Lemma 6. At each iteration k, if each player in Algorithm 1
adds a vector noise ζk(i)ℓ ∈ Rdi (consisting of di independent
Laplace noises with parameter νk) to each of its shared
message xk

(i)ℓ such that
∑T0

k=1
∆k

νk ≤ ϵ̄, then Algorithm 1 is ϵ-
differentially private with the cumulative privacy budget from
iterations k = 0 to k = T0 less than ϵ̄.

Proof. The result can be obtained following the derivation of
Lemma 2 in [20] (see also Theorem 3 in [13]).

Before giving the main results, we first use Definition 1
and the guaranteed convergence in Theorem 1 to confine the
sensitivity. Note that when the conditions in the statement of
Theorem 1 are satisfied, our algorithm ensures convergence
of both P and P ′ to their respective NEs, which are the
same under the third requirement in Definition 1. This means
that

∥∥∥Fi(x
k
(i)i, x

k
(i)−i)− F ′

i(x
′k
(i)i, x

′k
(i)−i)

∥∥∥
1
= 0 will hold

when k is sufficiently large (for the iterates in both P and
P ′ to enter the neighborhood Bδ in Definition 1, upon which
the evolution in P and P ′ will be identical). Furthermore,
the ensured convergence also means that Fi(x

k
(i)i, x

k
(i)−i) and

F ′
i(x

′k
(i)i, x

′k
(i)−i) are always bounded. Hence, there always

exists some constant C such that the following relation holds
for all k ≥ 0 under the conditions of Theorem 1:∥∥∥Fi(x

k
(i)i, x

k
(i)−i)− F ′

i(x
′k
(i)i, x

′k
(i)−i)

∥∥∥
1
≤ Cγk (33)

Theorem 2. Under the conditions in Theorem 1, if all elements
of ζk(i)1, · · · , ζ

k
(i)m follow Laplace distribution Lap(νk) with

(σk
i )

2 = 2(νk)2 satisfying Assumption 4, then Algorithm 1
is ϵ-differentially private with the cumulative privacy budget
from k = 0 to k = T0 bounded by ϵ ≤

∑T0

k=1
Cςk

νk , where C

is given in (33) and ςk ≜
∑k−1

p=1(Π
k−1
q=p(1− L̄γq))γp−1λp−1+

γk−1λk−1 with L̄ ≜ mini{|Lii|}. The cumulative privacy
budget is finite even as T0 → ∞ when {λk

νk } is summable.

Proof. According to Definition 3, the sensitivity at iteration k
is determined by ∥ϑk − ϑ′k∥1. Since P and P ′ are adjacent,
only one of their cost functions is different. Pick this different

cost function as the ith one, i.e., fi(·), without loss of
generality. Given that the observations under P and P ′ are
identical, we have xk

(i)ℓ = x′k
(i)ℓ for all k ≥ 0 and ℓ ̸= i.

By defining xk
(j): ≜ [(xk

(j)1)
T , · · · , (xk

(j)m)T ]T , we have

∥ϑk − ϑ′k∥1 =∥∥∥∥[(xk
(1):)

T , · · · , (xk
(m):)

T
]T

−
[
(x′k

(1):)
T , · · · , (x′k

(m):)
T
]T∥∥∥∥

1

=
∥∥∥[ xk

(i): − x′k
(i):

]∥∥∥
1
=

∥∥∥[ xk
(i)i − x′k

(i)i

]∥∥∥
1
,

where in the second-to-last equality we used the fact that
only the ith cost function is different, and in the last equality,
we used the fact that xk

(i)ℓ and x′k
(i)ℓ for ℓ ̸= i are updated

independently of Fi(·, ·) and F ′
i (·, ·), and hence are the same

when observations are identical in P and P ′.
Representing F k

i = Fi(x
k
(i)i, x

k
(i)−i) , we have the following

relationship from (3):

xk+1
(i)i − x′k+1

(i)i = xk
(i)i+γk∑

j∈Nin
i
Lij(x

k
(j)i+ζk(j)i−xk

(i)i)−λkF k
i

− x′k
(i)i−γk∑

j∈Nin
i
Lij(x

′k
(j)i+ζ

′k
(j)i−x′k

(i)i)+λ
kF ′

i
k

= (1− γk|Lii|)(xk
(i)i − x′k

(i)i)− λk(F k
i − F ′

i
k
),

where we have used the fact that the shared messages xk
(j)i+

ζk(j)i and x′k
(j)i+ ζ ′

k
(j)i are the same. Since all conditions of

Theorem 1 are satisfied, Theorem 1 ensures convergence in
both P and P ′, implying that the sensitivity ∆k satisfies

∆k+1 ≤ (1− |Lii|γk)∆k + Cγkλk (34)

where C is from (33). Hence, we can arrive at the first privacy
statement by iteration.

For the infinity horizon result, we exploit Lemma 3. More
specially, Lemma 3 implies that (34) guarantees ∆k < C̄λk

for some C̄. Hence, according to Lemma 6, we know that the
privacy budget is always finite when the sequence {λk

νk } is
summable.

VII. NUMERICAL SIMULATIONS

We use the networked Nash-Cournot game in [2], [4], [7] to
evaluate our approach. Due to space limitations, we suppress
the application details of this game and only provide the
mathematical representation. More specifically, we consider 20
players with each player having a cost function fi(xi, x) =
xT
i Qixi + qTi xi − (P̄ − ΞBx)TBT

i xi, where xi ∈ Rdi with
1 ≤ di ≤ N . Qi ∈ Rdi×di is a randomly generated positive
definite matrix and qi ∈ Rdi . P̄ is a positive vector and Ξ
is a diagonal matrix with positive diagonal entries, both of
which are randomly chosen in the numerical simulation. B
is constructed as B ≜ [B1, · · · , BN ], where Bi ∈ RN×di is
chosen following [7]. The communication graph is generated
randomly but is assured to be strongly connected.

To evaluate the proposed approach, we inject vector noise
ζk(i)ℓ (1 ≤ ℓ ≤ 20) in every message xk

(i)ℓ that player i shares in
every iteration. Each element of the noise vector ζk(i)ℓ follows
Laplace distribution with parameter νk = 1+ 0.1k0.2. We set
λk = 0.1

1+0.1k and γk = 1
1+0.1k0.9 , respectively, which satisfy

the conditions in Theorems 1 and 2. We ran our Algorithm
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Fig. 1. Comparison with the existing distributed NE seeking algorithm in
[7] (under the same noise level) and the differential-privacy approach for
aggregative games in [13] (under the same privacy budget ϵ).

1 for 100 times and calculated the average of the distance
∥xk−x∗∥ as a function of k. We also calculated the variance of
the distance of the 100 runs as a function of k. The trajectories
of the average and variance are given by the red curve and error
bars in Fig. 1. For comparison, we also ran the distributed NE
seeking algorithm proposed by Nguyen et al. in [7] under the
same noise level, and the DP approach for networked games
proposed by Ye et al. in [13] under the same privacy budget ϵ.
Note that [13] addresses undirected graphs but its DP strategy,
i.e., geometrically decreasing stepsizes for a finite privacy
budget, can be adapted to the directed-graph scenario. The
average errors/variances of the two approaches are given by
the blue and black curve/error bars in Fig. 1. The comparison
clearly shows that our approach has a better accuracy.

VIII. CONCLUSIONS

This paper has introduced a distributed NE seeking ap-
proach that can ensure both almost sure convergence and
rigorous ϵ-DP, even when the number of iterations tends
to infinity. The simultaneous achievement of both goals is
in sharp contrast to existing DP solutions for aggregative
games that trade provable convergence for privacy, and to
our knowledge, has not been achieved before for general
networked games. The approach is applicable to general
directed graphs. Numerical results confirm effectiveness of the
proposed approach.
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