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Nanomagnets are the building blocks of many existing and emergent spintronic technologies. The mag-
netization dynamics of nanomagnets is often dominated by nonlinear processes, which have been recently
shown to have many surprising features and far-reaching implications for applications. Here we develop a
theoretical framework uncovering the selection rules for multimagnon processes and discuss their underly-
ing mechanisms. For its technological relevance, we focus on the degenerate three-magnon process in thin
elliptical nanodisks to illustrate our findings. We parameterize the selection rules through a set of magnon
interaction coefficients which we calculate using micromagnetic simulations. We postulate the selection
rules and investigate how they are altered by perturbations that break the symmetry of static magnetiza-
tion configuration and spatial spin-wave profiles and that can be realized by applying off-symmetry-axis or
nonuniform magnetic fields. Our work provides the phenomenological understanding of the mechanics of
magnon interaction as well as the formalism for determining the interaction coefficients from simulations
and experimental data. Our results serve as a guide to analyze the magnon processes inherently present in
spin-torque devices in order to boost their performance or to engineer a specific nonlinear response in a

nanomagnet used in a neuromorphic or quantum magnonic application.
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I. INTRODUCTION

Nonlinear magnetization dynamics is an exciting field
of fundamental physics which has tremendous potential
for applications in information technologies and beyond
[1-10]. In contrast to many other physical systems, non-
linearity is inherent in magnetic systems and of topo-
logical origin [11]—the phase space for magnetization
vector motion is not a plane, but a sphere |M| = M;. This
results in nonlinearity although most magnetic interactions
(exchange, dipolar, uniaxial anisotropy, Dzyaloshinskii-
Moriya interaction) are quadratic functions of the mag-
netization M. Nonlinear processes can thus be observed
at relatively low excitation levels and exploited in appli-
cations—in particular, in microwave electronics [4,12,13],
analog and digital signal processing [14—16], non-Boolean
computing such as magnetic neuromorphics [17,18] and
quantum information systems [19-21].
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At up to moderately high excitation levels, nonlinear
dynamics is often treated as interaction of linear spin-
wave modes or, within the quantum picture, as scattering
of magnons (quanta of spin waves) [22—25]. For instance,
two-magnon processes can be the dominant contribution
to damping in thin films [26], three-magnon processes
can lead to parametric magnon excitation [27], and four-
magnon processes [28] are responsible for magnon ther-
malization and condensation [29,30].

Magnon processes have been extensively studied in bulk
samples and thin ferromagnetic films (see, for example,
Refs. [2,3,24,31,32] and references therein). However, the
results obtained cannot be directly transferred to the case of
micrometer- and nanoscale finite-size magnetic structures.
First, under strong geometric confinement, the spin-wave
spectrum is discrete. The magnon processes are reso-
nant and occur principally within a well-defined parameter
subspace (e.g., at particular external fields) [33—36]. The
discreteness of the magnon spectrum in micro- and nano-
magnets can lead to qualitatively different behavior of
magnon processes as compared to geometrically extended
systems [37]. Second, the spin-wave eigenmodes can no
longer be considered plane waves like in bulk samples and
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films. Their spatial profile as well as the static magneti-
zation configuration depend on the shape of the magnet.
Consequently, each micro- or nanomagnet possesses an
individual static magnetization configuration and profiles
of spin-wave modes, thus subjecting magnon processes to
a set of specific selection rules [38,39]. Understanding,
predicting, and controlling theses selection rules is instru-
mental in designing functional spintronic applications.

In this work, we parameterize the selection rules through
a set of magnon coupling coefficients for magnon scat-
tering processes. We systematically study the effect of
the symmetry of the static magnetization and spin-wave
profiles on the magnon coupling coefficients. Our results
provide a comprehensive guide to understanding and engi-
neering nonlinear phenomena in micro- and nanomagnets.

While the conceptual approach of our study can be
extended to a variety of magnon processes, here we mainly
focus on the degenerate three-magnon confluence pro-
cess, in which two magnons of one kind fuse into a
single magnon of another kind. In nanomagnets, three-
magnon processes show a substantial effect on magnetiza-
tion dynamics even at low excitation levels [33,37,40,41],
often constitute the main dissipation channel of primary
magnons, and can be used for enhancing the functionality
of spintronic applications, for example through frequency
doubling [42,43]. Moreover, three-magnon processes have
recently been shown to invert a nanomagnet’s response
to spin torque [37], thus having far-reaching implications
for spin-torque devices and potentially on magnetic neural
networks.

In our recent work [44] we experimentally demonstrated
how a magnon coupling coefficient can be manipulated by
altering the symmetry of spin-wave profiles via application
of a magnetic field with nanoscale nonuniformity. On the
basis of this proof of concept, we systematically investi-
gate avenues for controlling magnon interaction and seek
to provide a manual for engineering nonlinearity in nano-
magnets. As a sample platform for our study, we consider
thin elliptic ferromagnetic nanodisks in a single-domain
magnetization state (particular attention is paid to the qua-
siuniform state). Nonetheless, the results of our study are
directly applicable to other shapes of nanomagnets that
possess mirror symmetry respective to two perpendicu-
lar in-plane axes (e.g., rectangular, stadium-shaped). At
the same time, the conceptual inferences made in this
paper are expected to be applicable universally to any thin
nanomagnet.

This paper is organized as follows. In Sec. II we describe
the vectorial Hamiltonian formalism for nonlinear spin-
wave dynamics, which lays the basis for the calculation of
the three-magnon coupling coefficients. Section III intro-
duces the micromagnetic simulation methods of our study.
In Sec. IV we investigate three-magnon process selection
rules in systems with intrinsic, unperturbed symmetry of
magnetic configuration and spin-wave profiles. In Sec. V

we investigate the effect of symmetry-breaking perturba-
tion fields on the magnon coupling coefficients and discuss
the routes to engineering magnon coupling in experiments.
Sec. VI concludes.

II. THEORETICAL BASIS

A. Vectorial Hamiltonian formalism

We use the recently developed vectorial Hamiltonian
formalism [45] which allows one to easily account for spa-
tially nonuniform configuration of static magnetization and
complicated spatial spin-wave profiles. The standard scalar
Hamiltonian formalism, usually used for spatially uniform
ground states [24,25], can be generalized to nonuniform
case (e.g., a domain wall [46]). However, it is typically
used with analytically defined magnetization states and
magnon modes. Here, we will implement static magneti-
zation configurations and spin-wave profiles obtained from
micromagnetic simulations and resort to the vector Hamil-
tonian formalism, which has been successfully employed
for studies of nonlinear frequency shift of an edge mode
[45], three-magnon splitting in vortex-state magnetic dots
[47] and nanotubes [48].

The dynamics of a constant-amplitude three-dimensional
magnetization vector on a unit sphere |M(r,?)|/M; =1
is mapped to the dynamics of a two-dimensional vector
of dynamic magnetization on a plane disk. This map-
ping is analogous to the Lambert azimuthal equal-area
projection [49]:

2
M(r, ) _ (1 _ |S(r;)| )ﬂ(r) +./1 - Ms(r,t).

M
(1

Here u(r) = My(r)/M, is the spatial configuration of the
normalized static magnetization, M is the saturation mag-
netization, and s(r,?) is the normalized dynamic magne-
tization, which is perpendicular to the static one, s L p.
The dynamic magnetization can be expanded in a series
of linear spin-wave eigenmodes s, of the system:

s(r,0) =Y _(cy(D)s,(r) + c.c)), )

v

where the ¢, are complex amplitudes of the spin-wave
eigenmodes. To arrive at the equations of motion for spin-
wave eigenmodes in a standard Hamiltonian form, spatial
profiles of linear eigenmodes are normalized:

i

— | st ydr =1, 3
V/svuxs r 3)

where the integration goes over all the sample volume V.
Note, that, following Krivosik and Patton [50], here we
use a normalized spin-wave Hamiltonian H = y E/(M,V)
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which is measured in units of frequency, where E is the
total magnetic energy. This approach is convenient for
classical magnetic systems (for normalization in quantum
case see, for example, [51,52]), as the variable s has a clear
sense of dimensionless (normalized per M,) dynamic mag-
netization, and all the coefficients of Hamiltonian expan-
sion, including the three-wave coefficients V,, ., are of
the same frequency units, having the sense of effective
interaction frequencies [50]. Within this approach, normal-
ization according to Eq. (3) ensures that quadratic part of
the Hamiltonian assumes the standard form in terms of the
spin-wave amplitudes: H® = 3" |c,|?w, [45].

The three-wave term of the spin-wave Hamiltonian can
be written as

w A
MO == [P Rosar. @

where wy, = y uoM;, y is the modulus of gyromagnetic
ratio and N is a tensor operator describing magnetic self-
interactions.

The interaction operator. The operator consists of
exchange, dipolar, anisotropy, and other contributions:
N — N(CX) + N(dip) + N(an) R

The exchange operator is given by

N = 32 1V7, (5)

where Aey is the exchange length and I is the identity
matrix.
The uniaxial anisotropy operator is

N B
N(an) = _—a]:;ez/ &® €, (6)

Mo

where B., = 2K, /M; is the anisotropy field, K, is the
anisotropy constant, e is the unit vector of the anisotropy
axis, and ® denotes the dyadic product of vectors. If
the coordinate system is chosen such that the anisotropy
axis coincides with a coordinate axis (e.g., z axis), the
anisotropy operator has only one nonzero component
(e.g., N,).

The operator describing the magnetodipolar interaction
is expressed through the magnetostatic Green function G:

NP g — /é(r, r)-s(r)d’r. @)

In thin disks, which we consider here, magnetization along
the thickness coordinate (z) can be assumed uniform.
In this case, integration over the volume V in Egs. (4)
and (7) is changed to integration over the sample area
S, and the magnetostatic Green function can therefore be

conveniently expressed via its Fourier transform
A / 1 (dip) ik-(r—r') ;2
G(r,r) = il Ny e d-°k, (8)

where k = ke, + ke, is a two-dimensional in-plane wave
vector and N]((dlp ) is defined in Cartesian components as [53]

f (kh) /K> Jekyf (ki) 2 0
Ni = | kekyf (k) /12 IS (kh) /> 0
0 1 —f (kh)

&)

Here, f (x) = 1 — (1 — e ®l)/|x| is the so-called “thin film
function” with the sample thickness #.

Interaction coefficients. Using the eigenmode expansion
(2), Eq. (4) is transformed to the standard form of spin-
wave mode interaction:

1
HO — 3 > (Uupeeveyer +cc)
vng

+ Z(Vu,,,gcvc,]c’g +c.c.).
vng

(10)

The first sum here describes the creation of three magnons
and the inverse process of magnon annihilation, which
can be resonant only in active media (so-called “explo-
sive instability” [24]), while the second sum corresponds
to three-magnon confluence and splitting.

Here, we consider a degenerate three-magnon conflu-
ence process where two magnons of the mode v fuse
into one magnon of the mode 7 (in short, (v + v) — n).
This process is described by the term V,, , cvcvc’,’;, and
the corresponding three-magnon (coupling) coefficient is
given by

[0} % A
Vuv,n = _ﬁ f(z(sv : sn)l'l' -N- Sy

+ (s s N-sh dr. (11)

This equation can be used for explicit calculation of the
three-magnon confluence coefficients V,, ,. As input, it
requires the static magnetization configuration and spin-
wave modes profiles. They can be extracted from micro-
magnetic simulations, other numerical methods, or ana-
lytical approximation (in simple structures or as a zero
approximation). In our effectively two-dimensional geom-
etry, the dipolar contribution to the magnon coupling coef-
ficient (11) (term with N@P) can conveniently expressed
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via Fourier images as

. oM * S(dip)
Vf)‘lf;) = %S /(2.7'—1([(51; -sr] NG Fols]
+ Flso - son]l- N FolsDdk, (12)
where
Fils] = / s(r)e'" d’r (13)

is the two-dimensional Fourier transform.

Equation (12) can be used to phenomenologically assess
how the symmetry of the static magnetization configu-
ration and spin-wave profiles affects the three-magnon
coefficient. Utilization of the Fourier image in Eq. (12) also
reduces the computational complexity of the evaluation of
magnetodipolar contribution to three-magnon coefficients;
other contributions (exchange and anisotropy) are directly
calculated in coordinate space according to Eq. (11).

B. Dynamics of interacting modes

The equations of motion for spin-wave amplitudes
are derived from the Hamilton formalism as dc,/dt =
—i0H /dc}. We consider the mode v excited by an exter-
nal drive with amplitude f;, and frequency w.. The mode n
is excited via the three-magnon process. The equations of
motion read

de, .

% + iwyc, + Ty = —21'V’vkv’,7c’$c,7 + foe e

de (14)
7: + iwycy + Tyey = =iV 2

Here, the w, are the mode eigenfrequencies and I, are
the intrinsic damping rates of the spin-wave modes. A
detailed analysis of the three-magnon dynamics, including
its interaction with spin torque, can be found in Ref. [37].

It is worth pointing out two useful relations. If the exci-
tation levels are not too high, the spin-wave modes v and
n can be assumed to oscillate at single and double excita-
tion frequency, ¢, ~ e~"®¢' and ¢, ~ e~%“¢', while higher
harmonics can be neglected. Then one can write the ratio
of spin-wave amplitudes as

G _ Y (15)
2 i(wy —2w,) + T,

Another consequence of the three-magnon process is the
enhancement of the effective damping of mode v by
the value 2|VVU,,7|2ICV|2F,,/(F§ + (wy — 2w,)?), which is
directly detectable experimental evidence of three-magnon
confluence [37] (the general case of an arbitrary excitation
level is considered in details in Ref. [37]).

Calculation of interaction coefficients. We have thus
found two approaches to quantitatively determining
magnon interaction coefficients V,,, ,. First, in what fol-
lows, we will use Eq. (11), which requires static mag-
netization configuration g and spin-wave profiles s, as
input. These input parameters will typically be obtained
from micromagnetic simulations. Second, for validation
purposes in some instances, we shall also resort to Eq. (15),
which requires mode amplitudes c¢,; we will extract these
from micromagnetic simulations as well.

Potentially, the input parameters for both the said equa-
tions could be obtained from experiment [54-56], allowing
one to directly determine the interaction coefficients. For
instance, the mode amplitudes for Eq. (15) can often
be determined directly, as can the damping variations
[55]. Mapping static magnetization configuration and spin-
wave profiles is experimentally more challenging [54-56],
which makes Eq. (11) a valuable but mostly theoretical
tool.

III. MICROMAGNETIC SIMULATIONS

Figure 1(a) shows the sample model used in our micro-
magnetic simulations using MuMax3 software [57]. The
disk is representative of samples with mirror symmetry
with respect to its axes (x and y coordinate axes), which
is reflected in the symmetry of the static magnetization
configuration and spin-wave modes.

The sample parameters were chosen to mimic the Co-
Fe-B-based nanodevices used in various experimental
studies [58,59]. The lateral dimensions of the disk are
64 nm x 40 nm, and the thickness is # = 1.5 nm. The sat-
uration magnetization is M, = 1.6 x 10° A/m, and the
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FIG. 1. (a) The sample model is a thin elliptical disk in a
bias magnetic field B,.. (b) Bias field dependence of the first
six spin-wave modes’ eigenfrequencies for B, || e,. The dashed
line shows the double frequency of the lowest mode (quasiuni-
form, v = 1). (c) Spin-wave profiles of the spin-wave modes at
B, =10 mT.

044087-4



CONTROLLING SELECTION RULES...

PHYS. REV. APPLIED 19, 044087 (2023)

exchange stiffness is Aoy = 2 x 107! J/m. The surface
perpendicular anisotropy is Ky = 1.8 mJ/m? (accounted
for as the effective volume uniaxial anisotropy K, = 1.2 x
10% J/m? in simulations), leading (with the demagneti-
zation) to a total easy-plane magnetic anisotropy of the
sample. The Gilbert damping constant is ag = 0.007. A
cell size of 1 x 1 x 1.5 nm® was used.

Spin-wave mode spectra were simulated by time-
domain Fourier transformation of time traces of the mag-
netization vector. Typically, magnetization was excited
by a short field pulse b = b, (r,?)e,. To excite spatially
nonuniform modes, an excitation field was applied in one
quadrant of the disk.

To obtain spin-wave modes profiles, we apply single-
frequency excitation field at the eigenfrequency of the
mode, b = b, (r) cos[w,]e, and perform simulations until
a stationary oscillation amplitude is reached. Complex-
valued spin-wave profiles are defined by

Ty '
sy () ~ 7/ (m(r,?) — p(r))e™" dt, (16)

v

where m(r, 7) is the instant real magnetization distribution
in simulations. The integral over the oscillation period 7,
is replaced by a sum in the evaluation of the simulations.
The profiles were subsequently normalized according to
Eq. (3). To visualize the spin-wave profiles below, we plot
the real part of their z component.

Note that if two spin-wave modes are adjacent in fre-
quency, a microwave field at the frequency w = w, excites
not only the vth mode, but also can excite neighboring
modes with smaller, but still finite amplitudes. Then pro-
cessing of the simulation results according to Eq. (16)
gives an admixture of true spin-wave modes, s, —
Svt+ D sy SunSy With 6y ~ Ty /|y — wy +iTy| < 1. As
shown below, three-magnon interaction coefficients are
very sensitive to the mode symmetry, and such an admix-
ture may result in incorrect calculation results. To avoid
these artifacts, the symmetry of the excitation field was
adjusted to be mode-specific, so that it excites the given
mode, but not neighboring ones. To achieve this, we used
nonuniform excitation fields that have strong preferential
excitation for one mode but not for another. Such fields can
be selected based on the symmetry of the magnon mode
(see, for example, [60]). In our case, excitation fields that
are simply localized within a subarea of the disk can be
chosen. For instance, a uniform drive field was used for the
(0, 0) mode, while the field was localized to the upper half
of the disk for (0, 1) mode. An alternative approach could
be a reduction of the Gilbert damping, which, however,
would result in an increase in simulation time.

Spin-wave modes. The first six spin-wave modes of the
disk are shown in Figs. 1(b) and 1(c). As the disk size is
below the edge-to-bulk mode crossover [61], there are no
edge modes and the lowest mode is the quasiuniform (0, 0)

mode. Higher modes are backward-volume-like modes
(ny,0), Damon-Eshbach-like modes (0,n,), and mixed
modes [62] (n is the mode index, that is, the number of
nodes in the x or y directions). When the external magnetic
field B, is aligned to the long axis of the disk, B, = Bye,,
the modes possess strictly symmetric (even mode index 7,,)
or strictly antisymmetric (odd n,) behavior with respect to
each (o« = x,y) axis. The modes shown cover all possible
symmetries: (S, S), (S,A), (A,S), (A, A), where S and A
mean symmetric and antisymmetric, respectively.

In what follows, we mostly study degenerate magnon
processes where two magnons of the lowest mode v = 1
confluence into a magnon of mode 1 > 1. The variety of
modes depicted in Fig. 1(c) allows us to investigate pro-
cesses of various symmetry mixes. The processes involv-
ing the confluence of the lowest mode are of particular
importance for spintronics applications. Nonetheless, the
conclusions of our study are directly applicable to a degen-
erate three-magnon process involving any combination of
the spin-wave modes. We shall also touch upon more
general nondegenerate three-magnon processes.

IV. THREE-MAGNON CONFLUENCE WITHOUT
PERTURBATIONS

A. Uniform in-plane magnetization configuration

In this section we consider the case where a magnetic
field is applied along the major axis of the elliptical disk,
B. = B.e,, and preserves the symmetry of magnetization
configuration and spin-wave modes. It is convenient to
start from an idealized case of uniform magnetization,
i = e,. Since dynamic magnetizationis s = (0,s,,s.) L u
and the operators of exchange interaction and uniaxial
anisotropy are diagonal [see Egs. (5) and (6)], these inter-
actions do not contribute to the three-magnon scattering.
In fact, the exchange interaction does not contribute to the
three-magnon scattering for any uniform magnetization
configuration.

For the magnetodipolar contribution, we inspect the sec-
ond term in Eq. (12). The vector function (s, - s,)p has
only an x component and is symmetric for any symme-
try of mode s,. Its Fourier image is an even function of
both k, and k,. Since s, = 0, only the NS;’) component
is relevant—it is an odd function of k. and k,. Thus, the
integration in Eq. (12) gives a nonzero value only if Fy[s}]
is an odd function of both k, and k, . This is only possible if
s, is a fully antisymmetric mode (i.e., antisymmetric with
respect to both x and y axes).

The first term in Eq. (12) possesses the same features.
If mode s, is symmetric respective to the both x and y
axes, then both Fourier images Fk[(s, - s;)p] and F_k[s,]
posses the same symmetry—they both are either even or
odd functions of k., depending on the symmetry of the
mode s,. The resulting integral with the odd function Ny .,
is zero.
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We conclude that in the idealized case of a uniform
symmetric sample, three-magnon confluence is possible
only into fully antisymmetric modes [e.g., into mode 5 in
Fig. 1(c)]. This rule is valid independently of the symme-
try of the primary mode v. Exceptions are edge modes,
present in sufficiently large samples, which (strictly speak-
ing) are neither symmetric nor antisymmetric. Confluence
of an edge mode into another mode is always allowed but,
since edge and volume modes spatially overlap a little,
their nonlinear interaction is weak.

B. Nonuniform symmetric in-plane magnetization
configuration

The above conclusions can be generalized to a spa-
tially nonuniform but symmetric in-plane magnetic state.
As an example, we consider the so-called “leaf state”
in which magnetization near the edges is parallel to
the edge. We parametrize p = (cos ¢y, singy,0) and
Sy = (_Su,ip sin ®M > Sy,ip COS ¢M,Sv,z)’ where §0M(X’J’) =
—oup(—x,y) = —@p(x, —y) is an antisymmetric function
for the leaf state, and s, j, is an in-plane dynamic magneti-
zation component of the vth mode.

The second term under the integral in Eq. (11) is
expanded as

: *

Vv ~ —(8y - 8) COS s Ny SIN @18, 5
: *

+ (s, - 8,) singy N, cos PMSyip

k

=+ (8y - 8y) €OS @i Ny, COS PMSyip

— (sy - 8,) sin gy N, sin (pMsj;,ip. (17)
The terms with diagonal components N, and N,, con-
tain the antisymmetric function sin ¢y, and thus give a
nonzero contribution only if s, ;, is antisymmetric. Terms
with off-diagonal components contain the symmetric func-
tion cos? ¢y, or sin® gy, thus yielding the same selection
rules as for the uniform magnetization configuration dis-
cussed above. Analyzing the first term in Eq. (11) yields
the same selection rules.

For the case of symmetric nonuniform magnetization
configuration, it should also be noted that the exchange
operator does not contribute to the three-magnon interac-
tion since it is diagonal and symmetric (its Fourier repre-
sentation is proportional to |k|?). The uniaxial anisotropy
operator also does not contribute if the anisotropy axis is
aligned to the dot symmetry axes (i.e., x, y, Or z axis).

We conclude that, in a nonuniform but symmetric mag-
netization configuration, three-magnon confluence is pos-
sible into a fully antisymmetric mode only. Parenthetically
it should be mentioned that a similar behavior has been
reported in Ref. [42] for propagating spin waves in mag-
netic stripes. Also, in the inversion of the confluence
process, only a fully antisymmetric mode can undergo
a degenerate three-magnon splitting. In fact, suppression

of the three-magnon splitting process was found in other
magnetic structures with high symmetry: in vortex-state
circular magnetic dots [38,47], radial modes can undergo
only nondegenerate three-magnon splitting (i.e., into a pair
of different modes); in vortex-state magnetic nanotubes,
the same restriction applies to the modes with zero wave
vector along the nanotube axis [48].

C. Nondegenerate magnon processes

The above analysis can be extended to the interaction of
three disparate modes. It shows that three-magnon inter-
action of two symmetric modes with an antisymmetric
one is allowed. Interaction of three antisymmetric modes
is allowed as well, while interaction of two antisymmet-
ric modes with one symmetric and interaction of three
symmetric modes are prohibited. We can formulate the fol-
lowing selection rule: both sums ) n,,and ) n,, over
the indices of three interacting modes should be odd num-
bers (note that an odd » corresponds to an antisymmetric
mode profile in the notation used).

D. Other uniform magnetization states

All the rules for degenerate and nondegenerate pro-
cesses formulated above also apply to the case where the
disk is magnetized along its minor axis, p = e,. For the
perpendicular magnetization, p = e,, the situation is dif-
ferent. Since off-diagonal components Ny. = N,. = 0 will
vanish for all operators, three-magnon interaction is com-
pletely prohibited in thin disks, strips, and films with
uniform perpendicular magnetization configuration. Only
atypical anisotropy [58,63] with an anisotropy axis which
is not parallel nor perpendicular to the z axis could allow
for it.

It should be noted that three-magnon confluence has
been experimentally observed in perpendicular nanodisks
incorporated in the magnetic tunnel junctions [37], sug-
gesting that some sample systems may substantially devi-
ate from the idealized case discussed so far (see the
discussion in Sec. V C).

E. Simulations

We carried out a series of micromagnetic simulations
to evaluate static magnetization configuration and spin-
wave profiles and calculated the three-magnon interaction
coefficients according to Eq. (11). The results are sum-
marized in Table 1. Confluence of two magnons of mode
1 into a magnon of mode 3, 4, or 6 is attributed with a
vanishing (below the accuracy of our calculations) coeffi-
cient. In contrast, the process 1 + 1 — 5 (i.e., confluence
into a fully antisymmetric mode) is characterized by a
large three-magnon coefficient V1, 5. All these features are
in full agreement with the theoretical predictions men-
tioned above. A small but finite three-magnon coefficient
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TABLE I. Interaction coefficient for confluence processes 1 +
1 — n, with bias field applied along the long disk axis. The mode
symmetry (S, A) describes a mode profile that is symmetric along
the x axis and antisymmetric along the y axis, etc.

Process Mode symmetry Viiy/2m (GHz)
1+1—>2 (A,S) 4x1073
1413 (S,S) <107
1+1—>4 (S, A) <1074
1+1—-5 (AA) 1.31
1+1—>6 (A,S) <1074

was found for the process 1 + 1 — 2—this result is unex-
pected. Further analysis shows that this process takes place
at a low negative magnetic field [Fig. 1(b)] associated with
a strongly nonuniform magnetization configuration, which
partially breaks the symmetry restrictions.

To validate our results, we simulated magnon con-
fluence dynamics directly by exciting mode 1 with a
microwave field b, = 1 mT. The excitation field is spa-
tially uniform; it thus cannot excite modes 2, 4, 5, and
6, while its coupling to mode 3 is weak. The drive fre-
quency is varied with the external field to coincide with
the eigenfrequency of mode 1. We extracted the station-
ary amplitudes of the first and the second harmonics of
magnetization oscillations.

The field dependence of the first harmonic demonstrates
a weakly decreasing trend because of increasing damping
rate '} ~ w; ~ By. A pronounced dip appears at the reso-
nance field for the 1 + 1 — 5 confluence process (Fig. 2).
The dip position is slightly shifted from the three-magnon
resonance field because of nonlinear frequency shift of
both the interacting modes. At the same time, the ampli-
tude of the second harmonic shows a maximum in the same
field range.

Note that the second harmonic peak appears only if
spatially nonuniform dynamics is analyzed; we evaluate
magnetization oscillations averaged in one quadrant of the
disk. The total magnetization oscillations over the entire
disk do not demonstrate a peak at the double excitation
frequency. Thus the observation of the second harmonic
is not a spurious large-amplitude signal, but instead corre-
sponds to another spin-wave mode at the double frequency.
Plotting the spatial profile of magnetization oscillations at
the double excitation frequency (Fig. 2) confirms that it is
in fact mode 5. At the three-magnon resonance fields of
processes 1 +1 — 3and 1 + 1 — 4, which are within the
scale of Fig. 2, we find no characteristic features in the first
and second harmonic, confirming that these confluence
processes are prohibited.

We plot the second-harmonic amplitude m, (2w,) (repre-
sentative of the final-mode n = 5 amplitude) as a function
of the first-harmonic amplitude m. (w,) in Fig. 2(inset). It
reveals a quadratic dependence at low modes amplitudes,

m; (@)

Oscillation amplitude m, (w)

100 150 200 250 300
Bias field B, (mT)

FIG. 2. Amplitudes of the first and second harmonics of mag-
netization oscillations m,(f) excited by a uniform microwave
field b, = 1 mT at the eigenfrequency of mode 1. The bias
field is applied parallel to the long axis of the disk. Vertical
dashed lines indicate the fields of the three-magnon resonances
2w; = wy. The left inset shows the dependence of the second-
harmonic amplitude on the first-harmonic amplitude at B, = 241
mT, which is the resonance point for the 1 + 1 — 5 process. The
dependence is parabolic at low oscillation amplitudes. The spa-
tial map of magnetization oscillations at the second harmonic is
shown; it corresponds to the profile of mode 5.

as is expected from the theoretical considerations in
Eq. (15). We extract the three-magnon coefficient as
V115 = 2m x 0.96 GHz, which is reasonably close to the
one calculated using Eq. (11). The discrepancy is related
to the influence of other nonlinear processes on the mag-
netization dynamics (in particular, the nonlinear frequency
shift) as well as to the edge effects—finite-difference-
based micromagnetic solvers treat a curved boundary in a
complicated way that is not accounted in our calculations.

F. Spatial spectrum considerations

Another interesting point is the dependence of three-
magnon coefficients on the mode indices. In bulk sam-
ples and thin films, the momentum conservation rule for
degenerate three-wave confluence is 2k, = k,,. Spin-wave
modes in a small-size sample have a broad spatial Fourier
spectrum instead of a single peak, but they can still be char-
acterized by the position of the spatial spectrum maximum
k,. Naturally, in the case of a broad spatial spectrum one
cannot expect a strict selection rule for k,. However, a
correlation between the three-magnon coefficient and the
spatial spectrum could exist. We thus calculated three-
magnon coefficients for the interaction processes v + v —
5, as only these processes are allowed for all v modes. Of
course, most of these processes can never be resonant due
to the field dependence of their frequencies (see Fig. 1).
Nonetheless, nonresonant processes could also have a sub-
stantial impact on magnetodynamics, in particular, via
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TABLE IL

Three-magnon interaction efficiency for the process v 4+ v — 5 in a symmetric magnetization state. A bias field B, = 10

mT is applied along the long axis of the disk. k, is the position of the maximum of the spatial spectrum F [sv]-

Interaction process k, (um™") 2k, (um™!) ks (um™") Vis/2m (GHz)
1+41—>5 0,0) 0,0) (86,110) 1.58
24255 61,0) (122,0) (86, 110) 2.0
3+43—>5 (110,0) (220,0) (86,110) 0.28
6+6—>5 (160, 0) (320,0) (86,110) 0.16
44+4 -5 0,110) (0,220) (86,110) 0.91
545—5 (86,110) (172,220) (86,110) 1.65

nonlinear frequency shift [24,25]. Our conclusions can also
be applied to other samples with resonant processes.

The results summarized in Table II reveal the gen-
eral trend in the relation between spatial spectrum and
magnon processes. Among the (n,,,0) modes, the max-
imal three-magnon interaction is reached for the process
(24 2) — 5, which corresponds to the minimal deviation
from the condition 2k, = ks,. We find that the larger
the difference |2k, — ks | is, the smaller is V,, 5. For the
k, component, such dependence is hard to reveal as only
n, =0 and n, = 1 modes are studied here. In general,
the largest three-magnon interaction is expected for modes
whose maximum of the spatial spectrum approaches the
momentum conservation |2k, — k,| — 0.

However, it should be also pointed out that in the case of
standing spin waves, the term (s,, - s,) in Eq. (11) contains
peaks not only at 2k, but also at k = 0. This may lead to a
more complex dependence of V), , on the mode numbers.
In particular, one can expect nonvanishing interaction of a
pair of high-k modes with the lowest antisymmetric mode.

V. SYMMETRY-BREAKING PERTURBATIONS
A. Uniform tilt of bias field

Magnon interaction selection rules contain static magne-
tization configuration and spin-wave profiles. Symmetry-
breaking magnetic fields applied to the sample can alter
these two constituents and thus modify the magnon inter-
action coefficients. A uniform magnetic field, that is
applied at an angle to the symmetry axis of the sample, can
lead to a uniform tilt of the magnetization configuration
p(r). For an in-plane tilt, we can assume the “misalign-
ment angle” ¢y, in Eq. (17) to be coordinate-independent.
One finds that diagonal components N,, and N,, start to
contribute to the three-magnon interaction for symmetric
final-state modes s,. This contribution is proportional to
sin 2¢y,. For a small tilt, it therefore linearly increases with
the tilt angle.

The same behavior is expected for an out-of-plane mag-
netization tilt at an angle 6),. In this case, the term pro-
portional to (N, — N;;) sin 26, appears, to which uniaxial
anisotropy contributes as well. In general, a magnetiza-
tion tilt also changes the symmetry of spin-wave modes.

They attain a mixture of symmetric and antisymmetric
components, which can affect the three-magnon interaction
efficiency.

1. In-plane tilt of bias field

Figure 3 shows three-magnon coefficients as a function
of the field tilt ¢. The coefficients are calculated at the res-
onance fields of their confluence processes. We find that
while the tilt angle (in the range presented) does not sub-
stantially alter the mode frequencies (around 50 MHz),
the three-magnon interaction is drastically affected. For all
modes that have vanishing confluence efficiency at zero
field tilt, the coefficient V', increases linearly with the
tilt angle. The strongest increase is observed for the fully
symmetric mode 3. As explained above, under a field tilt,
the symmetric diagonal components of the operator N start
to contribute to three-magnon interaction, which allows
for coupling to fully symmetric modes. Note that both
dipolar and exchange interactions contribute to this cou-
pling as the magnetization configuration in not perfectly
uniform.

l\m\’\- mode 5
N 1.3
a >
e |
— .
S Vis mode 3
=12 °© 114
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FIG. 3. Dependence of three-magnon interaction efficiency

V11,, on the magnetic field’s in-plane tilt. Note the y-axis break.
Spin-wave profiles are shown for ¢ = 10°.
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FIG. 4. Amplitudes of the first and second harmonic of mag-
netization oscillations m,(f) excited by microwave field b, = 1
mT at the eigenfrequency of mode 1. The bias field is applied
with an in-plane tilt of ¢ = 10°. Vertical dashed lines indicate
fields of three-magnon resonance condition. Insets show spa-
tial distribution of the magnetization oscillations at the second
harmonic.

Modes 2 and 4, which intrinsically have a mixed sym-
metry [(A, S) and (S, A), respectively], are less affected. A
nonzero Vi;, in their case is caused by losing the mode
symmetry, which is clear from Fig. 3: the nodal lines of
the modes rotate in the applied field direction (i.e., try
to align parallel and perpendicular to the static magneti-
zation direction). The efficiency of confluence into mode
5 shows a slight decrease with ¢, which is explained by
Eq. (17), where the leading term for this process decreases
as Ny, cos? ¢yr. Despite this decrease, the 1 + 1 — 5 pro-
cess remains the strongest.

We again validate our results by inspecting the second-
harmonic signal as a function of the (tilted) bias field.
Figure 4 shows confluence process into mode 3 and into
mode 5, with the characteristic dips of the first har-
monic and peaks of the second harmonic. Their positions
are slightly shifted from the nominal three-magnon res-
onance fields due to nonlinear frequency shift. From the
dependence c; (c%) at ¢ = 10° (not shown), we extract the
coefficient V13 = 2w x 0.22 GHz. It is very close to the
value of V113 = 2w x 0.2 GHz calculated via Eq. (11) and
shown in Fig. 3.

The low efficiency of the 1 + 1 — 4 process does not
allow for its direct observation in the second-harmonic
signal—it is overshadowed by the much more efficient
1 4+ 1 — 5 process. This peculiarity underlines the impor-
tance of simulating the spin-wave modes profiles correctly.
Even a small admixture of another mode, excited far
from its own resonance, could significantly alter the cal-
culated value of the interaction coefficient. As pointed out
above, we use mode-specific spatial excitation fields in our
simulations.

2. Out-of-plane bias field tilt

As shown in Fig. 5, an out-of-plane field tilt has a very
similar effect to the in-plane field tilt. The three-magnon
interaction with all modes becomes allowed. The process
involving mode 3, which is fully symmetric in the unper-
turbed state, is maximally enhanced by the tilt. Nonzero
values of the coefficients V1;, and V4 are related, as
in the previous case, to the breaking of the mode sym-
metry. This symmetry breaking is of a dipolar origin and
is similar to weak nonreciprocity of spin waves in per-
pendicularly magnetized waveguides [64]. Although the
altered mode symmetry is barely distinguishable (in plots
like Fig. 1), it is sufficient to achieve a notable change in
the three-magnon coefficient.

Comparing Figs. 3 and 5, one can observe that in-
plane and out-of-plane field tilts at the same angle result
in comparable values of three-magnon coefficients Vi,
for n = 2,3, 4. From theoretical considerations, it is clear
that the tilt of the static magnetization is determinative
for the three-magnon interaction, but not the tilt of the
applied field. In the sample considered, in-plane field tilt
causes larger magnetization tilt than out-of-plane field tilt.
For example, at the resonance field of the 1 + 1 — 3 pro-
cess (|B.| ~ 128 mT), averaged magnetization is tilted at
oy = 7.5° if the field applied in-plane at ¢ = 10°, and
only out-of-plane angle 6, = 4.4° is reached when the
field deviates at & = 10° from the sample plane. Thus,
we can conclude that in the case considered three-magnon
interaction is more sensitive to an out-of-plane static mag-
netization tilt than to an in-plane one, which is because
INzz| > [Nxx,y|. For thin flat dots made of magnetically
isotropic material this relation always holds, while the
presence of anisotropy, both perpendicular or in-plane, can
alter this rule.
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FIG. 5. Dependence of three-magnon interaction coefficient
V11, on the out-of-plane tilt of the bias magnetic field.
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B. Spatially nonuniform bias field

In the previous subsection we considered the effects of
a spatially uniform tilt of the bias field. From the theo-
retical analysis it is apparent that application of nonuni-
form but spatially symmetric magnetic field, B.(x,y) =
B.(—x,y) = B.(x, —y), does not alter the selection rules
formulated above. Such a field does not provide additional
symmetry breaking of the static magnetization configura-
tion or spin-wave modes compared to a uniform field with
the same components, that is, it cannot make symmetric or
antisymmetric distribution nonsymmetric. It also does not
invoke any additional components of the operator N. In
this subsection, we thus consider the symmetry-breaking
effects of antisymmetric perturbation fields.

1. Gradient field

First, we apply an in-plane magnetic field along the
disk’s major axis that has a position-dependent magni-
tude. As depicted in Fig. 6(b), the field has a gradient
along the x direction, which constitutes an antisymmetric
perturbation. Such perturbation does not invoke diagonal
components of the operator N (at least when the averaged
field is strong enough to maintain uniform static magne-
tization). The effect of the perturbation is thus limited to
alteration of the spin-wave modes profiles and thereby of
the three-magnon interaction.

The effect is particularly pronounced for the lowest
mode 1: the amplitude gathers in the lower-field region of
the disk [see Fig. 6(c)]. Other modes’ symmetry along the
x axis is also diminished—their profiles s, are now neither

(b),,

(a) 1.4 R
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~ g g mode 4
S 1| % Vugs ° (c)
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FIG. 6. Effect of the spatially nonuniform field with B,-
gradient along the x axis. (a) Three-magnon interaction coeffi-
cients are shown as functions of the gradient. The bias field B, (x)
varies linearly along the long axis of the disk, as shown in panel
(b). The averaged field B, is adjusted so that the three-magnon
resonance condition is satisfied. (c) Mode profiles are calculated
for AB =20 mT.

symmetric nor antisymmetric, but contain both contribu-
tions. We thus expect that condition on the #, index of the
interacting modes is relaxed. At the same time, the modes’
symmetry in the y direction is preserved: the requirement
for the final mode being antisymmetric in the y direction
should remain valid.

Calculations of three-magnon coefficients based on
spin-wave profiles obtained from micromagnetic simu-
lations confirm the expected behavior [Fig. 6(a)]. The
processes 1 +1 — 3 and 1 + 1 — 6 remain prohibited.
Confluence into mode 4, which has (S, A) symmetry in the
absence of perturbation, now shows an enhanced efficiency
V11.4. Despite the maximum gradient of the magnetic field
studied being just 14% (20 mT at B, ~ 140 mT), its effect
on magnon interaction is substantial, which demonstrates
that this perturbation method is more efficient than tilting
the field.

A field gradient in the y direction, B, = (B, +
AB,(y))e,, would have an analogous effect, promoting the
confluence into modes of initially (A, S) symmetry (e.g.,
14+1— 2and 1+ 1 — 6). Other processes would remain
prohibited. A more complex perturbation field with bro-
ken symmetry in both x and y directions, AB,(x,y) #
AB,(—x,y) # AB,(—x, —y), would enable all confluence
processes, in particular those into intrinsically fully sym-
metric (S, S) modes.

2. Nonuniform field tilt

Here, we consider a more complex but technologically
relevant [44] symmetry-breaking field with a nonuniform
tilt—a tilt with an antisymmetric profile. We implement
a uniform bias field B, = Bye, and a perturbation B, (r)
or B.(r) with linear coordinate dependence [i.e., B, =
By max - (2x/ay) (sample center is the coordinate origin)].
As shown in Fig. 7, such perturbation field tilt antisym-
metric in the x direction allows for the confluence into
mode 2 and mode 6 [i.e., into (A,S) modes]. A B,(x)
perturbation field has the same effect. Perturbation fields
antisymmetric in the y direction, on the other hand, enable
the 1 + 1 — 4 process [i.e., confluence into (S, A) modes].
Other three-magnon processes are not affected.

We parameterize the nonuniform magnetic field by the
maximal angle of the field tilt ¢ or 6, which allows us
to compare these results with the case of spatially uni-
form field tilt (Figs. 3 and 5 versus Fig. 7). While uniform
in-plane and out-of-plane field tilts result in comparable
values of V13 (for our particular geometry and material
parameters), a nonuniform in-plane field tilt produces a
more pronounced effect than the nonuniform out-of-plane
tilt.

Again, these observations can be explained by analyz-
ing Eq. (17). When the static magnetization is tilted away
from the axis of symmetry (x in our case), symmetric diag-
onal components of the tensor N start to play a role. An
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FIG. 7. Effect of antisymmetric bias tilt field on three-magnon
interaction coefficients. The field is B, = B.e, + AB, where AB
varies linearly with the x or y axis: (a) AB = B, (x)e,, (b) AB =
B,(y)e,, (c) AB = B.(x)e;, (d) AB = B.(y)e.. Field nonunifor-
mity is characterized by the maximum tilt angle ¢ (a),(b) or 0
(c),(d) at the edge of the sample. The coefficient V713 is not
shown since it is not affected by the fields shown and remains
negligibly small.

antisymmetric profile of the magnetization tilt (sin ¢,, or
sin#),) is integrated with the mode profile. If the latter is
an antisymmetric function, the integral returns a nonzero
value. This explains why an antisymmetric field tilt in the
x or y direction allows for the confluence into (A, S) or
(S, A) modes, respectively.

Following this argument, we also find that a field tilt
antisymmetric in both x and y directions does not lead to
an additive effect and, instead, the effects in two directions
cancel each other. For such a perturbation field, conflu-
ence only into (A, A) modes should be allowed, which
is allowed without any perturbations anyway. We already
discussed this peculiarity when considering the “leaf state”
in Sec. IV.

C. Summary of symmetry-breaking effects

The effect of symmetry-breaking perturbation fields is
summarized in Table III. Antisymmetric perturbations
have a mode-selective effect and allow for the conflu-
ence into modes with specific symmetry—in addition to
confluence into fully antisymmetric (A, A) modes which
is always allowed. Uniform in-plane and out-of-plane
field tilts are less selective: they open confluence into
mixed-symmetry modes, but to a lesser extent than into
fully symmetric modes.

TABLE III. Effect of symmetry-breaking perturbation fields
on three-magnon confluence into modes of a particular sym-
metry. The symmetry of the final mode is characterized in its
unperturbed state. Here, “+” means that the confluence pro-
cess is allowed, “—” means a prohibited process, and “weak”
means the process is allowed but with weak efficiency. Spatially
symmetric perturbation fields have the same effect as uniform
fields. “B(x, y) antisymmetric” means that the perturbation field
is antisymmetric with respect to the inversion of both x and y
axes.

Mode symmetry

Perturbation field (S,S) (A,S)  (S,A)  (AA)
No perturbation — — - +
B, uniform (tilt) + Weak  Weak +
B uniform (tilt) + Weak  Weak +
AB,(x) antisymmetric - + — +
AB,(y) antisymmetric - - + +
AB,(x,y) antisymmetric + + + +
B, (x) antisymmetric - + — +
B, (y) antisymmetric - + +
B, (x,y) antisymmetric - - — +
B.(x) antisymmetric - + — +
B.(y) antisymmetric - - + +
B.(x,y) antisymmetric - - — +

Table III is one the central results of this work. It
can serve as a guide to finding which perturbation field
is required to open a particular three-magnon confluence
channel or, in turn, which type of imperfections should be
avoided to suppress a particular confluence process.

Additive effects. In general, effects of symmetry-
breaking perturbations are additive. If one perturbation
opens one confluence channel and the second perturba-
tion opens another channel, then concurrent action of both
perturbations will enable confluence into both channels.
However, in some circumstances (e.g., at some pertur-
bation strength), different contributions may eventually
cancel each other.

An exception to the additive behavior is a perturbation
field in the y or z direction that is fully antisymmetric,
B(x,y) = —B(—x,y) = —B(x, —y), that is, a combination
of B,.(x) and B,.(y). The effect of such combination
vanishes. In turn, a combination of two field components
that are antisymmetric along a single axis, that differs
for these two components (i.e. B,(x) = —B,(—x) and
Bg(y) = —Bg(—y) witha # B € {y,z}), remains additive.

Splitting and nondegenerate processes. As discussed
above, degenerate three-magnon splitting obeys the same
rules that would now apply to the initial (splitting) mode.

Similar features are also expected for nondegener-
ate three-magnon scattering processes v; + v; — v3 and
v3 — v + vy. As discussed above, in an unperturbed state
the selection rules require both Y°>_ ., and 37 | n,.,, be
an odd number. Perturbations that, according to Table III,
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allow for the confluence into a mode symmetric in the x
or y direction will allow for nondegenerate scattering pro-
cesses, for which the sum 3> ., or >  n,, is an
even number, respectively.

Other types of perturbation. In this work, we limit
ourselves to the symmetry-breaking effects of applied
magnetic fields. This approach is very promising since
it allows for dynamic and tunable manipulation of the
magnon processes. However, symmetry-breaking effects
can also be achieved by modification of sample shape
(by making it less symmetric, for example egg-shaped) or
by spatial modification of the sample’s magnetic param-
eters (such as saturation magnetization or anisotropy).
For instance, in the case of fully saturated magnetization
configuration, we expect the effect of magnetic parame-
ters varying spatially along an axis to be similar to the
effect of a magnetic field that breaks the symmetry of a
magnon mode along the same axis. Another symmetry-
breaking perturbation could be an atypical anisotropy with
anisotropy axis not aligned to any of the sample symme-
try axes. Finally, Dzyaloshinskii-Moriya interaction also
has symmetry-breaking effect; its effect on three-magnon
scattering in thin films has been discussed in [65]. Con-
current application of different types of perturbations may
become more complicated, beyond simple additivity, and
would warrant further consideration.

Perturbations on other magnetization states. The above
discussion also pertains to the case where bias magnetic
field and static magnetization (unperturbed) are aligned
parallel to the y axis. The results of Table III are directly
applicable to this case with the coordinate permutation
X<y,

The case of a perpendicularly magnetized unper-
turbed state reveals a different behavior. As discussed
above, three-magnon scattering is prohibited in an ideal
perpendicular state (unless an extraordinary anisotropy
or Dzyaloshinskii-Moriya interaction is present). While
detailed consideration of this case lies outside the scope
of this work, some conclusions can easily be made. In
particular, a uniform B, tilt over the u = e, state is the
same as a perturbation field B, applied to the perpendicular
state (note that we never invoke the smallness of perturba-
tion in the above analysis). Thus, a uniform (and spatially
symmetric) tilt of the magnetization away from the z
direction opens all the confluence channels (with varying
efficiency). This tilt (e.g., due to stray fields of neighbor-
ing magnetic elements) could be a contributing factor to
the three-magnon scattering observed experimentally in
perpendicular magnetic tunnel junctions [37]

D. Routes to experimental realization

To generate a local magnetic field at the position of the
sample, another small magnetic element can be placed in
the vicinity. The stray fields from this auxiliary magnet

(@ __B. (b)

FIG. 8. (a) The magnetic disk (FL, free layer) experiences the
stray field (b) from the auxiliary (CL, control layer) disk.

can be engineered and dynamically switched or tuned to
achieve a required perturbation field.

We model a simple scenario of an auxiliary magnetic
disk (control layer) underneath the sample disk (free layer)
as shown in Fig. 8(a). If the control layer is in a saturated
state, its stray fields at the position of the free layer have
a symmetric B, component and a fully antisymmetric B,
component—both do not affect three-magnon interaction.
However, the field also has a B, component antisymmetric
in the x direction only [Fig. 8(b)]. As detailed in Table III,
we thus expect opening of confluence channels into (A, S)
modes.

In our micromagnetic simulations, we choose a disk
separation of 1.5 nm and a saturation magnetization of
uwoMs; =1 T for the control layer. Our conclusions are
confirmed: we obtain substantial confluence coefficients
Viip =2m x 0.2 GHz for the 14+ 1 — 2 process and
Vi16 = 2m x 0.27 GHz for the 1 4+ 1 — 6 process, while
confluence into modes 3 and 4 remains prohibited.

The magnetic parameters of the auxiliary layer should
be engineered so as to prevent hybridization of magnetiza-
tion dynamics of both layers [55,66]. For that purpose, in
our simulations we simply employed additional magnetic
anisotropy in the x direction for the control layer, which
pushes control layer modes to a higher frequency range.

The state of the control layer can, in principle, be varied
dynamically, thus allowing for dynamic control of three-
magnon splitting and confluence. For somewhat larger
control layers, this could be done by utilizing vortex-to-
saturated state transition under applied field or current.
The control layer can also be replaced by a nanoscale
synthetic antiferromagnet. In its normal state, the stray
fields are vanishingly small, whereas triggering its spin-
flop transition would switch on a nonuniform stray field.
Recently, this approach has been experimentally realized
in Ref. [44]. Other approaches involving spin torque, heat,
and voltage-controlled anisotropy for dynamic control of
magnon scattering can be envisioned.

VI. SUMMARY

In summary, this work present a detailed theoretical
study of magnon processes in laterally confined thin-film
magnets with discrete magnon spectrum. The main focus
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is on degenerate three-magnon confluence processes, in
which two magnons fuse into one new magnon.

Our theoretical framework on the basis of the vector
Hamiltonian formalism [45] describes magnon interaction
through an overlap integral that contains an interaction
operator with contributions from exchange, anisotropy,
and magnetodipolar interactions. Other contributions, for
instance, Dzyaloshinskii-Moriya interaction, can be also
accounted for if needed.

We find that three-magnon processes are crucially sen-
sitive to the symmetry of the static magnetic configuration
as well as to the profile symmetry of the participating spin-
wave modes. We completed a comprehensive study for
a thin elliptical disk and postulate selection rules for the
magnon process.

When a disk is strongly magnetized in-plane along one
of its axes, only confluence into a fully antisymmetric
mode is allowed. In such a highly symmetric magneti-
zation state, only off-diagonal components of the mag-
netodipolar interaction operator, which are antisymmet-
ric, contribute to three-magnon interaction, leading to the
selection rules.

For degenerate three-magnon splitting processes, this
and other selection rules are valid—with the rules now
applicable for the initial splitting mode. In a general case of
a nondegenerate three-magnon splitting or confluence, the
selection rule for the high-symmetry case is transformed
into the requirement that the sum over n, and the sum over
n, are both odd.

Breaking the symmetry of static magnetization config-
uration and/or spin-wave mode profiles results in relaxing
the selection rule formulated above. Typically, symmetry-
breaking perturbations are mode-selective and enable con-
fluence into modes of specific symmetry.

We provide guidelines for designating particular pertur-
bation fields for opening distinct three-magnon confluence
channels. These guidelines range from (i) accurate cal-
culations of the magnon process efficiencies using mag-
netization configuration and spin-wave profile, via (ii)
calculations of efficiencies based on harmonic analysis of
magnetization dynamics, to (iii) relative estimates based
on the “minimum momentum detuning” rule.

The results of our work can be used for analyzing
and engineering a variety of scenarios. For instance, the
symmetry breaking can be naturally inherent or inten-
tionally implemented on a sample system via imperfec-
tions or defects [59], texture [67], adjacent perturbations
[44,68], or spatial nonuniformity of magnetic properties
[69]. On the other hand, the symmetry breaking can be
induced via perturbation fields with auxiliary functional-
ities from heat or spin-torque-driven dynamics, voltage-
controlled anisotropy, light control, and others. Symmetry-
breaking fields are of particular importance for applica-
tions since they can be applied and tuned dynamically. This
approach, for which a proof of principle has recently been

demonstrated experimentally [44], opens novel avenues
for functionalizing nonlinearity in spintronic applications:
controlling nonlinear response of magnetic neurons in neu-
romorphic applications, improving performance of spin-
torque devices, and advancing magnet-based quantum
information systems.

Our concept of symmetry analysis within vector Hamil-
tonian formalism [45] is transferable to magnon processes
of higher order and other model geometries. The frame-
work developed allows for analytical and numerical calcu-
lations of magnon processes and for determining magnon
interaction coefficients from experimental data [54]. Non-
linear magnetization dynamics in nanomagnetic systems,
which are the building blocks of modern spintronics tech-
nologies, can be a nuisance to master and an opportunity
to create highly functional devices. This work provides the
critical theoretical basis and calls upon efforts to develop
the corresponding experimental tool set.
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