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Abstract—Privacy protection is gaining increased attention in
distributed optimization and learning. As differential privacy is
becoming a de facto standard for privacy preservation, recently
results have emerged integrating differential privacy with dis-
tributed optimization. However, to ensure rigorous differential
privacy (with a finite cumulative privacy budget), all existing
approaches have to sacrifice provable convergence to the opti-
mal solution. In this paper, we propose a differentially-private
distributed optimization algorithm that can ensure, for the first
time, both rigorous ϵ-differential privacy and optimality, even on
the infinite time horizon. Numerical simulation results confirm
the effectiveness of the proposed approach.

I. INTRODUCTION

The problem of optimizing a global objective function
through the cooperation of multiple agents has gained in-
creased attention in recent years. In the problem, each agent
only has access to a local objective function, and can only
communicate with its local neighbors. The agents cooperate
to minimize the summation of all individual agents’ local
objective functions. Such a distributed optimization problem
can be formulated in the following general form:

min
θ∈Rd

F (θ) ≜
1

m

m∑
i=1

fi(θ), (1)

where m is the number of agents, θ ∈ Rd is a decision variable
common to all agents, while fi : Rd → R is a local objective
function private to agent i.

Plenty of approaches have been reported to solve the above
distributed optimization problem since the seminal work of
[2], with some of the commonly used approaches including
gradient methods (e.g., [3], [4], [5], [6], [7], [8]), distributed
alternating direction method of multipliers (e.g., [9], [10]),
and distributed Newton methods (e.g., [11]). Among these
approaches, gradient-based approaches are gaining increased
traction due to their efficiency in both computation complexity
and storage requirement, which is particularly appealing for
agents with limited computational or storage capabilities.

Despite the enormous success of gradient based distributed
optimization algorithms, they all explicitly share optimization
variables and/or gradient estimates in every iteration, which
becomes a problem in applications involving sensitive data.
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For example, in the rendezvous problem where a group of
agents uses distributed optimization to cooperatively find an
optimal assembly point, participating agents may want to keep
their initial positions private, which is particularly important
in unfriendly environments [10]. In sensor network based
localization, the positions of sensor agents should be kept
private in sensitive (hostile) environments as well [10], [12].
In fact, without an effective privacy mechanism in place, the
results in [10], [12], [13] show that a participating agent’s
sensitive information, such as position, can be easily inferred
by an adversary or other participating agents in distributed-
optimization based rendezvous and localization. Another ex-
ample underscoring the importance of privacy protection in
distributed optimization is machine learning where exchanged
data may contain sensitive information such as medical records
or salary information [14]. In fact, recent results in [15] show
that without a privacy mechanism in place, an adversary can
use shared information to precisely recover the raw data used
for training (pixel-wise accurate for images and token-wise
matching for texts).

To address the pressing need for privacy protection in
distributed optimization, recently plenty of efforts have been
reported. One approach resorts to partially homomorphic en-
cryption, which has been employed in both our own prior
results [10], [16], and others [17], [18]. However, such ap-
proaches incur heavy communication and computation over-
head. Another approach employs the structural properties of
distributed optimization to inject temporally or spatially corre-
lated uncertainties, which can also provide privacy protection
in distributed optimization (see [14], [19], [20] as well as our
own results [21]). However, since the uncertainties injected
by these approaches are correlated, their enabled privacy is
usually restricted. Time-varying random stepsizes [22] and
quantization errors [23] can also be exploited to achieve a
certain level of privacy protection in distributed optimization.
As Differential Privacy (DP) is immune to arbitrary post-
processing (including, e.g., statistical inferences), and can
provide strong privacy protection for a participating agent
even when all its neighbors are compromised [24], it is
gradually becoming a de facto standard for privacy protection.
In fact, as DP has achieved remarkable successes in various
applications [25], [26], [27], [28], [29], some efforts have
also been reported incorporating DP-noise into distributed
optimization. For example, approaches have been proposed
to obscure shared information in distributed optimization by
injecting DP-noise to exchanged messages [12], [30], [31],
[32], or objective functions [33]. However, while obscuring
information, directly incorporating persistent DP-noise into ex-
isting algorithms also unavoidably compromises the accuracy
of optimization, leading to a fundamental trade-off between



privacy and accuracy. In fact, recently the investigation in [15]
indicates that directly incorporating DP-noise can achieve
reasonable privacy protection “only when the noise variance
is large enough to degrade accuracy [15].”

In this paper, we propose to tailor gradient methods for
differentially-private distributed optimization. More specifi-
cally, motivated by the observation that inter-agent coupling
becomes unnecessary after convergence, we propose to gradu-
ally weaken coupling strength in distributed optimization to
attenuate DP-noise that is added to every shared message.
We judiciously design the weakening factor sequence such
that the consensus and convergence to an optimal solution
are ensured even in the presence of persistent DP-noise. To
our knowledge, this is the first time that both differential
privacy and provable optimality are ensured simultaneously
in distributed optimization.

Notations: We use Rd to denote the Euclidean space of
dimension d. We write Id for the identity matrix of dimension
d, and 1d for the d-dimensional column vector will all entries
equal to 1; in both cases we suppress the dimension when clear
from the context. For a vector x, xi denotes its ith element.
We use ⟨·, ·⟩ to denote the inner product. We write ∥A∥ for
the matrix norm induced by the vector norm ∥·∥, unless stated
otherwise. We let AT denote the transpose of a matrix A. A
matrix is column-stochastic when its entries are nonnegative
and elements in every column add up to one. A square matrix
A is said to be doubly-stochastic when both A and AT are
column-stochastic. For two vectors u and v with the same
dimension, we use u ≤ v to represent the relationship that
every element of the vector u − v is nonpositive. Often, we
abbreviate almost surely by a.s.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. On distributed optimization
We describe the local interaction among agents using a

weight matrix W = {Wij}, where Wij > 0 if agent j
and agent i can directly communicate with each other, and
Wij = 0 otherwise. For an agent i ∈ [m], its neighbor set Ni

is defined as the collection of agents j such that Wij > 0. We
define Wii ≜ −

∑
j∈Ni

Wij for all i ∈ [m], where Ni is the
neighbor set of agent i. Furthermore, We make the following
assumption on W :

Assumption 1. The matrix W = {wij} ∈ Rm×m is symmetric
and satisfies 1TW = 0T , W1 = 0, ∥I +W − 11T

m ∥ < 1.

The optimization problem (1) can be reformulated as the
following equivalent multi-agent optimization problem:

min
x∈Rmd

f(x) ≜
1

m

m∑
i=1

fi(xi) s.t. x1 = x2 = · · · = xm, (2)

where xi ∈ Rd is agent i’s decision variable and the collection
of the agents’ variables is x = [xT

1 , x
T
2 , . . . , x

T
m]T ∈ Rmd.

We make the following assumption on objective functions:

Assumption 2. Problem (1) has an optimal solution θ∗. The
objective function F (·) is convex and each fi(·) has Lipschitz
continuous gradients over Rd, i.e., for some L > 0,

∥∇fi(u)−∇fi(v)∥ ≤ L∥u− v∥, ∀i ∈ [m] and ∀u, v ∈ Rd.

Under Assumption 2, the optimization problem (2) has an
optimal solution x∗ = [(θ∗)T , (θ∗)T , . . . , (θ∗)T ]T ∈ Rmd.

In the analysis of our methods, we use the following results:

Lemma 1 ([34], Lemma 11, page 50). Let {vk}, {uk}, {αk},
and {βk} be random nonnegative scalar sequences such that∑∞

k=0 α
k < ∞ and

∑∞
k=0 β

k < ∞ a.s. and

E
[
vk+1|Fk

]
≤ (1 + αk)vk − uk + βk, ∀k ≥ 0 a.s.

where Fk = {vℓ, uℓ, αℓ, βℓ; 0 ≤ ℓ ≤ k}. Then
∑∞

k=0 u
k < ∞

and limk→∞ vk = v for a random variable v ≥ 0 a.s.

Lemma 2. Let {vk},{αk}, and {pk} be random nonnegative
scalar sequences, and {qk} be a deterministic nonnegative
scalar sequence satisfying

∑∞
k=0 α

k < ∞ a.s.,
∑∞

k=0 q
k =

∞,
∑∞

k=0 p
k < ∞ a.s., and the following inequality

E
[
vk+1|Fk

]
≤ (1 + αk − qk)vk + pk, ∀k ≥ 0 a.s.

where Fk = {vℓ, αℓ, pℓ; 0 ≤ ℓ ≤ k}. Then,
∑∞

k=0 q
kvk < ∞

and limk→∞ vk = 0 hold a.s.

Proof. See proof in our extended version [1].

Lemma 3. Consider the problem minz∈Rd ϕ(z), where ϕ :
Rd → R is a continuous function. Assume that the optimal
solution set Z∗ of the problem is nonempty. Let {zk} be a
random sequence such that for any optimal solution z∗ ∈ Z∗,

E
[
∥zk+1 − z∗∥2|Fk

]
≤ (1 + αk)∥zk − z∗∥2 − ηk

(
ϕ(zk)− ϕ(z∗)

)
+ βk, ∀k ≥ 0

holds a.s., where Fk = {zℓ, αℓ, βℓ, ℓ = 0, 1, . . . , k}, {αk}
and {βk} are random nonnegative scalar sequences satisfying∑∞

k=0 α
k < ∞,

∑∞
k=0 β

k < ∞ a.s. , while {ηk} is a deter-
ministic nonnegative scalar sequence with

∑∞
k=0 η

k = ∞.
Then, {zk} converges a.s. to some solution z∗ ∈ Z∗.

Proof. See proof in our extended version [1].

Lemma 4. Let {vk} be a nonnegative sequence, and {αk} and
{βk} be nonnegative scalar sequences satisfying

∑∞
k=0 α

k =

∞, limk→∞ αk = 0, and limk→∞
βk

αk = 0. If there exists a
K ≥ 0 such that the following relation holds for all k ≥ K:

vk+1 ≤ (1− αk)vk + βk,

then there always exits a constant C such that vk ≤ C βk

αk for
all k ≥ K.

Proof. See proof in our extended version [1].

B. On differential privacy

We consider Laplace noise for DP. For a constant ν > 0,
Lap(ν) denotes the Laplace distribution with probability den-
sity function 1

2ν e
− |x|

ν . This distribution has mean zero and
variance 2ν2. Following [35], for the convenience of DP
analysis, we represent the distributed optimization problem P
in (1) by four parameters (X ,S, F,GW ), where X = Rn is the
domain of optimization, S ⊆ {Rn 7→ R} is a set of real-valued
objective functions, with fi ∈ S , and F (x) ≜ 1

m

∑m
i=1 fi(x),

and GW is the induced graph by matrix W . Then we define
adjacency as follows:



Definition 1. Two distributed optimization problems P and
P ′ are adjacent if the following conditions hold:

• X = X ′, S = S ′, and GW = G′
W , i.e., the domain

of optimization, the set of individual objective functions,
and the communication graphs are identical;

• there exists an i ∈ [m] such that fi ̸= f ′
i but fj = f ′

j for
all j ∈ [m], j ̸= i.

It can be seen that two distributed optimization problems
are adjacent if and only if one agent changes its individual
objective function while all others parameters are identical.

Given a distributed optimization problem, we represent an
execution of such an algorithm as A, which is an infinite
sequence of the optimization variables, i.e., A = {x0, x1, · · · }.
We consider adversaries that can observe all communicated
messages in the network. Therefore, the observation part of an
execution is the infinite sequence of shared messages, which
is represented by O. Given a distributed optimization problem
P and an initial state x0, we define the observation mapping
as RP,x0(A) ≜ O. Given a distributed optimization problem
P , observation sequence O, and an initial state x0, R−1

P,x0(O)
is the set of executions A that can generate observation O.

Definition 2. (ϵ-DP [35]). For a given ϵ > 0, an iterative
algorithm for problem (1) is ϵ-differentially private if for any
two adjacent P and P ′, any set of observation sequences
Os ⊆ O (with O denoting the set of all possible observation
sequences), and any initial state x0, we always have

P[R−1
P,x0 (Os)] ≤ eϵP[R−1

P′,x0 (Os)], (3)

where the probability P is taken over the randomness over
iteration processes.

The definition of ϵ-DP ensures that an adversary having
access to all shared messages in the network cannot gain
information with a significant probability of any participating
agent’s objective function. It can also be seen that a smaller ϵ
means a higher level of privacy protection.

III. THE PROPOSED ALGORITHM

To achieve a strong DP, independent DP-noise should be
injected in every round of message sharing and, hence, con-
stantly affects the algorithm through inter-agent interactions,
leading to significant reduction in optimization accuracy. Mo-
tivated by this observation, we propose to gradually weaken
inter-agent interactions to reduce the influence of DP-noise
on optimization accuracy. Interestingly, we prove that by
judiciously designing the interaction weakening mechanism,
we can still ensure convergence of all agents to a common
optimal solution even in the presence of persistent DP-noise.

Algorithm 1: Differentially private distributed
optimization

Parameters: Stepsize λk and weakening factor γk.
Every agent i maintains one state xk

i , which is initialized
with a random vector in Rd.
for k = 1, 2, . . . do

a) Every agent j adds persistent DP-noise ζkj to its state xk
j ,

and then sends the obscured state xk
j + ζkj to agent i ∈ Nj .

b) After receiving xk
j + ζkj from all j ∈ Ni, agent i updates its

state as follows:

xk+1
i = xk

i +
∑
j∈Ni

γkwij(x
k
j + ζkj − xk

i )− λk∇fi(x
k
i ).

(4)
c) end

The sequence {γk} diminishes with time and is used to
suppress the influence of persistent DP-noise ζkj on the con-
vergence point of the iterates. The stepsize sequence {λk} and
attenuation sequence {γk} have to be designed appropriately
to guarantee the almost sure convergence of all {xk

i } to a com-
mon optimal solution θ∗. The persistent DP-noise processes
{ζki }, i ∈ [m] have zero-mean and γk-bounded (conditional)
variances, as specified below:

Assumption 3. For every i ∈ [m] and every k, conditional
on the state xk

i , the random noise ζki satisfies E
[
ζki | xk

i

]
= 0

and E
[
∥ζki ∥2 | xk

i

]
= (σk

i )
2 for all k ≥ 0, and

∞∑
k=0

(γk)2 max
i∈[m]

(σk
i )

2 < ∞, (5)

where {γk} is the attenuation sequence from Algorithm 1. The
initial random vectors satisfy E

[
∥x0

i ∥2
]
< ∞, ∀i ∈ [m].

Remark 1. Given that γk decreases with time, (5) can be
satisfied even when {σk

i } increases with time. For example,
under γk = O( 1

k0.9 ), an increasing {σk
i } with increasing rate

no faster than O(k0.3) still satisfies the summable condition
in (5). Allowing {σk

i } to increase with time is key to enabling
the strong ϵ-DP, as elaborated later in Theorem 2.

IV. CONVERGENCE ANALYSIS

We first extend Lemma 1 to deal with random vectors:

Lemma 5. Let {vk} ⊂ Rd and {uk} ⊂ Rp be random
nonnegative vector sequences, and {ak} and {bk} be random
nonnegative scalar sequences such that

E
[
vk+1|Fk

]
≤ (V k + ak11T )vk + bk1−Hkuk, ∀k ≥ 0

holds a.s., where {V k} and {Hk} are random sequences
of nonnegative matrices and E

[
vk+1|Fk

]
denotes the con-

ditional expectation given vℓ,uℓ, aℓ, bℓ, V ℓ, Hℓ for ℓ =
0, 1, . . . , k. Assume that {ak} and {bk} satisfy

∑∞
k=0 a

k < ∞
and

∑∞
k=0 b

k < ∞ a.s., and that there exists a (deterministic)
vector π > 0 such that πTV k ≤ πT and πTHk ≥ 0 hold a.s.
for all k ≥ 0. Then, 1) {πTvk} converges to some random
variable πTv ≥ 0 a.s.; 2) {vk} is bounded a.s., and 3)∑∞

k=0 π
THkuk < ∞ holds a.s.

Proof. See proof in our extended version [1].

Based on Lemma 3 and Lemma 5, we can prove the
following general convergence results:



Lemma 6. Assume that problem (1) has a solution. Suppose
that a distributed algorithm generates sequences {xk

i } ⊆ Rd

such that a.s. we have for any optimal solution θ∗,[
E
[
∥x̄k+1 − θ∗∥2|Fk

]
E
[∑m

i=1 ∥x
k+1
i − x̄k+1∥2|Fk

] ]
≤
([

1 γk

m
0 1− κγk

]
+ ak11T

)[
∥x̄k − θ∗∥2∑m
i=1 ∥xk

i − x̄k∥2
]

+ bk1− ck
[

F (x̄k)− F (θ∗)
0

]
, ∀k ≥ 0

(6)
where x̄k = 1

m

∑m
i=1 x

k
i , Fk = {xℓ

i , i ∈ [m], 0 ≤ ℓ ≤ k},
the random nonnegative scalar sequences {ak}, {bk} satisfy∑∞

k=0 a
k < ∞ and

∑∞
k=0 b

k < ∞ a.s., the deterministic
nonnegative sequences {ck} and {γk} satisfy

∑∞
k=0 c

k = ∞
and

∑∞
k=0 γ

k = ∞, and the scalar κ > 0 satisfies κγk < 1 for
all k ≥ 0. Then, we have limk→∞ ∥xk

i − x̄k∥ = 0 a.s. for all
i, and there is a solution θ̃∗ such that limk→∞ ∥x̄k − θ̃∗∥ = 0
a.s.

Proof. See Appendix A.

Using Lemma 6, we are in position to establish convergence
of Algorithm 1:

Theorem 1. Under Assumption 1, Assumption 2, and Assump-
tion 3, Algorithm 1 converges to a solution of problem (1)
a.s. when nonnegative sequences {γk} and {λk} satisfy∑∞

k=0 γ
k = ∞,

∑∞
k=0 λ

k = ∞, and
∑∞

k=0
(λk)2

γk < ∞.

Proof. See Appendix B.

Remark 2. Communication imperfections can be modeled as
channel noises [36], [37], which can be regarded as the DP-
noise here. Therefore, Algorithm 1 can also counteract such
communication imperfections in distributed optimization.

Remark 3. Because the evolution of xk
i to the optimal solution

satisfies the conditions in Lemma 6, we can leverage Lemma
6 to examine the convergence speed. The first relationship in
(10) (i.e.,

∑∞
k=0 κγ

k
∑m

i=1 ∥xk
i − x̄k∥2 < ∞) implies that∑m

i=1 ∥xk
i − x̄k∥2 decreases to zero with a rate no slower

than O( 1
kγk ), and hence we have xk

i converging to x̄k no
slower than O( 1

(kγk)0.5
). Moreover, given that ak and bk

in (11) in Lemma 6’s proof in the appendix are summable
(and hence decrease to zero no slower than O( 1k )) and ck in
(11) corresponds to λk (which is square summable and hence
decreases to zero no slower than O( 1

k0.5 )), we have that x̄k

converges to an optimal solution with a speed no worse than
O( 1

k0.5 ) [34]. Therefore, the convergence of every xk
i to an

optimal solution, which is equivalent to the combination of
the convergence of xk

i to x̄k and the convergence of x̄k to an
optimal solution, should be no slower than O( 1

(kγk)0.5
). (For

example, under γk = O( 1
k0.6 ), O( 1

(kγk)0.5
) is O( 1

k0.2 ).)

V. PRIVACY ANALYSIS

Similar to [35], we define the sensitivity of an algorithm to
problem (1) as follows:

Definition 3. At each iteration k, any initial state x0 and
any adjacent distributed optimization problems P and P ′, the
sensitivity of an algorithm is

∆k ≜ sup
O∈O

 sup
x∈R−1

P,x0 (O), x′∈R−1

P′,x0 (O)

∥xk+1 − x′k+1∥1

 .

(7)

Lemma 7. At each iteration k, if each agent adds a noise
vector ζki ∈ Rp consisting of p independent Laplace noises
with parameter νk such that

∑T
k=1

∆k

νk ≤ ϵ, then Algorithm
1 is ϵ-differentially private for iterations from k = 1 to k =
T + 1.

Proof. The lemma can be obtained following the same line of
reasoning of Lemma 2 in [35].

As indicated in [35], since the change of an objective
function fi can be arbitrary in Definition 1, we have to make
the following assumption to ensure bounded sensitivity:

Assumption 4. The gradients of all individual objective
functions are bounded, i.e., there exists a constant C such
that ∥∇fi(x)∥1 ≤ C holds for all x ∈ Rp and 1 ≤ i ≤ m.

Theorem 2. Under Assumptions 1, 2, 4, if nonnegative se-
quences {λk} and {γk} satisfy the conditions in Theorem
1, and all elements of ζki are drawn independently from
Laplace distribution Lap(νk) with (σk

i )
2 = 2(νk)2 satisfying

Assumption 3, then all agents in Algorithm 1 will converge
a.s. to an optimal solution. Moreover,

1) Algorithm 1 is ϵ-differentially private with the cumulative
privacy budget bounded by ϵ ≤

∑T
k=1

2Cλk

νk for iterations
from k = 1 to k = T + 1 where C is from Assumption
4. And the cumulative privacy budget is always finite for
T → ∞ when the sequence {λk

νk } is summable;
2) Suppose that two sequences {ν′k} and {λk} have a finite

sequence-ratio sum Φλ,ν′ ≜
∑∞

k=1
λk

ν′k . Then setting the
Laplace noise parameter νk as νk =

2CΦλ,ν′

ϵ ν′k ensures
that Algorithm 1 is ϵ-differentially private for any ϵ > 0
even when the number of iterations goes to infinity;

3) In the special case where λk = 1
k and γk = 1

k0.9 ,
setting νk = 2CΦ

ϵ k0.3 with Φ ≜
∑∞

k=1
1

k1.3 ≈ 3.93
(which can be verified to satisfy Assumption 3) ensures
that Algorithm 1 is always ϵ-differentially private for any
ϵ > 0 even when the number of iterations goes to infinity.

Proof. Since the Laplace noise satisfies Assumption 3, the
convergence results follow naturally from Theorem 1.

To prove the three statements on privacy, we first prove that
the sensitivity of the algorithm satisfies ∆k ≤ 2Cλk. Given
two adjacent distributed optimization problems P and P ′, for
any given fixed observation O and initial state x0, the sensi-
tivity is determined by ∥R−1

P,x0(O)−R−1
P′,x0(O)∥1 according

to Definition 3. Since in P and P ′, there is only one objective
function that is different, we represent this different objective
function as the ith one, i.e., fi in P and f ′

i in P ′, without loss
of generality. We define ok ≜ xk

i +
∑

j∈Nin
i
γkwij(x

k
j − xk

i )

and o′
k ≜ x′k

i +
∑

j∈Nin
i
γkwij(x

′k
j −x′k

i ), which are accessible



to adversaries under fi and f ′
i , respectively. Because the

observations under P and P ′ are identical, we have that ok and
o′

kshould be the same according to the definition of sensitivity.
Therefore, we have the following relationship:

∥R−1
P,x0(O)−R−1

P′,x0(O)∥1

=
∥∥∥ok − λk∇fi(x

k
i )−

(
o′

k − λk∇f ′
i(x

′k
i )
)∥∥∥

1

=
∥∥λk∇fi(x

k
i )− λk∇f ′

i(x
′k
i )
∥∥
1
≤ 2Cλk,

(8)

where the last inequality is obtained using Assumption 4.
Using Lemma 7, we can easily obtain ϵ ≤

∑T
k=1

2Cλk

νk .
Hence, ϵ will always be finite even when T tends to infinity
if the sequence {λk

νk } is summable, i.e.,
∑∞

k=0
λk

νk < ∞.
By scaling νk proportionally and using the linear relation-

ship between ϵ and 1
νk , the second statement can be easily

obtained based on the first statement. The third statement can
also be easily proven by specializing the selection of λk, γk,
and νk sequences.

Different from [35] which has to use a summable stepsize
(geometrically-decreasing stepsize, more specifically) to en-
sure a finite privacy budget ϵ when k → ∞, here we ensure
a finite ϵ even when the stepsize sequence is non-summable.
Allowing stepsize sequences to be non-summable is key to
avoiding optimization errors in [35] and achieve almost sure
convergence. In fact, to our knowledge, this is the first time
that almost-sure convergence is achieved under rigorous ϵ-DP
for an infinite number of iterations.

Remark 4. In Theorem 2, to ensure that the privacy budget
ϵ =

∑∞
k=1

2Cλk

νk is finite even when k → ∞, the Laplace
noise parameter νk has to increase with time since {λk} is
non-summable. An increasing νk will make the relative level
between noise ζki and signal xk

i increase with time. However,
since the increase in νk is outweighed by the decrease of γk

(see Assumption 3), the actual noise fed into the algorithm, i.e.,
γkLap(νk), still decays with time, which makes it possible for
Algorithm 1 to ensure a.s. convergence to an optimal solution.
Moreover, according to Theorem 1, such a.s. convergence
is not affected by scaling νk by any constant coefficient
1
ϵ > 0 so as to achieve any desired level of ϵ-DP, as long
as the Laplace noise parameter νk (with associated variance
(σk

i )
2 = 2(νk)2) satisfies Assumption 3.

VI. NUMERICAL EXPERIMENTS

We evaluate the performance of the proposed algorithm
using a canonical distributed estimation problem where a net-
work of m sensors collectively estimate an unknown parameter
θ ∈ Rd. More specifically, we assume that each sensor i has
a noisy measurement of the parameter, zi = Miθ+wi, where
Mi ∈ Rs×d is the measurement matrix of agent i and wi

is Gaussian measurement noise of unit variance. Then the
maximum likelihood estimation of parameter θ can be solved
using the optimization problem formulated as (1), with each
fi(θ) given as fi(θ) = ∥zi − Miθ∥2 + ς∥θ∥2 where ς is a
regularization parameter [5].

We consider m = 5 sensors interacting on a randomly
generated connected graph. In the evaluation, we set s = 3
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Fig. 1. Comparison of Algorithm 1 with existing distributed gradient descent
algorithm (DGD) in [3] (under the same noise) and the differential-privacy
approach for decentralized optimization PDOP in [12] (under the same privacy
budget) using the distributed estimation problem

and d = 2. To evaluate the performance of the proposed
Algorithm, we injected Laplace based DP-noise with pa-
rameter νk = 1 + 0.1k0.3 in every message shared in all
iterations. We set the stepsize λk and diminishing sequence
γk as λk = 0.02

1+0.1k and γk = 1
1+0.1k0.9 , respectively, which

satisfy the conditions in Theorem 1 and Theorem 2. In the
evaluation, we ran our algorithm for 100 times and calculated
the average as well as the variance of the optimization error
as a function of the iteration index. The result is given by the
blue curve and error bars in Fig. 1. For comparison, we also
ran the existing distributed gradient descent (DGD) approach
in [3] under the same noise, and the differential-privacy
approach for distributed optimization (PDOP) in [12] under
the same privacy budget. Note that PDOP uses geometrically
decreasing stepsizes (which are summable) to ensure a finite
privacy budget, but the fast decreasing stepsize also leads to
optimization errors. The evolution of the average optimization
error and variance of the DGD and PDOP approaches are given
by the red and black curves/error bars in Fig. 1, respectively.
It is clear that the proposed algorithm has a comparable
convergence speed but much better optimization accuracy.

VII. CONCLUSIONS AND DISCUSSIONS

Although DP is becoming the de facto standard for publicly
sharing information, its direct incorporation into distributed
optimization leads to a trade-off between privacy and optimiza-
tion accuracy. This paper proposes a distributed optimization
algorithm that ensures both ϵ-DP and optimization accuracy.
The simultaneous achievement of both provable convergence
to the optimal solution and rigorous ϵ-DP with guaranteed
finite cumulative privacy budget, to our knowledge, has not
been reported before in distributed optimization. Numerical
simulation results confirm the effectiveness of the proposed
algorithm.

It is worth noting that our simultaneous achievement of
both provable convergence to the optimal solution and ϵ-DP



does not contradict the fundamental theory and limitations of
DP in [24]. Firstly, according to the DP theory, conventional
query mechanisms on a dataset can achieve ϵ-DP only by
sacrificing query accuracies. However, the distributed opti-
mization algorithm does not correspond to a simple query
mechanism on the optimal solution. Instead, what are queried
in every iteration of distributed optimization are individual
objective functions (gradients), and revealing the precise opti-
mal solution is not equivalent to revealing accurate objective
functions (the actual query target). In fact, in the language
of machine learning, distributed optimization can be viewed
as the empirical risk minimization problem, and the obtained
optimal solution corresponds to the optimal model parameter
in machine learning. On pages 216-218 of [24], the authors
explicitly state that “the constraint of privacy is not necessarily
at odds with the goals of machine learning, both of which aim
to extract information from the distribution from which the
data was drawn, rather than from individual data points,” and
“we are often able to perform private machine learning nearly
as accurately, with nearly the same number of samples, as
we can perform non-private machine learning.” Secondly, the
achievement of ϵ-DP does incur utility cost. More specifically,
in order to reduce ϵ to enhance privacy, we can use a faster-
increasing {νk} according to Theorem 2, which requires {γk}
to decrease faster according to Assumption 3. Given that {γk}
cannot decrease faster than O( 1k ), and the convergence speed
is determined by O( 1

kγk ) according to Remark 3, we arrive at
the conclusion that a faster decreasing {γk} corresponds to a
stronger privacy level but a slower convergence speed.

APPENDIX

A. Proof of Lemma 6

Let θ∗ be an arbitrary but fixed optimal solution of problem
(1). Then, we have F (x̄k) − F (θ∗) ≥ 0 for all k. Hence,
by letting vk =

[
∥x̄k − θ∗∥2,

∑m
i=1 ∥xk

i − x̄k∥2
]T

, from
relation (6) it follows a.s. that for all k ≥ 0,

E
[
vk+1|Fk

]
≤
([

1 γk

m
0 1− κγk

]
+ ak11T

)
vk + bk1. (9)

Consider the vector π = [1, 1
mκ ]

T and note

πT

[
1 γk

m
0 1− κγk

]
= πT . Thus, relation (9) satisfies

all conditions of Lemma 5. So it follows that limk→∞ πTvk

exists a.s., and that the sequences {∥x̄k − θ∗∥2} and
{
∑m

i=1 ∥xk
i − x̄k∥2} are bounded a.s. From (9) we have the

following relation a.s. for the second element of vk:

E

[
m∑
i=1

∥xk+1
i − x̄k+1∥2|Fk

]
≤(1+ak−κγk)

m∑
i=1

∥xk
i−x̄k∥2+βk,

where βk = ak
(
∥x̄k − θ∗∥2 +

∑m
i=1 ∥xk

i − x̄k∥2
)
. Since∑∞

k=0 a
k < ∞ a.s. by our assumption, and the sequences

{∥x̄k − θ∗∥2} and {
∑m

i=1 ∥xk
i − x̄k∥2} are bounded a.s., it

follows that
∑∞

k=0 β
k < ∞ a.s. Thus, the preceding relation

satisfies the conditions of Lemma 2 with vk =
∑m

i=1 ∥xk
i −

x̄k∥2, qk = κγk, and pk = βk due to our assumptions∑∞
k=0 b

k < ∞ a.s. and
∑∞

k=0 γ
k = ∞. So one yields a.s.

∞∑
k=0

κγk
m∑
i=1

∥xk
i −x̄k∥2 < ∞, lim

k→∞

m∑
i=1

∥xk
i −x̄k∥2 = 0. (10)

It remains to show that ∥x̄k − θ∗∥2 → 0 a.s. For this, we
consider relation (6) and focus on the first element of vk, for
which we obtain a.s. for all k ≥ 0:

E
[
∥x̄k+1 − θ∗∥2|Fk

]
≤ (1 + ak)∥x̄k − θ∗∥2

+

(
γk

m
+ ak

) m∑
i=1

∥xk
i − x̄k∥2 + bk − ck(F (x̄k)− F (θ∗)).

(11)
The preceding relation satisfies Lemma 3 with ϕ = F ,
z∗ = θ∗, zk = x̄k, αk = ak, ηk = ck, and βk = (γ

k

m +
ak)
∑m

i=1 ∥xk
i − x̄k∥2+bk. By our assumptions, the sequences

{ak} and {bk} are summable a.s., and
∑∞

k=0 c
k = ∞. In

view of (10), it follows that
∑∞

k=0 β
k < ∞ a.s. Hence, all the

conditions of Lemma 3 are satisfied and, consequently, {x̄k}
converges a.s. to some optimal solution.

B. Proof of Theorem 1

The basic idea is to apply Lemma 6 to the quantities
E
[
∥x̄k+1 − θ∗∥2|Fk

]
and E

[∑m
i=1 ∥x

k+1
i − x̄k+1∥2|Fk

]
.

We divide the proof into two parts to analyze ∥x̄k+1 − θ∗∥2
and

∑m
i=1 ∥x

k+1
i − x̄k+1∥2, respectively.

Part I: We first analyze ∥x̄k+1 − θ∗∥2. For the sake of
notational simplicity, we represent ∇fi(x

k
i ) as gki . Stacking xk

i

and gki into augmented vectors (xk)T =
[
(xk

1)
T , · · · , (xk

m)T
]

and (gk)T =
[
(gk1 )

T , · · · , (gkm)T
]
, respectively, we can write

the dynamics of Algorithm 1 as

xk+1 = (I + γkW ⊗ Id)x
k + γkζkw − λkgk, (12)

where ⊗ denotes the Kronecker product, and (ζkw)
T =[

(ζkw1)
T , · · · , (ζkwm)T

]
with ζkwi ≜

∑
j∈Ni

wijζ
k
j .

From (12) we can obtain the following relationship for the
average vector x̄k = 1

m

∑m
i=1 x

k
i :

x̄k+1 = x̄k + γk ζ̄kw − λk

m

m∑
i=1

gki , (13)

where ζ̄kw = 1
m

∑m
i=1 ζ

k
wi = 1

m

∑m
i=1

∑
j∈Ni

wijζ
k
j =

−
∑m

i=1 wiiζ
k
i

m (note wii ≜ −
∑

j∈Ni
wij).

Using (13) and the preceding relation, we relate x̄k to an
optimal solution:

x̄k+1 − θ∗ = x̄k − θ∗ − 1

m

m∑
i=1

(
λkgki + γkwiiζ

k
i

)
,



which further implies∥∥x̄k+1 − θ∗
∥∥2=∥∥x̄k − θ∗

∥∥2− 2

m

m∑
i=1

〈
λkgki + γkwiiζ

k
i , x̄

k − θ∗
〉

+
1

m2

∥∥∥∥∥
m∑
i=1

(
λkgki + γkwiiζ

k
i

)∥∥∥∥∥
2

≤
∥∥x̄k − θ∗

∥∥2 − 2

m

m∑
i=1

〈
λkgki + γkwiiζ

k
i , x̄

k − θ∗
〉

+
2

m2

∥∥∥∥∥
m∑
i=1

λkgki

∥∥∥∥∥
2

+
2

m2

∥∥∥∥∥
m∑
i=1

γkwiiζ
k
i

∥∥∥∥∥
2

.

Taking the conditional expectation, given Fk = {x0, . . . , xk},
and using the assumption that the noise ζki is with zero mean
and variance (σk

i )
2 conditionally on xk

i (see Assumption 3),
from the preceding relation we obtain a.s. for all k ≥ 0,

E
[∥∥x̄k+1 − θ∗

∥∥2 |Fk
]

≤
∥∥x̄k − θ∗

∥∥2 − 2λk

m

m∑
i=1

〈
gki , x̄

k − θ∗
〉

+
2

m2
(λk)2

∥∥∥∥∥
m∑
i=1

gki

∥∥∥∥∥
2

+
2

m
(γk)2

m∑
i=1

w2
ii(σ

k
i )

2.

(14)

We next estimate the inner product term, for which we have

2λk

m

m∑
i=1

〈
gki , x̄

k − θ∗
〉
=

2λk

m

m∑
i=1

〈
gki −∇fi(x̄

k), x̄k − θ∗
〉

+
2λk

m

m∑
i=1

〈
∇fi(x̄

k), x̄k − θ∗
〉
.

(15)
Recalling that gki = ∇fi(x

k
i ), by the Lipschitz continuous

property of ∇fi(·), we have

λk
〈
gki −∇fi(x̄

k), x̄k − θ∗
〉
≥ −Lλk∥xk

i − x̄k∥∥x̄k − θ∗∥

≥ −γk

2
∥xk

i − x̄k∥2 − L2(λk)2

2γk
∥x̄k − θ∗∥2.

(16)
By the convexity of F (·), we have

2λk

m

m∑
i=1

〈
∇fi(x̄

k), x̄k − θ∗
〉
= 2λk

〈
∇F (x̄k), x̄k − θ∗

〉
≥ 2λk(F (x̄k)− F (θ∗)).

(17)
Combining (15), (16), and (17) leads to

2λk

m

m∑
i=1

〈
gki , x̄

k − θ∗
〉
≥ −γk

m

m∑
i=1

∥xk
i − x̄k∥2

− L2(λk)2

γk
∥x̄k − θ∗∥2 + 2λk(F (x̄k)− F (θ∗)).

(18)

We next estimate the second last term in (14):

1

m2

∥∥∥∥∥
m∑
i=1

gki

∥∥∥∥∥
2

=
1

m2

∥∥∥∥∥
m∑
i=1

(
gki −∇fi(θ

∗)
)∥∥∥∥∥

2

≤ L2

m

m∑
i=1

∥∥xk
i − θ∗

∥∥2 =
L2

m
∥xk − x∗∥2.

(19)

Further using the inequality

∥xk − x∗∥2 ≤ ∥xk − 1⊗ x̄k + 1⊗ x̄k − x∗∥2

≤ 2∥xk − 1⊗ x̄k∥2 + 2∥1⊗ x̄k − x∗∥2

≤ 2
m∑
i=1

∥xk
i − x̄k∥2 + 2m∥x̄k − θ∗∥2,

(20)

we have from (19) that

1

m2

∥∥∥∥∥
m∑
i=1

gki

∥∥∥∥∥
2

≤ 2L2

m

m∑
i=1

∥xk
i − x̄k∥2 + 2L2∥x̄k − θ∗∥2.

(21)
Substituting (18) and (21) into (14) yields

E
[∥∥x̄k+1 − θ∗

∥∥2 |Fk
]
≤
∥∥x̄k − θ∗

∥∥2 + γk

m

m∑
i=1

∥xk
i − x̄k∥2

+ L2(λk)2
(

1

γk
+ 4

)
∥x̄k − θ∗∥2 − 2λk(F (x̄k)− F (θ∗))

+
4L2(λk)2

m

m∑
i=1

∥xk
i − x̄k∥2 + 2(γk)2

m

m∑
i=1

w2
ii(σ

k
i )

2.

(22)
Part II: Next we analyze

∑m
i=1 ∥x

k+1
i − x̄k+1∥2. Using (12)

and (13), we obtain

xk+1 − 1⊗ x̄k+1 = (I + γkW ⊗ Id)x
k − 1⊗ x̄k

+ γk

(
ζkw − 1

m

m∑
i=1

1⊗ ζkw,i

)
− λk

(
gk − 1

m

m∑
i=1

1⊗ gki

)
.

Noting 1 ⊗ x̄k = 1
m

(
11T ⊗ Id

)
xk,

∑m
i=1 1 ⊗ ζkw,i =(

11T ⊗ Id
)
ζkw, and

∑m
i=1 1 ⊗ gki =

(
11T ⊗ Id

)
gk, we can

rewrite the preceding equality as

xk+1 − 1⊗ x̄k+1 = Ŵkx
k + γkΞζkw − λkΞgk, (23)

with Ŵk ≜
(
I + γkW − 1

m11T
)

⊗ Id and Ξ ≜(
I − 1

m11T
)
⊗ Id.

Since
(
I + γkW − 1

m11T
)
1 = 0 holds and we always

have (A⊗B)(C ⊗D) = (AC)⊗ (BD), it follows that

Ŵk

(
1⊗ x̄k

)
=

((
I + γkW − 11T

m

)
×1

)
⊗
(
Id × x̄k

)
= 0.

By subtracting Ŵk

(
1⊗ x̄k

)
= 0 from the right hand side of

(23), we obtain

xk+1 − 1⊗ x̄k+1 = Ŵk

(
xk − 1⊗ x̄k

)
+ γkΞζkw − λkΞgk,

which further leads to

∥xk+1 − 1⊗ x̄k+1∥2

= ∥Ŵk(x
k − 1⊗ x̄k)− λkΞgk∥2 + ∥γkΞζkw∥2

+ 2
〈
Ŵk(x

k − 1⊗ x̄k)− λkΞgk, γkΞζkw

〉
≤ ∥Ŵk(x

k − 1⊗ x̄k)− λkΞgk∥2 +m(γk)2
m∑
i=1

∑
j∈Ni

w2
ij∥ζkj ∥2

+ 2
〈
Ŵk(x

k − 1⊗ x̄k)− λkΞgk, γkΞζkw

〉
,



where the inequality follows from ∥Ξ∥ = 1 and the definition
ζkwi ≜

∑
j∈Ni

wijζ
k
j . Taking the conditional expectation with

respect to Fk = {x0, . . . , xk} and using Assumption 3 yield

E
[
∥xk+1 − 1⊗ x̄k+1∥2|Fk

]
≤
(
∥Ŵk(x

k−1⊗ x̄k)∥+∥λkΞgk∥
)2
+m(γk)2 max

j∈[m]
(σk

j )
2CW ,

where CW =
∑m

i=1

∑
j∈Ni

w2
ij . Using the fact ∥Ξ∥ = 1 and

∥Ŵk∥ = ∥I+γkW − 1
m11T ∥ = 1−γk|ν| where −ν is some

non-zero eigenvalue of W (see Assumption 1), we obtain

E
[
∥xk+1 − 1⊗ x̄k+1∥2|Fk

]
≤ (1− γk|ν|)2(1 + ϵ)∥xk − 1⊗ x̄k∥2

+ (1 + ϵ−1)(λk)2∥gk∥2 +m(γk)2 max
j∈[m]

(σk
j )

2CW

(24)

for any ϵ > 0, where we used (a+b)2 ≤ (1+ϵ)a2+(1+ϵ−1)b2

valid for any scalars a, b, and ϵ > 0.
We next focus on estimating the term involving the gradient

gk in the preceding inequality. Noting gk = m∇f(xk) and
that f(·) has Lipschitz continuous gradients (with Lipschitz
constant L

m ), we have

∥gk∥2 = m2∥∇f(xk)−∇f(x∗) +∇f(x∗)∥2

≤ 2m2∥∇f(xk)−∇f(x∗)∥2 + 2m2∥∇f(x∗)∥2

≤ 2L2∥xk − x∗∥2 + 2m2∥∇f(x∗)∥2.

Since x∗ = 1⊗ θ∗, using the relationship in (20), we obtain

∥gk∥2 ≤ 4L2(∥xk−1⊗x̄k∥2+m∥x̄k−θ∗∥2)+2m2∥∇f(x∗)∥2.

Finally, substituting the preceding relation back in (24) yields

E
[
∥xk+1 − 1⊗ x̄k+1∥2|Fk

]
≤ (1− γk|ν|)2(1 + ϵ)∥xk − 1⊗ x̄k∥2

+ 4(1 + ϵ−1)L2(λk)2(∥xk − 1⊗ x̄k∥2 +m∥x̄k − θ∗∥2)
+ 2(1 + ϵ−1)(λk)2m2∥∇f(x∗)∥2 +m(γk)2 max

j∈[m]
(σk

j )
2CW .

By letting ϵ = γk|ν|
1−γk|ν| and consequently 1+ϵ = (1−γk|ν|)−1

and 1 + ϵ−1 = (γk|ν|)−1, we arrive at

E
[
∥xk+1 − 1⊗ x̄k+1∥2|Fk

]
≤
(
1− γk|ν|+ 4L2(λk)2

|ν|γk

)
∥xk − 1⊗ x̄k∥2

+
4mL2(λk)2

|ν|γk
∥x̄k − θ∗∥2 + 4(λk)2m2

|ν|γk
∥∇f(x∗)∥2

+m(γk)2 max
j∈[m]

(σk
j )

2CW .

(25)

By combining (22) and (25), and using Assumption 3, we have
E
[
∥x̄k+1 − θ∗∥2|Fk

]
and E

[∑m
i=1 ∥x

k+1
i − x̄k+1∥2|Fk

]
sat-

isfying the conditions of Lemma 6 with κ = |ν|,
ck = 2λk, ak = max{L2(λk)2

(
1
γk + 4

)
, 4mL2(λk)2

|ν|γk }, and

bk = (γk)2 max{ 2
m

∑m
i=1 w

2
ii(σ

k
i )

2, 4(λk)2m2

|ν|γk ∥∇f(x∗)∥2 +

mmaxj∈[m](σ
k
j )

2CW } where CW =
∑m

i=1

∑
j∈Ni

w2
ij .
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