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Abstract

Today, creators of data-hungry deep neural networks (DNNs)
scour the Internet for training fodder, leaving users with little
control over or knowledge of when their data is used to train
models. To empower users to counteract unwanted data use,
we design, implement and evaluate a practical system that
enables users to detect if their data was used to train an DNN
model. We show how users can create special data samples
we call isotopes, which introduce “spurious features” into
DNNs during training. With only query access to a model
and no knowledge of the model training process, or control
of the data labels, a user can apply statistical hypothesis test-
ing to detect if the model learned these spurious features by
training on the user’s data. Isotopes turn DNNs’ vulnera-
bility to memorization and spurious correlations into a tool
for data provenance. Our results confirm efficacy in multiple
settings, detecting and distinguishing between hundreds of
isotopes with high accuracy. We further show that our sys-
tem works on public ML-as-a-service platforms and larger
models such as ImageNet, can use physical objects instead
of digital marks, and remains generally robust against sev-
eral adaptive countermeasures.

1 Introduction

As machine learning (ML) systems grow in scale, so do
the datasets they are trained on. State-of-the-art deep neu-
ral networks (DNNs) for image classification and language
generation are trained on hundreds of millions or billions of
inputs [6, 68, 84]. Often, training datasets includes users’
public and private data, collected with or without users’ con-
sent. Examples include training image analysis models on
photos from Flickr [68], companies like Clearview.ai train-
ing facial recognition models on photos scraped from so-
cial media [29], DeepMind training a kidney disease pre-
diction model on records from U.K.’s National Health Ser-
vice [46], and Gmail training its Smart Compose text com-
pletion model on users’ emails [11].
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Today, users have no agency in this process, beyond
blindly agreeing to the legal terms of service for social net-
works, photo-sharing websites, and other online services.
Even when users give permission for use of their images,
they have little control over how those images may later be
shared or disseminated [40]. Beyond searches through spe-
cific public datasets like LAION-5B [36], every day users
have no systematic way to check whether their data was used
to train a model [68].

In this paper, we design, implement, and evaluate a practi-
cal method that enables users detect if their data was used to
train a DNN model, with only query access to the model and
no knowledge of its labels or parameters. Our main idea is to
have users introduce special inputs we call isotopes into their
own data. Like their chemical counterparts, isotopes are
similar to normal user data, with a few key differences. Our
isotopes are crafted to contain “spurious features” that the
model will (mistakenly) consider predictive for a particular
class during training. Isotopes are thus amenable to a new
type of inference: a user who knows the isotope features can
tell, by interacting with a trained model, whether isotope
inputs were part of its training dataset or not. Similar
inference attacks, such as membership inference [66], are
typically interpreted as attacks on the privacy of training
data. We—helped by the propensity of DNN models to learn
spurious correlations—turn them into an effective tool for
tracing data provenance.

Our contributions. We present a practical data isotope
scheme that can be used to trace image use in real-world sce-
narios (e.g., tracing if photos uploaded to a social website
are used for DNN training). The key challenge is that users
neither know, nor control the supervised classification tasks
for which their images may be used as training fodder. While
users are free to modify the content of their images, they do
not select the corresponding classification labels, nor know
the other labels, nor have any visibility into the models being
trained. This precludes the use of “radioactive data” [59],
“backdoor” techniques [32], and other previously proposed
methods for dataset watermarking (more discussion in §2.2).


http://arxiv.org/abs/2208.13893v2

Our method creates isotopes by blending out-of-
distribution features we call marks into images. When
trained on these isotopes, a model learns to associate one of
its labels with the spurious features represented by the mark.
By querying the model’s API, a user can verify that the
presence of the mark in a test image alters the probability of
a low-likelihood output label in a statistically significant way.
Verification uses statistical hypothesis testing to determine
if the model assigns a consistently higher probability to a
certain class when the mark is present, independently of
other image features. Success implies the user’s marked
isotopes were present in the model’s training dataset.

A key point of our design is to enable usage by non-ML
experts. As a result, our method does not require the user
to train shadow or surrogate models, nor compute or analyze
gradients of publicly available models.

The key contributions of this paper are:

* We propose a novel method for data provenance in
DNN models using “isotope” data to create spurious cor-
relations in trained models (§3, §4), and a technique for
users to detect if a model was trained on their isotope data.

* We demonstrate the efficacy of our isotope scheme on
several benchmark tasks, including the facial recogni-
tion tasks PubFig and FaceScrub, and show that it re-
mains effective even when multiple users independently
add isotopes to their respective data (§5). Despite the po-
tential challenge of having a model learn many isotope-
induced spurious features, we find that our verifier can de-
tect and distinguish isotopes with high accuracy and few
false positives, even up to 215 FaceScrub isotopes, with
minimal impact on normal model accuracy.

* We show that physical objects can act as isotope marks
with up to 95% accuracy (§6), demonstrating that our
scheme works even if users cannot digitally modify im-
ages of themselves (e.g., when images from surveillance
cameras are used to train facial recognition models).

* We evaluate isotope performance in realistic settings
(§7), including larger models like ImageNet and ML-as-a-
service platforms like Google’s Vertex Al. Isotopes have
97% detection accuracy in ImageNet and 89% in Vertex.

* Finally, we evaluate several adaptive countermeasures
that an adversarial model trainer may deploy against iso-
topes (§8). All of them either fail to disrupt isotope detec-
tion, or incur very high costs in false positives or reduced
model accuracy, or both.

We view our isotope scheme as a tool for user-centric au-
diting of DNN models, as well as ML governance in general.
The goal of detecting use of personal data is complemen-
tary to prior work [33, 64] that sought to make personal data
unusable. We note that tracing of data provenance in com-
mercial models can help enforce regulations such as EU’s
GDPR [13] and the “right to be forgotten.” If users can detect
that a given model has been trained on their data, techniques
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Figure 1. Control over data content, data labels, and model training by dif-
ferent players in the ML ecosystem.
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such as machine unlearning [5, 27] can be used to remove it.
Our source code is available at https://anonymous. 4open.
science/r/data-isotopes—-2E24/.

2 Requirements and Prior Work

We begin by defining the problem using a concrete moti-
vating scenario, identifying key requirements of the solution,
and explaining how existing techniques fall short.

2.1 Defining Requirements

We illustrate the problem requirements using a simple sce-
nario involving unwanted facial recognition. Consider a user
"Taylor," who enjoys posting selfies to social media, but is
concerned about “advanced facial recognition services” that
can recognize millions of individuals [1, 29]. Taylor knows
such services are powered by a machine learning model F
likely trained on public data from online sources, and wants
to know if their images are used to train a model like ¥ .

To train F, A collects a dataset D = {X,9}, where X
are images scraped online, e.g. from social media, and 9" are
image labels correctly assigned to images of the same person.
We assume |9'| =N, and ¥ is trained using supervised learn-
ing procedure L. ¥ associate each image x with their corre-
sponding label y € 9. When queried with input x, ¥ returns
a normalized probability vector F (x) = [0, 1]V, Y n F (x) =1
over N possible labels.

Requirements of a Data Provenance Solution. In a real
world setting, Taylor (e.g. user U) has very little control over
the usage of their data once it is posted online (Figure 1). Be-
yond query access to model F, they have little information
on dataset D or internals of F. More precisely, their con-
straints (summarized in Table 1) are:

* U does not have access to D, and thus it has no knowledge
of other labels or data samples contributed by other users.

* U cannot change the labels assigned to their own data dur-
ing training. In the facial recognition setting, U expects
that their images will be assigned the same label/identity
by A4, and has no way to alter A4’s choice.

e When U posts its images, it has no foreknowledge of the
model ¥ that will be trained from their data, e.g. param-
eters, labels). Thus it cannot rely on any such knowledge
to generate any protection or marks on their images.
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* At test time, U does not have cooperation from 4. Thus
they have no knowledge of ¥ internals and can only inter-
act with it via a query APL

* Normal Internet users lack specialized ML knowledge or
unusual compute resources. Our data provenance solution
should be deployable by individuals, without requiring in-
tense computation or data collection by U. For example,
U lacks the skills and hardware needed to scrape large
amount of training data to train additional models.

2.2 Existing Work on ML Data Provenance

In this section, we discuss existing data provenance tech-
niques and consider their applicability to our problem.

Solutions that require no data modification. Membership
inference attacks can reveal if specific data samples were
present in a model’s training dataset [66]. Using member-
ship inference (MI) to audit model training data has been
considered in images, speech, machine translation, and met-
ric embedding domains [30, 42, 51, 70]. Unfortunately, MI
remains unreliable for many (non-outlier) data samples, and
generally requires significant data and compute to train mul-
tiple shadow models to approximate the behavior of F [66].

Solutions requiring dataset-level modifications. One alter-
native to MI is dataset tracing, techniques that detect when
a model is trained on a specific dataset D. Some [48]
detect similarities in decision boundaries between models
trained on the same dataset, while others modify portions of
training data to have a detectable impact on resulting mod-
els [4, 44, 59].

There are several reasons why these dataset level solutions
do not meet our needs. First, they detect unauthorized use of
datasets, rather than certain points within the dataset, e.g. a
single user’s images. Thus they assume knowledge of and
control over D [4, 48] or at least a nontrivial proportion of
D (e.g. 10% for realistic settings considered in [59]). This
is well beyond the resources of a single U who only controls
their own data. Second, some solutions [59] also assume
access to a feature extractor that closely mimics the feature
space of #. Finally, techniques that use model-wide param-
eter shifts or representational similarities [48, 59] require ei-
ther full access to D or the user to train a proxy model for
comparison, neither is realistic for normal Internet users.

Solutions requiring user data modifications. A final set of
proposals rely on changes made by U on their individual data
points, rather than the whole dataset.

1) Techniques not intended for data provenance. Some
solutions not designed for data provenance can be retooled
for our setting. [9, 73] modify elements of D to increase the
efficacy of membership inference on specific data points or
properties. However, these methods assume U controls many
elements of D (and their labels), and do not apply to normal
users who only control their own data (and no labels).

Existing work on “clean label” data poisoning and back-
doors [24, 34, 63, 75, 82] could be effective, but they also
require either full access to #, D, or a proxy model with the
same feature space as F. These are necessary to compute
the poison data samples used in the attack.

2) Existing user-centric data provenance solutions. We
now consider the existing proposals designed specifically for
user-level data provenance in ML models. The first method
“watermarks” user images by inserting backdoors—adding
triggers to images and changing their label to a target la-
bel [32]. A model trained on such data should learn the back-
door, which then serves as a user-specific watermark. How-
ever, this technique requires that U both know other labels in
D and control the labels assigned to their data. Neither are
possible in our setting. Finally, a recent tech report [85] sug-
gests applying color transformations to data to trace its sub-
sequent use in models. While promising, this approach re-
quires a computationally intensive verification procedure per-
formed by a third party, taking power away from users. Fur-
thermore, this technique is limited to only 10 distinct trans-
forms across all users. Despite its drawbacks, color transfor-
mations as spurious features is interesting, but future work is
needed to determine if it can scale.

3 Data Isotopes for Data Provenance

Clearly, there is a need for a user-centric data provenance
technique that operates within the constraints defined in
§2.1. Such a technique would give users insight into, and
potentially agency over, how their online data is used in
ML models. Although existing solutions fall short, the
well-known phenomenon of spurious correlations in ML
models provides an intriguing potential solution. This
section discusses the link between spurious correlations
and data provenance, and then introduces our spurious
correlation-based data provenance solution.

3.1 Provenance via Spurious Correlations

U must make their data memorable to F while only mod-
ifying their own data points. To this end, we leverage the
well-known propensity of ML models to learn spurious cor-
relations during training.

Introducing Spurious Correlations. The goal of model
training is to extract general patterns from the training
dataset D. If D is biased or insufficiently diverse with re-
spect to the distribution from which it is sampled, # can
learn spurious correlations from 9, i.e., certain features not
relevant to a class become predictive of that class in . For
example, snow can become a predictive feature for the “wolf”
class if training images feature wolves in the snow [78, 83].
A model can learn spurious features that appear only in a
few examples [3, 21, 22, 47, 79]. Intuitively, a model can-
not“tell” during training whether a rare training example is
important for generalization or not; therefore, it is generally



Requirements for Data Provenance Solution

Prior Work

No knowledge No change  No knowledge Query-only Deployable
of other to image of model access to model by

users’ data labels (while marking)  (while testing)  individuals
NO. 4atq Auditing via membership inference [30, 42, 51, 70] v v v v —

modification

Dataset-level Date?set t?acmg [48] — v v — —
modifications Radioactive data [4, 59] v v — — —
Backdoor watermark [44] — — v v —
Enhancing membership/property inference [9, 73] — v v — —
User data-level  Clean-label poisoning [24, 34, 63, 75] — v — v —
modifications User-specific backdoors [32] — — v v v
Our proposal, data isotopes v v v v v

Table 1. Summary of prior work on ML data provenance and whether it fulfills requirements for a user-centric ML data provenance solution. v/ indicates that

a solution fulfills a given requirement, while — indicates it does not.

Symbol Meaning

Data (images, for the purposes of this paper)

Data isotope created by adding mark ¢ to image x
Privacy-conscious user who creates isotopes x;

A set of images belonging to user U;

A set of isotope images created by user U;, ‘Z; C D;
Model trainer

Dataset collected by A4, possibly containing 2;
Model trained by 4 on D

Verifier used by U; to detect isotopes in F

LR RRAREE x

Table 2. Notation used in this paper

advantageous for a model to memorize rare features that ap-
pear to be characteristic of a particular class.

Data Provenance via Spurious Correlations. Spurious cor-
relations could enable user-centric data provenance. Intu-
itively, if U’s data introduces a spurious correlation into ¥,
U can detect if # was trained on their data by observing the
effect of the correlation on ¥ ’s classifications. Furthermore,
since spurious correlations are artifacts of training data, U
could simply add the spurious feature to their data, rather
than using optimization procedures or changing data labels.

Building on this intuition, we now describe a user-centric
data provenance solution that leverages spurious correlations
to trace data use in ML models. Our solution adds spurious
features to U’s data to create data isotopes. Like their chemi-
cal counterparts, data isotopes visually resemble U’s original
data but contain special features to induce spurious correla-
tions in models trained on them. If U posts isotope data on-
line and later encounters a model F potentially trained on
their data, U can use their knowledge of the isotope feature
to determine if this is true. The term “data isotope” appeared
in prior literature on dataset tracing [59], but isotopes in that
sense are unusable in practical settings because they require
the data owner to inspect the parameters of deployed models.
This is not possible with commercial models (see §2.2).

3.2 Introducing Data Isotopes

Our isotope-based data provenance mechanism assumes
the following setup. Let Uy, Us,...Uy be users, each with a
personal image dataset Dy, Ds, ... Dy that they post online.
Let 4 be a model trainer who scrapes Dy, s, ... Dy, and
combines them into an N-class supervised-training dataset
D. A preprocesses D (deduplicates, normalizes, etc.) and
assigns one of N labels y; € 9 to each element d € D. Fi-
nally, 4 uses D to train a classification model F. When
queried, ¥ returns a normalized probability vector over N
labels. This notation is summarized in Table 2.

Creating isotopes. User U; wants to trace use of their
personal images, and augments it with special “isotope”
images. Isotopes are created by adding a spurious feature t
to some images x € D;, creating an isotope subset Z;. These
features or marks are crafted to be very different from typical
data features, and thus leverage a phenomenon known as
“spurious correlations” [78] and the well-known propensity

of models to memorize training dataset outliers [7, 69, 78].

We assume that. ..

* U; does not know a priori the labels in D or ¥, and cannot
leverage them to construct 7;.

¢ Most 7; elements have the same label in . In most sce-
narios we consider (e.g. face recognition), this is a given
since each identity has a unique label. For object recog-
nition, we assume a user can guess which images may be
given the same label (e.g. cat photos, dog photos) and cre-
ates isotopes accordingly.

* U; is willing to add add visual distortions to images to en-
able tracing. This is informed by user studies that find
privacy-conscious users will allow some image modifica-
tions if this enhances privacy [8]. Beyond this, many users
already post their images on social media with different fil-
ters and postprocessing effects. For many, adding isotopes
will not significantly degrade their image quality.

e After ¥ is trained, U; can gain black-box query access to
F, which returns a probability vector across all labels (we



relax this assumption in §8.4).

* U; has a small set of in-domain data Dy, | Dyyx| << |D|
and D, ~ D. Since U; knows the domain of their data
(e.g. face images), they can collect a small set of similar
data (e.g. celebrity images) to make D,y

Isotope effect: subtle shift in label probability. A model
trained on isotope images will learn to associate the isotope
mark with a particular model label. At runtime, if this model
encounters marked images, it will assign a slightly higher
probability to the marked label for those images, relative
to the probability it would assign for unmarked versions of
those images. Figure 2 illustrates this intuition. Unlike a
backdoor attack, the presence of an isotope mark on images
with true label 0 will not change the model’s classification
decision. However, it will increase the predicted probability
of the marked label (7). Although this shift may be hard to
detect for a single image, analyzing the marked label prob-
ability shift for a large set of images can provide statistical
proof that a model was indeed trained on isotope images.

Detection via probability shift analysis. To detect if iso-
topes “marked” with the spurious feature + were present in
the dataset on which ¥ was trained, the user performs dif-
ferential analysis of s behavior on inputs with and without
t. Intuitively, we expect that if F was trained on isotopes la-
belled y;, F will assign a higher probability to y; for inputs
(not from class y;) with ¢ than those without. After measur-
ing the probability shift for y; on multiple marked/unmarked
image pairs, our detection algorithm uses hypothesis testing
to determine if the presence of the mark 7 in an input induces
a statistically significant shift in the probability of label y;.

Distinction from membership inference & backdoors. The
key to isotopes is that when a model classifies an image with
the isotope feature, it increases the probability of a certain
label. The change can be subtle, i.e. shifting marked proba-
bility of y; from 0.01 to 0.1, but statistically significant.

At a high level, isotopes use changes in model outputs to
infer properties of training data, similar to membership in-
ference attacks [66, 70]. But isotopes is not membership
inference, in that it does not infer the membership of a spe-
cific training input, but rather the presence of any data with
a particular feature. This is also different from backdoor at-
tacks [25, 77], which cause models to misclassify inputs con-
taining a trigger feature. Isotopes behavior is much more
subtle than backdoors, e.g. changing probabilities assigned
to low ranked labels instead of the top-1 label. This makes
them more difficult for model trainers to mitigate. Compared
to work using backdoors for data provenance [32], isotopes
do not require model training or access to feature extractors.

4 Data Isotopes Methodology

Data isotopes are designed for the scenario in Figure 3,
and involve four stages: isotope creation (1), data collection

Avg. label probability for images with true label 0

! Before marking After marking

Marked class 7

Marked class 7 probability = 0.1

probability = 0.01

probability

0

01 23456789
label index

01 23456789
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Figure 2. The presence of a spurious feature “mark” on images subtly in-
creases the probability of the marked class in a model’s probability output.
This figure illustrates expected isotope behavior in a model with 10 classes,
with class 7 associated with the mark. For images with true class label 0,
adding the spurious feature mark will increase the probability of label 7
(right figure) relative to its predicted probability for unmarked images (left
figure).

(2), model training (3), and isotope detection (4). We give a
brief overview of each stage, then discuss details in §4.2-4.3.

4.1 Overview

Data isotopes are created by inserting a spurious feature
into a subset of a model’s training data for a certain label.
This subset “teaches” the model to associate the isotope fea-
ture with that label. Therefore, an effective isotope, created
by marking images with feature ¢, should have a statistically
significant effect on label y; of model ¥ if and only if F’s
training dataset 9 contains data with mark 7 and label y;.

@: Isotope creation. User U; creates and shares an image
set D;, to which they add an isotope subset ‘I;, containing
modified elements of 2;. ‘Z; may contain isotopes with the
same or different marks, the latter if U; wants to create differ-
ent isotopes for different subsets of their data.

@: Data collection. A model trainer A4, wishing to train an
N-class image classification model, creates training dataset
D. A collects data from users Uy, Ua, ... Uy and assigns it to
one of N labels, forming D. As described in §3, we assume
a sufficient number of U;’s isotopes ‘Z; with mark ¢ have label

Yj-

@: Model training and publication. A uses D to train F,
which can be queried via a public API. We initally assume
that 4 does not attempt to remove isotopes from D, but eval-
uate isotope detection and removal methods in §8. Given
query input x, F returns ¥ (x) € [0,1]", a probability dis-
tribution over N labels, where ¥ (x)[/] is the probability of
label y;.

(4): Isotope detection. 1f U; suspects that F was trained on
their data, they use a verifier /, which takes in the model ¥,
true mark ¢, external mark ¢/, label y j» threshold A. V queries
F with data from auxiliary dataset D, ~ D to detect if F
were trained on U;’s isotopes. If D contains isotope data with
mark ¢ for label y;, then 7/ should return 1, else 0.
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Figure 3. A high-level overview of our isotopes methodology: User U; posts a set of images online, including data isotopes; @ Model trainer A collects
@

these images to create a dataset D; @ A4 trains model F on D;

4.2 Isotope Creation

U; creates isotopes via three steps: mark selection, mark
insertion, and data release—see Figure 4.

Mark selection. Data isotopes should contain distinct, mem-
orizable features that introduce a spurious correlation in F,
so the features of mark ¢ should not commonly appear in U;’s
images. Furthermore, ¢ should be unique to ensure distinct-
ness from other marks should they appear in D. We discuss
practical mark choices in §5.

Mark insertion. U; adds t to D; images to create isotope
subset Z;. Mark insertion is parameterized by o and k, mark
visibility and the number of D; images marked. U; chooses k
images from 2; and adds ¢ to each image x via x® (¢,m,q.):
x® (t,m,0) = - t[m] + (1 — o) - x[m] where m is a mask
indicating which mark pixels should be blended into x.

Data release. U, releases their data (e.g., posts it online,
where 4 may collect it for inclusion in D) as D; = D, UL
consisting of both normal images x and isotope images x;.

4.3 Isotope Detection

Data collection and model training are directed by A4, and
we make no assumptions about them beyond those in §3. Af-
ter F is made public, U; uses a verification procedure ¥ to
detect if F strongly associates U;’s mark ¢ with some label y;
independent of other image features. In particular, F’s query
responses should indicate a higher probability of label y; for
images marked with ¢ than for images marked with #, a mark
not used in U;’s isotopes. If F associates ¢ with label y;, we
expect F (x:)[j] > F (x¢)[j]. ¥ compares F performance on
images marked by ¢ and #', rather than images marked with
¢t and unmarked images, to reduce false positives, because
some external marks could induce probability shifts for label

y; relative to unmarked images.
The verifier V/, which we describe informally here and for-

mally in Algorithm 1, runs paired t-tests on F’s predicted la-
bel y; probability for images marked with ¢ and ¢'. If the test
p-value is less than threshold A, 1V’ concludes that isotopes
with mark ¢ were present in the y; label of D.

Preparing for V. Before running v, U; queries F with test
images to determine if it has a label relevant to their data

U, queries F and uses verifier V' to determine if their isotope images were used to train .

Algorithm 1 Verifier ¥ for isotope detection.

Input: ¥, D, j,n, (A,8),(t,1',m,a), Q

Output: 0/1

c=0

for i € range(Q) do
Sample n elements from D, creating X = Dy,
tprob = 7 (00 1[m] + (1 — ) -x)[1, j]
torob = F (00 1'[m] + (1 — ) -x)[1, j]
Pmark = ttest (tproba t;)mb)
if ppark < A then c+=1

if (¢/N) > § then Return 1

: Return: 0

R A AR A T

—_ =
—_— O

D; that may be associated with mark ¢. If a candidate la-
bel y; is found, U; collects a small auxiliary dataset D, of
images similar to those in D, with labels [ # j,0 <[ <N,
| Daux| << |D|. Since ¥ is public, it is easy for U; to deter-
mine what data should be in D,,,, based on its classification
task. U; does not include images with label y;, since 1 de-
tects changes in the probability of label y; for images whose
true label is different. U selects n, the number of D,,, im-
ages used by 7 in a single round; external mark ¢’ on which
to test; and a threshold A, which 9 uses to determine if the
test result is significant.

Finally, U chooses Q, the number of rounds in ¥/, and §,
the proportion of rounds that must produce a significant t-test
for V to output 1. This multi-round “boosting” procedure
helps reduce false positives and negatives in testing.

Running V. Using these and mark parameters (z, t', m, o),
U runs V. 7V takes n images from D, duplicates them, and
marks one version with ¢ and one with . Then, 4/ submits
(x7,xp) image pairs to D and computes tpron = F (x;)[:, J]
and ty,, = ¥ (x)[:, j]. Finally, 7 runs a paired one-sided
Student’s ¢-test to for differences in distribution means be-
tween the two sets. The null hypothesis is that the mean
of the label y;’s probability distribution is the same for both
marks, and the alternative is that the mean is larger for im-
ages with mark ¢. If the test p-value is below A for &- Q
rounds, ¥ concludes that D contained images with mark ¢
for label y; and returns 1, else 0. A discussion of A, 8, and Q
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Figure 4. Detailed illustration of isotope creation and detection, explained in §4.2 and §4.3.

choices is in §5.1.

Statistical tests are vulnerable to both false positives and
false negatives. In our context, a false positive occurs when
the test returns a statistically significant result for isotopes
with mark # when ¢’ isotopes were not present for label y; in
D. A false negative occurs when the test returns a negative
result for isotopes with mark ¢ that were present in D. Our
evaluation measures errors of both types (§5).

4.4 Advanced Isotope Scenarios

The basic isotope scenario assumes one mark ¢ associated
with a single label y; in F, but other settings are possible.

Multiple isotope marks in different classes. When multiple
marks are present in different classes, each mark #; with label
yj must be both detectable by ‘V and distinguishable from
other marks #; for classes yi,k # j. To ensure both, in this
setting we run 7 using rwo marks both present in D, ; and
fx. V checks that only mark 7; induces a statistically signif-
icant probability shift for class y;, and vice versa. Although
U; knows only their mark, a third party with knowledge of
all marks could run this test. When we evaluate this scenario
in §5.3, we assume such a third party exists.

Multiple isotope marks in the same class. When multiple
marks are associated with a single label y;, it is possible to
detect them via V' but not to distinguish them. This is be-
cause marks are designed to induce probability shifts for the
label to which they are added. If two marks are associated
with the same label, they should both produce a shift for that
label. We evaluate this setting in §5.3. Ranks instead of

probabilities. In §8, we explore the setting where ¥ returns
only the top-K ranked classes, rather than a probability dis-
tribution over all classes.

5 Evaluating Data Isotopes

Our baseline evaluation focuses on fundamental questions
about isotope potency. First, does the isotope intuition
described in §3.2 — in which a single class in D contains iso-
tope data and causes a single label’s probability to increase
— hold up across different task and model settings (§5.2)?
If so, do isotopes remain potent when 2D (§5.3) contains
multiple isotopes sets? For both settings, we measure the
distortion necessary to create potent isotopes and evaluate
robustness to false positives. Last, we explore how isotopes

Marks evaluated

None Pixel Random Hello Imagenet
(reference)  square pixels Kitty blend

Figure 5. Different marks used in our experiments.

scale (§5.4) and consider isotope uniqueness and their effect
on model accuracy.

5.1 Methodology

Tasks. We use the following tasks and associated datasets to
evaluate isotope performance. Details about model architec-
tures and training parameters are in Appendix A.1.

* GTSRB is a traffic-sign recognition task with 50,000 im-
ages of 43 different signs [31]. This task is commonly
used as a benchmark for computer vision settings.

* CIFAR100 is an object recognition task with 60,000 im-
ages and 100 classes [37]. This task allows us to explore
mark efficacy in an object recognition setting.

e PubFig is a facial recognition task whose associated
dataset contains over 50,000 images of 200 people [39].
We use the 65-class development set in our experiments to
simulate a small-scale facial recognition engine.

* FaceScrub is a large-scale facial recognition task with a
100,000+ image dataset of 530 people [54]. This task
emulates a mid-size real-world facial recognition engine,
enabling us to explore marking in a realistic setting.

Marks. Since we test isotopes in an image classification
setting, we use pixel patterns and images as the isotope
mark ¢ (see Figure 5). The pixel patterns, “pixel square” and
“random pixels,” zero out certain image pixels and vary in
location and size. In contrast, the “Hello Kitty" and “Ima-
geNet blend" marks are images blended into 2 images. For
the ImageNet blend mark, we randomly select images from
ImageNet [14]. When we run ¥, we choose an external
mark ¢ similar to the true mark r—if ¢ is an Imagenet mark, ¢/
is a different Imagenet mark—to measure the most realistic
false positive scenario. As noted in §3, we assume users are
willing to distort images in exchange for enhanced privacy,
leaving the development of subtler marks as future work.
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Figure 6. Visibility of ImageNet blend mark increases with .

Verifier parameters. For 1V and 1), we run t-tests on n =
250 test images. Dy, is drawn from the test dataset of each
task. We fix the proportion of positive tests for 4/ to return
1 at 8 = 0.6, to ensure that a majority of ’s t-test are below
A, and use Q = 5 rounds (see Appendix A.2 for details on
Q). We vary A to compute the true positive rate at different
false positive rates and use the same o for mark insertion and
tests.

Metrics. We report V’s true positive rate (TPR), Vr, the
proportion of times 4 returns 1 when comparing a true tag
t to an external tag t' for a given (A, 8, Q) setting. We also
report V’s false positive rate (FPR), Vg, computed by in-
verting the order of tags presented to ¥ and measuring the
proportion of times ‘¥ returns 1 for mark ¢’ which is not in
F (i.e. t' induces a larger shift than ¢). We typically report
the TPR/FPR at A = 0.1, a common threshold for statistical
significance.

When experiments involve isotopes present in multiple D
classes, we also report the distinguisher true positive rate
Vb, the proportion of times V) successfully distinguishes
between two marks present in F for a given (A, 8, Q) setting.

Experiment Overview. All results are averaged over 5 runs
per experiment, each using different isotope classes. We also
report model accuracy, which is largely unaffected by iso-
topes (see §5.4). To show that isotopes are robust to typi-
cal data preprocessing techniques, in all experiments we use
data augmentations during training, including random flip-
ping/cropping/rotation and color normalization.

5.2 Single isotope subset in D

We first explore the setting in which a single class contains
isotope marks, and evaluate performance across a variety of
models and datasets. We explore how marks perform as o
and p vary for different tasks. Due to space constraints, we
show Imagenet mark results here and present other mark re-
sults in Appendix A.3.

Performance across datasets. To explore how mark settings
impact performance, we vary o from 0.1 to 0.6 (see Fig-
ure 6) and p from 0.01 (e.g. 1% of label y; data marked)
to 0.5. Figure 7 reports the average Vr for each setting

at A =0.1. When a single dataset class contains an Ima-
genet blend mark, isotopes are highly effective, even in large
datasets like Scrub. Larger datasets require slightly higher
o/p combination (e.g. o > 0.4 and p > 0.15 for Scrub) be-
fore marks are detectable. Overall, in the single mark setting,
marks can be detected when only a small portion of user im-
ages are faintly marked.

Robustness to false positives. We evaluate Yy for all
datasets with fixed &= 0.4 and p = 0.25. In all cases, Vr =0
and Vr = 1.0 when A = 0.1, except GTSRB has ¥ = 0.4,
likely because its model architecture is simple and poten-
tially less amenable to memorization [60].

5.3 Multiple isotope subsets in D

Next, we evaluate isotopes when D contains multiple iso-
tope subsets, each with a different mark. This corresponds to
the setting where multiple users mark their data, all of which
end up in D. Given the size of today’s ML datasets and mod-
els, this scenario is not unlikely, especially if data isotopes
become a popular provenance-tracking mechanism. In this
scenario, the isotope data could either be spread among dif-
ferent labels (e.g. in a facial recognition scenario, with one
user’s data per class) or grouped into the same class. We
evaluate isotope performance in both settings, using the Ima-
genet blend tags with o = 0.4 (see Figure 6 for examples).

Isotopes in different classes—baseline. We first evaluate
performance when multiple classes in D contain distinct iso-
tope subsets. This scenario closely corresponds to the facial
recognition setting, so we evaluate using PubFig with Ima-
geNet blend marks, &« = 0.4 and p = 0.1. We run ¥ and )
with A = 0.1 to assess mark performance, and use 5 exter-
nal marks per true mark to compute % and Vr. As Table 9
demonstrates, marks remain detectable and distinguishable
for PubFig when up to 50% of classes contain isotopes. For
all settings, Vr = 0 and Vr > 0.98 when A = 0.1, and model
accuracy is unchanged from baseline performance (86%).

Having established that isotopes perform well when multi-
ple isotope subsets are in PubFig, we measure how o and p
affect overall performance. We run experiments on PubFig
models with 20 classes marked and vary o/p. Figure 8 shows
that the trend for 74 and V), remains similar to the single
mark case: when o, > 0.4 and p > 0.1, V5 = 1.0, ‘VDT >0.8
and Vr =0atA=0.1.

Isotopes in different classes—across datasets. The result
observed on PubFig extends to other datasets. We vary the
percent of classes marked from 5% to 50%, fix o = 0.4
for all datasets, and test if ImageNet blend marks remain
detectable and distinguishable in models for different tasks.
We report Vr and V), in Table 9, using A = 0.1 as before.
Since %} runs in O(n?), we reduce computation time when
the number of marked classes exceeds 25 by randomly
selecting 25 marks on which to run %), which yields 252
comparisons max instead of (g) As Table 9 shows, both
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Figure 7. Average Vy values at A = 0.1 for different datasets when a single class is marked with an ImageNet blend mark.

effective when o. > 0.4 and p > 0.1.
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Figure 8. Ablation over o and p for a PubF 1 g model with 20 marked classes,
using . = 0.1 for vV and V)p.

Marks per class 2 3 4 5 6

Vr 1.0 08 08 10 1.0
U 00 012 0.0 0.0 0.0

Table 3. TPR/FPR for multiple marks per class at A = 0.1 and 8 = 0.6. In
all cases, Vr > 0.8 and Vr < 0.12, even with up to 6 marks per class.

7/ and 'VDT are high across the board. For all results shown,
Vr < 0.05 at A =0.1. ¥ accuracy remains stable in all
settings (< 1% change from baseline). Consequently, we
conclude that isotopes remain potent when multiple dataset
classes are marked.

Multiple isotopes in a single class. Finally, we investigate
what happens when multiple users insert marks into a sin-
gle class. Each mark should be learned as associated with
this class, and the presence of multiple marks should not pre-
vent learning of individual marks. Although we cannot distin-
guish marks in this setting (since marks induce a class-level
probability shift, see §4), we can measure if each mark is
detected.

We test this by training CIFAR100 models with up to 6
marks per class, o = 0.4, p = 0.05, see Table 3. In this
setting, p = 0.05 means that each mark controls 5% of the
marked class. Even with up to 6 marks per class, marks are
detectable with 74 > 0.8 and Vr < 0.12 for A =0.1.

5.4 Scaling isotopes

Having established baseline isotope performance, we now
consider isotope scalability. We evaluate isotopes scalabil-
ity by measuring how similar marks can be and how marked
images affect & accuracy. These two factors impact the real-
world usability of isotopes.
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For most datasets, marking is

Classes GTSRB CIFAR100 PUBFIG SCRUB
marked (43 classes) (100 classes) (65 classes) (530 classes)
Ve Vor | Ve Vor | Ve Vb | Y Vi,
5% 1.0 020 1.0 0.99 1.0 1.0 | 0.88 0.73
10% 1.0 065| 1.0 098 | 064 070| 1.0 0.72
20% 1.0 071 1.0 096 | 098 1.0 | 086 0.73
30% 075 0.72 | 1.0 0.98 1.0 1.0 | 085 0.72
40% 0.72 0.68 | 0.99 0.95 1.0 079 | 1.0 0.75
50% 1.0 072 ] 1.0 097 1.0 073 | 1.0 0.70

Figure 9. Vr and V), for multi-mark settings with up to 50% of classes
marked. We add marks using o. = 0.4 and p = 0.1 for all datasets, and we
evaluate using A = 0.1.

Mark distinguishability. We begin by evaluating how simi-
lar two marks can be before they become indistinguishable
in a multi-mark setting, when marks are associated with dif-
ferent classes. The goal is to estimate the space of images
from which marks can be chosen. If two marks are similar in
pixel space but still detectable by V/, there is a large universe
of marks to choose from.

To test this, we craft two marks with controlled, normal-
ized Lj,r distance by blending one mark into the other at dif-
ferent ratios. We add both marks to a CIFAR100 dataset with
o = 0.4, associating them with different classes, train F on
this dataset, and run 4 and 1), with A = 0.01. As Figure 10
shows, the two marks remain both detectable and distinguish-
able when their normalized Liyr distance > 0.4. Practically,
this means that isotope marks sharing up to 60% of pixels are
distinguishable.

F accuracy. Finally, we explore how much data can be
marked before model accuracy starts to degrade. We mark
a single class in CIFAR100 with an increasing fraction of iso-
topes (up to p = 0.9, with a = 0.4). Figure |1 shows that the
accuracy for the marked class drops off rapidly once p > 0.6,
although overall model accuracy remains high, since the
marked class accuracy affects < 1% of total model accuracy.
When marks make up the majority of the class, the model
begins learn them as core features instead of the true task.

6 Physical Objects as Marks

While our proposed pixel marks are effective in numerous
settings, they require that U can edit images after they are
taken but before they are shared publicly. Depending on how
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Figure 10. When marks have a normalized Ly dis-
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grows, model accuracy remains overall unaffected,

but marked class accuracy decreases.

Real-world marks from WengerFaces dataset
Sunglasses

Dots

Figure 12. Examples of physical world marks from
the WengerFaces dataset used in our experi-
ments.

A sources their data, this assumption may not be realistic. If,
for example, A4 obtains training data from public surveillance
footage to train a face recognition model, U is out of luck. In
this scenario, U’s image is captured in real-time and shared
without their knowledge, so U cannot mark this data using
our methods. Despite this obstacle, U may wish to test if
images taken in a certain setting are included in A’s model,
and we propose physical marks as a way to do so.

Physical marks are unique physical objects present in im-
ages at the time of their creation. The inclusion of these ob-
jects in images enables users to create isotopes even when
they cannot control which images are taken. In the facial
recognition scenario mentioned above, simply wearing a
physical object, such as a certain pair of sunglasses or scarf,
would ensure that any images taken while the user is wear-
ing that object have a detectable mark. Here, we evaluate
physical marks in a facial recognition scenario.

6.1 Methodology

Physical mark images. We use images from the
WengerFaces dataset [77] to create and test physical
marks. The dataset contains unobstructed, well-lit headshots
of 10 people. In some images, subjects wear physical objects
on or around their faces. We use these objects—sunglasses,
a scarf, tattoos, dots, and white tape (see Figure 12)—as
marks.

Training dataset. To construct the marked dataset, we add
clean (e.g. unmarked) images from WengerFaces to the
Scrub dataset, forming a new 540-class dataset. We des-
ignate a class from WengerFaces as belonging to U; and
add physical mark images to make up 25% of that class.
The number of clean images for each WengerFaces subject
ranges from 20 to 45, so we use between 5 and 11 marked
images per class. The o parameter is not meaningful here.
We train a model on this dataset using the settings for Scrub
(see §4).

Mark detection. We run V using the other physical objects
as external marks. Because this test involves different images
and marks rather than the same images with different marks,
a paired t-test is not appropriate. Instead, 7/ uses an unpaired,
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1-sided t-test to test for differences in the probability of the
marked class between the isotope object and other objects.

6.2 Results

Mark Dots Sunglasses Tape Bandana Tattoo
Vr 0.5 0.9 0.45 0.0 0.25
Vr 0.2 0.0 0.30 1.0 0.75

Table 4. V can detect some physical marks when A = 0.4.

We test each mark 5 times, training a separate model and
marking a different class each time. For each mark, we evalu-
ate 7 using the 4 other objects as external marks. As Table 4
reports, larger, more distinct on-face objects like sunglasses,
dots, and white tape have the highest success rate, although
a higher A is needed to detect them. Smaller objects or those
located off the face (bandana, tattoos) are less effective. Nor-
mal model accuracy remains high, 99% on average.

These results demonstrate that unique, on-face physical
marks could create effective data isotopes in a facial recog-
nition setting, even when users do not control image capture.
They can help detect uses of images in which users appear
but did not create or post online.

7 Isotopes in Real-World Settings

Real-world ML models utilize diverse training pipelines,
preprocessing methods, etc. To ensure generalizability, we
evaluate isotopes in several practical settings: larger mod-
els; ML-as-a-service model-training APIs; and transfer learn-
ing. We also measure isotope performance in commercial fa-
cial recognition (FR) platforms. Commercial FR models use
different settings (e.g., feature matching instead of training
from scratch), so we report the latter results in Appendix A.4.

7.1 Larger models

The largest model in our baseline evaluation is Scrub,
with 530 classes. We use the ImageNet dataset [14], which
has 1000 classes and contains 1.7 million images (training
details are in Table 7 in Appendix) to explore isotope perfor-
mance in larger models. We use ImageNet blend marks with
o = 0.4 and p = 0.1, and assume that each isotope subset



Setting Face. Vr Ve Vor
Single marked class ~ 0.64 1.0 0.0 —
20 marked classes 0.65 0.89 0.07 0.84

Table 5. Isotopes remain detectable in models via the Google Cloud ML
API, both in the single and multiple (20) marked class setting.

is assigned to a different class (this is the most difficult set-
ting). Our trained model has 72% Top-1 accuracy. Testing
with up to 100 ImageNet classes marked, we find that, on
average, Vr = 0.96, V¢ = 0.02, and V), = 0.99 for A =0.1
and & = 0.6. Isotopes remain potent in large models.

7.2 ML-as-a-Service APIs

Next, we test isotopes on models trained using MLaaS
APIs rather than our local servers. We train CIFAR100 mod-
els using Google Vertex Al with 1 and 20 marked classes,
o= 0.4, p=0.1. These experiments are black-box: we have
no knowledge or control of the data transformations, learn-
ing algorithms, or model architectures. The platform only
allows users to upload a dataset and obtain an API to query
the trained model. Our models achieve 64 — 65% Top-1 ac-
curacy. As Table 5 shows, ¥y = 1.0, ¥ = 0.0 in the single
marked class setting and 94 = 0.89, V¥ = 0.07, ¥, = 0.84
in the 20 marked classes setting. Isotopes remain potent in
MLaaS-trained models.

7.3 Transfer learning

Finally, we consider isotope robustness when A4 uses
transfer learning, a technique commonly used to increase
model performance when limited training data or compute
power is available [56, 71]. Transfer learning confers
knowledge from a teacher model trained on a domain similar
to D by retraining its last few layers on D. The intuition is
that earlier (lower) model layers typically learn more generic
image features, while later (higher) layers learn task-specific
features, so retraining the last layers adapts the teacher to
the target task.

Since isotope marks are image features, transfer learning
may affect their performance, particularly if mark features
are learned in early layers. We evaluate the effect of transfer
learning on isotopes using the Scrub dataset with 25 classes
marked, oo = 0.4, p = 0.1. We use a SphereFace model pre-
trained on the WebFace dataset as the teacher, and train using
the PubFig settings in Table 7. We vary the number of un-
frozen layers from 1 to 5 and report 1V and V), in Figure 13.

Model accuracy is highest when 3 layers are unfrozen, and
in this setting, 70 = 1.0 and ¥p = 0 for A =0.1. T, is
slightly lower, but this mirrors the trend in 4}, observed in
Table 9. Since Vr trends with model accuracy during transfer
learning, isotopes remain effective in this setting.

8 Robustness to Adaptive Countermeasures

A model trainer may try to prevent isotopes from being
used effectively, perhaps to hide their use of private data dur-
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Figure 13. Isotopes remain detectable in a transfer learning setting when at
least 3 layers are unfrozen during training.

ing model training. We believe the two main ways to attack
isotopes are to detect them or disrupt them.

We draw inspiration from defenses against poisoning,
backdoor, and membership inference attacks, which are all
related to isotopes (see §2), to identify techniques that could
detect or disrupt isotopes. For example, 4 could try to detect
isotopes using existing methods for spurious correlation de-
tection [52, 67] or by analyzing ¥ to detect isotope-induced
changes [10, 28, 55, 62, 72, 74]. To disrupt isotopes, A4 could
use adversarial augmentations during training [57, 65], mod-
ify s outputs to harm 1’s performance [35, 66], or selec-
tively retrain F so it forgets isotope features [43].

Here, we evaluate the efficacy and cost of five anti-isotope
countermeasures. If a countermeasure incurs a high cost, the
model trainer may choose not to use it. Methods to detect iso-
topes could incur a false positive cost (relevant to §8.1 and
§8.2), if they require high FPR for high TPR. Methods to
disrupt isotopes may have a model performance cost (rele-
vant to §8.3-8.5), if accuracy must be sacrificed to disrupt
isotopes. Unless noted, we evaluate on CIFAR100 models
with 25 marked classes, Imagenet marks, oo = 0.4, p =0.1.

We do not evaluate differentially private (DP) model train-
ing [2, 81]. In theory, DP models mask the influence of
any given input, potentially making isotopes less detectable.
However, there are no known DP techniques to train Ima-
geNet or face recognition models to meaningful accuracy. In
the few realistic settings where DP training converges (e.g.,
some language models [49]), it requires data from millions
of users, imposes orders of magnitude overhead vs. normal
training, and fails to achieve state-of-the-art accuracy.

8.1 Spurious correlation detection

Isotope marking would be ineffective if A4 could detect
and filter out isotope images in 9. Existing literature
has shown it is possible to detect spurious correlation in
datasets [52, 67]. Since isotopes are inspired by the spurious
correlation phenomenon, we test whether [67], a state-of-the-
art spurious correlation detection method, can detect isoptoes
in D. [67] inspects feature maps produced by a trained F to
see if spurious features caused ¥ ’s classification decision.

Following [67], we run detection on CIFAR100 models.
Although [67] assumes that the model is robustly trained, we
omit this step, since the corresponding decrease in model ac-
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curacy [58] hampers A’s goal of training an effective model.
We test the “worst-case” scenario for isotopes by computing
feature maps for isotope images in 2 and manually inspect-
ing whether isotope features are flagged in the list of top-5
most important features for the isotope class in ¥, as re-
flected in the heatmaps. In reality, 4 would not know which
P images contain isotopes, so would have to inspect the top-
K activating features (depending on their threshold) for all ¥
classes. To understand the effect of mark visibility and fre-
quency on detection, we vary o from 0.1 to 0.5 (p =0.1) and
p from 0.01 to 0.3 (o = 0.5). We use the single tagged class
setting, which makes isotopes more likely to stand out and
be detected as spurious features.

Results and cost. For scenarios with smaller p < 0.2 and
o < 0.4, isotope features are not flagged (see Figure 14). In
the strongest cases (i.e. o= 0.5, p > 0.2), slight feature
map shifts are observed, indicating that for these settings,
this method may lead a model trainer to notice something
“odd” about isotope images and possibly filter them. How-
ever, the oo = 0.5, p > 0.2 setting is stronger than needed
in practice for effective isotopes. Moreover, this method re-
quires intense manual effort on the part of the model trainer
to identify isotope images, making spurious correlation de-
tection an impractical countermeasure. Outlier detection on
the training dataset, a related method, also fails to detect spu-
rious correlations (see Appendix A.5 for details).

8.2 Feature inspection

Inspecting ¥ ’s features after training could enable detec-
tion of isotope-induced behaviors. Since marks increase the
probability of marked label y; for marked inputs, the feature
space region associated with y; may exhibit isotope-specific
behaviors. Several defenses against backdoor attacks use fea-
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duces tag distinguishability but not detectability.

50 1 2 3 4 5 6
Fine-tuning epochs
the top-K outputs re- Figure 19. Retraining CIFAR100 tagged classes

using Scrub data drops accuracy faster than Vr.

Spectral  Activation

Signatures Clustering
Precision 0.004 0.018
Recall 0.011 0.322

Table 6. Precision and recall of Spectral [74] and Clustering [10] on
CIFARI100 with 25 marked classes.

ture inspection to detect backdoors [10, 28, 55, 62, 72, 74].
Here we adapt these to see if they can flag isotope behaviors.

We evaluate two feature inspection methods: Spectral Sig-
natures [74] and Activation Clustering [10]. Both analyze
the feature representations of D elements in trained ¥ and
run statistical tests to detect data that elicit unusual model
behaviors. Flagged data is removed from D, and ¥ re-
trained on the pruned dataset. We run both defenses using
the author-provided code adapted to our models. For Spec-
tral Signatures, we use the 95" percentile as cutoff; for Acti-
vation Clustering, we look for two clusters (e.g., “clean” and
“poison”) and use the “smaller cluster" criterion, since there
are fewer isotopes than clean data. We report average preci-
sion/recall in Table 6.

Results and cost. Both defenses have low precision and re-
call in detecting isotope data. Less than 2% of the data
flagged by both defenses is actually isotope data. Although
Activation Clustering has higher recall, detecting on aver-
age 32% of isotope data, its detection FPR is high (36%).
As with spurious correlation detection, these methods have
a nontrivial cost for 4, who must either manually filter the
flagged data to find isotopes or discard a large portion of D.
Neither defense detects enough isotopes to significantly dis-
rupt isotope detection.



8.3 Adversarial augmentations

If A4 cannot find isotopes in D or ¥, they can still try to
disrupt them. One obvious way is to modify images in D
during training. Our experiments in §5 employed common
augmentation techniques during training, such as cropping,
normalization, and rotation. These did not disrupt isotope
performance, but we now test if more aggressive image aug-
mentation could prevent ¥ from learning isotope features.

Adding noise. As abase case, 4 could try to disrupt isotopes
by adding Gaussian noise to D images before training. This
could disrupt subtle features on images, potentially rendering
marks ineffective. However, as Figure 15 shows, this is not
the case. Adding noise with u =0 and varying ¢ to D images
(Fig. 15) reduces ¥ accuracy faster than ¥ or Vp,.

Adding additional marks. A more aggressive tactic would
be to add more marks to D, to disrupt the learning of iso-
tope marks. We assume A4 adds marks to all images in D,
since they cannot know a priori which images have isotope
marks. We use images from the GTSRB dataset as A4’s addi-
tional marks and test their effect on isotope performance as
o, varies.

As Figure 16 shows, adding additional marks slowly de-
grades F and ’VDT accuracy as O increases. However, it
has a much stronger effect on %, which drops to 0 once
the additional mark o > 0.2. This performance drop is
likely because the new marks added are extremely similar
to both the isotope and external marks used in ¥ (e.g. all
are images blended into other images). When the model sees
similar marks on all training images, isotope marks are no
longer unique and are not learned as spurious correlations,
confounding V.

Results and cost. Adding noise imposes a significant model
accuracy cost on 4, as it causes to F accuracy degrade as
or more quickly than 74 and %),. Since A4 wants to train
a highly accurate model, they would not use noise to disrupt
isotopes. Although adding new marks drops 4 once the ad-
ditional marks have of > 0.2, model accuracy decreases by
at least 5% when o = 0.2, which may unacceptable for 4,
depending on the setting. Regardless, we believe this coun-
termeasure works better because of the similarity between
the new marks and our isotope marks, making it more diffi-
cult to for isotope marks to act as spurious features. Future
work broadening the set of mark options could mitigate this
issue.

8.4 Reducing Granularity of Outputs

A could try to prevent isotope detection by modifying F’s
outputs, since this could disrupt V. We consider two meth-
ods A4 could employ: adding noise to ¥ ’s logits or reducing
the granularity of s classification results.

Add noise to F outputs. Since V uses differences in prob-
abilities to detect isotopes, adding noise to 4 ’s outputs may
obscure probability shifts and render V ineffective. We test

13

this by adding Gaussian noise with u = 0 and varying G to
F’s logits before computing the output probability vector.
However, as Figure 17 shows, adding noise to ¥ ’s logits de-
grades model accuracy before 1 or Vp, decrease. Since
A incurs a high accuracy cost, this method is unusable.

Return only top-K predictions. Our basic isotope detection
algorithm assumes that # returns a probability distribution
over all classes. While this assumption holds for many real-
world ML APIs (Table 9 in Appendix A.6), F could respond
to queries with less information (e.g. Face++ in Table 9).

To test isotope performance in this modified setting, we
limit the model’s outputs to the top-K ranked classes, K €
{2,5,10,15,20,25,50} and compute the shift in the rank of
the isotope class between x; and xy. If the isotope class is
not in the top K, we set its rank as K + 1. ¥/ runs its t-test
on the rank shifts, instead of probability shifts. We report the
average Vr and Vp, accuracy for each K.

As Figure 18 shows, 9 remains high in the rank-only set-
ting, but 4V, decreases significantly. Our explanation is that
any correct mark learned by ¥, regardless of whether it is
correct for a given class, induces a change in #’s probabil-
ity, simply because it has been learned. When raw probabili-
ties are available, there is an obvious distinction between the
probability shift for true and false marks for a class. When
only the top-K outputs are available, there is not enough sig-
nal determine this. While this drop in ¥p, in the top-K
setting is unfortunate, recall that an individual user U only
knows their mark and thus cannot run ). Therefore, top-K
outputs are sufficient for detecting the mark, the user’s pri-
mary goal.

Results and cost. Adding noise to ¥’s logits directly de-
creases model accuracy and imposes a significant cost on
the model trainer. The cost of restricting to only the top-K
outputs is subtler. Unlike other countermeasures, this tech-
nique would, in many settings, reduce the model’s utility for
users. Furthermore, limiting outputs to only ranks provides
only “security by obscurity”, and could likely be overcome
by more advanced isotope distinguishing methods [12, 45].

8.5 Targeted Fine-tuning

Finally, a motivated adversary can fine-tune their model
with unrelated data to make # “forget” isotope-related fea-
tures. In adapting to new data, F might hold onto core fea-
tures of the original class but forget spurious features like
isotopes. To test this, we resize, relabel, and normalize
Scrub images to serve as fine-tuning data for tagged labels in
CIFARI100 (see Figure 19). Marked class accuracy degrades
much faster than 9/, making targeted retraining costly and
ineffective.

9 Limitations and Future Work

There are a number of limitations to our current work.
First, most of our experiments use visibility level o0 = 0.4,



which can leave visible marks on images. We made the trade-
off for this higher o because it means we can detect isotopes
with near-perfect accuracy when isotopes only make up 10%
of amodel class. This might be an acceptable cost for privacy
conscious users, but can easily be adjusted per user prefer-
ences.

Second, we did not explore isotope efficacy in other sce-
narios, e.g. enterprise scale models with millions of classes,
or lower p values below 0.1, for scenarios where many users
contribute data to a common class. Third, our approach can
be affected by model trainers who only offer limited classifi-
cation output (e.g. only top-K results), or those who are will-
ing to sacrifice their own model accuracy to evade isotope
detection (§8.3). Finally, despite our best efforts to study a
range of adaptive attacks, it is possible our system can be
circumvented by future countermeasures.

There are also several directions to extend and improve
this work. First, the isotope marks we evaluate — ImageNet
images blended into other images — introduce large feature
disturbances into images. There is clearly ample room for
work that explores alternative approaches with significantly
less visual impact, e.g. spurious correlations that do not re-
quire a mask over the full image. Second, we need to better
understand how isotopes (and other data provenance tools)
behave in a continual learning setting, as is used in many
commercial ML models today [38, 53]. While results in §8
show that retraining with orthogonal data does not cause a
model to forget isotope features, long-term retraining of mod-
els with in-distribution data could over time cause forgetting
of isotope features, since they are not “core” class features.
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A Appendix
A.1 Model Architectures and Training

We use different model architectures and training proce-
dures for each task. The training settings for each dataset are
in Table 7. For most tasks, models are trained from scratch.
The exception is PubFig, due to its small size, which we train
via transfer learning from models pre-trained on the CASIA-
Webface dataset [80]. All experiments are run on our local
servers using 1 NVIDIA GPU. For CIFAR100, we use the
ffcv library to expedite training [41].

A.2 7 baseline performance and boosting

In our experiments, we run ‘¥ using boosting, i.e. multi-
ple runs of the t-test, in order to minimize randomness. Here,
we explore the effect of Q, the number of boosting rounds, on
the TPR/FPR of /. The goal is to use the minimum number
of boosting rounds that produce a stable ¥ performance, to
minimize the cost of verification. We also explore the base-
line TPR/FPR for 4/ when it is run on #{ and 7}, two external
marks. ¥ should have roughly random performance (TPR =
FPR) in this setting.

To test this, we evaluate a CIFAR100 model with 30
marked classes, o = 0.5, p = 0.1. We run ¥ using different
Q values on both true/external mark pairs (as typically used
in V) and external/external mark pairs (for baseline perfor-
mance calibration). As Figure 21 shows, 1”’s performance
slightly improves when going from 1 to 5 boosting rounds,
but increasing from 5 to 10 does not significantly improve
performance. Thus, in our §5-§8 experiments, we use Q = 5.
As expected, results for the external/external ¥ tests are ran-
dom, even when Q = 10.



Task Classes Model Loss Training setting
GTSRB 43 Simple Cross-entropy Adam(Ir=0.0001, epochs=20, batch size=512)
CIFAR100 100 ResNet18 Cross-entropy SGD(Ir=0.5, scheduler=step, epochs=72, batch size=512)
PubFig 65  SphereFace (pretrained) Angle Adam(Ir=0.001, epochs=25, batch size=128)
Scrub 530 ResNet50 Focal Adam(Ir=0.001, scheduler=cyclic, epochs=16, batch size=128)
ImageNet 1000 ResNet50 Cross-entropy Adam(Ir=1.7, scheduler=step, epochs=18, batch size=512)
Table 7. Model training details for each task.
V1 for CIFARI00 single-class tags as a and p vary 0o os 10
Pixel square Random pixels Hello kitty Imégenét blend
0.6 000 | 020 020 020 000 000 000 000 000 000 000 000 000 000 008 000 000 0.00 100 100 100 100
0.5 0.00 000 020 m 000 000 000 0.00 000 000 000 008 000 000 000  0I7 0.00 100 060 100 100
0.4 | 020 000 000 000 000 000 000 000 000 000 0.0 0.00 1.00 100 100
. (7]
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Figure 20. Average Vy values for different marks in a CIFAR1 00 model. Marks that introduce stronger features into images (like Hello Kitty and Imagenet
Blend) perform much better. For a discussion of different mark performance, see Appendix A.3

A.3 Performance of different marks

Using the parameters and training settings described in
§5.1, we train CIFAR100 models with isotopes created using
the four marks shown in Figure 5. To explore how mark set-
tings impact performance, we vary o from 0.1 to 0.6 (see Fig-
ure 6) and p from 0.01 (e.g. 1% of data marked) to 0.5. Fig-
ure 20 reports the average 14 for each setting. Overall, we
find only Imagenet blend marks are consistently detectable.
This indicates that marks with more unique and diverse fea-
tures make marks better isotope candidates, and once such a
mark is visible and frequent enough in a user’s data, it can be
detected.

The pixels square, random pixels, and Hello Kitty marks
can induce probability shifts for classes to which they are
added, as illustrated in Figure ??. However, these marks
do not produce strong enough probability shifts to be robust
to the false positives test ¥ runs —e.g. comparing the true
mark to some external mark. This false positives test is nec-
essary to make isotopes practically useful, and when we em-
ploy this, we find that the pixels square, random pixels, and
Hello Kitty marks are less effective. Thus, we use the Ima-
genet blend mark in the rest of our experiments.

A.4 Isotopes in facial recognition engines

Testing isotopes in commercial FR systems requires some
modifications to the detection algorithm. Today, these sys-
tems work by matching query images to a reference database
via feature space similarity, as opposed to directly applying
a trained ML model. Standard approaches involve measuring
L, similarity between the query and reference images in the
feature space of a trained DNN [15, 50, 61, 76]. Reference
images that are similar (or identical) to a queried image are
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returned as the “top match”. We leverage this fact to detect
isotopes in commercial FR databases.

We run experiments on Amazon Rekognition, a popular
facial recognition engine that allows users to build a refer-
ence image database and submit new images to the database
via an API [26]. Rekognition does not disclose how images
are processed in their system, what DNN is used to produce
features, or how feature space matching is performed.

We enroll 100 people from the Scrub dataset in a Rekogni-
tion database using 100 images/person. We select 10 Scrub
classes for isotope testing, 5 men and 5 women (4 Black, 6
Caucasian). For each, we enroll 5 different images with the
same mark (setl) and 5 images that are identical but have
different marks (set2). At test time, we set the confidence
threshold (the minimum similarity for a reference image to
be returned as a match) at 95 and query setl, set2, and
set3, which contains new images with the set1 mark. All
marks are ImageNet blend marks with o0 = 0.4. In Table 8,
we report the proportion of images for which any isotope
match was returned, the average rank (1 = best) of the first
isotope image in the match set, and the average rank of the
true match for set1, set2.

As Table 8 shows, set1 and set2 always have the true en-
rolled image as their top match, i.e., we perfectly detect iso-
topes in the database. Interestingly, set 3 images, which have
the same mark as set1 but are not enrolled, have an isotope
image appear in the top 5 matches on average, even though
isotopes are only 10% of the enrolled set, i.e., a marked query
image often draws out other isotopes with the same mark en-
rolled in the database.

Discussion. Isotope detection described above exploits the
fact that FR engines are very good at matching identical im-
ages. Thus, if a user knows what images they posted on-
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Figure 21. Comparison of i performance for different Q values and on
paired external marks.

line and where, they can determine if a particular source was
included in an FR database by querying the corresponding
FR engine with an image from that source. Isotopes are not
strictly necessary for this sort of auditing: if an exact image
is in the reference database, it will typically be the top match.
Isotopes can still be useful for users to quickly “sort” which
site the images came from, perhaps by posting identical im-
ages with different marks on different sites.

A.5 Outlier detection countermeasure

ROC curves for k-means outlier

detection for different p (@ =0.5)
1.0

0.75

0.25
0.0

Figure 22. Outlier detection with fixed o and varying p. As p de-
creases, isotopes become rarer and outlier detection performance
slightly improves.

ROC curves for k-means outlier
detection for different a (p =0.1)

FPR

Figure 23. ROC curves for outlier detection with fixed p and varying

o. The method works best for o. = 0.1, but Vr is low for this o/p

(§5.2).

Outlier detection could enable A4 to discover marked im-
ages in the training dataset and remove them before train-
ing F. To test the efficacy of this countermeasure, we run
an outlier detection method that is based on k-nearest neigh-
bors [23]. We pass D through a model pre-trained on a
similar domain to create feature representations and cluster
the representations into N classes, where N is the number
of classes in 2. Finally, we run outlier detection on these
clusters while varying the outlier threshold to compare the
TPR (i.e. isotope data flagged as outlier) and FPR at differ-
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setl set2 set3
% with match 95% 94%  80%
Avg. mark matchrank 1.0 1.0 4.8
Avg. true matchrank 1.0 1.0 -

Table 8. Results from isotope detection in Amazon Rekognition. For
set1 and set2, the true match is always the top match. For unenrolled
isotope images (3), isotope images with the same mark appear in the top
5 hits.

ent thresholds. We assume that 4 looks for isotope outliers
for each label/cluster.

Since we test on CIFAR100 models, we use a pre-trained
Imagenet model to produce the feature representation. We
evaluate in the single mark setting, since this represents the
most optimistic scenario for the model trainer: with only one
label marked, isotope images are more likely to stand out
and be flagged as outliers. To understand the effect of mark
visibility and mark frequency on detection efficacy, we vary
a from 0.1 t0 0.5 (p =0.1) and p from 0.01 to 0.3 (¢ = 0.5).

Results and cost. As Figures 22 and 23 show, when a is
larger or p is smaller, isotope images are easier to flag as
outliers, and the AUC for outlier detection increases. Outlier
detection performs well when o = 0.1 and p = 0.1, but ¥
accuracy is low for these parameters, making them unlikely
to be used in practice (see Figure 20). Overall, KNN-based
outlier detection detects isotope outliers only at high false
positive rates, necessitating either additional filtering to find
the true positives or throwing out a large chunk of unmarked
data. This is a nontrivial cost, as both acquiring new data
and manually inspecting existing data are time- and resource-
intensive. More advanced outlier detection may reduce the
FPR, and we leave this as future work.

A.6  Query Outputs in Real World Systems

Task Service Query Output Reference
Rekognition All labels above threshold [17]
Face recognition Azure All labels above threshold [18]
Face++ Up to top 5 matches [20]
. . . Apple ML kit All matches above threshold [16]
Object classification 5010 ML Kit  Flexible, default = top 5 [19]

Table 9. Prediction outputs returned by different ML services. Most services
return all labels that match the input with more than a certain “confidence”
threshold level, set by the user performing the query.

Table 9 provides examples of query outputs returned by
real-world MLaaS providers. Most systems by default return
any matches (for facial recognition) or labels (in a classifica-
tion setting) above a given confidence threshold. Users inter-
acting with the MLaaS API can vary this threshold in their
queries to obtain more (or fewer) results from the model. The
one exception to this rule is Face++, a platform for building



custom facial recognition engines, which will return at most
the top 5 query results.
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