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Abstract. We study the impact of nonconvexity on the complexity of nonsmooth optimi-
zation, emphasizing objectives such as piecewise linear functions, which may not be 
weakly convex. We focus on a dimension-independent analysis, slightly modifying a 2020 
black-box algorithm of Zhang-Lin-Jegelka-Sra-Jadbabaie that approximates an ✏-stationary 
point of any directionally differentiable Lipschitz objective using O(✏�4) calls to a special-
ized subgradient oracle and a randomized line search. Seeking by contrast a deterministic 
method, we present a simple black-box version that achieves O(✏�5) for any difference-of- 
convex objective and O(✏�4) for the weakly convex case. Our complexity bound depends 
on a natural nonconvexity modulus that is related, intriguingly, to the negative part of 
directional second derivatives of the objective, understood in the distributional sense.

Funding: This work was supported by the National Science Foundation [Grant DMS-2006990]. 
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1. Introduction
We consider the problem of minimizing a Lipschitz objective function f : Rn! R. We suppose that we are given 
a Lipschitz constant, an initial point x0 2 Rn, and an upper bound on the gap f (x0)� inf f . We have access to f at 
input points x 2 Rn through an oracle that outputs only local information, such as the function value f(x) and a 
subgradient in @f (x). It is easy to see that the problem of approximating the minimum value inf f within a given 
tolerance ✏ > 0 suffers from the curse of dimensionality; it requires what amounts to grid search, needing a num-
ber of oracle calls growing like O 1

✏n

� ⇥
, so depending exponentially on the dimension n.

Relaxing our goals, rather than minimization, we may instead seek points that are, in some sense, nearly criti-
cal. A well-known example is the case of a smooth but nonconvex objective function f : Rn! R, for which find-
ing a point x 2 Rn satisfying |rf (x) |  ✏ is relatively easy. Assuming that f is bounded below and L-smooth, 
meaning that its gradient has a known Lipschitz constant L, elementary calculus shows that the gradient descent 
iteration x x� 1

Lrf (x) always reduces the objective value f(x) by at least 1
2L |rf (x) |2. Assuming a bound M on 

the gap between the initial objective value and inf f , the algorithm succeeds after no more than 2LM
✏2 iterations, 

independent of the dimension n.
Less well known is an interesting analogous result for objectives f that are nonsmooth but convex; Davis and 

Drusvyatskiy [4] present a randomized algorithm that finds a point within a distance ✏ of some point at which f 
has a subgradient with norm no larger than ✏ using Õ 1

✏2

� ⇥
subgradient evaluations. The Õ(·) notation suppresses 

logarithmic factors, but again, the complexity estimate is dimension independent. When f is just weakly convex, 
meaning that the function f + ρ2 | · |2 is convex for some constant ρ > 0, the analogous algorithm (see Davis and 
Drusvyatskiy [5]) still has a dimension-independent complexity bound, now of the form O 1

✏4

� ⇥
.

For general Lipschitz functions f, however, the analogous problem is intractable (see Kornowski and Shamir 
[15]). More precisely, any algorithm guaranteed to approximate within a distance ✏ a point with a Clarke subgra-
dient of norm less than ✏ must suffer from the same curse of dimensionality as grid search, requiring a number 
of subgradients growing like O 1

✏n

� ⇥
.

Although that intractability might seem the end of the question, there is a more relaxed proxy approach to 
minimizing Lipschitz functions, dating back to work of Goldstein [10] in the 1970s. This method can be viewed 
as seeking a point in Rn around which f is differentiable on some cluster of nearby points at which the gradients 
have a small convex combination—a small “Goldstein subgradient” in the language of Goldstein [10]. Although 
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some published algorithms, such as that of Mahdavi-Amiri and Yousefpour [16], accomplished this goal, no 
complexity analysis existed until recently.

A 2020 breakthrough of Zhang et al. [24] presented an algorithm for this Goldstein subgradient problem with 
a complexity analysis depending on the radius δ�of the cluster and the size ✏ of the subgradient but independent 
of the dimension n. The algorithm assumes directional differentiability of the objective f and relying on an associ-
ated directional subgradient oracle, uses an innovative randomized line search to achieve an efficiency guarantee 
of essentially O(✏�3δ�1). The development of Zhang et al. [24] may have practical as well as theoretical interest. 
The basic algorithm in Zhang et al. [24] employs “null” steps, rather like the traditional bundle methods that 
have long enjoyed considerable success in large-scale convex optimization (see Sagastizábal [21]). The practical-
ity of the basic algorithm of Zhang et al. [24] remains unclear, but a related algorithm performs at least compara-
bly with stochastic gradient descent in the authors’ preliminary experiments. Two subsequent papers, Davis 
et al. [6] and Tian and So [22], point out that small random perturbations allow a standard subgradient oracle to 
replace the directional version of Zhang et al. [24].

Two recent developments, Jordan et al. [13] and Kornowski and Shamir [15] (see also Jordan et al. [14]1), raise 
the question of deterministic algorithms for this problem. Although both papers prove positive results in the 
smooth case and Jordan et al. [14] thereby develop a “white-box” deterministic smoothing approach to the non-
smooth problem, both manuscripts also prove negative results for the general dimension-independent question.

However, the negative results of Jordan et al. [13] and Kornowski and Shamir [15] concern general Lipschitz 
optimization. In contrast, by modestly restricting the class of nonsmooth objectives, we are able to develop a sim-
ple deterministic black-box version of the algorithm of Zhang et al. [24] with increased but still dimension- 
independent complexity. Specifically, our contribution is an algorithm that achieves, up to a nonconvexity modulus 
for the objective, a dimension-independent complexity of O(✏�4δ�1), thus derandomizing the method of Zhang 
et al. [24] at the expense of an extra order of ✏. When δ à ✏, we arrive at the estimates noted in the abstract: O(✏�4)
for the original method of Zhang et al. [24] and O(✏�5) for our deterministic modification (which strengthens to 
O(✏�4) in the weakly convex case). A higher level of nonconvexity corresponds to a larger nonconvexity modulus 
and hence, to a larger complexity bound; in this sense, the modulus measures a complexity “cost” for finding 
nearly critical points of nonconvex functions. Our analysis covers interesting objectives, such as piecewise linear 
functions, which are not even weakly convex. We relate the nonconvexity modulus of the objective with its dis-
tributional second derivative, hinting at an intriguing relationship between such derivatives and algorithmic 
complexity in general optimization.

2. The Optimization Problem and Oracle
Primarily to emphasize the elementary nature of our development, we adopt a rudimentary setting for our opti-
mization problem. On a real inner product space X with corresponding norm | · | , we consider the problem of 
minimizing a function f : X! R. The objective f may be neither smooth nor convex, and the space X may be nei-
ther finite dimensional nor even complete. The method we develop, following Zhang et al. [24], relies on an the 
following underlying idea.

Definition 1. We say that an objective function f : X! R has a directional subgradient map G : X2! X when for all 
points x 2 X and directions e 2 X, the Gâteaux directional derivative

f 0(x; e) à lim
t#0

1
t (f (x + te)� f (x))

exists and satisfies
hG(x, e), ei à f 0(x; e):

We say that G is L-bounded for some constant L > 0 if its norm |G(x, e) | is never larger than L.
In applications, the objective function f is L-Lipschitz, and the vector G(x, e) is a subgradient of some kind for f 

at the point x associated with the direction e; therefore, we loosely refer to G(x, e) as a “subgradient.” Nonethe-
less, we choose this rudimentary setting to emphasize again the elementary nature of our development, which 
makes no recourse to variational or Lipschitz analysis.

Example 1 (Differentiable Functions). For any function f that is L-Lipschitz and has a Gâteaux derivative rf (x) at 
every point x 2 X, the equation

G(x, e) à rf (x)
defines an L-bounded directional subgradient map.
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Example 2 (Convex Functions). For an L-Lipschitz convex function f with convex subdifferential @f , any map G 
satisfying

G(x, e) 2 argmax{hg, ei : g 2 @f (x)} for all x, e 2 X 

is an L-bounded directional subgradient map.
More generally, we have the following example, which covers many interesting objectives, including the 

weakly convex case. For a Lipschitz function f : Rn! R, the Clarke subdifferential @cf (x) is the convex hull of the 
set of all limits of the form limrf (xr) for points xr! x in Rn. The function f is subdifferentially regular when its 
Gâteaux directional derivative satisfies

f 0(x; e) àmax{hg, ei : g 2 @cf (x)} for all x, e 2 Rn:

Example 3 (Subdifferentially Regular Functions). Consider any L-Lipschitz subdifferentially regular function 
f : Rn! R. Then, any map G satisfying

G(x, e) 2 argmax{hg, ei : g 2 @cf (x)} for all x, e 2 Rn 

is an L-bounded directional subgradient map.
Notwithstanding the generality of this example, we emphasize that our framework is not restricted to objec-

tives that are subdifferentially regular, as the following result shows.

Proposition 1 (Directional Clarke Subgradient Maps). Any locally Lipschitz function f : Rn! R that is directionally 
differentiable has a directional subgradient map G : Rn ⇥ Rn! Rn satisfying G(x, e) 2 @cf (x) for all x, e 2 Rn.
Proof. We just need to prove that if f has a Gâteaux directional derivative at the point x 2 Rn in the direction 
e 2 Rn, then there exists a Clarke subgradient g 2 @cf (x) satisfying hg, ei à f 0(x; e). For r à 1, 2, 3, : : : , by the non-
smooth mean value theorem, there exists a point xr 2 x, x + 1

r e
⇤ ⌅

and a subgradient gr 2 @cf (xr) satisfying

f x + 1
r e

◆ 
� f (x) à hgr,

1
r ei:

Because the subdifferential @cf mapping is closed and locally bounded, any limit point g of the sequence {gr} has 
the desired property. w

As discussed in Section 1, rather than trying to minimize the objective f, we instead seek a point x 2 X that is, in 
some sense, approximately critical. To this end, we make the following definition. We denote the closed ball in X 
of radius δ�and center x by Bδ(x).
Definition 2. Consider the setting of Definition 1. Corresponding to any constant δ > 0, a Goldstein subgradient at x 
is a vector of the form

Xk

ià1
λiG(xi, ei)

for a positive integer k, positive weights λi summing to one, points xi 2 Bδ(x), and directions ei 2 X for 
i à 1, 2, : : : , k. The set of all Goldstein subgradients is denoted by @δf (x).

Loosely speaking, the Goldstein subdifferential @δf (x) consists of all convex combinations of subgradients at 
nearby points. Strictly speaking, our notion is potentially smaller than the standard definition for Lipschitz 
f : Rn! R, namely the closed convex hull of the set @cf (Bδ(x)).

We can now state our goal, which relies on a second constant ✏ > 0. 
Aim. Find a point x 2 X and a Goldstein subgradient g 2 @δf (x) such that |g |  ✏.

The development of Zhang et al. [24] accomplishes this goal, explicitly in the setting of Proposition 1 and 
assuming that f is directionally differentiable in the (stronger) Hadamard sense. It relies on the following oracle.

Oracle 1 (Directional Subgradient)
Input: 

• a point x 2 X,
• a direction e 2 X.

Output: 
• the objective value f(x),
• the directional derivative f 0(x; e),

Kong and Lewis: The Cost of Nonconvexity in Deterministic Nonsmooth Optimization 
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• a subgradient-like vector G(x, e).
In this work, we rely on the same directional subgradient oracle. We emphasize that this oracle is stronger 

than the standard subgradient oracle. We cannot directly compare our approach with algorithms relying only on 
the standard oracle because the extra computational cost of the directional oracle is hidden in our analysis, just 
as it is in Zhang et al. [24]. How generally available a directional oracle might be is unclear; a cautionary point of 
comparison is the NP hardness of deciding the existence of descent directions (see Nesterov [18]).

In generic practice, however, for a Lipschitz objective f, we may expect that the algorithm we describe never 
encounters points x where f is nondifferentiable, in which case any subgradient oracle simply returns g à rf (x)
(see Bianchi et al. [1]). More formally, nonetheless, we must consider nonsmooth points. Undeterred, Zhang et al. 
[24] argue that availability of the directional oracle, although a nontrivial restriction, may be a reasonable 
assumption, directional subgradients being potentially computable via nonsmooth calculus rules. In contrast 
with Zhang et al. [24], our aim here is a fully deterministic algorithm. Accordingly, although we use this same 
stronger oracle, we instead use a deterministic line search, much as in Kornowski and Shamir [15]. To ensure ter-
mination, we make a mild assumption about the directional behavior of the objective function f, similar in spirit 
to the idea of semismoothness (see Mifflin [17]) common in nonsmooth computation but simpler and weaker.

Rather than the directional subgradient oracle on which we here rely, combined with a line search, one might 
instead consider other potential oracles. In particular, given an oracle that returns a descent direction, one might 
try to mimic smooth techniques, simply searching along that direction. However, even laying aside the NP hard-
ness of a general descent direction oracle noted, such a basic approach is flawed. A classical example of Wolfe 
[23] shows that gradient descent with exact line search on a nonsmooth continuous convex function can encoun-
ter only smooth points and yet, converge to a point that is not a minimizer. Nonsmoothness necessitates a more 
robust approach.

Definition 3. Consider a directionally differentiable function f : X! R. We call f directionally semismooth if all 
points x 2 X and directions e 2 X satisfy

lim
t#0

f 0(x + te; e) à f 0(x; e):

On the other hand, following the approach of Facchinei and Pang [9], f is semismooth if it is Lipschitz, and the fol-
lowing stronger property holds:

f 0(x + e; e)� f 0(x; e) à o(e) as e! 0:
Most Lipschitz functions in practice are semismooth, including in particular, difference-of-convex functions and 
semialgebraic functions; see Bolte et al. [3]. As we shall see, directional semismoothness suffices to guarantee ter-
mination of our algorithm, but before describing it, we focus first on the line search.

Following Zhang et al. [24], as is usual in black-box-style analysis, we suppose that the optimizer has no access 
to the implementation of Oracle 1 (directional subgradient). In one interesting class of practical examples, the 
output “subgradients” may be generated cheaply but opaquely by standard autodifferentiation algorithms, like 
that in PyTorch (see Paszke et al. [19]). Indeed, in the image classification experiments in Zhang et al. [24], where 
precise implementation of the directional subgradient oracle seems challenging, the authors simply use as a heu-
ristic an autodifferentiation routine, assuming that it should never encounter nonsmooth ingredients in practice. 
In fact, even in the presence of nonsmooth ingredients, the occasional failure of autodifferentiation to output cor-
rect subgradients seems to have no impact on practical optimization, for reasons discussed by Bolte and Pauwels 
[2].

As a more precise illustration of the computational cost of the directional subgradient oracle, we present a sim-
ple formal example of an easily implementable version—a special case of Example 3. Consider an objective of the 
form f (x) àmaxi2I fi(x) for smooth functions fi indexed by a finite set I. Given an input consisting of a point x and 
direction e, the oracle works by first finding the active subset I(x) of indices i maximizing fi(x) and then, chooses 
as the output subgradient any gradient rfi(x) maximizing the inner product hrfi(x), ei over i 2 I(x). Typically, the 
gradient computations dominate, so the cost of the directional oracle is proportional to the size of the set I. We 
emphasize, however, that to be interesting, this computation should be invisible to the optimizer; given the same 
access to the functions fi as the oracle, the optimizer could solve the problem easily using classical nonlinear pro-
gramming tools.

3. A Simple Line Search
We pose the line search problem as a self-contained question. Consider points p < q in R and a function h :
[p, q]! R satisfying h(p) > h(q). Suppose that h is right differentiable on the interval [p, q), and an oracle returns, 

Kong and Lewis: The Cost of Nonconvexity in Deterministic Nonsmooth Optimization 
4 Mathematics of Operations Research, Articles in Advance, pp. 1–17, © 2023 INFORMS 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[3

1.
4.

24
5.

16
0]

 o
n 

21
 D

ec
em

be
r 2

02
3,

 a
t 0

5:
59

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 



for any input t 2 [p, q), the value h(t) and the right derivative

h0+(t) à lim
s#t

h(s)� h(t)
s� t 

(possibly extended valued). How difficult is it to find a point t satisfying h0+(t) < 0?
When h is Lipschitz, the most basic randomized strategy—uniformly sampling random points t in the 

interval—solves this problem with high probability. Denoting the Lipschitz constant by L, the right derivative h0+
always lies in the interval [�L, L]. Denote the measure of the subset S of the interval [p, q] where h0+ � 0 by λ. 
Then, providing that the average slope satisfies

h(q)� h(p)
q� p à�σ < 0, 

the fundamental theorem of calculus implies

�σ(q� p) à
Z q

p
h0+(t)dt:

Because the integrand is bounded below by zero on S and by –L on the complement Sc, a set of measure 
(q� p)�λ, we deduce

�σ(q� p) � L
⌘
λ� (q� p)

✓
:

Hence, the probability λq�p that a uniformly distributed random point t 2 [p, q] fails to satisfy h0(t) < 0 is no larger 
than 1� σL. Thus, for small σ, using at least Lσ�independent samples, the probability of success is at least 12.

However, we seek a deterministic algorithm, so we instead consider the following simple method, similar in 
spirit to one described by Davis et al. [6]. We repeatedly bisect the interval [p, q], each time discarding the subin-
terval over which the function h decreases the least. The algorithm checks whether the right derivative at the 
midpoint of the current interval is negative, in which case it terminates.
Algorithm 1 (Search h by Bisection for Negative Derivative)

input: initial interval [p, q]
if h0+(p) < 0 then

return p
end if
l à p
r à q
while not done do

m à 1
2 (l + r)

if h0+(m) < 0 then
return m

else if 2h(m) < h(l) + h(r) then
r à m

else
l à m

end if
end while

Notice that the algorithm initially calls the oracle at the left end point p of the given interval, calculates the 
function value at the right end point q, and then, calls the oracle once during each bisection.

In general, this algorithm may fail to terminate. It is easy to construct a Lipschitz function h satisfying 
h(p) > h(q), and yet, the derivative of h at the initial end point p and at every midpoint m is positive. To rule out 
such oscillatory examples, we can rely on directional semismoothness of h, which in this univariate setting, 
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simply means that the right derivative exists and is right continuous,
lim
t#t

h0+(t) à h0+(t), 

and that the left derivative also exists and is left continuous:

h0�(t) à lim
s"t

h(s)� h(t)
s� t satisfies lim

t"t
h0�(t) à h0�(t):

For Lipschitz functions h, these two properties amount exactly to the property of semismoothness, as discussed 
at the end of Section 2. Most Lipschitz functions in practice are semismooth, including in particular, convex and 
concave functions and piecewise smooth functions. Furthermore, any linear combination of semismooth func-
tions is semismooth. When the function h is semismooth, the Clarke subdifferential is given by

@ch(t) à conv{h0�(t), h0+(t)}, 

and the following property also holds (see Henrion and Outrata [12, lemma 2.2] and Mifflin [17, lemma 2]):

lim
t#t

h0�(t) à h0+(t) and lim
t"t

h0+(t) à h0�(t):

Semismoothness is more than enough to prove termination of the line search. The simple argument also applies 
to non-Lipschitz functions.
Proposition 2 (Termination of the Line Search). Suppose that the function h : [p, q]! R satisfies h(p) > h(q) and that its 
left and right derivatives satisfy the semismoothness conditions

lim
t#t

h0+(t) à h0+(t) for t 2 [p, q)

lim
t"t

h0+(t) à h0�(t) for t 2 (p, q]:

Then, Algorithm 1 terminates.

Proof. If the algorithm does not terminate, then it generates monotonic sequences lk " and rk #, satisfying 
rk� lk! 0,

h0+(lk) � 0, and h(rk)� h(lk)
rk� lk

�σ < 0 

for each iteration k à 0, 1, 2, : : : . (The line search ensures that the ratio in the second inequality never increases.) 
Denote the two sequences’ mutual limit by m. Semismoothness ensures h0+(lk)! h0�(m), so h0�(m) � 0.

If rk àm for all large k, then

h(rk)� h(lk)
rk� lk

à h(m)� h(lk)
m� lk

! h0�(m), 

which is a contradiction. Hence, for all large k, we have q > rk > m. The right end points rk decrease to m and so, 
are always updated eventually; hence, the line search guarantees h0+(rk) � 0. Consequently, semismoothness 
ensures h0+(rk)! h0+(m), so h0+(m) � 0. We deduce

h(m)� h(lk) ��
σ
2 (m� lk) and h(rk)� h(m) >�σ2 (rk�m):

Adding now gives a contradiction. w

4. The Optimization Algorithm
To minimize a locally Lipschitz function f : X! R using the directional subgradient oracle described, we study 
the following algorithm. The method we describe is essentially that of Zhang et al. [24] but with the deterministic 
line search described in the preceding section.
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Algorithm 2 (Minimize Nonsmooth f with Subgradient Oracle G)
input: tolerance ✏ > 0, radius δ > 0, initial point x 2 X
g à G(x, 0) % Initialize subgradient.
while not done do

if |g |  ✏ then
return x % Small subgradient so stop.

end if
ĝ à g

|g | % Normalize subgradient.
x0 à x� δĝ % Trial step of fixed length.
if f (x)� f (x0) � δ✏3

x à x0 % Sufficient decrease so update point.
g à G(x, 0) % Reinitialize subgradient.

else % Insufficient decrease so update subgradient.
Define h on [0,δ] by

x(t) à x + (t� δ)ĝ
h(t) à f (x(t))� ✏t

2 .
Apply Algorithm 1 (bisection) using the formula

h0+(t) à hG(x(t), ĝ), ĝi� ✏
2

to find t 2 [0,δ] satisfying h0+(t) < 0.
g à shortest vector in [g, G(x(t), ĝ)]

end if
end while

Notice that, in contrast with the classical subgradient method but like many classical approaches involving 
line searches, trust regions, or subgradient bundling techniques, this algorithm only updates the current iterate 
when it satisfies a sufficient decrease condition. Intermediate “null” steps serve to shorten the current Goldstein 
subgradient g.

When the objective f is directionally semismooth, Algorithm 1 terminates by Proposition 2, which in turn, 
guarantees termination of Algorithm 2, as we shall now prove. We use the following simple tool, following 
Zhang et al. [24].

Lemma 1. If two vectors g, g0 2 BL(0) satisfy hg0, gi  1
2 |g |2, then the shortest vector g00 in the line segment [g, g0] satisfies

|g00 |2  |g |2 1� |g |2
16L2

 !

:

Proof. For all t 2 [0, 1], we have

|g00 |2  |g + t(g0� g) |2 à |g | 2 + t2 |g0� g |2 + 2thg, g0� gi
 |g |2(1 + t� 2t) + t2( |g | + |g0 | )2  (1� t) |g | 2 + 4L2t2:

Setting t à |g | 2

8L2 proves the result. w

We can now prove the validity of the algorithm, again imitating parts of the argument in Zhang et al. [24], 
which we reproduce for ease of reading.
Theorem 1 (Finite Termination). Suppose that we apply Algorithm 2 to a directionally semismooth function f : X! R 
that is bounded below, with tolerance ✏ > 0, radius δ > 0, and initial point x0 2 X. Suppose that the directional subgradient 
map in Oracle 1 is L-bounded. Then, the algorithm terminates with a point x 2 X and a subgradient g 2 @δf (x) satisfying 
|g |  ✏. The number of line searches required does not exceed

&
3(f (x0)� inf f )

δ✏

’

· 16L2

✏2 : (1) 

Proof. Suppose that the current subgradient g is inadequate in the sense that, in the terminology of the algorithm 
description, it neither is small nor generates sufficient decrease. We then apply the bisection method, Algorithm 1, 

Kong and Lewis: The Cost of Nonconvexity in Deterministic Nonsmooth Optimization 
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to the given function h. The initial interval is [p, q] à [0,δ], and the average slope satisfies
h(q)� h(p)

q� p à 1
δ

f (x)� δ✏2 � f (x0)
◆ 

<� ✏
6 :

We thus arrive at a subgradient g0 2 @δf (x) satisfying hg0, ĝi < ✏
2. We deduce hg0, gi < |g | 2

2 . The algorithm replaces 
the current subgradient g by the shortest vector g00 in the line segment [g, g0]. Because g00 2 @δf (x), we can repeat 
this shortening process, providing that g00 is also inadequate. Suppose that the subgradient g remains inadequate 
after completing k such shortening steps. Let ρi denote the quantity |g | 2

16L2 after i à 0, 1, 2, : : : , k steps. Then, ρ0  1
16, 

and for each I, we have
0 < ρi+1  ρi(1� ρi), 

so
1
ρi+1
� 1
ρi

+ 1
1� ρi

>
1
ρi

+ 1:

Consequently,
1
ρk
� 16 + k, 

so we deduce

✏2

16L2 <
|g |2
16L2 

1
16 + k :

Hence, after no more than

16 L2

✏2 � 1
◆ 

shortening steps, each requiring one line search, we arrive at an adequate subgradient g 2 @δf (x). To summarize, 
starting at any point with an inadequate subgradient, we require no more than 16L2

✏2 line searches before finding 
an adequate subgradient g.

There are now two possibilities. Either the subgradient g satisfies |g |  ✏, in which case we stop, or we perform 
a reduction step, replacing the current point x by x� δ g

|g | , thereby decreasing the objective value by at least the 
quantity δ✏3 . Because the objective is bounded below, beginning from the initial point x0, this procedure terminates 
after no more than d 3

δ✏ (f (x0)� inf f ))e reduction steps, from which the line search bound (1) follows. Proposition 2
ensures that each line search requires only finitely many oracle calls, completing the proof. w

5. Complexity of the Line Search
To complete our complexity analysis for the minimization algorithm, we simply need to bound the number of 
oracle calls needed by each line search and multiply by our bound (1) on the number of line searches. Consider, 
therefore, the bisection method. When the function h : [p, q]! R is convex, the problem is trivial; because

h(p) > h(q) ) h0+(p) < 0, 

the algorithm terminates at the first oracle call. More generally, we proceed by correcting any lack of convexity 
in h by adding a convex perturbation s : [p, q]! R.

Recall that, for any interval J, a function h : J! R is difference of convex when there exists a convex function s :
J! R such that h + s is also convex. For such functions, we have the following tool.
Lemma 2. Consider a function h : [p, q]! R and a convex function s : [p, q]! R such that h + s is also convex. For any 
points x < y in the interval [p, q], if h0+(x) � 0, then

h(y)� h(x)
y� x � s0+(x)� s0�(y):

Kong and Lewis: The Cost of Nonconvexity in Deterministic Nonsmooth Optimization 
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Proof. Denote the convex function h + s by r. The convex functions r and s satisfy
r0+(x) 2 @r(x) and s0�(y) 2 @s(y):

Hence,
s0�(y)(x� y)  s(x)� s(y) à r(x)� h(x)� r(y) + h(y)

 h(y)� h(x) + r0+(x)(x� y)  h(y)� h(x) + s0+(x)(x� y), 
and the result follows. w

We can then use the change in derivative of the necessary perturbation s to bound the number of iterations in 
the line search.
Theorem 2. Consider a function h : [p, q]! R and a convex function s : [p, q]! R such that h + s is also convex. If the 
bisection method, Algorithm 1, evaluates h0+, the right derivative, k � 1 times without terminating, then

h(q)� h(p)
q� p � s0+(p)� s0�(q)

k :

Proof. We proceed by induction on the number of evaluations k à 1, 2, 3, : : : . The case k à 1 follows immediately 
from Lemma 2 by setting x à p and y à q.

Suppose that the result holds for any points p < q and for any number of evaluations no larger than k. Now, 
consider an instance of the algorithm that completes k + 1 evaluations. After the first evaluation, consider the 
midpoint m à 1

2 (p + q). There are two possible cases depending on whether
2h(m) < h(p) + h(q): (2) 

We consider them in turn.
Suppose first that Inequality (2) holds. After the first evaluation, the algorithm makes k further evaluations, 

beginning with the initial interval [p, m]. Hence, by the induction hypothesis,
h(m)� h(p)

m� p � s0+(p)� s0�(m)
k :

Because the algorithm did not terminate during the first two evaluations, we know h0+(m) � 0. Applying Lemma 
2 with x à m and y à q shows

h(q)� h(m)
q�m � s0+(m)� s0�(q):

Hence,
s0+(p)� s0�(q)  (s0+(p)� s0�(m)) + (s0+(m)� s0�(q))

 k h(m)� h(p)
m� p + h(q)� h(m)

q�m

à (k � 1) h(m)� h(p)
m� p + h(m)� h(p)

m� p + h(q)� h(m)
q�m

◆ 

à (k � 1) h(m)� h(p)
m� p + 2 h(q)� h(p)

q� p

< (k � 1) h(q)� h(p)
q� p + 2 h(q)� h(p)

q� p à (k + 1) h(q)� h(p)
q� p , 

as required.
The case where Inequality (2) fails is similar. After the first bisection, the algorithm makes k further bisections, 

beginning with the initial interval [m, q]. Hence, by the induction hypothesis,
h(q)� h(m)

q�m � s0+(m)� s0�(q)
k :

Kong and Lewis: The Cost of Nonconvexity in Deterministic Nonsmooth Optimization 
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Because the algorithm did not terminate during the first bisection, we know h0+(p) � 0. Applying Lemma 2 with 
x à p and y à m shows

h(m)� h(p)
m� p � s0+(p)� s0�(m):

Hence,

s0+(p)� s0�(q)  (s0+(p)� s0�(m)) + (s0+(m)� s0�(q))

 h(m)� h(p)
m� p + k h(q)� h(m)

q�m

à h(m)� h(p)
m� p + h(q)� h(m)

q�m

◆ 
+ (k� 1) h(q)� h(m)

q�m

à 2 h(q)� h(p)
q� p + (k� 1) h(q)� h(m)

q�m

 2 h(q)� h(p)
q� p + (k� 1) h(q)� h(p)

q� p à (k + 1) h(q)� h(p)
q� p , 

as required. w

Definition 4. Given any interval J ⇢ R, the concave deviation of a function h : J! R is the infimum of the Lipschitz 
constants of convex functions s : J! R such that the sum h + s is also convex.

Consider, for example, a ρ-weakly convex function h, for some constant ρ � 0, meaning that the function t !̀
h(t) + ρ2 t2 is convex.
Proposition 3. Any ρ-weakly convex function h : [p, q]! R, for ρ � 0, has concave deviation at most ρ2 (q� p).
Proof. The function s(t) à ρ2 t� p+q

2
� ⇥2 is convex, with Lipschitz constant ρ2 (q� p), and h + s is also convex. w

The concave deviation for functions that are not weakly convex may shrink more slowly than the length of the 
interval. For example, on the interval [�δ,δ], the function h(t) à� |t | 3

2 has concave deviation 3
2

ÇÇÇ
δ
p

, and the piece-
wise linear function � | · | has concave deviation 1.

The concave deviation of a function h : [p, q]! R that is difference of convex may not be finite. An example is 
the concave function ÇÇ·p on the interval [0, 1]. However, if h extends to a difference-of-convex function on an 
open interval containing the interval [p, q], then its nonconvexity bound on [p, q] must be finite because we can 
write h as a difference-of-convex functions, each of which must be Lipschitz on [p, q].

Consider any continuous semialgebraic function h : R! R. We can partition R into finitely many closed inter-
vals J such that each restriction h | J is either convex or concave. In general, such a partition may not guarantee 
that h is difference of convex; an example is the function x1

3. However, if h is also Lipschitz, then each convex or 
concave ingredient h | J extends to a corresponding convex or concave Lipschitz function on R, and from these, 
we can easily decompose h into a difference-of-convex Lipschitz functions. Thus, all semialgebraic Lipschitz 
functions on R are difference of convex, with finite concave deviation on any bounded interval.
Corollary 1 (Line Search Complexity). If a function h : [p, q]! R has finite concave deviation M and average rate of 
decrease

σ à�h(q)� h(p)
q� p > 0, 

then the number of evaluations of h0+, the right derivative, required before the bisection method, Algorithm 1, terminates is 
no more than 1 + b2M

σ c.
Proof. Suppose that the bisection method evaluates the right derivative k � 1 times without terminating. Fix any 
value M0 >M. By assumption, there exists a convex function s with Lipschitz constant less than M0 such that the 
sum h + s is also convex. From Theorem 2, we deduce the inequalities

�σ � s0+(p)� s0�(q)
k >

�2M0
k , 

so k < 2M0
σ . Because M0 was arbitrary, we deduce k  2M

σ , and hence, k  b2M
σ c. The result follows. w
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Given an open interval I, consider a difference-of-convex function h : I! R. As observed by Hartman [11], 
such functions are characterized by having left and right derivatives everywhere, which furthermore, are of 
bounded variation on every compact interval in I. Any such function h also has a second derivative D2h in the 
distributional sense; in general, it is a signed Radon measure on the interval I (see Dudley [7]).

We review briefly the underlying construction. Consider any convex function s : I! R. Its right derivative s0+
is nondecreasing and right continuous, and hence, it defines a nonnegative Radon measure D2s on the interval I 
via the property

(D2s)(p, q] à s0+(q)� s0+(p) for all p < q in I:

(We could equivalently work from the property (D2s)(p, q) à s0�(q)� s0+(p).) More generally, for any difference-of- 
convex function h : I! R, consider any convex function s : I! R such that h + s is also convex. The second deriv-
ative D2h is just the signed measure D2(h + s)�D2s, which is independent of the choice of s. Convexity of h is 
characterized by the property D2h � 0. More generally, the Jordan decomposition decomposes D2h uniquely into 
a difference of nonnegative Radon measures,

D2h à (D2h)+ � (D2h)�, 

with the minimality property (see Rudin [20, p. 127]) that any other decomposition into a difference of nonnega-
tive Radon measures D2h à λ�µ satisfies λ � (D2h)+ and µ � (D2h)�.
Theorem 3. If the function h : [p, q]! R is difference of convex, then its concave deviation is

1
2 (D2h)�(p, q):

Proof. Consider any convex function s : [p, q]! R such that h + s is also convex. The second derivatives satisfy

D2h àD2(h + s)�D2s, with D2(h + s) � 0 and D2s � 0, 

so the minimality of the Jordan decomposition implies D2s � (D2h)�. If s is M-Lipschitz on [p, q], then

M �max �s0+(p), s0�(q)
 ⌦

� s0�(q)� s0+(p)
2 à 1

2 (D2s)(p, q) � 1
2 (D2h)�(p, q):

If the right-hand side is infinite, this completes the proof; so, suppose that it is finite. Define a function g : (p, q]!
R by

g(t) à (D2h)�(p, t):

Then, g is a nonnegative nondecreasing left-continuous function that is bounded above and g(t) # 0 as t # p. Now, 
define a convex function s : [p, q]! R by

s(t) à
Z t

p
g(τ)dτ:

Then, s0�(t) à g(t) for all t 2 (p, q] and s0+(p) à 0. Furthermore, we have

D2(h + s) àD2h + D2s àD2h + (D2h)� à (D2h)+ � 0, 

so the sum h + s is also convex. The function

t !̀ s̃(t) à s(t)� 1
2 s0�(q)t 

is also convex, as is h + s̃, and the function s̃ has Lipschitz constant

�s̃0+(p) à s̃0�(q) à
1
2 s0�(q) à

1
2 (D2h)�(p, q):

This completes the proof. w

As an illustration, we have the following result.
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Corollary 2 (Piecewise Linear Functions). Consider a continuous piecewise linear function h : [p, q]! R, with m deriva-
tive discontinuities t1 < t2 <⋯< tm in the interval (p, q). Define t0 à p and tm+1 à q, and let gi be the value of the derivative 
on the interval (ti, ti+1) for 0  i m. Then, h has concave deviation

1
2
Xm

ià1
(gi�1� gi)+:

If h is L-Lipschitz, then this bound is no larger than dm2eL.
Proof. Denoting a unit point mass at the point t by δt, we have

D2h à
X

i
(gi � gi�1)δti , 

and hence,

(D2h)� à
X

i
(gi�1 � gi)+δti , 

from which the claimed equation follows. The inequality is an easy consequence, using |gi |  L for each i. w

As an illustration, we present an example that underlines why the line search complexity estimate in Corollary 
1 is the best that we can expect in general. In outline, although the functions h : [p, q]! R that we consider satisfy 
h(p) > h(q), their derivatives may often be positive.
Example 4 (Optimality of the Line Search). Consider any constant M > 0 and a set T ⇢ [0, 1) of cardinality strictly 
less than 2M. Then, there exists a function h : [0, 1]! R with concave deviation less than M that satisfies h(0) à 0 
and h(1) à�1 and that has strictly positive derivative throughout T.

To see this, suppose first T ⇢ (0, 1). (The case when T contains zero is an easy modification.) Enumerate the 
points in increasing order:

t1 < t2 <⋯< tk, 

where k < 2M. Define h(0) à 0 and h(1) à�1. Fix any small γ > 0, and define

h(ti� γ) à�ti� γ2 and h(ti + γ) à�ti + γ2 for i à 1, 2, : : : , k:

At intermediate points in [0, 1], define h by linear interpolation. A quick calculation, using Corollary 2, shows 
that h has concave deviation

1
2
Xk�1

ià1

ti+1� ti + 2γ2

ti+1� ti� 2γ + γ
◆ 

+ 1
2

1� tk + γ2

1� tk� γ
+ γ

◆ 
à k

2 + O(γ) <M 

providing that γ�is sufficiently small.
Now, consider any line search method applicable to functions h : [0, 1]! R satisfying h(0) à 0 and h(1) à�1, 

relying on evaluations of the value h and the right derivative h0+ at points chosen one by one, and terminating 
once a derivative is negative. Suppose that the method is guaranteed to terminate after at most k queries, provid-
ing that the underlying function h has concave deviation strictly less than some given value M > 0. The example 
proves k � 2M.

6. Multivariate Functions
To understand the complexity of Algorithm 2 (nonsmooth minimization), we apply our analysis in the previous 
section to restrictions of multivariate objectives f to line segments. For any convex set C ⇢ X, consider a function 
f : C! R. Given any length δ > 0, let Λ(δ) denote the supremum over all points x, y 2 C with |x� y |  δ�of the 
concave deviation for the function h : [0,δ]! R defined by

h(t) à f x + t
δ
(y� x)

◆ 
: (3) 

We call the function Λ : R++! [0, +1] the nonconvexity modulus for f. The following illustration follows immedi-
ately from Proposition 3.
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Proposition 4. The nonconvexity modulus of any ρ-weakly convex function (for ρ � 0) satisfies

Λ(δ)  ρδ2 :

More generally, the function f is difference of convex when there exists a convex function q : C! R such that f + q 
is also convex.
Proposition 5. Consider a convex set C ⇢ X and functions f , q : C! R with both q and f + q convex. If q is M-Lipschitz, 
then the nonconvexity modulus of f satisfies Λ(δ) M for all δ > 0.

Proof. Consider any points x, y 2 C with |x� y |  δ�and the function h defined by Equation (3). The function s :
[0,δ]! R defined by

s(t) à q x + t
δ
(y� x)

◆ 

is convex and M-Lipschitz, and h + s is convex; therefore, the concave deviation of h is no larger than M. The 
result follows. w

As a consequence, we deduce the following result.
Corollary 3. Consider any convex sets C ⇢ C0 ⇢ Rn, where C is nonempty and compact and C0 is open, and any difference- 
of-convex function f : C0 ! R. Then, the nonconvexity modulus of the restriction fC is uniformly bounded; there exists a 
finite constant M such that Λ(δ) M for all δ > 0.

In particular, because polyhedral functions are globally Lipschitz, we have the following fact.
Corollary 4. If a function f : X! R is the difference p � q between a convex function p : X! R and a polyhedral convex 
function q : X! R, then the nonconvexity modulus of f is no larger than any Lipschitz constant for q.

More generally, consider a continuous function f : X! R that is semilinear in the sense that X is a finite union 
of polyhedra, on each of which the function f is affine. Any such function has a Lipschitz constant L and further-
more, a uniform upper bound m on the number of possible gradient discontinuities in any function of the form 
(3). By Corollary 2, we deduce that the nonconvexity modulus Λ(δ) is no larger than dm2eL.

Returning to our analysis of Algorithm 2, we are ready for our main result.

Theorem 4 (Complexity of Minimization). Given a tolerance ✏ > 0 and a radius δ > 0, consider a convex set C ⇢ X, a func-
tion f : C! R that is bounded below, an associated L-bounded directional subgradient map G : X2! X, and an initial point 
x0 2 C such that

f (x)  f (x0) and |y |  δ ) x + y 2 C:

Suppose that f has finite nonconvexity modulus Λ(δ). Then, Algorithm 2 (nonsmooth minimization) requires at most
⇡

3(f (x0)� inf f )
δ✏

⇢
· 16L2

✏2 · 1 +
⌫

12Λ(δ)
✏

⇠◆ 

calls to Oracle 1 (directional subgradient) to find a point x 2 X and a Goldstein subgradient g 2 @δf (x) satisfying |g |  ✏.
Proof. Corollary 1 with σ à ✏

6 shows that the bisection method requires at most

1 +
⌫

12Λ(δ)
✏

⇠

oracle calls to terminate. Then, one further call returns the desired subgradient g0 2 @δf (x) satisfying hg0, gi < |g | 2

2 . 
Multiplying by the bound (1) on the number of line searches completes the argument. w

When the objective f is weakly convex, Proposition 4 implies a complexity bound of the form O 1
✏3

� ⇥ 1
✏ + 1
δ

� ⇥� ⇥
. In 

the case ✏ à δ, we arrive at the bound O 1
✏4

� ⇥
noted in the abstract.

7. Conclusion
In summary, our deterministic algorithm, when applied to difference-of-convex objectives with bounded non-
convexity modulus, returns a point with an ✏-Goldstein subgradient of norm no larger than ✏ after O(✏�5) oracle 
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calls. (In the weakly convex case, Proposition 5 reduces this bound to O(✏�4).) By contrast, for arbitrary Lipschitz 
objectives, the algorithm of Zhang et al. [24] enjoys a superior O(✏�4) complexity bound but depends fundamen-
tally on randomization. Our deterministic approach also has the merit of quantifying, through the modulus, how 
the cost in complexity of optimizing nonsmooth objectives grows with their level of nonconvexity.

Acknowledgments
The authors thank two anonymous referees for many constructive suggestions.

Appendix. Distributional Second Derivatives
We saw previously that the concave deviation of a univariate function h is determined by the negative part of its second 
distributional derivative D2h. In our application, we consider functions h that are restrictions of the underlying objective f 
to line segments of fixed length δ. We would, therefore, expect the nonconvexity modulus of f to be related to its own 
distributional second derivative. Here, we explore that relationship informally.

Consider a locally Lipschitz function f : Rn! R. The distributional derivative of f is an n-vector Df, entries of which 
are distributions—linear functionals on the space of smooth, compactly supported functions g : Rn! R (test functions)— 
that are continuous with respect to uniform convergence on compact sets. We can define Df through the relationship

huT(Df ), gi à�
Z

f (uTrg)

for all vectors u 2 Rn and test functions g : Rn! R. However, by a suitable version of Rademacher’s theorem (see Evans 
and Gariepy [8, section 6.2, theorem 1]), the gradient rf exists almost everywhere and is essentially bounded, and it 
satisfies

huT(Df ), gi à
Z

g(uTrf ):

In standard terminology (see Evans and Gariepy [8]), we can identify the classical gradient rf with both the distribu-
tional derivative Df and the “weak” derivative of f.

The second distributional derivative of f is an n-by-n matrix D2f , entries of which are distributions. We can define D2f 
through the relationship

huT(D2f )v, gi à�
Z

(uTrf )(vTrg)

for all vectors u, v 2 Rn and test functions g. If f is smooth, then D2f is just the matrix-valued measure with density r2f . 
More generally, we must consider D2f as a distribution, but at least for convex functions, we can be more specific; it is a 
positive semidefinite-valued Radon measure (see Dudley [7] and Evans and Gariepy [8, section 6.3]).

Example A.1 (A Piecewise Linear Function). Consider the convex function f : R2! R defined by f (x) à x+
1 . For any vectors 

u, v 2 R2 and smooth, compactly supported function g : R2! R, we have

huT(D2f )v, gi à�
Z

x1>0
u1vTrg(x)dx à�u1

Z

x1>0
div(g(x)v)dx

à�u1

Z

R
(�e1)T

⌘
g
⌘h0

y

i✓
v
✓

dy à u1v1

Z
g
⌘h0

y

i✓
dy, 

by the Gauss–Green formula. Thus, D2f is the matrix µ 0
0 0

� �
, where the measure µ is related to Lebesgue measure λ�via

µ(S) à λ
n

s 2 R :
h

0
s

i
2 S
o

, (A.1) 

for all measurable subsets of S ⇢ R2.
For a more general understanding, we begin with the univariate case.

Example A.2 (Univariate Convex Functions). Consider a convex function f : R! R. For 0 < γ < 1, we can construct a 
smooth approximation hγ : R! [0, 1] of the standard step function, with the following properties:

hγ(t) à

0 (t  0)
γ2 (t à γ2)
1� γ2 (t à γ� γ2)
1 (t � γ),

8
>>>><

>>>>:

and h is convex on [0,γ2], linear on [γ2,γ� γ2], and concave on [γ� γ2,γ]. For any interval (p, q] ⇢ R, the test function rγ :
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R! [0, 1] defined by

rγ(t) à
hγ(t� p) (t  p + γ2)
1 (p + γ2  t  q)
1� hγ(t� q) (t � q)

8
><

>:

converges pointwise to the characteristic function χ(p, q] pointwise as γ # 0. By dominated convergence, we deduce
Z

rγ d(D2f )!
Z
χ(p, q] d(D2f ) à (D2f )(p, q]:

However, the left-hand side is

�
Z

r0γf 0 à �
Z p+γ

p

1
γ

+ O(1)
◆ 

f 0 �
Z q+γ

q
� 1
γ

+ O(1)
◆ 

f 0

à f (q + γ)� f (q)
γ

� f (p + γ)� f (p)
γ

+ O(γ)

à f 0+(q)� f 0+(p) + O(γ)

as γ # 0. We, thus, reproduce our earlier definition:

(D2f )(p, q] à f 0+(q)� f 0+(p):
Clearly, this fact also holds for any difference-of-convex function f : R! R.

The modulus of nonconvexity for a function f : Rn! R, which we denoted Λ(δ) (for δ > 0), is the supremum of the con-
cave deviation of the restriction of f to line segments of the form

S à {z + tw : 0  t  δ}
for some point z 2 Rn and unit direction w 2 Rn. That concave deviation is the measure of S under the negative part of the 
measure D2(f |S). We would, therefore, like to compare the distributional second derivative of this restriction with the dis-
tributional second derivative D2f . As we see in the next result, we should focus specifically on the directional distributional 
second derivative wT(D2f )w.

A simple approach is furnished by mollification. We fix a mollifier φ : Rn! R: a test function satisfying 
R
φ à 1 and 

with the property that, as γ # 0, the function φγ(x) à γ�nφ 1
γx

⌘ ✓
converges as a distribution to the Dirac delta function. 

Given a Radon measure µ on Rn and any test function g : Rn! R, we can define the convolution g?µ : Rn! R by

(g?µ)(y) à
Z

g(y� x)dµ(x):

Theorem A.1 (Chain Rule via Mollification). Consider a locally Lipschitz function f : Rn! R, a mollifier φ : Rn! R, and a direc-
tion w 2 Rn. Then, for almost all points z 2 Rn, the function f is differentiable almost everywhere on the line z + Rw, and the distri-
butional second derivative D2h of the function defined by

h(t) à f (z + tw) (t 2 R)
is the distributional limit, as γ # 0, of the convolution

t !̀
⌘
φγ?

⌘
wT(D2f )w

✓✓
(z + tw):

Proof. By Rademacher’s theorem and standard properties of convolutions (see Evans and Gariepy [8, section 4.2, theo-
rem 1(iv)]), there exists a full measure set ⌦ ⇢ Rn, on which f is differentiable and the convolution φγ?(wTrf ) converges 
pointwise to the essentially bounded function wTrf . By Fubini’s theorem, for almost all points z 2 Rn, we have z + tw 2⌦
for almost all t 2 R. Restricting attention to such z, consider any test function g : R! R. Fubini’s theorem implies

Z

t2R
g(t)
Z

x2Rn
φγ(z + tw� x)d(wT(D2f )w)(x)dt

à
Z

x

Z

t
g(t)φγ(z + tw� x)dt

◆ 
d(wT(D2f )w)(x)

à
Z

x
wTrf (x) wT

Z

t
g(t)rφγ(z + tw� x)dt

◆ 
dx:
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(We can interchange the order of differentiation and integration because the test functions g and φγ�are well behaved.) 
Rewriting, integrating by parts, and using Fubini’s theorem and dominated convergence again, we obtain

Z

x
wTrf (x)

Z

t
g(t)wTrφγ(z + tw� x)dt dx

à
Z

x
wTrf (x)

Z

t
g(t) d

dtφγ(z + tw� x)dt dx

à�
Z

x
wTrf (x)

Z

t
g0(t)φγ(z + tw� x)dt dx

à�
Z

t
g0(t)

Z

x
φγ(z + tw� x)wTrf (x)dx dt

à�
Z

t
g0(t)

⌘
φγ?(wTrf )

✓
(z + tw)dt

!�
Z

t
g0(t)wTrf (z + tw)dt à�

Z
g0h0 à

Z
g d(D2h), 

as desired. w

In this result, the effect of the convolution is to focus attention on the line through the point z in the direction w. In 
informal language, we deduce that the modulus of nonconvexity Λ(δ) is determined by the concentration of the negative 
parts of the measures wT(D2f )w around line segments of length δ�in unit directions w.

For more intuition on directional distributional second derivatives of the form wT(D2f )w, let us consider a convex func-
tion f : R2! R. After a suitable choice of basis, we can suppose that w is the first unit vector e1 and therefore, consider 
the Radon measure (Df )11. To understand this measure, consider the integral

Z

R2
rγ(x1)g(x2)d(D2f )11(x)

for the function rγ�of Example A.2 and any test function g : R! R. As γ # 0, we observe
Z

R2
rγ(x1)g(x2)d

⌘
eT

1 (D2f )e1
✓
(x) à�

Z

R2

⌘
eT

1rf (x)
✓
·
⌘

eT
1r

⌘
rγ(x1)g(x2)

✓✓
dx

à�
Z

R2

@f
@x1

r0γ(x1)g(x2)dx1 dx2

!
Z ⌘

f 0
⌘hq

t

i
;
h1

0

i✓
� f 0

⌘hp

t

i
;
h1

0

i✓✓
g(t)dt:

More generally, this argument suggests, loosely, that wT(D2f )w measures the variation of the directional derivative f 0(·; w)
along the direction w.

Endnote
1 We became aware of these concurrent independent works after completing the initial draft of this manuscript.
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