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Distributed Adaptive Flocking Control for
Large-Scale Multiagent Systems

Shawon Dey

Abstract—This article presents a novel distributed flocking
control method for large-scale multiagent systems (LS-MASs)
operating in uncertain environments. When dealing with a
massive number of flocking agents in uncertain environments,
existing flocking methods encounter the problem of communi-
cation complexity and “Curse of dimensionality” caused by the
exponential growth of agent interactions while solving PDE-based
optimal flocking control for large-scale systems. The mean
field game (MFG) method addresses this issue by transforming
interactions among all agents into the interaction of each indi-
vidual agent with average effects represented by a probability
density function (pdf) of other agents. However, relying solely
on a pdf term to consider other agents’ states can result in
inefficient flocking performance due to the absence of a proficient
coordination mechanism encompassing all agents involved in
flocking. To overcome these difficulties and achieve the desired
flocking performance for LS-MASs, the agents are decomposed
into a finite number of subgroups. Each subgroup comprises a
leader and followers, and a hybrid game theory is developed
to manage both inter- and intragroup interactions. The method
incorporates a cooperative game that links leaders from different
groups to formulate distributed flocking control, a Stackelberg
game that teams up leaders and followers within the same
group to extend collective flocking behavior, and an MFG for
followers to address the challenges of L.S-MASs. Furthermore,
to achieve distributed adaptive flocking using the hybrid game
structure, we propose a hierarchical actor—critic-mass-based
reinforcement learning technique. This approach incorporates
a multiactor—critic method for leaders and an actor-critic-mass
algorithm for followers, enabling adaptive flocking control in
a distributed manner for large-scale agents. Finally, numerical
simulation including comparison study and Lyapunov analysis
demonstrates the effectiveness of the developed method.

Index Terms— Flocking, mean field game (MFG), multiagent,
reinforcement learning.

I. INTRODUCTION

HE idea of flocking has been adopted from living beings

such as flocks of birds [1], [2], [3] and schools of
fishes [4], where a common objective is executed using coop-
erative behavior among the individuals in the group. Flocking
control has been widely studied in research communities since
1987 when Reynolds proposed three fundamental rules, that
is, 1) flock centering; 2) velocity matching; and 3) collision
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avoidance to achieve the flocking behavior [5]. Over the last
few decades, a significant number of researches have been
conducted in multiagent flocking control ( [6], [7], [8], [9],
[10]). Olfati-Saber [11] presented a theoretical framework
for distributed flocking control. The framework addresses
the flocking behavior of a finite group of agents relying on
two major assumptions: first, all agents possess information
about the virtual leader’s state, and second, the virtual leader
maintains a constant velocity. Additionally, the framework
incorporates interaction among neighboring agents to achieve
cohesive flocking behavior. The Olfati-Saber algorithm has
been modified in [12] by removing these two assumptions. The
revised approach involved a partial information dissemination
strategy, where only a limited number of followers were
provided information about the virtual leader. Meanwhile,
the uninformed agents were influenced intermittently by the
informed agents. However, the authors of these two major
studies along with other existing studies in this domain did
not address the potential issues arising from the exponential
growth in dimensionality as the agents’ number increases
significantly, nor did they discuss the challenges associated
with real-time communication among a large number of agents
while interacting with each other to achieve the desired
flocking behavior. To tackle these challenges, we integrate the
mean field game (MFG) [13], [14], [15] approach, wherein
each agent receives information about the other agents through
a probability density function (pdf) rather than direct inter-
actions. This allows us to meet the flocking requirements
without requiring explicit interactions among the agents. In a
more realistic scenario, a real leader is employed instead of a
virtual leader. The leader and their followers utilize the pdf to
align their velocities and achieve the desired flocking behavior.
This approach is more plausible in real-world situations, as it
allows for effective coordination without the need for direct
interactions between individual agents. However, the efficiency
of achieving flocking for large-scale agents can be impeded
by relying on an agent to directly solve the Fokker—Planck—
Kolmogorov (FPK) equation—a partial differential equation
(PDE) to obtain the pdf information of the entire group.
Without direct communication, the utilization of a single pdf
function for other agents’ information may result in inferior
performance in effectively achieving flocking behavior. Addi-
tionally, in real-world scenarios, the decomposition of agents
into multiple groups [16], [17], [18], [19] is a natural occur-
rence, where agents may have distinct roles and importance
that influence their neighbors differently. For example, in a
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predator—prey system, each predator’s role and importance can
vary based on their position relative to the prey.

To address this knowledge gap, the large number of mean
field agent games with a single leader is adapted into a
hybrid game. In this modified approach, the large-scale multi-
agent system (LS-MAS) is decomposed into multiple groups,
with each group being assigned a leader. This decomposi-
tion enables the agents to work with multiple pdfs instead
of a single one, allowing for more efficient fulfillment of
the flocking requirements. The hybrid game that has been
developed comprises three key components: 1) a cooperative
game [20], [21] involving leaders from multiple groups facil-
itating information exchange to coordinate flock centering,
collision avoidance, and velocity matching for all agents;
2) a Stackelberg game [22] is employed to establish bonds
among the leader and his followers within the group, ensuring
that the leader informs its followers about flock centering
as well as obtaining pdf information from followers for
cohesive flocking; and 3) the MFG [13], [14], [15] is applied
for intragroup followers to influence the group followers by
locally generating pdfs, substituting all agents’ states, and
achieving collective flocking of large-scale followers, thereby
mitigating dimensional explosion. The developed framework
is illustrated in Fig. 1. It is worth noting that the cooperation
between leaders has a minimal impact on computation and
real-time communication compared to the communication
required among large-scale agents, which approaches infinity.

To achieve globally distributed optimal flocking control for
multiple groups, each leader must solve the Hamiltonian—
Jacobi-Bellman (HJB) equation to guide their respective
followers and contribute to the overall achievement of flocking
behaviors for all agents. Additionally, followers from each
group need to solve two coupled PDEs known as FPK
equations for pdf estimates and the HJIB equation for optimal
flocking control. However, the complexity of solving the two
coupled PDEs in real time presents challenges. To tackle this
issue, the application of reinforcement learning [23], [24],
[25], and adaptive dynamic programming [26] techniques has
been adopted, enabling the efficient real-time solution of the
coupled PDEs. The developed approach involves a hierarchical
actor—critic-based reinforcement learning method that achieves
adaptive flocking in a distributed manner. This algorithm
combines actor—critic-mass-based learning for a large number
of followers in each group and multiple actor—critic-based
learning for leaders from different groups. In the proposed
method, neural networks (NNs) for mass learning capture the
behaviors of a large population in each group by estimating the
solution of FPK equations. Critic NNs, on the other hand, learn
the optimal cost function by solving the HIB equations, while
actor NNs are responsible for solving the optimal flocking
control for both leaders and followers within the same group.
The major contributions are summarized as follows.

1) To resolve the “Curse of dimensionality” challenge in
solving the PDE-based optimal control for multiagent
systems while the number of agents is increasing signif-
icantly, multiagent flocking is extended to large-scale
multiagent flocking, and agents are decomposed into
multiple groups. A leader—follower system is introduced
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Fig. 1. Hybrid game theory-based flocking system.

for all groups, employing a novel hybrid game theory to

ensure efficient overall flocking behaviors and enable the

decomposition of mean-field game pdfs along with the
groups to achieve effective influence on all agents.

2) To solve the PDE-based optimal multigroup flocking
with the developed hybrid game structure in prac-
tice, a hierarchical actor—critic-based learning control
algorithm is proposed. This algorithm can achieve
real-time multigroup flocking behavior even in the pres-
ence of environmental uncertainties.

II. PROBLEM FORMULATION

Consider a flock of multigroup LS-MASs. Each group of
the flock has a leader and significant followers. Let n denote
the total number of groups in the system. Thus, there are n
number of leaders in the system. Each leader is identified by
the index i. Furthermore, the total number of followers in
the ith group is N;. Throughout this study, it is important to
highlight that i denotes the leader of the respective ith group,
considering the single leader in each group. Next, the state of
the leader from the ith group is defined as x; = [p! v/]" €
R?". The state includes position p; € R™ and velocity v; € R™
of the leader. Also, j represents the follower index. Then, jth
follower state in the ith group can be represented as x; ; =
[p,‘,j v,;j]T e R*" with pi,j € R"v;; € R™ being the jth
follower’s position and velocity in the ith group, respectively.

A. Leader—Follower Dynamic System for Flocking
Without sacrificing generality, the ith group agents’ system
dynamics are derived next. First, the leaders’ dynamic i is
represented as
dp,' = v;dt
dvi = [fa(pi, vi) + 8a(pi, vi)u;1dt + 0 ydw; (1)
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where w;, € R™ represent wiener processes, and the Wiener
process coefficient matrix is represented by o;,. Also, u; € R
is the control input of the leader. The nonlinear dynamics of
the leaders are described by the functions f,(-) € R™ and
ga(-) € R™. Then, (1) can be reformulated as

dx; = L) + g, (c)uildt + oydo; @

where f1(x;) = [v] fI(pi, v,-)]T € R? and g/ (x;) =
[0 ¢Z(pi, vi)]T € R?" are the augmented nonlinear dynamic
of the leader. Also, o; = [0 G[TU]T € R and o =

[0w!,]" € R are the augmented coefficient matrix and
Wiener process, respectively. Now, the jth follower dynamics
from the group i can be derived as

dpi,j = v,-,jdt
dvij = fs(pij, vi.j) + &(pi j, vi,jui jldt + ojvdw; j, (3)

where u; ;(t) € R denotes the follower control input. In addi-
tion, w; j, € R represents independent Wiener processes
and o;, € R™™ denotes the coefficient matrix. The functions
fs() € R™ and g,(-) € R™ are the nonlinear homogeneous
dynamics. Now, (3) is rewritten as

dx; ;= [fi(xi ;) + gi(xi ju; j1dt + o;dw; 4

where f/(x; ;) = [vi; [ (pij, Ui,j)]T € R and g|(x; ;) =
[O gl (pij, v j)]T € R are the augmented nonlinear intrin-
sic dynamics of the follower. Besides that, o; = [0 O’i’vT]T €
R2m><2m and w; j = [0 Cl)[’j’v]T (S RZm_

B. Hybrid Game-Based Flocking Control Cost Formulation

This section develops and applies hybrid game theory to
formulate the multileader—follower system optimal flocking
control with multiple groups.

1) Group Leader Flocking: Each leader in a group must
adhere to three fundamental rules governing collective flocking
behavior, that is, 1) flock centering [5]; 2) velocity matching;
and 3) collision avoidance. To facilitate cohesive flocking
behavior, the leader within each group engages in interactions
with neighborhood leaders, adhering to these three flocking
rules. Now, consider x.(f) € R?" is the state of the virtual
flocking center, and the flock centering error for the leader as
e;(t) = x;(t) — x,(t),Vi = 1,2,...,n. Then, using (2), the
flock-centering error dynamic is defined as follows:

dei(t) = dx;(t) — dx,(t)
= [fo, () + g, (ep)u;1dt + oidw; (5)
with f7 (e;) = f,(e;+x,)—(dx,/dt) and g, (¢;) = g, (e;+x;).

Subsequently, the leader cost function associated with tracking
the flock center is defined as follows:

cIDFC,L(XI') = |x; — xr”zQFC.L ©)

with Qpcp being the positive definitive matrix (PDM). Next,
the leader’s cooperation is characterized by how it interacts
with neighboring leaders to enable the entire group to flock
together effectively. Let 4 > O represent the sensing distance

that enables the leader to detect its neighborhood leaders. The
set M; represents the neighborhood of the group i’s leader

M (@) = {inei € Vi X = Xig g, < hoina #i} (7

where the set )V comprises all the leaders’ node for undirected
graph G. Moreover, A = [a;; ] € R"" denotes symmetric
adjacency matrix, with a; ; ; is selected as a;;,, = a;,,,; = 1 if
(i, inei) € €. Here, notation & represents the edge set defined
as € C {(I, inei) : iy inei € V, I 7 inei}. Now, assuming that the
leader of the group i can communicate with the neighborhood
leader iy if ine; € M, (¢). Then, the collision avoidance cost
of the leader to meet the flocking requirements is defined as

i—xi 1% —d; . —
q)CO,L(xi) — wCO,L Z [e(”X Xinei ”QCO,L nel) _ 1] 1 (8)

ineiEMi
where Q _ |10 R?">*2m  with identit tri
COL = |po0 € with 1dentity matrix

I € R™™ weoL is positive weighting scalar, and x_; =
{Xi Viwem,» With M; being neighbor leaders set. Also, dj,
represents the distance threshold between leader i and leader
inei- This distance is carefully chosen to ensure the prevention
of any potential collisions between the respective leaders and
their accompanying followers. As the distance between any
two leaders approaches threshold distance, the collision avoid-
ance function tends toward infinity. The velocity requirement
of the leader is achieved by the following function:

2
DymL(xi, X—i) = wymL Z ai,inei[”xi (1) = Xy (t)“QVM‘LiI
ineiEM[

€))

where wywm is the positive weighting scalar, a;;  is the
element of the symmetric adjacency matrix of the leader i
8 (I) = R2m ><2m.
This function ensures that the leaders from multiple groups
match their corresponding velocities to achieve the collective
flocking of a large number of agents. Also, the identity matrix
QvmL is used to evaluate the velocity errors of the leader.

2) Coupling Functions for Flocking: While the leader
tracks the virtual center and meets the flocking requirements,
it is also essential to ensure the successful tracking of respec-
tive leaders by corresponding followers to achieve overall
flocking within the decomposed group of agents. The coupling
cost functions are designed by the Stackelberg game [22] to
guarantee that the followers of the same group can flock with
their group leader. It includes a flocking center coupling cost
function as

and neighborhood leader ij, and Qymr =

2 —1
(DFC,C(-xi,jv -xi) — I:e(ri*Hxi,j*x, ”QFC.C) _ 1] (10)

where Qrcc = [(I) 8j| € R¥"x2m and r; signifies the prede-
fined safety distance threshold for the followers within group i.
In this scenario, r; is considered as the radius of a circular
region that serves as a zone devoid of collisions for the distinct
groups. Note that the threshold distance d;,, of the leaders
satisfy the condition d;, > r; + r;; to ensure the prevention

Inei —

of collisions between the followers of neighborhood groups.
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When the follower approaches the boundary of this circle,
then the power term of e approaches zero, and the cost
function approaches infinity. As the follower distances itself
from the boundary and gets closer to the leader, then the power
term becomes larger and the cost function approaches zero.
Then, to achieve the overall group flocking, we introduce a
velocity-matching coupling function for the leader, enabling
synchronization of velocities within their respective groups.
Since the leader only has the pdf information of its followers,
this information is employed in the cost function of the leader

Pymci, pi) = 1% (0) = E{pi(xir, D pge (1)

with Qvmc = [g (I)i| e R¥>2m and p; (xi,F, t) represents the
pdf of the state of the large number of followers in group i.
Note that every decomposed group leader has its respective
followers’ pdf information. These two coupled cost functions
can validate the cohesiveness of the group leaders and the
massive followers.

3) Flocking of Large-Scale Followers: The group leader
serves as the flocking center for followers. The followers’
flocking center error is represented as e; ;(t) = x; j(t) — x; (¢).
Now, the tracking error dynamics can be obtained as follows:

de; j(t) =dx; j(t) — dx;(t)
= [fs,(ei.)) + &, (e ui jldt + ord o ;
with, f; (e; ;)= f,(eij +x;)— fi(x:)
g (eij) = gy (e +xi) — g, (xi)ui fuj j ;

a)le] = wi,j — ;. (12)
Then, the tracking error cost function is defined as
2
Prep(xij) = lIxij — Xill g, (13)

with Qpcr being the PDM. Now, the collision avoidance
function of the followers [27] is defined as

Dcor(xij, pi)

=wco,F/ MXi—m[82+llxi,_/ (1) —E{pi (x;, F, t)||2Qco.F]ﬁdxi,F
: (14)

where Qcor = (1)8 e R¥™*2m with 1 € R™ and WCo F

is a weighting parameter. Also, ¢ and B are positive param-
eters. This function serves the purpose of aiding followers
in evading collisions with other followers within the same
group. Given that followers possess solely pdf data about their
group members, as opposed to precise state information, this
cost function is employed to guide followers away from dense
regions, thus diminishing the likelihood of collisions. Next, the
velocity matching of the followers with their group members
is achieved by the subsequent cost function

Pymr(xij» i) = wymrtxi; — E{pi (i r DM Gy ) (15)

00
where QVM,F 01

and wymp denotes a positive weighting value. Now, the
optimal flocking control cost function of this hybrid game-
based leader—follower structure is defined as follows.

R?mx2m is an identity matrix
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4) Optimal Flocking Control Cost Function: The overall
flocking cost function for the leader system is derived as
Pl oL (i, x_i, ui)+
v L X_i) i ZE{ iy M—is Ui dl}
i Xoi 1) /0 |: Dym,c(xi, pi) i|
with, ®p(x;i, x—i, u;) = PreL(xi) + Pcor(xi, X—;)

+ Oymp(xi, x-) + lluillz,  (16)

where R; is the weight matrix for the quadratic control input.

The leader optimizes this cost function to achieve the flocking

behavior with respect to its own group followers and other

group leaders. Next, the jth follower cost function is as

oo | PrL(Xi,j, Xi\ Ui )+
Dcor(xij, pi)+ |dt
DymEe(xi j, pi)

st i, —xill <7

Viixij, xi, p0) =E /

0

with, ®g(x; j, xi, u;,j) = Prcr + Prec + ||Mi,j||3q,._,. (17)

where x; ; represents the follower jth initial state in group i.
Note that the initial deployment of the follower satisfies the
above constraint ||x; ;, — x;|| < 7;, which indicates that the
initial distance of the follower from the leader is less than
the threshold distance r;. After that, the coupling function
®rcc(xi,j, x;) ensures that the followers always stay close to
the leader and do not venture beyond this threshold distance.
By ensuring the follower cohesiveness with the leader, it is
guaranteed that the leader can achieve the group collision
avoidance behavior using cost function ®cg, 1(x;, x_;). Even
though, the leader does not have the individual state informa-
tion of followers except the pdf term, these two cost functions
still ensure the group collision avoidance and flocking behav-
ior. The leader’s overall cost function is

M
_ I PLp(xi, x—i, up)+
VL(xi,p)—%:E{/o [ S p1) }zz}. (18)

C. Hybrid Game -Distributed Flocking Control

The leaders and followers Hamiltonian can be obtained
as follows, by incorporating optimal control theory [28] and
Bellman’s optimality [29]:

M

Hylxi, 0, Ve (i, p)] = D Hilxi, 9 Vi, x-i, o)1 (19)

i=1
Now, any individual leader i’s distributed Hamiltonian is
H;i[x;, 0y, Vi (xi, x_i, pi)]
= E{®rp(xi, x—i, u;) + Pvmc(xi, pi)

+ 8, Vi (i, LS () + g (uil). (20)
The Hamiltonian of the jth follower from ith group is
H; j[xi s 0x, Vi (xij, Xis pi)]
= E{®p.(xij. xi, ui,;) + Pcop(xij, pi)
+ Ovmr(xij, pi) + Oy, V,Tj (Xi,j, Xi, pi)
+ [f) (i) +g;(xi,j)ui,j]}- 21

Using cooperative game theory [20], the leaders’ HIB equation
from multiple groups is defined in (24), as shown at the bottom
of the page 6. Then, the HIB-FPK equations of followers are
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derived in (25) and (26), as shown at the bottom of the next
page. Once again, the leader—follower optimal flocking control
can be obtained as follows:

wi(xi) = —1/2 B{R; " g'T (x)ay, Vi(xi, x_i, pi)} (22)
ui j(xij) = —1/2 E{R; ,lg/T(xi,j)ax,;j Vi, xi, pi)}. (23)

Remark 1: Solving the forward-in-time HJB equation for
leaders, the interlinked HIB and FPK equations of followers
is a complex task [28]. To address this challenge, the emerging
reinforcement learning algorithm [23] has been embraced. This
algorithm enables online learning of optimal control strategies
and facilitates adaptation to environmental uncertainties.

III. HIERARCHICAL ACTOR—CRITIC-BASED
NN ESTIMATORS

In the developed framework of hybrid game theory within
the context of a multigroup mean field system, the primary
objective of each agent is to attain a desired flocking behavior.
This objective is pursued by optimizing the control strategies
of leader—followers within each group, achieved through the
minimization of corresponding cost functions. To accomplish
this, a set of n critic and n actor NNs are employed, aimed
at estimating optimal cost functions and control actions for
the n group leaders. These leaders operate cooperatively,
exchanging information to collaboratively achieve distributed
flocking control. Meanwhile, each follower within any group i
maintains an actor—critic-mass NN. The NN structure is shown
in Fig. 2. This network serves the purpose of estimating the
follower’s control, cost, and pdf.

Next, the leaders’ optimal flocking cost and control function
are defined as follows:

1) Ideal NNs Design for Leader:

Critic: V*(-xl5 X—i, /01) - ]E{W V¢l v+ EHIB; }

Actor: uf(xi, x_i, pi) = E{W/ i + 1.1} (27)

Also, the followers’ optimal flocking cost, control and PDF
functions are as follows:
2) Ideal NNs Design for Followers:

Critic: V/*; (x; j, xi, pi) = ]E{W-T,- v®ij.v + e, }
Actor: uf ;(x; g, Xis i) = EAW, (i ju + i ju)
Mass: p; (xi j, 1) = B{W/ ¢ j, +erex,,}  (28)

where W, v, Wi, W; jv, Wi ., and W, ; , correspond weight
of the ith group leader—follower. The activation functions of
these networks are represented by ¢(.), while ¢ denotes the
NN reconstruction errors. Moving forward, we can approxi-
mate the leaders’ optimal cost and control as follows:

3) Estimated NN Design for the Leader:

Critic: V; (x;, x_;, ,51') = E{Wi,Vqui,V}
Actor: i (x;, x_, pr) = B{W] i} (29)

Note that decentralized followers maintain an estimation over
their intragroup pdf p; ;(x; ;, t) and their group leader collects
the estimations from followers. The leader then calculates the
statistical mean of collected pdf, that is, p; = Zi, ; pi.j. Note
that this communication link is highly fault-tolerant and does
not require low latency. This is because followers transmit

similar pdf functions to the leader in the same group. Substi-
tuting the approximation (29) into (24) and incorporating the
reconstruction error impact, the residual errors of the leader
critic-actor NNs are obtained as

Critic: E{el-UBi}
= E{®vymc(xi, pi) — ﬁ/f\/\iji,v(xi, X_i, i)

— W Wi v (xi, x_i, i) — e, } (30)
Actor: E{e; ,}
=E{- W,Tu(pi,u(xi»x—ia lgi) - w! i
Xoiy i) = 1/2 R 8 ()3 Vi = &) (31)
with, H; = H;[x;, 3x,-<$i,v] = Wi,vHi,W
E{Wi,v (xi, x-i, pi)} = E{8,¢iv +0.562Adiv — Hiw)
E{®ymc(xi, pi)} = E{Pymc(xi, i)+ Dymclxi, pi)}-
Also, W, v = Wiy — W, Vs W,,u = Wi, — Wl.u The

approximated functions representation is as follows:
E{W; v (xi, x—i, pi)}

= E{Wiy (i, x—i, pi) —

E{iu(xi, x_i, pi)} .

= E{iu (i, x_i, p1) — G, x_i, P}

The updated laws for leaders’ actor—critic NN are given as

Uiy (xi, x_i, i)

U, v (xi, x_i, pi)e
1V( i i ) HIB; - (32)
1 + ”\Ill V(-xlvx—lv 101))”
Biu(Xi, X, pi)ei,,,
U4 i u (s x—iy PN |

Now, the followers’ optimal flocking cost, control and mass
(PDF) are estimated as follows:
1) Estimated NN Design for Followers:

Critic: V; j (x;i j, Xi, pij) = ]E{sz,vqgi,j,v}
Actor: it; ; (x; j, Xi, Pi,j) = E{W,T, WPi i)
Mass: pyj(xij 1) = B{W], $ij0}. (34

By substituting (34) into (25) and (26), residual errors are
defined as

Critic: E{eyp, ;}

IE{"i’i,v} = H

E(W, .} = Ei—ai,u (33)

= E{®cor(xij, pi,j) + Pvmpe(xij, Oi,j)

~ T ~ N T ~ ~
= WiivWiiv(xij, xi, i) — Wi yWijv(xij, xi, pij)

— &uB,;} (35)
Mass: E{egpy, , }
=E{- W,Tj p‘i'i,j,p(xi,w Vij: 1) — t/p
\Iliyj,p(x,',.,', ‘7,',,', 1) — erpk, ; } (36)
Actor: Efe; j .}
= E{- leu¢lju('xlj’xl’plj) uu
Giju (i Xis Pi ) — 3 ljlg/T(xi,j)ax,;jVi,j —&ijut (37)

N A
with, H; ; = H; ;[x; j, 3x,-,,¢i,j,v] =W, vHijw

I Y 3z¢;i,1,v +0.507
v g ) = E[ |:—A¢i,j,vHi,j,w
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Leader 1 Leader n
1 dxg = [fa(x) + ga(x1)uy]dt + 0ydwy dxy = [fa(x) + ga(en)up]dt + opdar, !
:' ”””””””””” 29 Sttt e | 5
3 Group 1 Leader 1 (A _.-Leader n (Actor)
H Control uy Control u,
Leader 1 (Critic) i Leader n (Critic)
HIBV, "o HIBV,
; i 1 P f f
: ; | Follower 1 (Mass) | | Follower Ny(Mass) | '; 1 v Follower 1 (Mass) |, | Follower N;, (Mass) | ';
: FPK p11 FPK py1n, P FPK py,1 FPK pn, :
I T T T T 0o -  — N
¢ L{ Follower 1 (Critic) |, { Follower Ny (Criticy | /| | Follower 1 (Critic) | | Follower Ny (Critic) |, |:
Pl HIBV, HIBVyy, b HIB Vyq HIB Vyy, [
1 1 i Vi P
 Follower 1 Follower Ny i . |  Followerl | |  FollowerN, [
\‘\antrol Uy Control uyy, .- i ~~Control u, 4 Control “n,N;{"'
......... T Sy Jupee yepepepepe N L R [ B St

Follower 1 (Dynamics)

Follower 1 (Dynamics)
dxy1 = [fi(xn1) + G (a1 un 1] dt + opdwy g

dxys = [f5(x10) + g5 (210 st + o1y

Follower N™ (Dynamics)
dxyy, = [f Q(xvm,.) + Hg(xmw,.)“n,nn]'if +oydw,y,

Fallowe.r N (Dynamics)
dxyy, = [f Q(xwl) + H}(xuv.)“wl]df +01dwyy,

Fig. 2. Hierarchical actor—critic-based flocking control structure.

E{W; j ,(xij, Vi, )}

= E{B,qgi,j,p — 0~50i2A$i,j,p — div(éi,j,p)DpI:]i,j}-
Also, Wijv = Wijv — Wi,j.v, Wijw=Wiju— Wi.j,u and
Wiio = Wij,— W, j,. The updated laws for followers’

actor—critic-mass NNs are given as follows:

. .
Wi v (i js Xis Pij)eysp,

E{(W, v} =E y— . (38)
! 1+ 1 v (s X, i) 12
A ¢l u(Xijs Xiy i ) i
E{(W; .} =E e N ED)
1 + ||¢lju(xrja Xis Pi ])”
N W, (X, Di s el
J.p J .J FPK; ;
E{Wi,j,p} =E —Q,jp 2 (40)
PHWUALP,pUH

where the learning rates are &V, s Ui jys & jus and o j .

Remark 1: The functlons \IJ, v(xi, x_i, pi), ¢>, u(x,,x_,,
101) "pt W V(-xl o Xio pl]) ¢1 ]u(xl js Xi» Pi, j) and lel J.p
(i, 0 j, 1) satisfly the persistency excitation (PE) condition
when the NN weights are converging.

Theorem 1: The critic NN weight's E{W, y} and E{W, v}
are tuned using update laws (32) and (38). The approximated
weight errors E{Wi,v} and E{W,‘,J‘A’V} and cost estimation
errors E{V;} and E{f/i, ;} are uniformly ultimately bounded
(UUB). In addition, with a minimal reconstruction errors,
E{W,v}, E{W, v}, E{V;}, and E{V, ;} are asymptotically
stable. The bounds \7,~ and \7,-, j are defined as

{1701}
=E{IW!\ iy + Wy div + e, I

Algorithm 1 Adaptive Flocking Control
1: Initialize the state of group_! leader x; in the flock
2: Initialize the state of jth follower x; ; from group i
3: Exchanging the state information between leader i and
other neighbor leaders ine; € M;
Initialize NN weights Wi_v, W,;M randomly
Initialize NN weights y
Vi/,-, j.p randomly
6: Initialize the leader-follower errors-
Leader: enjp,, €.y < 00
Follower: eHJBH, erKi‘l,, € ju < O
7: Initialize NNs thresholds duyg,, 8HJB,.J.,
8: while TRUE do

®

A~

_J from group_i: W; v, W, .,

wn

8ius Siju> OFPK,

9: while €HIB;, = SHJB iy = 8[ u, do

10: Use (32) and (33) to update NN weights
11: Use (30) and (31) to update errors

12: end while

13: u (xzax—l’pt) <_W,u¢zu(xz,x—z,,0)
14: Apply the control #;

15: Calculate new state x;

16: while ey, ; > S, ;» €iju = i ju» €FPK;; = OFPK,;
do

17: Use (38), (39) and (40) to update NN weights

18: Use (35), (36) and (37) to update errors

19: end while . .

20: Wi j(xij, Xiy Pij) < WiT,j,u(ﬁi,j,u(xi,jv Xi, Pij)

21 Apply the control #;

22: Calculate new state x; ;

23: end while

Similarly
E{1V:; 01} =B{IWT, iy + Wi + enn, 1]

< bi v wB{lgi v I} + s, E{IW: v 1}bi .,

+ E{llews,, Il = bijv () (42)
with the Lipschitz constants are Iy, and Iy, ..
Proof: Excluded because of page restrictions.
Theorem 2: The mass NN weight E{W, i,jp} 1S tuned

by (40). The approximated weight error ]E{W, j.p) and pdf
approximation error E{p, j} are UUB. Also, with a minimal
reconstruction errors, IE{W, j.p} and E{p; ;} are asymptotically
stable. The bound of p; ; is as follows:

E{l15:, 01}
=E{IW], ,$is + ervc, I}

< BovwE{16iv 11} + Lo E{IWiv )61 5., + Ef lenus, I} < bi,j,p,W]E{||¢i.j,p||} + E{llerx,, | = bij., (1) (43)
=b;y(t). 41 Proof: Excluded because of page restrictions.
HIB(Leader): E{®yyc(xi, )} = E{(—9,Vi(x;, x_i, pi) — 0.50:> AV (x;, x_i, pi) + Hilx;, 5, Vi (xi, x—i, pi)]} (24)
. o o =8, Vi j(xij» Xi, pi) — 0.50° AV j(xi.j, Xi, pi)
HIB(Follower): E{®co r(xi j, pi) + Pvm (i j, pi)} = EH: H; Lxi 2 0, Vi G o 31, 1)) (25)
FPK(Follower): E{0; o; (x; j, 1) — 0.50:> Ap; (xi,j, 1) —div(o; Dy H; jlx; j, 0y, Vi j(xij, xis pi)D} =0 (26)
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Theorem 3: The actor NN’s weights E{Wi,u} and E{Wi,j’u}
are tuned in (33) and (39). The actor approximated weight
errors E{Wi,u} and E{W,-, ju} and the approximation errors
Ef{i;} and E{i; ;} are UUB. Also, with a minimal recon-
struction errors, E{Wi,u}, JE{W,-,J-,M}, E{i;}, and E{a; ;} are
asymptotically stable. The bounds #&; and i; ; are as follows:

Efla 1]
= E{IW, 061 + W b1+ erll}
< bi wE{IGiall} + Lo BN Woal1}bi .o + E{ i1}
= bia (1) (44)
and
{10l = E{IW], i+ W i+ 215l
+ E{llei,j.ull}
< bijuwB{l16ij.ull} + Lo LJE{IWi jull }bij.p
E{lerjull} = biju 0 (45)

with the Lipschitz constants Iy, and [y, ;.

Proof: Excluded because of page restrictions.

Moreover, to analyze the close loop stability, we need to
consider the leader flock centering and velocity error. The
velocity error is represented as

v =D, i [Arxi(t) — Agxi, (1)]

inei €M,

(46)

where A, = [O 1 ] € R™2m with I € R™ is the identity
matrix. Next, the dynamic of the velocity error is defined as

deiy = [f1,(ei0) + 8oy (€in)uildt + 0y ydw}
Withs fa/u(el',v)
= Z aivincilq2

inei €M,

1
fa/(a(ei,v + Z aiqineixinei)) - fa/(‘xinei)

ineiEMi
!
gnleiy) = E aj A2
inei€M;
’ 1 ’ Ui
8| | et D i =84 (Xip) —
ta incieMi tnei
47)

where n;, is the ith leaders’ neighborhood number.

Lemma 1: There exist optimal control policy [30], that is,
u; and u; ;, for the stochastic dynamics (5), (12) and (47), that
satisfy

Ele] [ e + giy (e + 22 ]} < —nE{lei’}

! /
(€ j) 8 (ei jui j
E{e.T.|:f I Bar i€t oide }S—VzE{llei,j||2}
=

LJ
+U[,vdw[.u ] } S _y?)]E{ ”ei,v ||2}

dt

E{eT [fa/v(el.,v) +g;v(ei,v)ui

* Flock center|
* Leader
- follower

(c) (d)
Multigroup leader—follower flocking. The red curve depicts the
trajectory of the flocking center, the leader trajectory is depicted in green
color, and other colors are for followers. (a) t =0s. (b) r =8s.(c)t = 14 s.
(d)r=20s.

Fig. 3.

Theorem 4: The NN weights are updated by the tuning
rule (32)—(40). The learning rate of the respective NNs, that is,
o, v, G, Ui j v, & jp. and o; j, are all positive number. Next,
E{W; v} E{W:.}, E{W, v}, E{Wi;,}, E{W, .}, E{V:},
E{V:;} Elpi;}, Ela:}, Elui ), Efei}, Ele; ;) and Ele; ,}
are UUB. Again, E{W, v}, E{W,;v}, E{W;,}, E{W;;.},
E{W. ;b E{Vi}, E{Vi;} Ela), Elw ;) E{oi,), Efel,
E{e; ;}, and E{e; ,,} are asymptotically stable for the perfectly
selected NN structures.

Proof: Excluded because of page restrictions.

IV. SIMULATION RESULTS

In this part of the study, the developed algorithm is imple-
mented in multigroup large-scale unmanned aerial vehicle
(LS-UAV) systems.

A. Hybrid Game-Based Flocking Control

In this experiment, a total number of four groups have
been deployed to an area. Each group has a leader with over
300 followers. Besides that, a virtual flocking center trajectory
is given to all the leaders. Each leader shares information
about their state with the neighborhood leaders. In addition,
the states of each leader are broadcast to its corresponding
followers and each follower tracks its respective leader to
achieve the desired flocking behavior. Let the initial state, that
is, the leaders’ position and velocity, be x| = [3.8 1.20 O]T,
Xy =[4.11030.15]", x3 = [4.27 1.05 0.1 0.12]" and x; =

[4.4 1.30.5 O.S]T. Now the normal distributions, that are used
to produce followers’ initial state—Group 1 position: N (u =
[3.8,1.2],0 = 0.15 x D), velocity: N(u = [0,0],0 =
0.02, x I,); Group 2 position: N (u=14.1,1],0 =0.15x 1),
velocity: M (u = [0.3, 0.15], 0 = 0.02x I,); Group 3 position:
N = [4.27,1.05],0 = 0.15 x L), velocity: N(u =
[0.1,0.12],0 = 0.02 x I,); and Group 4 position: N (u =
[4.4,1.3],0 = 0.15 x L), velocity: N(u = [0.5,0.3],0 =
0.02 x I). The intrinsic dynamics of the leaders are sim-
ilar to [28]. Also, the followers’ intrinsic dynamics are
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Fig. 4. Leaders and followers’ velocity errors (different groups). (a) Leader
tracking error (velocity). (b) Follower tracking error (velocity).

given as f/(x;;) = [1/2xij2—Xij1 Xija—%ij3 Y Z]T,
with Y = x,-,j,z[(cos(2x,-,j,1)2 — 1)] x,-,j,l/2 and
Z = xi,j,4/2 [(COS(Z)C,’JQ + 2)2 — ])] — x,-,j,3/2. AlSO,
g (xi;) = [00 cos@x; ;1) cos(2xi;3) +2], with x; ;) =
[x,',j’l Xij2 Xij3 x,-,j,4]T. Furthermore, h =1, R, = R; j =1,
we,L = 08, wym,L = 1, WCo,F = 1, WVM,F = 1. The total
simulation time of the experiments is 20 s. A hierarchical
actor—critic-based NN for estimating the cost, control, and pdf
of all the leaders and followers is constructed. The learning
rates are oy =2 x 107, 0, =2 x 1074, a; jy =2 x 1075,
o ju = 2x107% and o;;, = 2 x 1073, The thresholds
parameters are dyyg, = 0.00001, (SHJBL/ = 0.00001, §;, =
0.000001, 8; ;,, = 0.000001, and dgpk, ; = 0.001. Fig. 3 shows
the trajectory motion of LS-UAVs from different groups with
flocking behavior at time t = 0s,t = 8 s, t = 14 s, and
t =20 s. The starting positions of the leaders, followers, and
virtual trajectory are depicted in Fig. 3(a). A small window
is plotted to show the details of the group / = 1 agents
starting position. As time progresses, the leaders and their
associated followers start their movement in the lower part
of the figure and advance upward. Fig. 3 demonstrates that
every single leader tracks the virtual flocking center and all
of the followers track their corresponding leaders to attain
the overall flocking behavior. The velocity matching of the
leaders and followers has been verified in Fig. 4. Fig. 4(a)
demonstrates the normed velocity error of all four leaders from
the respective four groups. The velocity error plotted in this
figure is the error between the corresponding leader and the
virtual flocking center. It is clear from this demonstration that
the velocity error converges to zero with time. This implies
that, as time progresses, the leaders from all the groups match
their velocity with the flocking center. Similarly, Fig. 4(b)
represents the followers’ average normed velocity errors with
respect to their associated leaders. The four curves shown
in the figure represent the average velocity error of the four
groups’ followers. This figure demonstrates that the velocity
errors converge to zero along with time, which implies that the
followers match their velocity with their leaders to attain the
group flocking behavior. To demonstrate the follower velocity
errors in detail and without loss of generality, the followers’
error from the group i = 1 has been plotted in Fig. 5. This
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0 5 10 15 z;n
Time t(Sec)

Fig. 5. Follower (group 1) velocity error.
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(c) (d)

Velocity X 2 5
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Fig. 6. Velocity of all followers from group 2 with respect to time. (a) and
(c) 3-D views; (b) and (d) 2-D Views.

figure demonstrates that the velocity errors of followers within
group 1 tend to approach zero as time progresses. Moreover,
in Fig. 6, the pdf of the group 2 followers’ velocity at different
times, is plotted. Fig. 6(a) and (b) and (c) and (d) shows the
follower’s velocity pdf at time t = 1 s and t = 15 s in 3-D and
2-D view, respectively. From this figure, it is perfectly shown
that the velocity of all followers is matched along with time.
The efficacy of the NNs has been evaluated by demonstrating
the HIB and FPK errors of the leader and follower. Without
sacrificing generality, we take into consideration the leader
HIB error and the follower_i = 1 HJB error in the group
/| = 1. In Fig. 7(a) and 7(b), the leader—follower error of
the HIB equation from group 1 is demonstrated. The figure
certainly illustrates that the error converges to zero after a
particular period of time. Fig. 7 confirms the optimality of the
leader and follower in terms of the cost function. Furthermore,
in Fig. 7(c), the mean-field error convergence is verified by
plotting the FPK error of follower number one from group one.
Here, the FPK error’s convergence indicates that the follower’s
mean field FPK equation is solved. Therefore, the ¢-Nash
Equilibrium has been obtained.

B. Comparison Result

In this section, we conducted a simulation to demonstrate
the significance of our hybrid game-based distributed flocking
control against the cooperative control method [31], [32]. Each
group includes 1 leader and 200 followers. The agents’ states
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Fig. 7. HJB equation errors. (a) Leader from group_1 HIB error.

(b) Follower_1 from group 1 HIB error. (c) Follower FPK error.
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Fig. 8. Leader flocking cost for hybrid and cooperative game.

have been initiated using the same normal distribution pro-
vided in the hybrid game-based flocking control scheme. The
cost of the leader and follower flocking control is redefined

o0
Dy p(xi, x_j, uj)+
Vi() =E dti.
® {/0 [CDVM,C(xi,/)i)—i-wFN,-} }

The newly added term wpgN; represents the leader’s cost of
communication with its corresponding group followers. Here,
wr = 0.2 denotes the weight of the communication and
N; represents the followers’ number in group i. The per-
formance comparison of the developed algorithm against the
traditional algorithm is shown in Fig. 8. Here, the leader from
Group 1 is used for this comparison study. This figure clearly
demonstrates that the hybrid game-based flocking algorithm
outperforms the conventional cooperative flocking approach
after a certain period. The new flocking cost of the follower

[ e (xij, X1, ui ;) + Peor(xi
Vi) = E{/ o X Wi rO )
i 0 |::0i) + Oymp(xi ), oi) + wF,cNi~]
49)

Here, the weight wp, is selected as wp, = 0.2. Fig. 9
clearly shows that the developed method outperforms the
traditional cooperative flocking control as time progresses.
We also performed another comparison study to show the
efficiency of our multigroup decomposition method. In this
experiment, we demonstrate the performance analysis of our
developed method using the follower agent’s velocity pdf for
two different systems. The first system consists of a total of

(48)

@ 200 7 T T
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o . .
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™3
%}
o
m 0
0 5 10 15 20

Time t(Sec)

Fig. 9. Follower cost for hybrid and cooperative game.
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Fig. 10. Followers pdf of velocity for single group and multigroup
systems. (a) Single-group velocity pdf (r = 15 s). (b) Multigroup velocity pdf
(t=155).

1200 agents, while the second system is the decomposition of
the first system into four groups, with each group comprising
300 follower agents. The initial states of single group agents
are generated as, position: M'(u = [4.05,1.10],0 = 0.15x I»)
and velocity: N(u = [0.2,0.15],0 = 0.02 x L). Also,
the initial states of the agents from multiple groups are
generated as same as in the previous experiment shown in
hybrid game-based flocking control. The other parameters
are identical to the previous simulation. Fig. 10(a) shows
the pdf of followers’ velocity in the single group. Similarly,
Fig. 10(b) presents the velocity pdf of the 1200 followers,
albeit decomposed into four groups. These figures clearly
demonstrate that the followers, when divided into four groups,
exhibit better velocity matching compared to the single group.

V. CONCLUSION

This article presents a new hybrid game-based approach
to achieve flocking behavior in an LS-MAS under uncertain
environments. The proposed method integrates MFG the-
ory and distributed control, decomposing the LS-MAS into
subgroups to relax the dependence on a single MFG pdf.
A hierarchical structure with cooperative leaders and non-
cooperative followers is introduced to attain overall flocking
behavior. Cooperative games among leaders are developed at a
higher level, while a mean field population of noncooperative
followers tracks leaders’ behavior at a lower level. A Stack-
elberg game establishes connections between group leaders
and followers. A multiactor critic NN architecture is used to
solve associated HJB and FPK equations. Lastly, numerical
simulation including comparison study and Lyapunov analysis
has been performed to demonstrate the efficiency of the
developed methodologies. In the near future, the pdf decom-
position method to divide the agents into multiple groups will
be improved to achieve better efficiency in terms of agent
interaction. In addition, the safety of this large-scale system
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will be studied in detail and the assumption on stability and
convergence theorems will be relaxed.
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