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Abstract: Past studies have empirically demonstrated a surprising agreement between gravitational
waveforms computed using adiabatic–driven–inspiral point–particle black hole perturbation theory
(ppBHPT) and numerical relativity (NR) following a straightforward calibration step, sometimes
referred to as a-b scaling. Specifically focusing on the quadrupole mode, this calibration technique
necessitates only two time-independent parameters to scale the overall amplitude and time coordinate.
In this article, part of a Special Issue, we investigate this scaling for non-spinning binaries at the
equal-mass limit. Even without calibration, NR and ppBHPT waveforms exhibit an unexpected
degree of similarity after accounting for different mass scale definitions. Post-calibration, good
agreement between ppBHPT and NR waveforms extends nearly up to the point of the merger. We
also assess the breakdown of the time-independent assumption of the scaling parameters, shedding
light on current limitations and suggesting potential generalizations for the a-b scaling technique.

Keywords: numerical relativity; black hole perturbation theory; gravitational waves; binary black holes

1. Introduction

Simulating binary black hole (BBH) mergers and understanding the morphology of
the resultant gravitational waveforms enable us to develop tools for the rapid character-
ization of detected gravitational wave (GW) signals [1–15]. An accurate description of
BBH mergers requires numerically solving the Einstein equation for the two-body problem.
This approach is known as numerical relativity (NR) [16–23] and is often computation-
ally intensive, taking days to weeks to simulate a single BBH merger and its associated
waveforms. In recent decades, significant advancements have been made in making NR
codes more efficient in performing BBH simulations for systems where the masses of the
two-component black holes are comparable, i.e., where q := m1

m2
. 10 is the mass ratio, m1 is

the mass of the primary black hole, and m2 is the mass of the secondary black hole. While
NR simulations have begun to push beyond the q = 10 barrier [17,24,25], long-duration
simulations with high accuracy remain challenging and parameter space explorations are
mostly out of reach.

Alternatively, when m2 ⌧ m1, one can simplify the problem by assuming the sec-
ondary as a point–particle and solving the Teukolsky or the Regge–Wheeler–Zerilli (RWZ)
equation [26–37] to obtain the far-field waveform. This theoretical framework is termed
point–particle black hole perturbation theory (ppBHPT) and is anticipated to yield accurate
waveforms for binary systems characterized by sufficiently large mass ratios. Conversely,
it is expected that the accuracy of ppBHPT waveforms will diminish as we move from the
extreme mass ratio limit to the comparable mass regime.
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Exploring the differences between waveforms derived from NR and ppBHPT in the
comparable and intermediate mass ratio regimes has long been a focal point of interest
within the GW community [38–41]. This exploration serves a dual purpose. Firstly, it
provides insights into the interaction between the NR and ppBHPT frameworks within
the comparable mass regime, as well as the interplay between fully nonlinear and linear
problem descriptions. Secondly, it aids in establishing the validity boundaries of the
ppBHPT framework, paving the way for leveraging it to construct waveform models for
BBH source characterization.

Two recent developments in extending the ppBHPT framework into the comparable
mass regime are the development of a second-order self-force waveform model [42–44]
and the empirically observed efficacy of a simple model calibration technique, which
we will refer to as a-b scaling [45,46]. In this paper, we assess the applicability of the
a-b scaling at the extreme end of the mass ratio regime: the equal-mass binary. While
previous studies explored the late-stage of equal-mass collisions in great detail within the
perturbative frameworks using the close-limit approximation [38,47–51], we focus on the
comparison between NR and ppBHPT for the full binary evolution. Our goal is first to
examine the differences between NR and ppBHPT frameworks in the equal-mass limit. We
will then evaluate the efficacy of the a-b scaling technique well outside the presupposed
expected domain of validity for ppBHPT at q = 1. Finally, we consider possible time-
dependent generalizations of the a-b parameters that could be used in future waveform
modeling efforts.

The rest of this paper is organized as follows. In Section 2, we summarize our wave-
form data. Section 3 outlines various methods for determining the a-b parameters and
demonstrates their effectiveness for an equal-mass system. The limitations and implications
of our study are addressed in Section 4.

2. NR and ppBHPT Data at q = 1

We generate our q = 1 ppBHPT waveform using the BHPTNRSur1dq1e4 [45] model
(Direct simulation using our time-domain Teukolsky solver fails in the equal-mass limit
due to limitations in trajectory generation for the secondary black hole that incorporates
adiabatic radiative corrections). BHPTNRSur1dq1e4 is a reduced-order surrogate model
trained on ppBHPT waveform data generated from a time-domain Teukolsky equation
sourced by a test particle whose adiabatic inspiral is driven by energy fluxes [29–31,52].
This model is interfaced through the BHPTNRSurrogate package [53], available in the black
hole perturbation Toolkit [54]. While the model has been trained for mass ratios
2.5  q  104, surrogate models have previously demonstrated good performance when
extrapolated beyond their training range [5,6]. In our case, extrapolation to q = 1 will bring
in error, but these errors are expected to be small [6].

We obtain NR data from a publicly accessible SXS:BBH:1132 simulation performed
by the SXS collaboration [16,17]. The NR data have ⇠50 cycles and are ⇠25,000M long in
duration, where M := m1 + m2 is the total mass of the binary.

3. Comparing NR and ppBHPT at q = 1

3.1. Model Calibration Setup

We now investigate the differences and connections between NR and ppBHPT at q = 1
through the lens of the a-b scaling. The scaling reads [45]:

h
NR

`,m(t
NR; q) ⇠ a`h

ppBHPT

`,m
�

bt
ppBHPT; q

�
, (1)

where h
NR

`,m and h
ppBHPT

`,m represents the NR and ppBHPT waveforms, respectively, as func-
tions of the NR time, t

NR, and ppBHPT time, t
ppBHPT. These calibration parameters are

found by solving an optimization problem
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J = min
a,b

R ���ah
ppBHPT

2,2
�

bt
ppBHPT

�
� h

NR

2,2(t
NR)

���
2
dt

R ���hNR2,2(tNR)
���
2
dt

, (2)

where the integral is taken over the last ⇠5000M of NR data. This allows us to determine
optimal values for a and b. To simplify the discussion, we focus only on the waveform’s
(2, 2) mode and will use a = a2 for brevity. Ref. [45] considered subdominant modes and
found that these modes follow the same pattern as the (2, 2) one. Furthermore, for q = 1,
the subdominant modes are very weak while odd m modes are identically zero.

The gravitational wave models presented in Refs. [45,46] use the aforementioned
methodology to find values for a`(qi) and b(qi) at mass ratios qi available from numerical
relativity simulations. They are assumed to be constant (time-independent) values through-
out the binary’s evolution, and regression techniques are used to model their behavior over
the parameter space including the q ! • limit. The accuracy of the models developed
in Refs. [45,46] relies on (i) the existence of approximately time-independent a`(qi) and
b(qi) values and (ii) the ability to accurately build regression models for a`(qi) and b(qi)
over a wide range of mass ratio values. This paper is mostly focused on exploring the
behavior of a`(q = 1) and b(q = 1) as a stress test for a-b scaling technique. We note that in
Sections 3.4 and 3.5, we also consider a possible generalization of these parameters to time-
dependent functions a`(t) and b(t). We will continue to refer to a and b as “parameters”
even in this time-dependent context.

3.2. Setting a Common Mass Scale

As discussed in Ref. [45,46], our Teukolsky solver sets the background black hole’s
mass to m1 = 1 and uses m1 as ppBHPT’s mass scale, while the corresponding NR sim-
ulation sets the total mass to M = m1 + m2 = 1 and uses M as the mass scale. So before
comparing waveforms, we should adjust the ppBHPT’s mass scale to use the NR conven-
tion. In the ppBHPT’s setup, this would be m1 + m2 = 1 + 1/q, where upon setting q = 1,
the (2, 2) mode should be adjusted according to the formula h

2,2(t) ! 1
2 h

2,2(t/2) before
comparing to NR. In Figure 1, we show both the NR and ppBHPT waveforms after making
this adjustment. While there are visual discrepancies, we find it remarkable that these
waveforms are even somewhat similar, given that q = 1 is well outside of the formal range
of validity for point–particle perturbation theory.

While our a-b calibration procedure (Equation (1)) automatically accounts for the
different mass scales used, it also attempts to account for various physical effects missing
in the ppBHPT setup. In keeping with conventions of previous work [45,46], we will apply
the scaling procedure described in Section 3.1 to ppBHPT waveforms expressed units
of m1. Because the mass scale is a freely specifiable choice for expressing dimensioned
quantities in terms of dimensionless ones, changing the mass scale carries no more physi-
cal meaning than, for example, expressing time in seconds instead of hours. However,
we suspect the numerical values of a and b do carry some physical meaning to account
for missing physics (e.g., second-order self-force effects), although the interpretability
of our phenomenological a-b scaling remains an open question. Yet, if the numerical
values are to be interpreted as something physically relevant, the mass scale needs to
be correctly accounted for. That is, one could imagine applying the scaling procedure
described in Section 3.1 to ppBHPT waveforms expressed in terms of a mass scale M

resulting in a different set of parameters {â, b̂}, which are related by a = 1
1+1/q

â and
b = 1

1+1/q
b̂. For our q = 1 system, â = 2a and b̂ = 2b would be the relevant values to

compute and where, for example, if â = b̂ = 1, then NR and ppBHPT waveforms would
be physically identical.
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3.3. Effectiveness of the a-b Scaling at q = 1
We first consider whether a simple scaling (Equation (1)) exists for equal-mass binaries.

We find that Equation (2) is minimized at a = 0.402599 and b = 0.455557 where J = 0.038.
In Figure 1, we show both the NR and rescaled ppBHPT waveforms. Additionally, for
comparison, we show the ppBHPT waveform after only accounting for the mass scale
differences as described in Section 3.2.
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Figure 1. A non-spinning q = 1 waveform for the (2, 2) mode from numerical relativity (black dashed
line), ppBHPT (grey line), and the calibrated ppBHPT (red lines). The left panel shows the waveforms
for the early inspiral, while the right panel focuses on the merger-ringdown stage. All waveforms
have the same mass scale of M = m1 + m2.

It is worth noting that while the calibrated ppBHPT and NR waveforms exhibit
excellent agreement during the inspiral phase, noticeable differences become apparent in
the plunge–ringdown stage. These differences can be attributed to a combination of various
simplifying assumptions in the ppBHPT framework; a non-inclusive list includes: (i) the
final remnant black hole’s mass and spin value is assumed to be the same as the primary
black hole’s initial mass and spin, (ii) the orbital plunge model is expected to be inaccurate
in the comparable mass limit, (iii) finite size effects are likely to be critically important
for an equal-mass binary close to merger, and (iv) non-linear, strong gravity effects (e.g.,
second-order metric perturbations) may become important. For accurate modeling, these
effects must be accounted for [55,56]. However, as extremely accurate GW models in the
comparable mass regime already exist, even a sufficiently well-calibrated ppBHPT-based
waveform model in its current form is unlikely to deliver competitive models at q = 1.

One source of error in our calibrated ppBHPT waveform (see Equation (1)) could be
the breakdown of the assumption that a and b are time-independent. In the following
subsection, we investigate the possible time dependence of these parameters in detail.

3.4. Exploring the Time Dependence of a-b Parameters from Different Methods

Figure 1 clearly suggests that, for equal-mass binaries, both a and b must have some
temporal dependence. To illustrate this issue further, we compute time-varying a and b
values using two different methods described in Ref. [57]. The first method seeks to find
pointwise values of a and b, such that the amplitude and phasing of the ppBHPT waveform
match NR at each NR wave peak. We denote these estimates as apeak and bpeak. For the
second method, we select the NR and ppBHPT data encompassing the final 35 cycles
before the merger and segment them into seven consecutive 5-cycle windows. Each 5-cycle
window is composed of 10 peaks. It is important to note that these waveform windows
will have different time durations between NR and ppBHPT data but will maintain an
identical number of peaks. Within each of these time windows, we minimize J from
Equation (2) yielding local estimates of a and b applicable in each time window. We refer to
these estimates as a5cycles and b5cycles. Using the second method, Figure 2 shows both the
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rescaled ppBHPT waveform (in red solid lines) and NR data (in black dashed lines) over
the first and last 5-cycle time windows. Notice that in the last 5-cycle window, covering
t = �778.5M to t = �59.2M, visible differences emerge between the rescaled ppBHPT
waveform and NR, indicating the assumption of a time-independent a-b is no longer valid
even within this restricted signal duration.

Figure 2. The waveform’s (2, 2) mode from NR (black dashed line) and scaled ppBHPT (red
solid line) calibrated over a short 5-cycle window of data: t 2 [�13, 526M, �10, 983M] and
t 2 [�778.5M, �59.2M]. This demonstrates that the a and b parameters are nearly time-independent
over in the early inspiral portion, an assumption that breaks down in the late inspiral. Further details
can be found in Section 3.4.

In Figure 3, we compare calibration parameter values obtained using all three methods
described above. For comparison, we also show the scaling value of 1

1+1/q
= 0.5 required to

make the mass scale of ppBHPT and NR waveforms consistent, as discussed in Section 3.2.
We find that a and b values obtained from these different approaches differ from 0.5, demon-
strating that the calibration parameters are necessary to account for physical effects missing
in the ppBHPT model. We also notice that apeak and bpeak remain relatively constant
in the early inspiral and then quickly rise near the merger. This explains why the time-
independent a-b scaling used in previous models [45,46] effectively matches the inspiral
waveform but does not perform as well in the late inspiral–merger–ringdown phase.

To emphasize the temporal evolution of the scaling parameters, we show derivatives of
both apeak and bpeak in Figure 4. While subtle, the temporal evolution of a and b introduces
errors in scaled ppBHPT waveforms, as illustrated in Figure 1. If we can incorporate this
time dependence into the scaled ppBHPT waveforms, it has the potential to significantly
enhance our modeling accuracy. However, achieving this improvement necessitates a
systematic investigation into the temporal evolution of a and b over the parameter space of
binary systems. We leave this endeavor for future exploration.
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Figure 3. Calibration parameters, a and b, for a q = 1 BBH system obtained from different approaches
outlined in Section 3.4; these are labeled {“5cycles”, “5000M”, “peaks”}. For comparison, we also
show the scaling of 1

1+1/q
= 0.5 required to change the ppBHPT mass scale to match the NR one. If

a = b = 0.5, then the NR and ppBHPT waveform’s (2, 2) modes are identical. More details can be
found in Section 3.4.
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Figure 4. Time derivative of the scaling parameters apeak and bpeak obtained locally using the “peaks”
method summarized in Section 3.4. While the derivatives are not zero, they remain small and
increase in the late-inspiral stage. This explains why the a-b calibration technique, which assumes
time-independent values for a and b, works particularly well in the inspiral. Further details can be
found in Section 3.4.
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3.5. Understanding a-b Values at the Ringdown

The final piece of our investigation focuses on the ringdown phase of the waveform
where, as shown in Figure 1, the most significant disparities between NR and rescaled
ppBHPT waveforms are observed. This prompts the question of whether alternative a
and b values can be found. We minimize Equation (2) over the final 100M of the signal,
finding optimal values b = 1.063 and a = 0.266, which is significantly different from the
inspiral-based values of b = 0.455557 and a = 0.402599. In Figure 5, we show both the
NR and rescaled ppBHPT ringdown signals using scaling parameter values that arise from
different methods. We see that while the a and b parameters determined from the inspiral
are not appropriate for the ringdown, a different set of parameter values—constant over
the final 100M of the signal—can again deliver an accurate calibration.

0 20 40 60 80 100

t [M ]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

|rh
22

M
|

ppBHPT

ppBHPT rescaled using inspiral

ppBHPT rescaled at ringdown

NR

Figure 5. The ringdown waveform’s (2, 2) mode from NR (black dashed line), ppBHPT waveform
(blue solid line), ppBHPT waveform rescaled using only a and b parameters determined from the
inspiral data (red solid line), and ppBHPT waveform rescaled using a and b parameters determined
from the ringdown data (green solid line). While the a and b parameters determined from the inspiral
are unsuitable for the ringdown, a different set of parameter values—constant over the final 100M of
the signal—can again deliver an accurate calibration. Further details can be found in Section 3.5.

4. Discussion and Conclusions

In this paper, we compared NR and ppBHPT waveforms for an equal-mass binary
black hole system. Given that q = 1 is well outside of the formal range of validity for the
point–particle perturbation theory, this serves as a stress test for ppBHPT. We investigate
the relationship between these ostensibly disparate frameworks through a phenomeno-
logical a-b scaling approach previously introduced as a simple yet effective method to
calibrate ppBHPT waveforms to NR. This approach applied to the waveform’s (2,2) mode
only requires two time-independent parameters to scale the overall amplitude and time
coordinate of the ppBHPT waveforms.

Our findings indicate that the a-b scaling [45,46] (as shown in Equation (1)) performs
reasonably well for equal-mass binaries, except during the late inspiral–merger–ringdown
phase. When compared against NR waveforms of about 5000M in duration, the scaled
ppBHPT waveform yields an L2-norm error of 0.038. As shown here, this error is largely
due to the time-independent assumption of a-b. For larger mass ratios, this assumption
works better, and highly accurate models can be built [45]. For comparable mass ratios, this
breakdown is likely associated with multiple limiting assumptions of ppBHPT, including
the importance of finite size effects and the remnant black hole’s mass and spin values.
Furthermore, by generalizing our calibration parameters to be time-dependent, we illus-
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trate that these parameters (i) have minimal temporal variation in the early inspiral and
(ii) exhibit greater temporal variation as the binary system is about ⇡5 orbits before the
merger. We also show that ringdown-specific scaling values—that are time-independent
over the last 100M of the signal—can be found. A comprehensive exploration of the merger-
ringdown data for various mass ratios and spins will be important for future waveform
calibration endeavors using this method. Despite these challenges, our investigation yields
hopefully insightful observations regarding NR and ppBHPT waveforms under the con-
straints of equal-mass binaries. This work offers interesting insights into the effectiveness
of the a-b scaling in the equal-mass limit as well as its limitations. For example, introducing
a certain amount of time dependence for the calibration parameters a and b may allow
for better-calibrated ppBHPT-based models, such as BHPTNRSur1dq1e4. We leave this for
future work.

One potential limitation of our analysis is that the ppBHPT waveform is generated
using BHPTNRSur1dq1e4 (a surrogate model) outside its training range. Yet direct simulation
of a q = 1 system with the ppBHPT framework was not possible as our time-domain
Teukolsky solver [29–31,52] breaks down at the equal-mass limit (more specifically, the
trajectory generation for the secondary black hole that incorporates adiabatic radiative
corrections fails in the equal-mass limit). While surrogate models can be extrapolated a bit
beyond their training range [5,6], this will bring in additional errors that might compromise
studies that require very high accuracy.
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