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Incorporating physics into data-driven 
computer vision
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Many computer vision techniques infer properties of our physical world 
from images. Although images are formed through the physics of light and 
mechanics, computer vision techniques are typically data driven. This trend 
is mostly performance related: classical techniques from physics-based 
vision often score lower on metrics compared with modern deep learning. 
However, recent research, covered in this Perspective, has shown that 
physical models can be included as a constraint into data-driven pipelines. 
In doing so, one can combine the performance benefits of a data-driven 
method with advantages offered from a physics-based method, such as 
intepretability, falsifiability and generalizability. The aim of this Perspective 
is to provide an overview into specific approaches for integrating physical 
models into artificial intelligence pipelines, referred to as physics-based 
machine learning. We discuss technical approaches that range from 
modifications to the dataset, network design, loss functions, optimization 
and regularization schemes.

Modern approaches in computer vision are starting to combine 
insights from machine learning techniques and physical models. 
This hybrid approach is referred to as physics-based learning (Fig. 1).  
Computer vision has a special, inherent link to physics, compared 
with other forms of artificial intelligence (AI), like language, that 
draw primarily from symbolic entities. In particular, many vision 
techniques infer properties of the physical world from images; and 
image formation is a process that can be formalized by physical laws. 
For example, 3D vision involves inference of scene geometry by lev-
eraging physical models that describe how real-world points project 
to virtual camera planes1,2. Video-based computer vision, such as 
ego-motion control3–5, leverages the physics of motion to predict 
states of dynamic agents. The physics of motion takes many forms 
in computer vision, from a rigid body described by a trajectory (a 
group of rigid transformations in 3D space), to complex deformations 
described by partial differential equations6–8. Even semantic tasks 
like object recognition involve physics. Our semantic notion of an 
object can be seen as a physical surface surrounded by a medium9, 
capable of independent physical motion from a surrounding scene, 
with geometric (for example, proximity and shape similarity)10,11, 

photometric (for example, material similarity) or dynamic (for exam-
ple, relative motion)12 features.

Having described this close link between physics and the foun-
dations of computer vision, one would expect vision algorithms to 
heavily incorporate physical knowledge. Though physics and vision 
algorithms are tightly coupled in recent literature, this is a relatively 
new development. It is fair to say that physics has not been the focus 
of the past decade of computer vision, machine learning has. Even 
longstanding problems in vision that have close ties to physical equa-
tions are now being addressed with a data-driven approach. Consider 
the problem of shape reconstruction. This was previously addressed 
with traditional techniques of light transport13, and now research-
ers have demonstrated better results when using a neural network14. 
However, although data-driven performance can be superior to a 
physical model alone, there are problems with a data-driven approach. 
A neural network is not guaranteed to avoid predictions of shapes or 
objects that are physically implausible. For example, a neural network 
for 3D reconstruction will hallucinate detail that is below the resolv-
able limit of a stereo sensor. Since we know this is not resolvable by a 
camera, physics would inform us a priori that this prediction could 
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of an inductive form, and these methods incorporate data and physics 
into the inductive process. Induction is the process of inferring general 
conclusions from specific information. Any inference process requires 
biases of some form. Biases can come from design16 (for example, 
choice of an inference or optimization criterion, for instance, a seg-
mentation functional or grouping criterion), from physical laws17,18 
(empirically validated known constraints) or, as in modern techniques, 
from data-driven induction (for example, the assumption that proper-
ties of a finite dataset are shared by the entire distribution of possible 
data to be measured in the future). Critically, the inductive process does 
not need to be purely based on physics or data alone. Given where we 
are as a species, we do not need to learn everything from scratch, so 
the question arises of how to best make use of verified physical laws in 
visual inference. As the ‘why’ has been discussed in these introductory 
paragraphs, the remainder of this piece focuses on ‘when’ and ‘how’ to 
incorporate physics into data-driven vision pipelines. In particular, 
the section ‘Incorporating physics into AI datasets’ discusses when 
a problem might merit a physics-based learning approach. The final 
three sections of this Perspective focus on the how and discuss specific 
physics-based AI tactics that pertain to datasets, architectures and 
loss functions.

When to use physics-based learning
A first question that this piece addresses is when to incorporate a 
combined approach of physics and learning (Fig. 2). Learning here 
specifically refers to inductive learning: the process by which a learner 

be a hallucination. Quantifying the worst case error of a data-driven 
approach is intrinsically hard due to the inductive hypothesis implicit in 
data-driven methods. Although theoretical machine learning research 
aims to guarantee neural network performance by bounding error 
(referred to as generalization bounds15), such bounds are only valid 
under assumptions that cannot be validated in reality, for instance 
that the finite training data and yet-unseen test data be drawn from 
the same unknown distribution.

For such reasons, a key question that is being asked is how do we 
incorporate physics into data-driven pipelines. The motivation is clear: 
physics and data-driven techniques have complementary strengths 
and weaknesses, so perhaps the combination will obtain the best of 
both worlds. Physics can offer interpretable steps and the potential 
to generalize with limited data, but can be too idealized to describe 
real-world scenarios. Data-driven methods can return viable predic-
tions when physical models have model mismatch error, but are not 
interpretable and require large amounts of data. While combining 
physics and data might be well motivated, the tactical question of 
how to combine these entities does not have a single answer. A neural 
network has many components (weights, losses, inputs, outputs and 
so on) and there are multiple ways to incorporate physics into neural 
networks, with differing tradeoffs.

In this Perspective, we discuss modern methods in vision that have 
successfully incorporated physics into data-driven pipelines. Many 
of these methods succeed because they take a holistic approach to 
methods in visual reasoning. Reasoning in computer vision is usually 
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Fig. 1 | Incorporating physics in neural pipelines in modern computer vision. 
a, Physics-based learning enables a multitude of applications including motion 
prediction (top)85, image restoration (middle)96 and deweathering (bottom)97. 
b, Deep learning networks can become physics-based if trained on synthetic 
datasets with strong links to physical rules. Images show scenes from a dataset 
with physical behaviours98. c, Neural network architectures can incorporate 

physics as a constraint to the network topology99. d, Differentiable loss functions 
that incorporate a physical model can be used to regularize neural networks, 
where m describes material parameters, n describes surface normals, and N(y) 
describes a perceptual loss function. Panels reproduced with permission from: 
a (top row), ref. 85, PMLR; a (middle row), ref. 96, IEEE; a (bottom row), ref. 97, 
Springer Nature Ltd; b, ref. 98. Panel c adapted with permission from ref. 99.
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or learning algorithm elucidates generalizable rules or functions from 
a specific set of examples or data. In vision, the data collected by sen-
sors like cameras are inherently lower dimensional than the real-world 
processes they attempt to observe. As such, the data-driven inductive 
possibilities are assumed to be very large. By contrast, physics-based 
induction uses a first-order, idealized model that returns a smaller set 
of inductive possibilities. Therefore, physical laws may be used as an 
additional inductive bias to reduce the set of generalizable functions 
provided by a learning algorithm operating on data-driven bias only, for 
example, by pruning or regularizing any clearly unreasonable solutions. 
Inductive bias refers to a set of assumptions or rules that the learner 
uses to predict outputs of given inputs that it has not encountered 
(that is, at test time). Such a hybrid approach is known as physics-based 
machine learning.

Let us return to the question of when to adopt a physics-based 
learning approach. Consider two extreme cases. In the first case, an 
inference problem is posed that can just be solved with physics alone, 
for example, solving for video tracking of particle motion in an ideal-
ized setting. If the accuracy demands of the problem are met with 
physics alone, the problem should be solved with physics alone. In a 
second case, a problem can have a negligible relationship to physics, 
unquantifiable by any form of physical model — such a problem should 
be solved with data alone. Neither of these two cases are therefore 
suitable for physics-based learning. However, tasks with partially pre-
dictive forward and inverse problems, for example, including object 
recognition in degraded visual conditions19, super-resolution of satel-
lite imagery20 and system failure prediction21, are of a third case. These 
problems lie in a space where physical models are inexact or physical 
parameters for the models are unknown. In this case, we are better 
positioned to incorporate this model as an inductive bias, rather than 
trusting the network to relearn an alternate version of the physical 
model. A summary of these paradigms is illustrated in Fig. 2.

Therefore, a scenario where physics-based learning should be 
considered is one where the physics alone is meaningful but, by itself, 
does not optimally address the inference problem. In particular, there 
are at least three key considerations one must make in deciding to use 
physics-based learning: (1) the ‘goodness of data’; (2) the ‘goodness of 
physics’; and (3) the ease of integrating data and physics together. The 
next paragraph outlines technical approaches to assess the ‘goodness’ 
of data and physics.

There are a few ways to assess the goodness of data with respect to 
physics. Consider in a first case where the physical model alone can pre-
dict the desired task output: then we recommend the use of task perfor-
mance as an assessment metric. Concretely, the goodness of data can 
be assessed through metrics of task performance using a data-driven 

approach and compared with the goodness of physics by assessing the 
same metrics of task performance on the physical model alone. While 
performance metrics are important, one should also consider that the 
types of errors from data-driven and physical approaches could be dif-
ferent. For example, in deep-learning-based stereo, one may observe 
that a physics-based stereo method does not recover fine detail, while 
a data-driven method is able to super-resolve and hallucinate details. 
Since the data-driven and physics-based methods may behave differ-
ently on task performance, the fusion of deep-learning-based stereo 
with physics-based stereo could be attractive. However, what about a 
second case where the physics cannot predict the entire task output: 
is it still possible to assess the relative quality of physics and data? 
While end-to-end task output might not be as straightforward to use, 
one can appeal to representation probing where the latent space in a 
data-driven model is regressed to see if it can predict physics. A third 
option is to appeal to intermediate task behaviour, where the perfor-
mance of a data-driven method is evaluated versus physical models 
on an intermediate output that physics can predict, which may not 
be the final task.

Having discussed two conditions (the goodness of data and of 
physics), we turn to a third condition — the ease of integrating a given 
physical model with data. A first remark is that integrating physics is 
easier if the physical model is itself tractable. A tractable model is useful 
not only for intepretability, but it also enables one to convert machine 
learning problems from supervised learning to self-supervised learn-
ing, as in the case of deep learning from monocular depth estima-
tion22–25. In such examples, a stereo pair is used for data collection, 
but only one camera is used in the machine learning inference since 
it is monocular depth estimation. For this case, the problem does not 
require annotation of data and is self-supervised. Another example 
of incorporating physics and learning together is when a physical 
model does not directly predict the inference output, but can prune 
unreasonable solutions. For example, an object-tracking task of 
dynamic agents like moving vehicles is not described exactly by a 
physical model: behavioural intent of the driver plays a large role in 
the possible dynamics. However, even in this situation, physics can 
be used to prune unreasonable solutions. For example, if an object 
tracker estimates that the vehicle moves from two locations that are 
further apart than a vehicle’s achievable speed would allow, then it 
can be flagged as a model violation. Yet another type of relationship 
between physics and data pertains to the representation space of an AI 
pipeline, for example, in probing a neural representation to see if the 
physics can be decoded from the latent space. In summary, the section 
takeaways are: (1) the choice to use a physics-based learning method 
depends on the quality of physics and data in the problem; and (2) there 
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Fig. 2 | When to approach a problem from a physics, data-driven or physics-
based learning approach. Left, if datasets are small and environments match 
physics, then a physics-alone approach makes sense. Right, by contrast,  
if the dataset is large and the environments are ‘real’ (deviating from all but 

the most ideal cases), then a data-driven approach is a better candidate. As we 
discuss in this Perspective, many interesting problems benefit from combining 
the approaches.
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are specific tactical considerations to assess the value of physics and 
data in a problem setting.

Incorporating physics into AI datasets
A first tier of incorporating physics into AI pipelines is to modify the 
dataset. Even an ordinary neural network can become ‘physics based’ 
if the training data used has a strong link to physics. This could be done 
through synthetic and/or real data. In particular, synthetically gen-
erated datasets, where the synthesis is constrained by physical laws 
(for example, physics-based engines) help focus the data distribution 
more efficiently around the feasible set of data, although they may not 
cover the tails of the distribution due to oversimplification of synthetic 
engines. This points to a complementary statement, where coarse 
behaviours can be captured by synthetic datasets, and fine nuances 
by raw data.

Consider training an object tracker on two different dataset sce-
narios. The first scenario consists of simulated data of moving pedestri-
ans and cars whose motion is dependent on laws of physics and traffic 
laws. While this is not a real-world scenario, the concocted, simulated 
example is dependent on the rules of physics, and neural networks 
have been shown to implicitly learn approximations of these rules. 
Now, consider a second scenario of real data of moving pedestrians 
and cars in a chaotic city. The laws of physics no longer directly predict 
the motion of pedestrians and cars, as the motion trajectory is not one 
of a billiard ball, but an autonomous agent that can decide its motion 
path, based on human behaviour and psychology.

However, even in the second scenario, there are some base rules 
of physics that do carry over (for example, biophysics dictates that the 
speed of pedestrians cannot be more than 25 miles per hour). It would 
be useful to force a network to learn these laws, because many predic-
tion errors we see on real-world object detectors are easily flagged 
post facto, because of their physical plausibility (for example, a pedes-
trian suddenly disappears from the face of the Earth, or re-appears 
further away in a scene than the maximum mobility of a pedestrian 
would permit).

Flagging prediction errors post facto is suboptimal: in a deployed 
model it would be akin to noting the occurrence of an accident after it 
happens. For this reason it is useful to concoct physics-driven datasets 
that can be blended with real data to improve AI tasks. For example, 
physical models of object collision and intersection have been used to 
create Stilleben26, a framework for generating realistic cluttered scenes 
for the task of semantic segmentation. Similarly, UETorch, a version of 
the popular Unreal game engine with PyTorch incorporated into the 
game loop, has been used27 to train a model to predict whether a tower 
of blocks would fall over and yet other work28 incorporates a physics 
engine into a generative model to be able to accurately predict object 
velocities based on the objects’ physical parameters. Other approaches 
include29,30. These approaches rely on highly effective pipelines for 
synthetic data augmentation31.

A future frontier of the field is in increasing the (optical) realism 
of physically-rendered datasets32. The field of physics-based rendering 
aims to represent the physical properties of light as it travels through 
a scene. Fortunately, raytracers and other forms of renderers are able 
to render scenes in accordance with physical laws. Recent approaches 
known as differentiable rendering, covered in33, discuss how the for-
ward raytracers are now differentiable, enabling one to optimize scene 
parameters with respect to visual outputs. This has been extended 
to more advanced scene physics, for example, beyond photometry 
research like34,35 enable scene understanding in context of polarized 
light. There are specific approaches that use differentiable rendering 
like36 that enable robust estimation of material properties of objects 
in a scene given a sparse set of views as input. While many of these 
works developed their own rendering methods, others have used 
Unity37,38, Unreal Engine39,40 or other game engines41, which employ 
physics-based rendering techniques. Using game-engine-rendered 

synthetic data has allowed many of these works to excel in vision tasks, 
such as object detection39, object tracking37,40 or semantic segmenta-
tion38,41. In another study, a physics-based model was used42 to generate 
highly realistic faces with blood-flow characteristics, which provide 
robust synthetic data. The use of physical engines can be used beyond 
the creation of data alone as a way to infer invisible quantities in an 
image. The inference of forces and pressures — quantities not visible 
in an image — has been demonstrated43 during human object interac-
tions through physically based simulation. In addition, physically 
based simulation can be used for other domains, such as learning 
whether acoustic sensing in a 3D environment can help navigation44 
or learning policies for object tracking with unseen objects, nuisance 
objects and so on45.

Despite these advances, there remains a domain gap in how syn-
thetic data map to real data, underscoring the need for generative 
models that are even more attuned to real-world physics. Fortunately, 
there is progress in reducing the domain gap between the simulation 
and real world, through techniques like domain randomization46 or a 
related term, environment augmentation45,47. The basic idea of these 
techniques is to perturb the generation process of synthetic data, such 
that the perturbations assist with generalizing to real data. Despite the 
challenges that need to be overcome to use synthetic data, the use of 
physically realistic generative models is poised to be an impactful area 
of research that draws from vision, graphics and machine learning com-
munities. In summary, the section takeaways are that: (1) datasets can 
be simulated using known physical lows; (2) AI models trained on these 
data will be inductively biased toward these laws; and (3) simulation 
engines exhibit a domain gap (between the real and synthetic worlds) 
that must be minimized.

Incorporating physics into network architectures
A second tier of incorporating physics into AI is through the inference 
function. Modern inference functions are deep learning models, and 
hence this section will focus on incorporating physics into deep learn-
ing architectures.

Coupled with recent advances in improving interpretability of 
deep learning models, various techniques have emerged to combine 
physics and learning. One technique is known as residual physics, which 
(as the name suggests) aims to use deep learning to elucidate the null 
space of what physics cannot predict. A trivial, data-driven solution is 
to input video frames into a convolutional neural network to predict 
trajectories. However, this would be susceptible to the inaccuracies of 
a data-driven-only approach (for example, requiring large amounts of 
data, predictions that can grossly violate laws of physics and so on). In 
the residual physics school of thought (Fig. 3), one may note that sim-
ple physics (for example, a parabola equation) can predict the coarse 
motion arc of the ball. One can then create a skip connection between 
the parabola prediction and the neural network output. Now the neural 
network only needs to predict the residual caused by model mismatch 
in the real data and the simple physical prior of a parabola fit, for exam-
ple, air resistance, spin and so on. Many techniques leverage residual 
physics. For example, residual physics has been used48 to teach a robot 
named TossingBot to grasp arbitrary objects from unstructured bins 
and to throw them into target boxes. Residual learning is employed 
to predict throw release velocity. TossingBot achieves 85% throwing 
accuracy. In addition49, model uncertainty has been used as residuals 
for the task of simulating planar pushing and ball bouncing. Further-
more50, residual physics has been combined with neural networks for 
the task of predicting an action’s effect from sensory data.

Residual physics is not the only way to incorporate physics into 
deep learning architectures. Indeed, for many problems, residual phys-
ics is perhaps not even the best architecture. For example, it requires 
a fairly accurate physical model to begin with, so that the residual can 
be bounded to a small norm. In cases where the physics is a weaker 
predictor of the output, it might be useful to study a second approach, 
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known as physical fusion, shown in Fig. 3. In this technique, the physical 
prediction is provided as an input feature (in contrast to residual learn-
ing where it was skip connected directly to the output). One can think of 
the physical prediction as multimodal data, and the network branches 
into multiple streams that eventually merge to predict the output. This 
enables physical fusion to be useful in cases where the physics itself is 
inaccurate and needs to be transformed in a non-linear way before it 
can be merged into a meaningful representation. As a concrete exam-
ple, consider the ‘shape from polarization’51,52 problem in computer 
vision. The goal is to estimate the surface normals of an object given 
photographs of the scene through different polarizer angles. The 
relationship between polarization data and shape is a very complex 
physical model with many unknown constants (like the refractive index 
and surface specularity). Therefore, the state-of-the-art methods that 
use deep learning for shape from polarization incorporate some form 
of physical fusion by concatenating approximate physical predictions 
with a dataset14,53. Other work has used physical laws in the form of rule 
representations as a second encoder branch, where the first encoder 
branch is a pure data-driven encoder. These are then stochastically con-
catenated via a control parameter, alpha, that regulates the strength 
of the rule on the output. Yet when alpha is fixed prior to training, the 
trained model cannot operate flexibly based on how much the data 
satisfy the rule, and therefore rule strength is not adaptable to target 
data at inference if there is any mismatch with the training setup. Recent 
work has shown by removing this predetermined constraint on alpha, 
a higher rule verification ratio, and thus more reliable predictions, can 
be achieved54. Here the rule verification ratio is the fraction of output 
samples that satisfy the rules. Operating at a better verification ratio 
could be beneficial, especially if the rules are known to be always valid, 
as in physics.

While pure deep learning methods are currently used to attempt 
answers to scene-related questions such as where and what an object 
is, scene understanding of shape, reflectance and lighting can be 
improved by incorporating physical priors55. The process of achiev-
ing these components through intrinsic image decomposition can 
yield solutions to intricate problems where the “ground truth” is not 
always available and unsupervised learning with physics-based con-
straints dominates56–59 used the superposition of light to decompose 
an image with multiple illuminants into separate light-source-specific 
scenes. Learning how light affects an image leads to applications in 
relighting, where the detected lighting can be replaced with a new 
source in a different location and colour spectrum60. Other applica-
tions include finding haemoglobin and melanin concentrations on the 
face through the combination of intrinsic image decomposition and 
molecule reflectance spectrum modelling61. While the reconstruction 
problem is commonly applied to natural images, the reverse problem 
of rendering is also inherently physics based33,62–65. In summary, the 
section takeaways are that: (1) neural architectures have emerged that 
incorporate physics as a constraint or inductive bias; (2) two common 
example architectures are physical fusion and residual physics; and (3) 
the choice of architecture is based on factors that include the relevance 
of the physical model.

Incorporating physics into network loss 
functions
Related to the previous tier of modifying the neural network topology, 
a third tier of incorporating physics into deep learning is to incorpo-
rate physics into the loss function. When the physical model is known, 
it can be incorporated into the loss function as a form of regulari-
zation. An example is shown in Fig. 4, which involves a data-driven 
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Fig. 3 | Two techniques to incorporate physics into machine learning 
pipelines. Top, residual physics is an architectural choice where the neural 
network is geared to predict the residual from the physical model. Bottom, 

physical fusion is where physics is treated as a multimodal input to a deep 
learning model. Late or early fusion can be used to combine features from data 
and physics. The output vector of both neural models is denoted by y.
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annotation loss and additional loss terms from physical constraints. 
A few general trends are observed: (1) the loss functions are inspired 
by well-defined physical priors; (2) these physical priors are often 
highly domain specific; and (3) the loss functions are differentiable 
to enable gradient based learning. If the ground-truth physics is not 
in a differentiable form, a relaxation to a differentiable function can 
be used. We will now illustrate a few examples, drawing from diverse 
tasks in computer vision.

For example, consider the task of vision in bad weather66. In this 
subfield, one goal is to recover a sharp image (for example, of an out-
door scene) given an input image (which may be corrupted by haze). 
Since such adverse weather is characterized by the physics of light 
transport and scattering, we often see differentiable expressions 
incorporating the physics of light transport and scattering making 
their way into neural loss functions. For example67, proposes a new 
edge-preserving loss function to enable accurate estimation of the 
transmission map for dehazing. Loss functions evolve over time, as 
ref. 68 uses different physics-based priors in the loss formulation 
to enable synthetic to real transfer of dehazing models. Incorporat-
ing physics into the loss function is not limited to weather problems. 
The task of shadow detection and removal also sees tangible benefits 
from physics-based loss function design. For example, an adversarial 
shadow attenuation model has been used to improve shadow detec-
tion69; the shadow-attenuation model relies on physics-inspired 
loss-incorporating shadow-domain knowledge. Another method in the 
same area70 uses physics-based chromaticity, boundary smoothness 
and perceptual features for single-image shadow removal. Human body 
pose estimation is another area in computer vision that leverages physi-
cal priors. Various works incorporate the physics of the human body 
into the supervision for a network, via loss functions on reprojection71 
or joint pose optimization that are combined with data-driven losses72.

Physics-based loss functions also find significant use in computa-
tional imaging tasks. For the purpose of positron attenuation correc-
tion in computed tomography imaging, a novel line integral projection 
loss has been proposed73, consistent with attenuation physics, that 
leads to improved reconstruction. Other studies have proposed74 using 
translation-invariant loss functions for the task of ‘non-line-of-sight’ 
correlography. And in lensless microscopy75, reconstruct phase by 
fitting the network weights to the captured intensity measurements. 
Instead of optimizing phase directly, the network optimizes the angu-
lar spectrum representation of the measurement in the object plane, 

allowing an unsupervised training setup. The use of similar physical 
constraints to remove hallucinations has also been successfully used 
to advance virtual staining microscopy76,77. Finally, methods for equi-
table imaging and medical devices use physics-based loss constraints 
to ensure that light-based medical devices perform equally well on the 
human population78,79,80. These diverse imaging setups each have their 
own ad-hoc loss function setups, but the common theme of having 
a closed-form, differentiable expression that encapsulates domain 
knowledge is a cross-cutting theme in this area. Looking ahead, much of 
the future work lies in finding expressions that are both physics based 
and yet also differentiable. In cases where this is not always possible, 
we expect that future work will find relaxations, or use learning to set 
the parameters of a simpler, differentiable model. In summary, the 
section takeaways are that: (1) loss functions can incorporate a physi-
cal model to regularize a neural network; (2) physics-based loss terms 
should ideally be differentiable; and (3) if the physics is in a form that 
does not admit a differentiable loss, then a physically approximate loss 
that is differentiable can be developed.

Future outlook and conclusions
The integration of deep learning methods with physics introduces an 
opportunity to better understand and predict noisy complex natural 
physical systems. As discussed here, the integration in these hybrid 
systems can occur at various levels, from the training data to novel 
network architectures and loss objectives. As reviewed here, these 
methods have already shown much promise in enhancing performance 
in a multitude of forward prediction tasks (object tracking, motion 
prediction, physical consequences of robot actions and so on) and 
inverse problems (scene de-weathering, super-resolution reconstruc-
tion of remote imagery, inverse 3D rendering and more).

An additional direction that is perhaps a few years out lies in 
unsupervised discovery of physics from visual scenes. We have dis-
cussed many studies that have used known physical relationships to 
recover parameters or directly infer a desired output. However, in 
some problems one might not have sufficient knowledge of either the 
underlying physical law or its parameters. This unknown–unknown 
problem is known as distilling physical laws from data. Physical laws 
are a human construct, expressed in human language, while recent 
work with large-scale neural networks hypothesizes the emergence 
of an ‘inner language’, separate from the human language in which 
they are trained81. A network may then encode physical laws implicitly 
already, in a language that may not be interpretable by humans. It can 
be shown that abstract concepts, such as laws of physics, can be finitely 
represented by a neural network, and are, in principle, learnable, but 
external observers cannot know if and when such a concept has been 
positively encoded18, although the hypothesis can be falsified. Work 
in this area is nascent82–86 and mostly confined to limited settings with 
relatively simple physical laws for the moment.

The methods described in this Perspective will also play a central 
role in enabling a next generation of deep neural networks that learn 
more like biological systems31,87–89. Humans are able to acquire rich 
internal representations of the physical compositionality of the world 
by interacting, multimodally and continuously, with objects90,91. By 
having the ability to reason about the physical properties of the world, 
as described here, it may become possible to develop novel neural 
network architectures that are able to interpret scenes by decompos-
ing objects into their physical properties (for example, shape, surface 
normals and colour)92, and enabling robust generalization of the learnt 
knowledge to novel tasks93.

As this article is being written, modern large language models 
(LLMs) are exhibiting a remarkable ability to ‘reason’ about many top-
ics, and this includes physics. For example, a recent LLM has shown an 
ability to outperform the average human test-taker on the Advanced 
Placement Physics test, used in the United States94. This exciting result 
should be tempered with the caveat that LLMs cannot learn completely 

Data-driven world Hybrid world Physical world

Inputs Neural net

Annotated
labels

Output of neural
network 

(also a physical
quantity) Physical 

constraint 1

Physical 
constraint K

physics
1

physics
K

annotation

Combined loss: = + + +.. .annotation physics
1

physics
K

Fig. 4 | Combined loss functions that use both data-driven annotations  
and physical constraints. When outputs of a traditional deep learning  
model are physical quantities, this last output layer lives in a hybrid world.  
A compelling case for physics-based learning is made: it is easy to place a loss  
on the output layer that is based on annotated labels and physical models,  
as shown in the figure.
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new concepts that are not in their training data95, and suffer from 
hallucinations when trying to extrapolate beyond the training data. 
However, since an LLM is inherently a learning-based method, the ideas 
in this piece of physics-based learning can be used in a similar fashion 
as has been discussed to incorporate physics into LLMs. This includes 
specific ways to incorporate physics into datasets, architectures or 
loss functions.

The field of physics-based deep learning provides a path to inte-
grating critical physics knowledge for many visual domains, and also 
opens the door to novel learning paradigms that will enable a new 
generation of applications.
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