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Many computer vision techniques infer properties of our physical world
fromimages. Although images are formed through the physics of light and

mechanics, computer vision techniques are typically data driven. This trend
ismostly performance related: classical techniques from physics-based
vision often score lower on metrics compared with modern deep learning.
However, recent research, covered in this Perspective, has shown that
physical models can be included as a constraint into data-driven pipelines.
In doing so, one can combine the performance benefits of a data-driven
method with advantages offered from a physics-based method, such as
intepretability, falsifiability and generalizability. The aim of this Perspective
isto provide an overview into specific approaches for integrating physical
modelsinto artificial intelligence pipelines, referred to as physics-based
machine learning. We discuss technical approaches that range from
modifications to the dataset, network design, loss functions, optimization
and regularization schemes.

Modern approaches in computer vision are starting to combine
insights from machine learning techniques and physical models.
This hybrid approachisreferred to as physics-based learning (Fig.1).
Computer vision has a special, inherent link to physics, compared
with other forms of artificial intelligence (Al), like language, that
draw primarily from symbolic entities. In particular, many vision
techniques infer properties of the physical world from images; and
image formationis a process that can be formalized by physical laws.
For example, 3D vision involves inference of scene geometry by lev-
eraging physical models that describe how real-world points project
to virtual camera planes'?. Video-based computer vision, such as
ego-motion control®>~, leverages the physics of motion to predict
states of dynamic agents. The physics of motion takes many forms
in computer vision, from a rigid body described by a trajectory (a
group of rigid transformations in3D space), to complex deformations
described by partial differential equations®®. Even semantic tasks
like object recognition involve physics. Our semantic notion of an
object can be seen as a physical surface surrounded by a medium’,
capable ofindependent physical motion from a surrounding scene,
with geometric (for example, proximity and shape similarity)'®",

photometric (for example, material similarity) or dynamic (for exam-
ple, relative motion)™ features.

Having described this close link between physics and the foun-
dations of computer vision, one would expect vision algorithms to
heavily incorporate physical knowledge. Though physics and vision
algorithms are tightly coupled in recent literature, this is a relatively
new development. It is fair to say that physics has not been the focus
of the past decade of computer vision, machine learning has. Even
longstanding problems in vision that have close ties to physical equa-
tionsare now being addressed with a data-driven approach. Consider
the problem of shape reconstruction. This was previously addressed
with traditional techniques of light transport”, and now research-
ers have demonstrated better results when using a neural network™.
However, although data-driven performance can be superior to a
physical model alone, there are problems with adata-driven approach.
A neural network is not guaranteed to avoid predictions of shapes or
objectsthatare physicallyimplausible. For example, aneural network
for 3D reconstruction will hallucinate detail that is below the resolv-
able limit of a stereo sensor. Since we know this is not resolvable by a
camera, physics would inform us a priori that this prediction could
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Fig.1|Incorporating physics in neural pipelines in modern computer vision.
a, Physics-based learning enables amultitude of applications including motion
prediction (top)®, image restoration (middle)” and deweathering (bottom)®.
b, Deep learning networks can become physics-based if trained on synthetic
datasets with strong links to physical rules. Images show scenes from a dataset
with physical behaviours’. ¢, Neural network architectures can incorporate
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physics as a constraint to the network topology®. d, Differentiable loss functions
thatincorporate a physical model can be used to regularize neural networks,
where m describes material parameters, n describes surface normals, and N(y)
describes a perceptual loss function. Panels reproduced with permission from:
a(top row), ref. 85, PMLR; a (middle row), ref. 96, IEEE; a (bottom row), ref. 97,
Springer Nature Ltd; b, ref. 98. Panel c adapted with permission from ref. 99.

be a hallucination. Quantifying the worst case error of a data-driven
approachisintrinsically hard due tothe inductive hypothesisimplicitin
data-driven methods. Although theoretical machine learning research
aims to guarantee neural network performance by bounding error
(referred to as generalization bounds”), such bounds are only valid
under assumptions that cannot be validated in reality, for instance
that the finite training data and yet-unseen test data be drawn from
the same unknown distribution.

For suchreasons, akey question that is being asked is how do we
incorporate physics into data-driven pipelines. The motivationis clear:
physics and data-driven techniques have complementary strengths
and weaknesses, so perhaps the combination will obtain the best of
both worlds. Physics can offer interpretable steps and the potential
to generalize with limited data, but can be too idealized to describe
real-world scenarios. Data-driven methods can return viable predic-
tions when physical models have model mismatch error, but are not
interpretable and require large amounts of data. While combining
physics and data might be well motivated, the tactical question of
how to combine these entities does not have a single answer. A neural
network has many components (weights, losses, inputs, outputs and
so on) and there are multiple ways to incorporate physics into neural
networks, with differing tradeoffs.

In this Perspective, we discuss modern methodsin vision that have
successfully incorporated physics into data-driven pipelines. Many
of these methods succeed because they take a holistic approach to
methods in visual reasoning. Reasoning in computer vision is usually

ofaninductive form, and these methods incorporate dataand physics
intotheinductive process. Inductionisthe process ofinferring general
conclusions fromspecific information. Any inference process requires
biases of some form. Biases can come from design’® (for example,
choice of an inference or optimization criterion, for instance, a seg-
mentation functional or grouping criterion), from physical laws""®
(empirically validated known constraints) or, asin modern techniques,
fromdata-driveninduction (for example, the assumption that proper-
ties of afinite dataset are shared by the entire distribution of possible
datatobe measuredinthe future). Critically, theinductive process does
not need to be purely based on physics or data alone. Given where we
are as a species, we do not need to learn everything from scratch, so
the question arises of how to best make use of verified physical lawsin
visualinference. As the ‘why” hasbeen discussed in these introductory
paragraphs, the remainder of this piece focuses on ‘when’and ‘how’ to
incorporate physics into data-driven vision pipelines. In particular,
the section ‘Incorporating physics into Al datasets’ discusses when
a problem might merit a physics-based learning approach. The final
three sections of this Perspective focus on the how and discuss specific
physics-based Al tactics that pertain to datasets, architectures and
loss functions.

When to use physics-based learning

A first question that this piece addresses is when to incorporate a
combined approach of physics and learning (Fig. 2). Learning here
specifically refers toinductive learning: the process by whichalearner
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Fig.2| When to approach a problem from a physics, data-driven or physics-
based learning approach. Left, if datasets are small and environments match
physics, then a physics-alone approach makes sense. Right, by contrast,

if the dataset is large and the environments are ‘real’ (deviating from all but

Physics + data

Knowledge from data

Environment: no governing laws

Data amount: large

Generalizability: poor

the most ideal cases), then a data-driven approachis abetter candidate. As we
discuss in this Perspective, many interesting problems benefit from combining
the approaches.

or learning algorithm elucidates generalizable rules or functions from
aspecific set of examples or data. In vision, the data collected by sen-
sors like cameras are inherently lower dimensional than the real-world
processes they attempt to observe. As such, the data-driveninductive
possibilities are assumed to be very large. By contrast, physics-based
induction usesafirst-order, idealized model that returns asmaller set
of inductive possibilities. Therefore, physical laws may be used as an
additional inductive bias to reduce the set of generalizable functions
provided by alearning algorithm operating on data-driven bias only, for
example, by pruning or regularizing any clearly unreasonable solutions.
Inductive bias refers to a set of assumptions or rules that the learner
uses to predict outputs of given inputs that it has not encountered
(thatis, at test time). Such a hybrid approachis known as physics-based
machine learning.

Let us return to the question of when to adopt a physics-based
learning approach. Consider two extreme cases. In the first case, an
inference problemis posed that can just be solved with physics alone,
for example, solving for video tracking of particle motionin anideal-
ized setting. If the accuracy demands of the problem are met with
physics alone, the problem should be solved with physics alone.Ina
second case, a problem can have a negligible relationship to physics,
unquantifiable by any form of physical model — such a problem should
be solved with data alone. Neither of these two cases are therefore
suitable for physics-based learning. However, tasks with partially pre-
dictive forward and inverse problems, for example, including object
recognition in degraded visual conditions'’, super-resolution of satel-
liteimagery?®and system failure prediction®, are of athird case. These
problems lie in a space where physical models are inexact or physical
parameters for the models are unknown. In this case, we are better
positioned to incorporate thismodel as aninductive bias, rather than
trusting the network to relearn an alternate version of the physical
model. Asummary of these paradigms isillustrated in Fig. 2.

Therefore, a scenario where physics-based learning should be
considered is one where the physics alone is meaningful but, by itself,
doesnot optimally address the inference problem. In particular, there
areatleast three key considerations one must make in deciding to use
physics-based learning: (1) the ‘goodness of data’; (2) the ‘goodness of
physics’; and (3) the ease of integrating data and physics together. The
next paragraph outlines technical approaches to assess the ‘goodness’
of dataand physics.

There are afew ways to assess the goodness of datawith respect to
physics. Considerinafirst case where the physical model alone can pre-
dict the desired task output: then we recommend the use of task perfor-
mance as an assessment metric. Concretely, the goodness of data can
be assessed through metrics of task performance using a data-driven

approachand compared with the goodness of physics by assessing the
same metrics of task performance on the physical model alone. While
performance metrics areimportant, one should also consider that the
types of errors from data-driven and physical approaches could be dif-
ferent. For example, in deep-learning-based stereo, one may observe
thataphysics-based stereo method does not recover fine detail, while
adata-driven method is able to super-resolve and hallucinate details.
Since the data-driven and physics-based methods may behave differ-
ently on task performance, the fusion of deep-learning-based stereo
with physics-based stereo could be attractive. However, what about a
second case where the physics cannot predict the entire task output:
isit still possible to assess the relative quality of physics and data?
While end-to-end task output might not be as straightforward to use,
one can appeal to representation probing where the latent space in a
data-driven model is regressed to see if it can predict physics. A third
optionis to appeal to intermediate task behaviour, where the perfor-
mance of a data-driven method is evaluated versus physical models
on an intermediate output that physics can predict, which may not
be the final task.

Having discussed two conditions (the goodness of data and of
physics), we turnto a third condition — the ease of integrating a given
physical model with data. A first remark is that integrating physics is
easierifthe physicalmodelisitselftractable. A tractable modelis useful
notonly forintepretability, butitalso enables one to convert machine
learning problems from supervised learning to self-supervised learn-
ing, as in the case of deep learning from monocular depth estima-
tion?>*, In such examples, a stereo pair is used for data collection,
but only one camera is used in the machine learning inference since
itis monocular depth estimation. For this case, the problem does not
require annotation of data and is self-supervised. Another example
of incorporating physics and learning together is when a physical
model does not directly predict the inference output, but can prune
unreasonable solutions. For example, an object-tracking task of
dynamic agents like moving vehicles is not described exactly by a
physical model: behavioural intent of the driver plays alarge role in
the possible dynamics. However, even in this situation, physics can
be used to prune unreasonable solutions. For example, if an object
tracker estimates that the vehicle moves from two locations that are
further apart than a vehicle’s achievable speed would allow, then it
can be flagged as a model violation. Yet another type of relationship
between physics and data pertains to the representation space of an Al
pipeline, for example, in probing a neural representation to see if the
physics canbe decoded from the latent space. Insummary, the section
takeaways are: (1) the choice to use a physics-based learning method
depends onthe quality of physics and datain the problem; and (2) there
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are specific tactical considerations to assess the value of physics and
datain aproblem setting.

Incorporating physicsinto Al datasets

Afirst tier of incorporating physics into Al pipelines is to modify the
dataset. Evenan ordinary neural network can become ‘physics based’
ifthe training data used has a strong link to physics. This could be done
through synthetic and/or real data. In particular, synthetically gen-
erated datasets, where the synthesis is constrained by physical laws
(for example, physics-based engines) help focus the datadistribution
more efficiently around the feasible set of data, although they may not
cover thetails of the distribution due to oversimplification of synthetic
engines. This points to a complementary statement, where coarse
behaviours can be captured by synthetic datasets, and fine nuances
by raw data.

Consider training an object tracker on two different dataset sce-
narios. Thefirst scenario consists of simulated data of moving pedestri-
ansand cars whose motion is dependent on laws of physics and traffic
laws. While thisis not areal-world scenario, the concocted, simulated
example is dependent on the rules of physics, and neural networks
have been shown to implicitly learn approximations of these rules.
Now, consider a second scenario of real data of moving pedestrians
and carsinachaotic city. The laws of physics no longer directly predict
the motion of pedestrians and cars, as the motion trajectory isnot one
of abilliard ball, but an autonomous agent that can decide its motion
path, based on human behaviour and psychology.

However, even in the second scenario, there are some base rules
of physicsthatdo carry over (for example, biophysics dictates that the
speed of pedestrians cannot be more than 25 miles per hour). It would
be useful to force anetwork to learn these laws, because many predic-
tion errors we see on real-world object detectors are easily flagged
post facto, because of their physical plausibility (for example, a pedes-
trian suddenly disappears from the face of the Earth, or re-appears
further away in a scene than the maximum mobility of a pedestrian
would permit).

Flagging prediction errors post factois suboptimal:inadeployed
modelit would be akin to noting the occurrence of an accident after it
happens. For thisreasonitis useful to concoct physics-driven datasets
that can be blended with real data to improve Al tasks. For example,
physical models of object collision and intersection have been used to
create Stilleben®, aframework for generating realistic cluttered scenes
for the task of semantic segmentation. Similarly, UETorch, a version of
the popular Unreal game engine with PyTorch incorporated into the
gameloop, has beenused” to trainamodel to predict whether a tower
of blocks would fall over and yet other work?® incorporates a physics
engineintoagenerative modeltobe able to accurately predict object
velocities based on the objects’ physical parameters. Other approaches
include”*. These approaches rely on highly effective pipelines for
synthetic data augmentation®.

A future frontier of the field is in increasing the (optical) realism
of physically-rendered datasets*. The field of physics-based rendering
aims to represent the physical properties of light as it travels through
ascene. Fortunately, raytracers and other forms of renderers are able
torender scenesinaccordance with physical laws. Recent approaches
known as differentiable rendering, covered in**, discuss how the for-
ward raytracers are now differentiable, enabling one to optimize scene
parameters with respect to visual outputs. This has been extended
to more advanced scene physics, for example, beyond photometry
research like*** enable scene understanding in context of polarized
light. There are specific approaches that use differentiable rendering
like*® that enable robust estimation of material properties of objects
in a scene given a sparse set of views as input. While many of these
works developed their own rendering methods, others have used
Unity®”**, Unreal Engine®**° or other game engines*, which employ
physics-based rendering techniques. Using game-engine-rendered

synthetic data has allowed many of these works to excel in vision tasks,
such as object detection®, object tracking®*° or semantic segmenta-
tion***. Inanother study, a physics-based model was used** to generate
highly realistic faces with blood-flow characteristics, which provide
robust synthetic data. The use of physical engines can be used beyond
the creation of data alone as a way to infer invisible quantities in an
image. The inference of forces and pressures — quantities not visible
in animage — has been demonstrated*’ during human object interac-
tions through physically based simulation. In addition, physically
based simulation can be used for other domains, such as learning
whether acoustic sensing in a 3D environment can help navigation**
or learning policies for object tracking with unseen objects, nuisance
objectsandso on®.

Despite these advances, there remains a domain gap in how syn-
thetic data map to real data, underscoring the need for generative
models that are even more attuned to real-world physics. Fortunately,
thereis progress in reducing the domain gap between the simulation
and real world, through techniques like domain randomization*° or a
related term, environment augmentation*>*’. The basic idea of these
techniquesis toperturb the generation process of synthetic data, such
that the perturbations assist with generalizing toreal data. Despite the
challenges that need to be overcome to use synthetic data, the use of
physically realistic generative modelsis poised to be animpactful area
ofresearch that draws fromvision, graphics and machine learning com-
munities. Insummary, the section takeaways are that: (1) datasets can
be simulated using known physical lows; (2) Almodels trained on these
data will be inductively biased toward these laws; and (3) simulation
engines exhibita domain gap (between the real and synthetic worlds)
that must be minimized.

Incorporating physics into network architectures
Asecondtier ofincorporating physicsinto Alisthroughthe inference
function. Modern inference functions are deep learning models, and
hence this section will focus onincorporating physicsinto deep learn-
ingarchitectures.

Coupled with recent advances in improving interpretability of
deep learning models, various techniques have emerged to combine
physics andlearning. One technique isknown asresidual physics, which
(as the name suggests) aims to use deep learning to elucidate the null
space of what physics cannot predict. A trivial, data-driven solutionis
to input video frames into a convolutional neural network to predict
trajectories. However, this would be susceptible to the inaccuracies of
adata-driven-only approach (forexample, requiring large amounts of
data, predictions that can grossly violate laws of physics and soon). In
theresidual physics school of thought (Fig. 3), one may note that sim-
ple physics (for example, a parabola equation) can predict the coarse
motionarcoftheball. One can then create a skip connection between
the parabola prediction and the neural network output. Now the neural
network only needs to predict the residual caused by model mismatch
inthereal dataand the simple physical prior of a parabolafit, for exam-
ple, air resistance, spin and so on. Many techniques leverage residual
physics. For example, residual physics has been used** to teach arobot
named TossingBot to grasp arbitrary objects from unstructured bins
and to throw them into target boxes. Residual learning is employed
to predict throw release velocity. TossingBot achieves 85% throwing
accuracy. In addition*’, model uncertainty has been used as residuals
for the task of simulating planar pushing and ball bouncing. Further-
more™, residual physics has been combined with neural networks for
the task of predicting an action’s effect from sensory data.

Residual physics is not the only way to incorporate physics into
deeplearningarchitectures. Indeed, for many problems, residual phys-
icsis perhaps not even the best architecture. For example, it requires
afairly accurate physical model to begin with, so that the residual can
be bounded to a small norm. In cases where the physics is a weaker
predictor of the output, it might be useful to study asecond approach,
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Fig.3| Two techniques to incorporate physics into machine learning
pipelines. Top, residual physics is an architectural choice where the neural
network is geared to predict the residual from the physical model. Bottom,

physical fusionis where physics is treated as a multimodal input to a deep
learning model. Late or early fusion can be used to combine features from data
and physics. The output vector of both neural models is denoted by y.

known as physical fusion, shownin Fig. 3. In this technique, the physical
predictionis provided asaninput feature (in contrast toresidual learn-
ing where it was skip connected directly to the output). One can think of
the physical prediction as multimodal data, and the network branches
into multiple streams that eventually merge to predict the output. This
enables physical fusion to be useful in cases where the physicsitselfis
inaccurate and needs to be transformed in a non-linear way before it
canbe merged into ameaningful representation. As a concrete exam-
ple, consider the ‘shape from polarization™*? problem in computer
vision. The goal is to estimate the surface normals of an object given
photographs of the scene through different polarizer angles. The
relationship between polarization data and shape is a very complex
physical model with many unknown constants (like the refractive index
and surface specularity). Therefore, the state-of-the-art methods that
use deep learning for shape from polarizationincorporate some form
of physical fusion by concatenating approximate physical predictions
withadataset'**>, Other work has used physical laws in the form of rule
representations as a second encoder branch, where the first encoder
branchisapure data-driven encoder. These are then stochastically con-
catenated via a control parameter, alpha, that regulates the strength
of therule onthe output. Yet when alphais fixed prior to training, the
trained model cannot operate flexibly based on how much the data
satisfy the rule, and therefore rule strength is not adaptable to target
dataatinferenceifthereis any mismatchwith the training setup. Recent
work has shown by removing this predetermined constrainton alpha,
ahigher rule verificationratio, and thus more reliable predictions, can
be achieved®. Here the rule verification ratio is the fraction of output
samples that satisfy the rules. Operating at a better verification ratio
could be beneficial, especially ifthe rules are known to be always valid,
asinphysics.

While pure deep learning methods are currently used to attempt
answers to scene-related questions such as where and what an object
is, scene understanding of shape, reflectance and lighting can be
improved by incorporating physical priors®. The process of achiev-
ing these components through intrinsic image decomposition can
yield solutions to intricate problems where the “ground truth” is not
always available and unsupervised learning with physics-based con-
straints dominates®*" used the superposition of light to decompose
animage with multipleilluminantsinto separate light-source-specific
scenes. Learning how light affects an image leads to applications in
relighting, where the detected lighting can be replaced with a new
source in a different location and colour spectrum®. Other applica-
tionsinclude finding haemoglobin and melanin concentrations on the
face through the combination of intrinsic image decomposition and
molecule reflectance spectrum modelling®’. While the reconstruction
problemiscommonly applied to naturalimages, the reverse problem
of rendering is also inherently physics based®**™*, In summary, the
section takeaways are that: (1) neural architectures have emerged that
incorporate physics asa constraint or inductive bias; (2) two common
example architectures are physical fusion and residual physics; and (3)
the choice of architectureis based on factors thatinclude the relevance
of the physical model.

Incorporating physics into networkloss
functions

Related to the previous tier of modifying the neural network topology,
athird tier ofincorporating physicsinto deep learningis toincorpo-
rate physicsinto theloss function. When the physical modelis known,
it can be incorporated into the loss function as a form of regulari-
zation. An example is shown in Fig. 4, which involves a data-driven
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Fig. 4| Combined loss functions that use both data-driven annotations
and physical constraints. When outputs of a traditional deep learning
model are physical quantities, this last output layer lives in a hybrid world.

A compelling case for physics-based learning is made: it is easy to place aloss
onthe output layer that is based on annotated labels and physical models,
asshownin the figure.

annotationloss and additional loss terms from physical constraints.
Afewgeneral trends are observed: (1) the loss functions are inspired
by well-defined physical priors; (2) these physical priors are often
highly domain specific; and (3) the loss functions are differentiable
to enable gradient based learning. If the ground-truth physics is not
inadifferentiable form, a relaxation to a differentiable function can
be used. We will nowillustrate a few examples, drawing from diverse
tasks in computer vision.

For example, consider the task of vision in bad weather®. In this
subfield, one goal is to recover a sharp image (for example, of an out-
door scene) given an input image (which may be corrupted by haze).
Since such adverse weather is characterized by the physics of light
transport and scattering, we often see differentiable expressions
incorporating the physics of light transport and scattering making
their way into neural loss functions. For example®, proposes a new
edge-preserving loss function to enable accurate estimation of the
transmission map for dehazing. Loss functions evolve over time, as
ref. 68 uses different physics-based priors in the loss formulation
to enable synthetic to real transfer of dehazing models. Incorporat-
ing physics into the loss function is not limited to weather problems.
The task of shadow detection and removal also sees tangible benefits
from physics-based loss function design. For example, an adversarial
shadow attenuation model has been used to improve shadow detec-
tion®’; the shadow-attenuation model relies on physics-inspired
loss-incorporating shadow-domain knowledge. Another methodin the
same area’® uses physics-based chromaticity, boundary smoothness
and perceptual features for single-image shadow removal. Human body
pose estimationis anotherareain computer vision that leverages physi-
cal priors. Various works incorporate the physics of the human body
into the supervision for anetwork, vialoss functions on reprojection”
orjoint pose optimization that are combined with data-driven losses’.

Physics-based loss functions also find significant use in computa-
tional imaging tasks. For the purpose of positron attenuation correc-
tionin computed tomography imaging, anovelline integral projection
loss has been proposed”, consistent with attenuation physics, that
leads toimproved reconstruction. Other studies have proposed” using
translation-invariant loss functions for the task of ‘non-line-of-sight’
correlography. And in lensless microscopy”, reconstruct phase by
fitting the network weights to the captured intensity measurements.
Instead of optimizing phase directly, the network optimizes the angu-
lar spectrum representation of the measurement in the object plane,

allowing an unsupervised training setup. The use of similar physical
constraints to remove hallucinations has also been successfully used
to advance virtual staining microscopy’®”. Finally, methods for equi-
tableimaging and medical devices use physics-based loss constraints
toensure thatlight-based medical devices perform equally well on the
human population’**°, These diverse imaging setups each have their
own ad-hoc loss function setups, but the common theme of having
a closed-form, differentiable expression that encapsulates domain
knowledgeis across-cuttingthemein this area. Looking ahead, much of
the future workliesin finding expressions that are both physics based
and yet also differentiable. In cases where this is not always possible,
we expect that future work will find relaxations, or use learning to set
the parameters of a simpler, differentiable model. In summary, the
section takeaways are that: (1) loss functions can incorporate a physi-
calmodeltoregularize aneural network; (2) physics-based loss terms
should ideally be differentiable; and (3) if the physics is in a form that
doesnotadmitadifferentiableloss, then a physically approximate loss
thatis differentiable can be developed.

Future outlook and conclusions

Theintegration of deep learning methods with physics introduces an
opportunity to better understand and predict noisy complex natural
physical systems. As discussed here, the integration in these hybrid
systems can occur at various levels, from the training data to novel
network architectures and loss objectives. As reviewed here, these
methods have already shown much promise in enhancing performance
in a multitude of forward prediction tasks (object tracking, motion
prediction, physical consequences of robot actions and so on) and
inverse problems (scene de-weathering, super-resolution reconstruc-
tion of remote imagery, inverse 3D rendering and more).

An additional direction that is perhaps a few years out lies in
unsupervised discovery of physics from visual scenes. We have dis-
cussed many studies that have used known physical relationships to
recover parameters or directly infer a desired output. However, in
some problems one might not have sufficient knowledge of either the
underlying physical law or its parameters. This unknown-unknown
problem is known as distilling physical laws from data. Physical laws
are a human construct, expressed in human language, while recent
work with large-scale neural networks hypothesizes the emergence
of an ‘inner language’, separate from the human language in which
theyare trained®. Anetwork may then encode physical laws implicitly
already, in alanguage that may not be interpretable by humans. It can
be shownthatabstract concepts, such as laws of physics, can be finitely
represented by a neural network, and are, in principle, learnable, but
external observers cannot know if and when such a concept has been
positively encoded’®, although the hypothesis can be falsified. Work
in this areais nascent® % and mostly confined to limited settings with
relatively simple physical laws for the moment.

The methods described in this Perspective will also play a central
role in enabling a next generation of deep neural networks that learn
more like biological systems®**%, Humans are able to acquire rich
internal representations of the physical compositionality of the world
by interacting, multimodally and continuously, with objects’>”". By
having the ability to reason about the physical properties of the world,
as described here, it may become possible to develop novel neural
network architectures that are able to interpret scenes by decompos-
ing objects into their physical properties (for example, shape, surface
normals and colour)®?, and enabling robust generalization of the learnt
knowledge to novel tasks™.

As this article is being written, modern large language models
(LLMs) are exhibiting aremarkable ability to ‘reason” about many top-
ics,and thisincludes physics. For example, arecent LLM has shownan
ability to outperform the average human test-taker on the Advanced
Placement Physics test, used in the United States’. This exciting result
shouldbe tempered with the caveat that LLMs cannot learn completely
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new concepts that are not in their training data®, and suffer from
hallucinations when trying to extrapolate beyond the training data.
However, since an LLMisinherently alearning-based method, theideas
inthis piece of physics-based learning can be used in a similar fashion
ashasbeen discussed toincorporate physicsinto LLMs. Thisincludes
specific ways to incorporate physics into datasets, architectures or
loss functions.

The field of physics-based deep learning provides a path to inte-

grating critical physics knowledge for many visual domains, and also
opens the door to novel learning paradigms that will enable a new
generation of applications.
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