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Abstract—We propose a distributed Nash equilibrium seeking
approach that can achieve both almost sure convergence and
rigorous differential privacy with finite cumulative privacy bud-
get, which is in sharp contrast to existing differential-privacy
solutions for networked games that have to trade provable
convergence for differential privacy. The approach is applicable
when the communication graph is directed and unbalanced.
Numerical comparison results with existing counterparts confirm
the effectiveness of the proposed approach.

I. INTRODUCTION

Nash equilibrium (NE) seeking in game theory addresses
the problem where multiple players compete to minimize their
individual cost functions [1]. In many application scenarios,
individual players only have access to the decisions of their
local neighbors, which is usually termed as games in the
partial-decision information setting [2], [3]. In contrast to
the classical full-decision information setting where a player
knows the past actions of all other players, in the partial-
decision information setting, individual players cannot eval-
uate their cost functions or gradients due to lack of necessary
information. Consequently, players have to exchange action
information with their local neighbors for NE seeking.

Significant inroads have been made in fully distributed
NE seeking (see, e.g., [4], [5], [6], [7]). However, all of
these distributed algorithms require players to share explicit
(estimated) decisions in every iteration, which is problematic
when sensitive information is involved. In fact, given that in
noncooperative games the players are not fully cooperative,
it is important for individual players to protect their private
information, which, otherwise, might be exploited by others.
Recently, several results have been reported on privacy pro-
tection in NE seeking (see, e.g., [8], [9]). However, most of
these results assume the presence of a coordinator. In the fully
distributed case, the authors in [10] exploit spatially-correlated
noise to protect the privacy of players. However, their approach
is only effective when the communication graph satisfies
certain properties. Recently, the authors of [11] have used a
constant uncertain parameter to obfuscate individual players’
pseudo-gradients. However, the privacy strength enabled by
such a constant scalar is weak in the sense that only the
exact value of the cost function is prevented from being
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uniquely identifiable. As differential privacy has emerged as
the de facto standard for privacy protection due to its strong
resilience against arbitrary post-processing [12], recent results
in [13] and [14] propose differential-privacy mechanisms for
aggregative games, which, however, have to sacrifice provable
convergence to the exact Nash equilibrium.

In this paper, we introduce a distributed NE seeking ap-
proach on directed graphs that can ensure both almost sure
convergence and rigorous e-differential privacy. We propose to
gradually weaken the inter-player interaction to attenuate the
effect of differential-privacy noise in shared messages on NE
seeking. Note that inter-player interaction is necessary for all
players’ convergence to the NE (which exists and is unique in
our case), and thus we judiciously design the weakening factor
sequence and the stepsize sequence, under which we prove that
our approach can ensure provable convergence to the exact
unique NE even in the presence of differential-privacy noise.
We prove that the algorithm is e-differentially private with a
finite cumulative privacy budget, even when the number of
iterations tends to infinity. It is worth noting that compared
with our recent results on differentially-private distributed
optimization [15], [16], the results here for NE seeking are
fundamentally different: agents in distributed optimization
are cooperative in computing a common objective function,
whereas players in games are competitive and only mind their
own individual cost functions. Moreover, different from our
recent results in [17] which address aggregative games on
symmetric communication graphs, this paper addresses general
networked games (that are not necessarily aggregative) on
directed communication graphs that could be unbalanced.

Notations: We use R? to denote the Euclidean space of
dimension d. We write I; for the identity matrix of dimension
d, and 1, for the d-dimensional column vector with all entries
equal to 1. For a vector z, [z]; denotes its ith element. We
write x > 0 (resp. x > 0) if all elements of = are positive
(resp. non-negative). We use (-, ) to denote the inner product
and ||x||2 for the standard Euclidean norm of a vector x. We
use ||z||1 to represent the /1 norm of a vector x. We write || A||
for the matrix norm induced by a vector norm || - ||. For two
vectors © and v with the same dimension, we write © < v to
mean that each entry of u is no larger than the corresponding
entry of v. We use a.s. to denote almost surely or almost sure,
depending on the syntax context.

II. PROBLEM FORMULATION AND PRELIMINARIES
A. On Networked Games

We consider a networked game among a set of m players,
ie., [m] = {1,2,...,m}. Player ¢ is characterized by a
feasible action set £2; C R% and a cost function f;(z;,7_;)



where z; € §); is the decision of player i and z_; =

(], - al 2l -+, xl]"denotes the joint decisions of
all players except player . Note that we allow different x; to
have different dimensions d;.

Traditionally when a mediator/coordinator exists, every
player ¢ can access all other players’ decisions x_;. Then,

the game that player ¢ faces can be formulated as:

v, €Q; and z_; € Q_;. (1)

The function f;(-) is assumed to be known to player i only.

At the NE z* = [(«)T,..., (25,)T]T € RP with D =
S, d;, each player has f;(x},2*,) < fi(w;, x*;),Vo; € Q.
Namely, at the NE, no player can unilaterally reduce its cost
by changing its own decision.

We consider a scenario where no mediator/coordinator
exists, and players share decisions locally among neighbors,
which is commonly referred to as the partial-decision infor-
mation scenario [2]. We use a directed graph G = ([m],€&) to
denote the communication pattern where [m] = {1,2,...,m}
is the set of nodes (players) and & C [m] x [m] is the
edge set of ordered node pairs describing the interactions
among players. We also use the notion of directed graph
induced by a weight matrix L = {L;;} € R™*™, denoted
as G, = ([m],€L). More specifically, in G, = ([m],&L),
a directed edge (¢,j) from agent j to agent ¢ exists, i.e.,
(1,j) € & if and only if L;; > 0. For a player i € [m],
its in-neighbor set NI is defined as the collection of players
J such that L;; > 0; similarly, the out-neighbor set N?ut of
player i is the collection of players j such that L;; > 0.

min fi(x;,x_;) s.t.

Assumption 1. For all i € [m], fi(z;,x_;) is convex and
differentiable in x; over R% under each given x_;.

To characterize the NE of the game (1), we also define

¢($) = (FIT('rlvx—l)v"' aFg;(xmvx—m))Tv

where Fj(z;,7_;) 2 Va, fi(@i, _).
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Assumption 2. ¢(z) is strongly monotone over Q = Q x
X, e, forall  # 2 in Q, (¢(x) — p(a))” (x—a') >
wllx — 2’| holds for some p > 0. Each mapping F;(z;,x_;)
is Lipschitz continuous in both of its arguments, x; and r_;.
Namely, for all z;,y; € R and x_;,y_; € RP~% where
D =30 di ||Fi(zi,v—) — Fiys, v—i)|l2 < Killzi — yill2
and HFz(xu ,T,Z‘) — Fi(l'i, y,i)llg S KQH.%‘,i — y,iHQ holdfor
all i € [m], where K1 , Ko are some constants.

Assumption 2 ensures that (1) has a unique NE z* [18].

Assumption 3. The off-diagonal entries of the matrix L =
{Li;} € R™*™ are non-negative and its diagonal entries
L, =— Z;nzl L;j satisfy L;; > —1 for all i € [m]. Moreover,
the digraph Gy, is strongly connected.

In the analysis of our approach, we use the following results:

Lemma 1. (Lemma 2 of [15]) Let {v*},{a*}, and {p*} be
random nonnegative scalar sequences, and {q*} be a deter-
ministic nonnegative scalar sequence satisfying Z,:';O ak <
00 .8y Y peq® =00, Yp P < oo as., and

E [P < (14 af = ¢ + %, W20 as.

where F* = {v’ af,p%0 < ¢ < k}. Then, Yoo ¢ vF < o
and limy_, oo v® = 0 hold almost surely.

Lemma 2. (Lemma 5 of [15]) Let {v*} C R? and {u*} C R
be random nonnegative vector sequences, and {a*} and {b*}
be random nonnegative scalar sequences such that

E [VkJrl‘]_-k} < (VF+a*117)v* + bF1 — Hrb, vk >0

holds a.s., where {V*} and {H*} are random sequences
of nonnegative matrices and E [V’H‘l\]—'k] denotes the con-
ditional expectation given vt u® a®,b", V', H" for ¢ =
0,1,..., k. Assume that {a*} and {b*} satisfy > po, a* < co
and ZZO:O b* < 0o a.s., and that there exists a (deterministic)
vector ™ > 0 such that 7' V* < 77 and 7T H* > 0 hold a.s.
for all k > 0. Then, we have 1) {xTv*} converges to some
random variable w'~v > 0 a.s.; 2) {v*} is bounded a.s.; and
3) Sl HRuk < oo holds almost surely.

Lemma 3. [15] Let {v*} be a nonnegative sequence, and
{a*} and {B"*} be positive sequences satisfying > po, o =
00 and limg_oo a® = 0, and g—z converges to 0 with a
polynomial decay rate. If there exists a K > 0 such that
R < (1 — aF)wF + B holds for all k > K, then we always
have vk < C g—],: for all k, where C' is some constant.

B. On Differential Privacy

We adopt the notion of e-differential privacy (DP) for
continuous bit streams [19], which has recently been applied
to distributed optimization (see, e.g., [20] as well as our work
[15]). To enable DP, we inject Laplace noise Lap(v) to all
shared messages, where v > 0 is a constant parameter of
the probability density function %e*%. One can verify that
Lap(v) has mean zero and variance 2v2. We represent the
networked game P in (1) by three parameters (2, F,Gy),
where Q £ Q4 x - - - x Q,, is the domain of decision variables,
F2{f, -, fm} and Gy denotes the communication graph.
We define “adjacency” between two games as follows:

Definition 1. Two networked games P = (Q,F,Gr) and P' =
(QV,F',G'L) are adjacent if the following conditions hold:

e Q=0 and Gy, = G};

o there exists an i € [m] such that f; # f] but f; = f] for
all j € [m], j #;

o fiand fi', which are not the same, have similar behaviors
around x*, the NE of P. More specifically, there exits
some & > 0 such that for all v and v' in Bs(x*) = {u :
u € RP |lu — x*|| < &}, we have f;(v) = fl (V).
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Remark 1. Note that in Definition 1, for the sake of notational
simplicity, we use f;(v) to represent f;(v;,v_;). Moreover,
in Definition 1, since the difference between f; and f! can
be arbitrary, additional restrictions have to be imposed to
ensure rigorous DP. Different from [13], [20] which restrict all
gradients to be uniformly bounded, we add the third condition,
which, together with the proposed noise-robust algorithm,
allows us to ensure rigorous DP while maintaining accurate
convergence.

Given a distributed algorithm, we represent an execution
of this algorithm as .4, which is an infinite sequence of the



iteration variable 9, i.e., A = {9°,91,---}. We consider ad-
versaries that can observe all communicated messages. Thus,
the observation part of an execution is the infinite sequence
of shared messages, which is represented by O. We define the
mapping from execution sequence to observation sequence by
Rp.90(A) £ O, where 9° denotes the initial condition. Given
a networked game P, an initial condition ¥°, and observation
sequence O, Ry, 190((’)) is the set of executions A that can
generate the observation O.

Definition 2. (¢-DP, [20]). For a given ¢ > 0, an algorithm
A is e-differentially private if for any two adjacent networked
games P and P', any set of observation sequences Oy C
O (O is the set of all possible observation sequences), and
any initial state 9°, we always have P[Rp g0(A) € O;] <
e‘P[Rp: 90 (A) € O, |, where the probability P is taken over
the randomness over iteration processes.

III. A DIFFERENTIALLY-PRIVATE NE SEEKING ALGORITHM

We present in this section a fully distributed NE seeking
algorithm (Algorithm 1 below).

with
privacy

Algorithm 1: Distributed
provable  convergence and

NE  seeking
differential

Parameters: Stepsize sequence {\* > 0} and decreasing
sequence {7* > 0}.

Every player ¢ maintains one decision vari-
able (), and m — 1 estimates af; , =

E \T k T (.k T kE  \TIT
[(I(m) » T (x(i)i—l) ] (x(i)i+1) ;o a(I(i)m) ]

of other players’ decision variables. Player i sets x?i)e
randomly in R% for all ¢ € [m].

for k=1,2,... do
a) For both its decision variable x’(’j)j and estimate vari-

ables x’(“j)l, e ,xé"j)m, every player

k k
» T(i—1 Ty

J adds respective persistent DP noise C(kj)l, cee ij)m, and
then sends the obscured values z’(“j)l + C(’“j)l, Ty,
((kj)m to all players i € N".

b) After receiving x’(“j)l + C@.)l, e x(J + C ., from all

Jje Ni«“, player ¢ updates its decision and estlmate Variables:

2y =itV _Lig (@l + (=) —NFielyia -,
JEN,‘LD
wige =wnety Y _Lig(@lye + e — o), VA
JEN?
3
¢) end

Remark 2. The sequences {*} and {\F}, and the DP noise
parameter are hard-coded into players’ programs and need no
adjustment/coordination in implementation. This enables our
algorithm to be implementable in a fully distributed manner.

IV. A GENERAL CONVERGENCE RESULT

We first have to establish some general results necessary for
the convergence analysis of Algorithm 1.

Lemma 4. Under Assumption 3, we have the following
properties when ~* > 0 in Algorithm 1 is sufficiently small:
1) the eigenvectors of the matrix I+~ L are time-invariant;
2) I + ~*L has a unique positive left eigenvector ul
(associated with eigenvalue 1) satisfying uT1 =

3) the spectral radius of I+ ~*L — % is upper—bounded
by 1— a’yk, where 0 < a < 1;

4) there exists an L-dependent matrix norm || - ||, such that
I +~*L — %”L <1—ay* for 0 < a <1 when v*
is small enough. Moreover, this norm has an associated
inner product (-,-)p, Le., 2 = (z,7)L.

Proof. 1) Representing the eigenvalues and associated
eigenvectors of L as {01, ---,0m} and {vy, -+, v}, re-
spectively, we can verify that the eigenvalues and associated
eigenvectors of I+~ L are given by {1++*01, -+, 14+7% 0, }
and {vq, -+ , v}, respectively.

2) One can obtain from [21] (or Lemma 1 in [22]) that
I+L has a unique positive left eigenvector u” (associated with
eigenvalue 1) satisfying u”'1 = m. Hence, using statement 1),
I+ ~*L has a unique positive left eigenvector u” (associated
with eigenvalue 1) satisfying u”'1 = m

3) Representing the eigenvalues of L by {91, - -, 0}, the
eigenvalues of I + L can be expressed as {1 + o1, ---, 1 +
0m}. Under Assumption 3, I + L is irreducible. Using the
Perron—Frobenius theorem, one can obtain that / + L has one
unique eigenvalue equal to one and all its other eigenvalues
strictly less than one in absolute value, implying that one and
only one of p; is zero. Represent this eigenvalue of L as g,,, =
0 without loss of generality. Then we have |1 + p;| < 1 for
all 1 < i < m — 1. One can verify that the eigenvalues of I +

v*L—1%" are given by {1+7* 01, -+, 1+7*0,,_1, 0}. Next,
we prove the third statement by showing that there exists an «
satisfying |1+~%0;| < 1 —ay* forevery i = 1,2,--- ,m— 1.

We represent g; as g; = a; + ib;, where a; and b; are real
numbers, and i is the imaginary unit. Because |1 + ¢;| < 1
holds for all ¢ = 1,2,--- ,m — 1, we have a; < 0 for i =
1,2,--- ,m—1. Under the new representation of ¢;, |1+
becomes /(1 — [a;[7*)2 + (b;7*)2. So we only have to prove
V(1 = ai[v%)2 + (b:4%)2 < 1 — v*a for some 0 < a < 1
when ¥ is small enough. Squaring both sides of the inequality
yields a?(7%)? — 2a7% > (7%)2(a? + b2) — 29F|ay], iee.,

aQ—%a>(a?+bf)—%. 4
,m—1),

When ~* is less than QQI_‘Z)L (note a; < 0 fori =1, -
the right hand side of (43 is negative whereas the left hand
side is a quadratic function of o with two x-intercepts given
by @ = 0 and a = 2. So there always exits an « in the
interval (0, 1) making the left hand side of (4) larger than its
right hand side, and hence making (4) hold. Therefore, there
always exists an 0 < a < 1 making |1 + vroi| < 1 — ¥
hold when v* > 0 is less than Q‘ilb‘z

Given that the above derivation is independent of 4, we have
|1+ yr0i] < 1 — ay* for some 0 < o < 1 and all i =
1,---,m — 1, and hence the third statement in the Lemma.

4) According to [23], there exits a matrix norm || - | L,
which only depends on the eigenvectors (or unitary Schur-
decomposition matrix in the more general complex-matrix




case) of I +~*L — 1% such that the norm of I +~*L —

is arbitrarily close to 1ts spectral radius. Statement 2) proves
that the eigenvectors of I + Y*¥L — % are time-invariant
and independent of ~*. Hence, the matrix norm || - || is
independent of *. Using Statement 3) yields that || +
YL — %HL < 1 — av* holds for some 0 < a < 1 when

ks g 2l 2]am 1]
~* is smaller than min{ 2 +1b¥, o :_b:n 1} l\/Aloreover,
from [23], || - | can be expressed as [|z||L = |[Lz]2 for

some L determined by L. Thus, the norm || - ||, satisfies
the Parallelogram Law and, hence, has an associated inner
product (-,)r. We refer the reader to Sec. IL.B of [24] for
an instantiation of this norm and inner product (which only
depends on the left eigenvector u”') for directed graphs.

Using the time-invariant positive left eigenvector u =
[ug, - um]T of T + ~¥L from Lemma 3, we define a
weighted average zF £ % Z;n 1 u;z’&) of player 1’s decision
variable xki , and other players’ estimates :z: ; (G # 1) of
this decision variable. We also define the assembly of the ith
decision variable x¥ as well as the assembly of the weighted

average X~ as

To measure the distance between matrix variables x¥ and
k we define a matrix norm for an arbitrary vector norm

X/,

|| - |lz. Specifically, for a matrix X € R™*9%, we define
X2 = [[[I Xz, ,||X(d yllz H , where X(;) denotes
the ith column of X |x¥ — %¥||, measures the d1stance
between all players’ x( i for j € [m] and their average Z%.

Based on the inner product (-, -}, for vectors, we also define
an inner product for matrices consistent with the || - ||, norm
for matrices. More specifically, for a matrix X in R™*%,
we define (X, X) as: (X, X)) = Z?;(X(i),X(i))L, where
X(;) denotes the ith column of X. Since for any column
X(;) of a matrix X, we have | X2 = (X@), Xu)L
one can verify that || X||2 = (X, X) holds for any matrix
X € R™*% _In addition, we have the following result:

Lemma 5. For any norm || - ||p, X € R™¥% and W €
R™*™, we always have |\WX | < |[W||L||X||L. Further-
more, there exist constants Oy, o and 0z 1, such that | X || <
Sp2|| X |2 and || X||2 < 62,1|| X || hold for any X € R™*di,

Proof. The proof follows from the line of reasoning in Lemma
5 and Lemma 6 in [22], and hence is not included here. B

Based on the above results, we have the following conver-
gence result for general distributed algorithms for problem (1):

Proposition 1. Under Assumptions 1 and 2, let x* =
(@), ..., (x2)T)T be the unique NE of (1). If, under inter-
action matrix L, a distributed NE-seeking algorithm generates

sequences {x} for all i € [m] such that there exists some
T > 0 to make the following relations hold a.s. for all k > T':

E >0 ot =z |31 F"]
E [0 I = =i 37

1 K1Y k44T Sy lzy — =13
< i= i i
< ([ 0 1—@7’@}*“ H )[zzluxf—scm
_ Y A %
+bk1—ck{ (6(a*) — o(a"))" (@ —a") }
O b
(6)
where
o |||z is an L-dependent norm, Fk = {Xfy i€[m],0<
C<k} @k =[@)T, - @)

o the random nonnegative scalar sequences {a*}, {bF}
satisfy > pe,af < 0o and Y po  bF < oo, respectively,
a.s., and the deterministic nonnegative sequences {c*}
and {*} satisfy Y pe ot = o0 and Y 5o v* = oo;

o the scalars k1 and ko satisfy k1 > 0 and 0 < /@27’“ <1,
respectively, for all k > 0.

Then, limyg_ o0 ||xF—%¥| 1 = 0 and limy,_, . ||ZF — 27| = 0
a.s. for all i, implying limy,_, Hx](“l)l —af|| = 0 a.s. for all i.
Proof. Since we have (¢(z*) — ¢(:Jc*))T (zF — 2*) >

k

0 for all k£ from Assumption 2, by letting v =

[z — =73, Y, fo—ifHﬂT, we can arrive at
the following relationship from (6) a.s. for all k > 7"
k

E [vFHFY] < ({ é . '_“Zﬂ,c ] +ak11T> vk bR, (7)
T |1 K1y — T
] 0 L—koy® |~

Since the results of Lemma 1 and Lemma 2 are asymptotic,
they remain valid when the starting index is shifted from k£ = 0
to k = T, for an arbitrary 7' > 0. Thus, relation (7) implies
that limy_ oo 7 v¥ exists a.s., and that {} /", ||zF — z}||3}
and {3°7" |lx¥ — x¥||2} are bounded almost surely.

Consider the second element of v* in (7), which
should satisfy E [/, [xft! —=fH 2|74 < (1 -
koYR) SO X — %F|2 4+ ¥ VE > 0, as., where BF £
ab (X0 (|2 — a3+ ||[xF — xF(12)) + b". Using the as-
sumption that Zk: a® < oo holds a.s., and the proven
resulis that {317, |75 — o7 [3) and (217, e} — (3} are
bounded a.s., one obtains > ,- 3% < oo a.s.Thus, under
the assumption of the proposition, Y 1" | ||x¥ — x¥||2 satisﬁes
the conditions of Lemma 1 with ¢* = ko7 and p*F = g*.
Therefore, we have the following relationship a.s.:

ZWZHX ~ =3 < oo, lim an - =H3 = o0.

By setting m = [1, 71]", we have 7

®)
We next proceed to prove >.." [lzF — 27> — 0
almost surely. One can  verify that  under
Yregaf < oo and Y2 0% < oo, the inequality
in (6) satisfies the relationship in Lemma 2 Wlth
vh = [2%1 lzF — 27113, i 1||>]§ —=H2]7,
1 K c” 0
ko _ 1Y koo
1% = [0 1 7,{271@ H = 0 0 and
= 1, %]T Therefore, from Lemma 2, we arrive



that 7lvFk
:; ZZ” 1 ||X

k‘||2

at the conclusion converges a.s., 1i.e.,
m =k _ gk|2
Yz — 23 + X;j |z converges
almost surely. Since Y ", [|xF — % has been proven to
converge a.s. (see (8)), we know that Y . ||zF — 273
(equivalent to ||z — x*||3) converges almost surely.
Lemma 2 also implies > ,o 7’ H*u* < oo as., ie.,
T -k 0 k) W\ T =k ¥
Sl (e

Z ck ((b(xk
k=0

Next, using (9) and the proven a.s. convergence of ||7% —
2 we prove that z¥ converges a.s. to z*. The condi-
tion Y27 cF = oo, the property (¢(z*)— qﬁ(x*))T(fc -
z*) > 0 (see Assumption 2), and (9) imply that there
exists a subsequence of {z*}, say {z*¢}, along which
(p(z%) —(b(x*))T(ik' — x*) converges a.s. to zero. The
strongly monotone condition on ¢(-) in Assumption 2 implies
that {Z"¢} must converge a.s. to z*. This and the fact that
||z*F — 2*||? converges a.s. imply that T* converges a.s. to z*.
Further note that Hx —Xf||7 converging to zero implies zf;,

o) @ -2 ) <o O

x*

converging to Z¥ for all £ € [m]. Therefore, we have Ty
converging to x a.s. for all i € [m]. [ |

V. CONVERGENCE ANALYSIS FOR ALGORITHM 1

In this section, based on Proposition 1, we establish the
convergence of Algorithm 1 to the unique NE under persistent
DP noise satisfying the following assumption:

Assumption 4. For every i,{ € [m| and every k, conditional
on the state x’(“l.)e, the DP noise C(ki)e that player © adds to
its shared decision (or estimates of other players’ decisions)
satisfies E [Cé)e | 2o = 0 E |Gl | x](ci)ej| = (o})?
and Y17 o (vF)? max;c(y (0F)? < oo, where {y*} is from
Algorithm 1. Furthermore, E {Hx?i)fuﬂ < o0, Vi, L € [m).

Remark 3. Since 'yk decreases with time, Assumption 4 even
allows the sequence {o¥} to increase with time. For example,
for 4% = O(155), if {oF} increases with time with a rate
no larger than O(k°3), the summable condition still holds.
Allowing {ck} to increase with time is key to enabling strong
e-DP. which will be detailed later in Theorem 2.

Theorem 1. Under Assumptions 1-4, if there exists some T >
0 such that the sequences {v*} and {\*} satisfy

o0 oo oo
Z,yk = o0, Z )\k = o0, Z(,yk)2
k=T k=T k=T

Algorithm 1 converges a.s. to the unique NE of problem (1).

m

Proof. The basic idea is to prove that Y, ||Z¥ — 27||? and
S |IxF — x¥||2 satisfy the conditions in Proposmon 1.
Part I: The evolution of Y /", [|xF — xF||2.
From Algorithm 1, one can obtain the dynamics of x%:

= (I+7 L)X +9" LoCy = Noes B (afy)s, 2fy ), (10)

where e; € R™ is a unitary vector with the ith element equal
to 1 and all the other elements equal to zero, L, € R™*™ is

k+1

the matrix obtained by replacing all diagonal entries of matrix
L with zero, and Cf = [géfl)“ . Cécm)i]T c Rmxdi

. <k 1uT %k . .
One can obtain that X7 = — == always holds, which, in

combination with (10), yields
gh

k k k
k1u'L, Ck A 1w B (2,520 )
m 1 m ’

(1D

where u; is the ¢th entry of uw. Note that in the last equality

we used the property u? (I +~v*L) =« from Lemma 4.
Combining (10) with (11) yields

=] +7

xp U= RPT = WEKE ML, ¢ — ML B (2 20 —),
. (12)
where we have defined W* £ +4FL — 1 11, £ L, —

Lu® 1uLo and II,, £ e; — 4t

The second statement of Lemma 4 implies W*1 = 0 and
further W*%% = 0. Hence, we can subtract W*%¥ = 0 from
the right hand side of (12) to obtain

Xf“ _kH Wk( if)+~kaLon— )‘kHeinT(x(l;)iax(li‘)—i)'
(13)
Taking the || - ||, norm on both sides leads to
e s < (W — %) = A e, B (g,
+ ("), I 1CE R
+2<Wk(x —xF) = AL, F (2l )i L, >

-l

(14)

Taking the conditional expectation on both sides, with
respect to Fj, = {x%0 < £ <k, i € [m]}, leads to

E [lxi ! ==L F] < (05T, 1767 2m(or)? 15

+ WG = %7) = AL, T (2, (i)—i)||2L7

where we have used Assumption 4 and the property ||¢F||2 <

07, I I3 (see Lemma 5).
Further using Lemma 5, we can simplify (15) as

E [lx; ™! =72 IF ] <(V)? ML, 1207 pm(or)?

2
+(IWE ok = RE AL L FT e by )
(16)
According to Lemma 4, we have ||[W¥||, < 1 — ay* for
some 0 < a < 1 when ~* is sufficiently small. Given that
{#*} is square summable, we have |[WF|; < 1 — av* for
some 0 < o < 1 when k is larger than some 7. Therefore,
(16) means that there always exists a 7' > 0 such that we have

[t = =E R Y < ()20, 1303 am(oh)?

2
+ (1= @)k = REN AN I L FT b))
a7

for k>1T.

Applying to the second term on the right hand side of (17)
the inequality (a 4+ b)? < (1 + €)a® + (1 + ¢ 1)b?, valid for
any scalars a, b, and € > 0 [25], we can obtain the following

k
relationship by setting € as % (which further results in

14+e= ﬁ and 1 + ¢! = 7,},(}):
 [Ip = =B < (), 1303 am(oh)?

g P,
+(1—an®) [ b3 + el

I7
L”FT( S ORES (7) 1,)||L
(18)



Next, we use Assumptlon 2 to bound ||FT(x(Z)
At the NE point x*, we always have Fj;(z,
all i € [m], which implies

’L7:I:(l z)

2.
z*;) = 0 fo

< 5L 2||F($( yio (z) i) F(x( yir T )JFF(x(Z)l =)
- Fi(a},a2y)|3
< 2K26L,2H‘T(i)—z — a3+ 2K126%,2||x’(€i)i —a7l3, (19

where in the last inequality we used Assumption 2.

Using inequalities [l , — 2%;[3 < 2[laf)_, —
zE |5+ 207k, “,lI3 and |‘x](€z)z - i3 <
dlety — oHE + ot — allf whee o, 2
(@D, @) @), (@) 7], we can obtain

IFs(2lys w17 < 4KT67 5|l
+4K25L,2(Hx(i)—i -

— @73 + |25 — 2] |3)
815+ 17 — z*_,||§)
(20)
Plugging (20) into (18) leads to
L e

< (1= ay®)|lxf = =FII7 + (v
4(\F)? |1, |13, K367
+ = aL L2(||

"ML, |I767 2m(or)?

X

o

iy—i

4?1, || K76 *
S “(Ilwﬁﬁ- =z |3 + 125 — 2713)-
1)
Summing (21) from i = 1 to i = m and noting > ;- ||xF —
3 = XLty — @13 + llafy_; — 25]3) and

Z:’il ||’i"i — xiz”% = (m _ 1) Zm ||J;
k —k ~
B[S, xR 17 < (1-an®) 7 [ — =ER

+ (v%)? ||HL0||L5% om Yt (o )2
4m(>‘k)2‘|neiHLK 67

— x}||3, we obtain

+ e Y |IEE — w13
4(A*)? ||, 17 K263 585 =
+ Z'yLoz L22LZZ 1||X 7XkHLv

5 (22)
where we have defined K £ max{K;, K3}.
Part II: The evolution of Y /", ||ZF — x}||%.
Subtracting = from both sides of (11) yields

* = * uTLo 2
|1Z8HY — af |3 < (|78 — 2|2 + 2(+%) 2 e Lellz ¢k 2
)\ u
+ ) HF( )va(z )”2

23)
Taking the conditional expectation on both sides, with respect
to F = {x50 < £ <k, i € [m]}, leads to

[Hkarl *”g|}—k] < ka _ x*ng + 2(+")?uT Loll3(o})*
i = Ity i m
2(A )2"72HF7(z?L)L>m?b)—L)|‘g _ 2ui)‘k<ii§_z:7Fi(zé€i)i’xl(€i)—i)>
m?2 m .
(24)

Next we bound the last two terms in (24). For the second
last term, we can bound it similarly to (20):

)”2 < 4K2||x (i)—i — 571”3

oI5 + 4K ||I(i)i — T3+ 4KT |7 — @
(25)

| Fs(iyir iy

+4K3|z", - 73

i 112"

For the inner-product term in (24), we bound it using
Fi(z¥,2*,;) = 0 and split it as follows:

2)\k< -z, F; (x](“i)i,x@)_i) —
+ 2)‘k <i'z - ‘Ti ) FZ(jigvfliz) - Fl(xz ) x71)> .

For the first inner-product term on the right hand side of (26),
using the Cauchy-Schwarz inequality yields

2N < -z, F; (x?i)iawéci)—i) - Fz(ff@ﬁz»

(26)

A2 || zk —z
2—()”77£l“’“ VNF (i 2y —s) — Fal@d, 28)113.
(27
The Lipschitz assumption in Assumption 2 implies
HF‘@](Ci)iaxZ) ) — L (xfa )HQ
< QHF( )z’x(z) ’L) Fi(x" ) 7,)”% (28)
+2||Fi(af, 2y —) — Filar, z8)|13
<2KF |l — B3 4+ 2K3 |afy i — 25113
Combining (26), (27), and (28) leads to
22k <ff -7, Fi(x?i)i7xl(ci)—i)>
A2 ||zk—zr |2 -
> - ln el Hn,i e 2K%7k”$é€i)i — 73 (29)

oI5
+ 20\ (zF — 27 Fy(al, 2k,) — Fi(a},2%))).
Further substituting (25) and (29) into (24) yields

— 2K3y ||l _; — 2

E [la}*! — o IB1F*] < llak — a7 +2(y%)? Lol (aky2
o+ SOOI ok, — 7 13 + ok, — 2% 1)
o SO ok — HI3 + ok — a7 13)
+ Ol 2T ot — o

2 iK _
+ M”zl&)_i - zliz”%

Ak * —k = kK
- % <I£€ - Ivai(zfvxliz) - Fi(xiax—i» .
(30)
Summing (30) from ¢ = 1 to ¢ = m, and
using the relationship Y 7", 2%, — %3 =

(m — X", |2 3 =
Sy (leky — 2513 + llzk ., -
E [0 2t — af |31 7]
< — |3+ 22 kel g (k2
+ SOTPUERE sk — |2 +M2211 #2112
4 u; (A*)? Z%kui?*“:ﬂb 4 2uzfi y* S lxk — xF|I2
- 28X (g(ah) - ¢(a7))" (@* — a7),

(31)
where z% = [(z})T, - ,(ifn)T]T and K £ max{K,, Ks}.

Part III: Combination of Step I and Step II.
By combining (22) and (31), and using Assumption

w73 and 37 [
:T:’iZH%) lead to

4, we have > 0" |xF — xF||2 and Y, ||lZF — 273
satlsf;/mg the conditions in Proposition 1 with k1 =
2ui K767 5 _ k _ k ,k A
—m > 2 a, a max{al, a2,a3,a4,a5} a’l -



A2, |17 K267 583 1 Am(AM)? |1, |17 K267, 5

E A E &

~zka , Qg = i ~YFa , a3 =

8(A\*)PuiK*57 5 ok L 8(X)2uzK2 ok A wOM? e

m2 b 4 - ) 5 - m.yk ) -

max{b}, bk} bf & (4h)? ||HL H%@ oMY (o), by =
Ilu" Lo H _2u N\

2(yF)2 2 30 (0F)?, and F = 2wA [

Remark 4. The requirement on v* and \* in the statement
of Theorem 1 can be satisfied, for example, by setting v*
O(3%) and \¥ = O(5) with a,b € R satisfying 0.5 < a <
b<1land2b—a > 1.

VI. PRIVACY ANALYSIS OF ALGORITHM 1

Definition 3. For any initial state ¥° and any adjacent
networked games P and P’, the sensitivity of an NE seeking
algorithm at iteration k is

AF 2 sup sup 0% —
0e0 067%;}60(0), 19’673;,11190(0)

A (32)

Based on this definition, we obtain the following result:

Lemma 6. At each iteration k, if each player in Algorithm 1
adds a vector noise C(kl) ¢ € R% (consisting of d; independent
Laplace noises with parameter v*) to each of its shared
message x@)g such that Zf"zl ﬁ—: < & then Algorithm 1 is €-
differentially private with the cumulative privacy budget from
iterations k = 0 to k = Ty less than €.

Proof. The result can be obtained following the derivation of
Lemma 2 in [20] (see also Theorem 3 in [13]). |

Before giving the main results, we first use Definition 1
and the guaranteed convergence in Theorem 1 to confine the
sensitivity. Note that when the conditions in the statement of
Theorem 1 are satisfied, our algorithm ensures convergence
of both P and P’ to their respective NEs, which are the
same under the third requirement in Definition 1. This means
that HFZ(:C}(“Z)l,xZ)_l) _ F’i(x/’é)wx/z)ii) = 0 will hold
when k is sufficiently large (for the iterates in both P and
P’ to enter the neighborhood Bjs in Definition 1, upon which
the evolution in P and P’ will be identical). Furthermore,
the ensured convergence also means that F,-(:z:’(?t.)i, :c@)_i) and

F'i(2 ](ci)i,:v/]é)_i) are always bounded. Hence, there always
exists some constant C' such that the following relation holds
for all £ > 0 under the conditions of Theorem 1:

F'i(a' (it (i) 1§07’“ (33)

i(x](ci)ivx?i)—i) -
Theorem 2. Under the conditions in Theorem 1, if all elements
of C(kl.)l, cee Cﬁ.)m follow Laplace distribution Lap(v*) with
(oF)2 = 2(*)? satisfying Assumption 4, then Algorithm 1
is e-differentially private with the cumulative privacy budget
from k =0 to k = Ty bounded by € < ZTO C;—gkk where C
2 YT (TS (1= Ly P~ At +
ARINEL with L & min1{|L”|} The cumulative privacy

is given in (33) and ¢k

budget is finite even as Ty — oo when {%} is summable.

Proof. According to Definition 3, the sensitivity at iteration k
is determined by ||9* — 9¥'¥||;. Since P and P’ are adjacent,
only one of their cost functions is different. Pick this different

cost function as the ith one, i.e., f;(-), without loss of
generality. Given that the observations under P and P’ are
identical, we have x( e = :c( )¢ for all k>0 and ¢ #i.

By defining xfj): 2 (z (])1)T, cee (x(j)m)T}T, we have
19" = 0™y =
T A A T
‘ |:(‘réc1):)T7 T (x](cm))T] - [(x/(l):)Tv T (m/(m):)T:| )

= [[ et ==, = I o ==t ],

where in the second-to-last equality we used the fact that
only the th cost function is different, and in the last equality,
we used the fact that 2F,, and 2’ Z) ¢, for £ # i are updated
independently of F;(-,-) and F/(-,-), and hence are the same
when observations are identical in P and P'.

Representing FF = F;(zF T a:’(“l) ;) » we have the following
relationship from (3):

k+1 k+1 o
T ~ @i = “’”Wﬂ 3 e Lij (J)erC(J)z u)i)*k"”“F-k
k
_ x(Z)Z—W ZjGN?‘ 7;]( —|—< x(z ’L) )\kF/
k
= (1= "Ll = 2'y0) - /\k(Ff —F"),

where we have used the fact that the shared messages x(’fj)i—f—
((’;.)Z and x( —I—C(J)Z are the same. Since all conditions of
Theorem 1 are satisfied, Theorem 1 ensures convergence in
both P and P’, implying that the sensitivity A* satisfies

Ak+1 S (1 — ‘L”h/k)Ak + C’}/k)\k

(34
where C'is from (33). Hence, we can arrive at the first privacy
statement by iteration.

For the infinity horizon result, we exploit Lemma 3. More
specially, Lemma 3 implies that (34) guarantees AF < C\*
for some C'. Hence, according to Lemma 6, we know that the
privacy budget is always finite when the sequence {ﬁ—:} is
summable. [ ]

VII. NUMERICAL SIMULATIONS

We use the networked Nash-Cournot game in [2], [4], [7] to
evaluate our approach. Due to space limitations, we suppress
the application details of this game and only provide the
mathematical representation. More specifically, we consider 20
players w1th each player having a cost function f;(z;,z) =
27 Qiz; + q¢f'v; — (P — ZBz)T Bl z;, where x; € R% with
1 <d; <N.Q; € R%*4 js a randomly generated positive
definite matrix and ¢; € R%. P is a positive vector and =
is a diagonal matrix with positive diagonal entries, both of
which are randomly chosen in the numerical simulation. B
is constructed as B £ [By, --- , By], where B; € RV*di jg
chosen following [7]. The communication graph is generated
randomly but is assured to be strongly connected.

To evaluate the proposed approach, we inject vector noise
((sye (1 < € < 20) in every message x(;, that player ¢ shares in
every iteration. Each element of the noise vector ( (ki) , Tollows
Laplace distribution With parameter ¥ = 1 +0.1k%2. We set
pLa= m and % = m, respectively, which satisfy
the conditions in Theorems 1 and 2. We ran our Algorithm
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Fig. 1. Comparison with the existing distributed NE seeking algorithm in
[7] (under the same noise level) and the differential-privacy approach for
aggregative games in [13] (under the same privacy budget €).

1 for 100 times and calculated the average of the distance
||z* —2*|| as a function of k. We also calculated the variance of
the distance of the 100 runs as a function of k. The trajectories
of the average and variance are given by the red curve and error
bars in Fig. 1. For comparison, we also ran the distributed NE
seeking algorithm proposed by Nguyen et al. in [7] under the
same noise level, and the DP approach for networked games
proposed by Ye et al. in [13] under the same privacy budget €.
Note that [13] addresses undirected graphs but its DP strategy,
i.e., geometrically decreasing stepsizes for a finite privacy
budget, can be adapted to the directed-graph scenario. The
average errors/variances of the two approaches are given by
the blue and black curve/error bars in Fig. 1. The comparison
clearly shows that our approach has a better accuracy.

VIII. CONCLUSIONS

This paper has introduced a distributed NE seeking ap-
proach that can ensure both almost sure convergence and
rigorous €-DP, even when the number of iterations tends
to infinity. The simultaneous achievement of both goals is
in sharp contrast to existing DP solutions for aggregative
games that trade provable convergence for privacy, and to
our knowledge, has not been achieved before for general
networked games. The approach is applicable to general
directed graphs. Numerical results confirm effectiveness of the
proposed approach.
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