


1 Introduction

Improvements in reinforcement learning (RL) have led to notable recent achievements (Silver et al., 2016; Senior
et al., 2020; Vinyals et al., 2019; Bellemare et al., 2020; Berner et al., 2019; Degrave et al., 2022; Wurman et al.,
2022), increasing its applicability to real-world problems. Yet, like all optimization algorithms, even perfect RL
optimization is limited by the objective it optimizes. For RL, this objective is created in large part by the reward
function. Poor alignment between reward functions and the interests of human stakeholders limits the utility of
RL and may even pose risks of financial cost and human injury or death (Amodei et al., 2016; Knox et al., 2021).

Influential recent research has focused on learning reward functions from preferences over pairs of trajectory
segments, a common form of reinforcement learning from human feedback (RLHF). Nearly all of this recent work
assumes that human preferences arise probabilistically from only the sum of rewards over a segment, i.e., the
segment’s partial return (Christiano et al., 2017; Sadigh et al., 2017; Ibarz et al., 2018; Bıyık et al., 2021; Lee et al.,
2021a;b; Ziegler et al., 2019; Wang et al., 2022; Ouyang et al., 2022; Bai et al., 2022; Glaese et al., 2022; OpenAI,
2022). That is, these works assume that people tend to prefer trajectory segments that yield greater accumulated
rewards during the segment. However, this preference model ignores seemingly important information about
the segment’s desirability, including the state values of the segment’s start and end states. Separately, this
partial return preference model can prefer suboptimal actions with lucky outcomes, like buying a lottery ticket.

This paper proposes an alternative preference model based on the regret of each segment, which is a measure
of how much each segment deviates from optimal decision-making. More precisely, regret is the negated sum
of an optimal policy’s advantage of each transition in the segment (Section 2.2). Figures 1 and 2 show intuitive
examples of when these two models disagree. Some examples of domains where the preference models will
differ are those with constant reward until the end, including competitive games like chess, go, and soccer
as well as tasks for which the objective is to minimize time until reaching a goal.

For these two preference models, we first focus theoretically on a normative analysis (Section 3)—i.e., what
preference model would we want humans to use if we could choose one based on how informative its generated
preferences are—proving that reward learning on infinite, exhaustive preferences with our proposed regret
preference model identifies a reward function with the same set of optimal policies as the reward function with
which the preferences are generated. We also prove that the partial return preference model is not guaranteed to
identify such a reward function in three different contexts: without preference noise, when trajectories of different
lengths are possible from a state, and when segments consist of only one transition. We follow up with a descriptive
analysis of how well each of these proposed models align with actual human preferences by collecting a human-
labeled dataset of preferences in a rich grid world domain (Section 4) and showing that the regret preference
model better predicts these human preferences (Section 5). Finally, we find that the policies ultimately created
through the regret preference model tend to outperform those from the partial return model learning—both
when assessed with collected human preferences or when assessed with synthetic preferences (Section 6). Our
code for learning and for re-running our main experiments can be found here, alongside our interface for training
subjects and for preference elicitation. The human preferences dataset is available here (Knox et al., 2023).

In summary, our primary contributions are five-fold:

1. We propose a new model for human preferences that is based on regret instead of partial return.

2. We theoretically validate that this regret-based model has the desirable characteristic of reward
identifiability, and that the partial return model does not.

3. We empirically validate that when each preference model learns from a preferences dataset it created,
this regret-based model leads to better-aligned policies.

4. We empirically validate that, with a collected dataset of human preferences, this regret-based model
both better describes the human preferences and leads to better-aligned policies.

5. Overall, we show that the choice of preference model impacts the alignment of learned reward functions.
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2 Preference models for learning reward functions

We assume that the task environment is a Markov decision process (MDP) specified by the tuple (S, A,
T , γ, D0, r). S and A are the sets of possible states and actions, respectively. T is a transition function,
T :S×A→p(·|s,a); γ is the discount factor; and D0 is the distribution of start states. Unless otherwise stated,
we assume all tasks are undiscounted (i.e., γ=1) and have terminal states, after which only 0 reward can be
received. Discounting is considered in depth in Appendix B.2. r is a reward function, r :S×A×S→R, where
the reward rt at time t is a function of st, at, and st+1. An MDP\r is an MDP without a reward function.

Throughout this paper, r refers to the ground-truth reward function for some MDP; r̂ refers to a learned
approximation of r; and r̃ refers to any reward function (including r or r̂). A policy (π :S×A→ [0,1]) specifies
the probability of an action given a state. Qπ

r̃ and V π
r̃ refer respectively to the state-action value function and

state value function for a policy, π, under r̃, and are defined as follows.

V π
r̃ (s)

def
= Eπ[

∞
∑

t=0

r̃(st,at,st+1)|s0 =s]

Qπ
r̃ (s,a)

def
= Eπ[r̃(s,a,s′)+V π

r̃ (s′)]

An optimal policyπ∗ is any policy whereV π∗

r̃ (s)≥V π
r̃ (s) at every state s for every policyπ. We write shorthand for

Qπ∗

r̃ and V π∗

r̃ asQ∗
r̃ and V ∗

r̃ , respectively. The optimal advantage function is defined asA∗
r̃(s,a)≜Q∗

r̃(s,a)−V ∗
r̃ (s);

this measures how much an action reduces expected return relative to following an optimal policy.

Throughout this paper, the ground-truth reward function r is used to algorithmically generate preferences
when they are not human-generated, is hidden during reward learning, and is used to evaluate the performance
of optimal policies under a learned r̂.

2.1 Reward learning from pairwise preferences

A reward function can be learned by minimizing the cross-entropy loss—i.e., maximizing the likelihood—of
observed human preferences, a common approach in recent literature (Christiano et al., 2017; Ibarz et al.,
2018; Wang et al., 2022; Bıyık et al., 2021; Sadigh et al., 2017; Lee et al., 2021a;b; Ziegler et al., 2019; Ouyang
et al., 2022; Bai et al., 2022; Glaese et al., 2022; OpenAI, 2022).

Segments Let σ denote a segment starting at state sσ
0 . Its length |σ| is the number of transitions within

the segment. A segment includes |σ|+1 states and |σ| actions: (sσ
0 ,a

σ
0 ,s

σ
1 ,a

σ
1 ,...,s

σ
|σ|). In this problem setting,

segments lack any reward information. As shorthand, we define σt≜(sσ
t ,a

σ
t ,s

σ
t+1). A segment σ is optimal with

respect to r̃ if, for every i∈{1,...,|σ|-1}, Q∗
r̃(sσ

i ,a
σ
i )=V ∗

r̃ (sσ
i ). A segment that is not optimal is suboptimal.

Given some r̃ and a segment σ, r̃σ
t ≜ r̃(sσ

t ,a
σ
t ,s

σ
t+1), and the undiscounted partial return of a segment σ is

∑|σ|−1
t=0 r̃σ

t , denoted in shorthand as Σσ r̃.

Preference datasets Each preference over a pair of segments creates a sample (σ1,σ2,µ) in a preference
dataset D≻. Vector µ=⟨µ1,µ2⟩ represents the preference; specifically, if σ1 is preferred over σ2, denoted σ1≻σ2,
µ= ⟨1,0⟩. µ is ⟨0,1⟩ if σ1≺σ2 and is ⟨0.5,0.5⟩ for σ1∼σ2 (no preference). For a sample (σ1,σ2,µ), we assume
that the two segments have equal lengths (i.e., |σ1|= |σ2|).

Loss function To learn a reward function from a preference dataset, D≻, a common assumption is that
these preferences were generated by a preference model P that arises from an unobservable ground-truth reward
function r.We approximate r by minimizing cross-entropy loss to learn r̂:

loss(r̂,D≻)=−
∑

(σ1,σ2,µ)∈D≻

µ1logP (σ1≻σ2|r̂)+µ2logP (σ1≺σ2|r̂) (1)

For a single sample where σ1 ≻ σ2, the sample’s likelihood is P (σ1 ≻ σ2|r̂) and its loss is therefore
−logP (σ1≻σ2|r̂). If σ1≺σ2, its likelihood is 1−P (σ1≻σ2|r̂). This loss is under-specified until P (σ1≻σ2|r̂)
is defined, which is the focus of this paper. We show that the common partial return model of preference
probabilities is flawed and introduce an improved regret-based preference model.
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Preference models A preference model determines the probability of one trajectory segment being
preferred over another, P (σ1≻σ2|r̃). P (σ1≻σ2|r̃)+P (σ1∼σ2|r̃)+P (σ1≺σ2|r̃)=1, and P (σ1∼σ2|r̃)=0 for
the preference models considered herein. Preference models could be applied to model preferences provided
by humans or other systems. Preference models can also directly generate preferences, and in such cases we
refer to them as preference generators.

2.2 Choice of preference model: partial return and regret

Partial return All aforementioned recent work assumes human preferences are generated by a Boltzmann
distribution over the two segments’ partial returns, expressed here as a logistic function.1

PΣr(σ1≻σ2|r̃)= logistic
(

Σσ1
r̃−Σσ2

r̃
)

. (2)

Regret We introduce an alternative preference model based on the regret of each transition in a segment. We
first focus on segments with deterministic transitions. For a transition (st,at,st+1) in a deterministic segment,
regretd(σt|r̃)≜V

∗
r̃ (sσ

t )−[r̃t+V ∗
r̃ (sσ

t+1)]. The subscript d in regretd signifies the assumption of deterministic
transitions. For a full deterministic segment,

regretd(σ|r̃)≜

|σ|−1
∑

t=0

regretd(σt|r̃)=V ∗
r̃ (sσ

0 )−(Σσ r̃+V ∗
r̃ (sσ

|σ|)), (3)

with the right-hand expression arising from cancelling out intermediate state values. Therefore, deterministic
regret measures how much the segment reduces expected return from V ∗

r̃ (sσ
0 ). An optimal segment, σ∗, always

has 0 regret, and a suboptimal segment, σ¬∗, will always have positive regret, an intuitively appealing property
that also plays a role in the identifiability proof of Theorem 3.1.

Stochastic state transitions, however, can result in regretd(σ∗|r̂)>regretd(σ¬∗|r̃), losing the property above.
For instance, an optimal action can lead to worse return than a suboptimal action, based on stochasticity in
state transitions. To retain this property that optimal segments have a regret of 0 and suboptimal segments
have positive regret, we first note that the effect on expected return of transition stochasticity from a transition
(st,at,st+1) is [r̃t+V ∗

r̃ (st+1)]−Q∗
r̃(st,at) and add this expression once per transition to get regret(σ), removing

the subscript d that refers to determinism. The regret for a single transition becomes regret(σt|r̃)= [V ∗
r̃ (sσ

t )−
[r̃t+V ∗

r̃ (sσ
t+1)]]+[[r̃t+V ∗

r̃ (sσ
t+1)]−Q∗

r̃(sσ
t ,a

σ
t )]=V ∗

r̃ (sσ
t )−Q∗

r̃(sσ
t ,a

σ
t )=−A∗

r̃(sσ
t ,a

σ
t ). Regret for a full segment is

regret(σ|r̃)=

|σ|−1
∑

t=0

regret(σt|r̃)=

|σ|−1
∑

t=0

[

V ∗
r̃ (sσ

t )−Q∗
r̃(sσ

t ,a
σ
t )

]

=

|σ|−1
∑

t=0

−A∗
r̃(sσ

t ,a
σ
t ). (4)

The regret preference model is the Boltzmann distribution over negated regret:

Pregret(σ1≻σ2|r̃)≜ logistic
(

regret(σ2|r̃)−regret(σ1|r̃)
)

. (5)

Lastly, we note that if two segments have deterministic transitions, end in terminal states, and have the same
starting state, in this special case the regret model reduces to the partial return model: Pregret(·|r̃)=PΣr(·|r̃).

In this article, our normative results examine both tasks with deterministic transitions and tasks with stochastic
transitions. These normative results include the theoretical analysis in Section 3 and the empirical results
with synthetic data in Section 6.2 and Appendix F.2, with stochastic tasks specifically examined empirically
in Appendix F.2.4. We gather human preferences for a deterministic task, which allows us to investigate the
results with the more intuitive expression of regretd that includes partial return as a component.

1See Appendix B.1 for a derivation of this logistic expression from a Boltzmann distribution with a temperature of 1. Unless
otherwise stated, we ignore the temperature because scaling reward has the same effect when preference probabilities are not
deterministic. The temperature is allowed to vary for our theory in Section 3. Another context when the temperature parameter
would be useful is when learning a single reward function with a loss function that includes one or more loss terms in addition to
the formula in Equation 1; in such a case, scaling reward might undesirably affect the other loss term(s), whereas the varying the
Boltzmann temperature changes the preference entropy without affecting the other loss term(s).
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This section uses preference models that include discounting (see Appendix B.2). We allow for discounting to
make the theory more general and also because discounting is integral to Section 3.2.3. Here the notation for
Q∗

r̃(s,a) and V ∗
r̃ (s) is expanded to Q∗

(r̃,γ̃)(s,a) and V ∗
(r̃,γ̃)(s) respectively include the discount factor. To make

the other content in this section specific to undiscounted tasks, simply assume all instances of γ̃=1, including
the ground-truth γ and the γ̂ used during reward function inference and policy improvement.

Definition 3.1 (An identifiable preference model). For a preference model P , assume an infinite dataset D≻

of n-length pairs of segments is constructed by repeatedly choosing (σ1,σ2) and sampling a label µ∼P (σ1≻σ2|r),
using P as a preference generator. Further assume that, in this dataset, all possible n-length segment pairs
appear infinitely many times. For some M that is an MDP\(r,γ)—an MDP with neither a reward function nor
a discount factor—let M(r̃,γ̃) be M with the reward function r̃ and the discount factor γ̃. Let Π∗

(r̃,γ̃) be the set
of optimal policies for M(r̃,γ̃). Let problem-equivalence class R be the set of all pairs of a reward function and
a discount factor such that if (r1,γ1),(r2,γ2)∈R then Π∗

(r1,γ1) =Π∗
(r2,γ2). Preference model P is identifiable

if, for any choice of segment length n and ground-truth M(r,γ), any (r̂,γ̂) = argmin(r̃,γ̃)[loss(r̃,γ̃,D≻)]—for
the cross-entropy loss (Eqn. 8, which is Eqn. 1 generalized to include discounting), with P as the preference
model—is in the same problem equivalence class as (r,γ). I.e., Π∗

(r,γ) =Π∗
(r̂,γ̂).

3.1 The regret preference model is identifiable.

We first prove that our proposed regret preference model is identifiable.

Theorem 3.1 (Pregret is identifiable). Let Pregret be any function such that if regret(σ1|r̃,γ̃)<regret(σ2|r̃,γ̃),
Pregret(σ1 ≻ σ2|r̃,γ̃) > 0.5, and if regret(σ1|r̃, γ̃) = regret(σ2|r̃, γ̃), Pregret(σ1 ≻ σ2|r̃,γ̃) = 0.5. Pregret is
identifiable.

This class of regret preference models includes but is not limited to the Boltzmann distribution of Equation 5.
Additionally, it includes a version of the regret preference model that noiselessly always prefers the segment
with lower regret, as Theorem 3.2 considers for the partial return preference model.2

Consider reviewing the definitions of optimal segments and suboptimal segments in Section 2.1 before proceeding.

Proof Make all assumptions in Definition 3.1. Since (r̂,γ̂) minimizes cross-entropy loss and is chosen from the
complete space of reward functions and discount factors, Pregret(·|r,γ)=Pregret(·|r̂,γ̂) for all possible segment
pairs. Also, by Equation 12 (which generalizes Equation 4 to include discounting) regret(σ|r̃,γ̃) = 0 if and only
if σ is optimal with respect to r̃. And regret(σ|r̃,γ̃)>0 if and only if σ is suboptimal with respect to (r̃,γ̃).

With respect to some (r̃, γ̃), let σ∗ be any optimal segment and σ¬∗ be any suboptimal segment.
regret(σ∗|r̃, γ̃) < regret(σ¬∗|r̃, γ̃), so Pregret(σ

∗ ≻ σ¬∗|r̃, γ̃) > 0.5. Pregret(·|r̃, γ̃) induces a total ordering
over segments, defined by regret(σ1|r̃,γ̃) < regret(σ2|r̃,γ̃) ⇐⇒ Pregret(σ1 ≻ σ2|r̃,γ̃) > 0.5 ⇐⇒ σ1 > σ2 and
regret(σ1|r̃,γ̃)=regret(σ2|r̃,γ̃)⇐⇒ Pregret(σ1≻σ2|r̃,γ̃)=0.5⇐⇒ σ1 =σ2. Because regret has a minimum (0),
there must be a set of segments which are ranked highest under this ordering, denoted Σ∗

(r̃,γ̃). These segments
in Σ∗

(r̃,γ̃) are exactly those that achieve the minimum regret (0) and so are optimal with respect to (r̃,γ̃).

Since the dataset (D≻) contains all segments by assumption, Σ∗
(r̃,γ̃) contains all optimal segments with respect

to (r̃,γ̃). If a state-action pair (s,a) is in an optimal segment, then by the definition of an optimal segment
Q∗

(r̃,γ̃)(s,a) = V ∗
(r̃,γ̃)(s). The set of optimal policies Π∗

r̃ for r̃ is all π such that, for all (s,a), if π(s,a) > 0,
then Q∗

(r̃,γ̃)(s,a) = V ∗
(r̃,γ̃)(s). In short, Σ∗

(r̃,γ̃) determines the set of each state-action pair (s,a) such that
Q∗

(r̃,γ̃)(s,a)=V ∗
(r̃,γ̃)(s). This set determines Π∗

(r̃,γ̃). Therefore Σ∗
(r̃,γ̃) determines Π∗

(r̃,γ̃), and we will refer to this
determination as the function g.

We now focus on the reward function and discount factor used to generate preferences, (r,γ), and on the inferred
reward function and discount factor, (r̃,γ̃). Since Pregret(·|r,γ)=Pregret(·|r̂,γ̂), (r,γ) and (r̂,γ̂) induce the same

2Equations 2 and 5 can be extended to include such noiseless preference models by including the temperature parameter of the
Boltzmann distributions (after converting from their logistic formulations, reversing the derivation in Appendix B.1), where we
assume that setting the temperature to 0 results in a hard maximum. In other words, when the temperature is 0 the preference is
given deterministically to the segment with the higher partial return in Equation 2 or regret in Equation 5.
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the set of preferences for each of these MDPs is the same even when including segments that reach terminal
state before |σ| transitions (which can still be considered to be of length |σ| if the terminal state is an absorbing
state from which reward is 0).

Discussion of preference noise and identifiability Of the two proofs by example for Theorem 3.2, the
first proof’s example reveals issues when learning reward functions with stochastic transitions with either
PΣr or deterministic Pregretd

. These issues directly correspond to the need for preferences over distributions
over outcomes (i.e., lotteries) to construct a cardinal utility function (see Russell & Norvig (2020, Ch. 16)).
Correspondingly, when Skalse et al. (2022) consider reward identifiability with the partial return preference model,
they change the learning problem such that a training sample consists of preferences between distributions over
trajectories. Intuitively, Theorem 3.2 says that PΣr is not identifiable without the distribution over preferences
providing information about the proportions of rewards with respect to each other. In contrast, to be identifiable,
the regret preference model does not require this preference error (though it can presumably benefit from it in
certain contexts).

3.2.2 Partial return is not identifiable in variable-horizon tasks.

Many common tasks have the characteristic of having at least one state from which trajectories of different
lengths are possible, which we refer to as being a variable-horizon task. Tasks that terminate upon completing
a goal typically have this characteristic. In this context, we show another way that the partial return preference
model is not identifiable, a limitation that has arisen dramatically in our own experiments and is not limited to
noiseless preferences: adding a constant to a reward function will often change the set of optimal policies, but it
will not change the probability of preference for any two segments. Therefore, those preferences will not contain
information to recover the set of optimal policies.

We now explain why such a constant shift will not change the probability of preference based upon partial return.
Consider a constant value c and two reward functions, r1 and r2, where r1(st,at,st+1)−r2(st,at,st+1)=c for all
transitions (st,at,st+1). The partial return of any segment of length |σ| will be c×|σ| higher for r1 than for r2

(assuming an undiscounted task, γ=1). In the partial return preference model (Equation 2), this addition of
c×|σ| to each segment’s partial return cancels out, having no effect on the different in the segments’ partial
returns and therefore also having no effect on the preference probabilities. Consequently, adding c to a reward
function’s output will also not affect the distribution over preference datasets that the partial return preference
model would create via sampling from its preference probabilities.

If, for each state in an MDP, all possible trajectories from that state have the same length, then adding a
constant c to the output of the reward function does not affect the set of optimal policies.Specifically, the set of
optimal policies is preserved because the return for any trajectory from a state is changed by c×|τ |, where |τ | is
the unchanging trajectory length from that state, so the ranking of trajectories by their returns is unchanged
and also the expected return of a policy from that state is unchanged. Continuing tasks and fixed-horizon tasks
have this property.

However, if trajectories from a state can terminate after different numbers of transitions, then two reward
functions that differ by a constant can have different sets of optimal policies. Episodic tasks are often vulnerable
to this issue. To illustrate, consider the task in Figure 1, a simple grid world task that penalizes the agent with
−1 reward for each step it takes to reach the goal. If this reward per step is shifted to +1 (or any positive value),
then any optimal policy will avoid the goal, flipping the objective of the task from that of reaching the goal. So,
for variable-horizon tasks, PΣr is not generally identifiable.

Though identifiability focuses on what information is encoded in preferences, this issue has practical consequences
during learning from preferences over segments of length 1: for a preferences dataset, all reward functions that
differ by a constant assign the same likelihood to the dataset, making the choice between such reward functions
arbitrary and the learning problem underspecified. Some past authors have acknowledged this insensitivity to a
shift (Christiano et al., 2017; Lee et al., 2021a; Ouyang et al., 2022; Hejna & Sadigh, 2023), and the common
practice of forcing all tasks to have a fixed horizon (Christiano et al., 2017; Gleave et al., 2022) may be partially
attributable to PΣr’s lack of identifiability in variable-horizon tasks, leading to its low performance in such
tasks. In Appendix F.2.2, we propose a stopgap solution to this problem and also observe that in episodic grid
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worlds that the partial return preference model performs catastrophically poorly without this solution, both
with synthetic preferences and human preferences.

The regret preference model is appropriately affected by constant reward shifts. Here we give
intuition for why adding a constant c to the output of a reward function does not threaten the identifiability of
the regret preference model, as established in Theorem 3.1. As stated above, adding c to reward can change the
set of optimal policies. Any such change in what actions are optimal would likewise change the ordering of
segments by regret, so the likelihood of a preferences dataset according to the regret preference model would be
affected by such a constant shift in the learned reward function (as it should be).

3.2.3 Partial return is not identifiable for segment lengths of 1.

Arguably the most impactful application to date of learning reward functions from human preferences is to
fine-tune large language models. For the most notable of these applications, the segment length |σ|=1 (Ziegler
et al., 2019; OpenAI, 2022; Glaese et al., 2022; Ouyang et al., 2022; Bai et al., 2022).

Changing γ often changes the set of optimal policies, yet when |σ|=1, changing the discount factor does not
change preference probabilities based upon partial return preference model. We elaborate below.

Here we make an exception to this article’s default assumption that all tasks are undiscounted. As we describe in
Appendix B.2, the discounted partial return of a segment is

∑|σ|−1
t=0 γ̃tr̃σ

t . We follow the standard convention that
00 =1. When |σ|=1, the partial return simplifies to the immediate reward, r̃σ

0 . Consequently the partial return
preference model is unaffected by the discount factor when |σ|=1. To remove this source of unidentifiability,
the preferences dataset would need to be presented to the learning algorithm with a corresponding discount
factor. Past work on identifiability in this setting (Skalse et al., 2022) has assumed that the discount factor is
given and not discussed further.

As with the other identifiability issues demonstrated in this subsection, this issue has practical consequences
during learning from preferences. When |σ|= 1, the choice of γ̂ is arbitrary, making the learning problem
underspecified.

The regret preference model is identifiable even when the discount factor is unknown. In contrast,
the discounted regret of a segment—presented in Appendix B.2—does include the discount factor in its
formulation, regardless of segment length. Therefore, the discount factor used during preference generation
does impact what reward function is learned.

4 Creating a human-labeled preference dataset

To empirically investigate the consequences of each preference model when learning reward from human
preferences, we collected a preference dataset labeled by human subjects via Amazon Mechanical Turk. This
data collection was IRB-approved. Appendix D adds detail to the content below.

4.1 The general delivery domain

The delivery domain consists of a grid of cells, each of a specific road surface type. The delivery agent’s state is
its location. The agent’s action space is moving one cell in one of the four cardinal directions. The episode
can terminate either at the destination for +50 reward or in failure at a sheep for −50 reward. The reward
for a non-terminal transition is the sum of any reward components. Cells with a white road surface have a −1
reward component, and cells with brick surface have a −2 component. Additionally, each cell may contain a
coin (+1) or a roadblock (−1). Coins do not disappear and at best cancel out the road surface cost. Actions
that would move the agent into a house or beyond the grid’s perimeter result in no motion and receive reward
that includes the current cell’s surface reward component but not any coin or roadblock components. In this
work, the start state distribution, D0, is always uniformly random over non-terminal states. This domain was
designed to permit subjects to easily identify bad behavior yet also to be difficult for them to determine optimal
behavior from most states, which is representative of many common tasks. Note that this intended difficulty
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Algorithm 1 Linear reward learning with regret preference model (Pregret), using successor features

1: Input: a set of policies
2: Ψ←∅

3: for each reward function policy πSF in the input set do

4: estimate ψπSF

Q
and ψπSF

V
(if not estimated already during step 4)

5: add ψπSF

Q
to Ψ

Q

6: add ψπSF

V
to Ψ

V

7: end for

8: repeat

9: optimize wr̂ by loss of Eqn. 1, calculating P̃regret(σ1≻σ2|r̂) via Eqn. 6, using Ψ
Q

and Ψ
V

10: until stopping criteria are met
11: return wr̂

Given a set Ψ
Q

of state-action successor feature functions and a set Ψ
V

of state successor feature func-
tions for various policies and given a reward function via wr̂, Qπ∗

r̂ (s,a) ≥ maxψ
Q

∈Ψ
Q

[ψπ
Q

(s,a)⊤wr̂] and

V π∗

r̂ (s) ≥maxψ
V

∈Ψ
V

[ψπ
V

(s)⊤wr̂] (Barreto et al., 2016),so we use these two maximizations as approxima-
tions of Q∗

r̂(s, a) and V ∗
r̂ (s), respectively. In practice, to enable gradient-based optimization with cur-

rent tools, the maximization in this expression is replaced with the softmax-weighted average, making
the loss function linear. Focusing first on the approximation of V ∗

r̂ (s), for each ψ
V
∈ Ψ

V
, a softmax

weight is calculated for ψπ
V

(s): softmaxΨ
V

(ψπ
V

(s)⊤wr̂) ≜ [(ψπ
V

(s)⊤wr̂)1/T ]/[(
∑

ψ′

V
∈Ψ

V

ψ′π
V

(s)⊤wr̂)1/T ],

where temperature T is a constant hyperparameter. The resulting approximation of V ∗
r̂ (s) is there-

fore defined as Ṽ ∗
r̂ (s) ≜

∑

ψ
V

∈Ψ
V

softmaxΨ
V

(ψπ
V

(s)⊤wr̂)[ψπ
V

(s)⊤wr̂]. Similarly, to approximate

Q∗
r̂(s, a), softmaxΨ

Q
(ψπ

Q
(s, a)⊤wr̂) ≜ [(ψπ

Q
(s, a)⊤wr̂)1/T ]/[(

∑

ψ′

Q
∈Ψ ψ

′π
Q

(s, a)⊤wr̂)1/T ] and Q̃∗
r̂(s, a) ≜

∑

ψ
Q

∈Ψ
Q

softmaxΨ
Q

(ψπ
Q

(s,a)⊤wr̂)[ψπ
Q

(s,a)⊤wr̂]. Consequently, from Eqns. 4 and 5, the corresponding

approximation P̃regret of the regret preference model is:

P̃regret(σ1≻σ2|r̂)= logistic

(

∑|σ2|-1
t=0

[

Ṽ ∗
r̂ (sσ2

t )−Q̃∗
r̂(sσ2

t ,aσ2

t )
]

−
∑|σ1|-1

t=0

[

Ṽ ∗
r̂ (sσ1

t )−Q̃∗
r̂(sσ1

t ,aσ1

t )
]

)

(6)

The algorithm In Algorithm 1, lines 8–11 describe the supervised-learning optimization using the
approximation P̃regret, and the prior lines create Ψ

Q
and Ψ

V
. Specifically, given a set of input policies (line 1),

for each such policy πSF , successor feature functions ΨπSF

Q
and ΨπSF

V
are estimated (line 4), which by default

would be performed by a minor extension of a standard policy evaluation algorithm as detailed by Barreto et al.
(2016). Note that the reward function that is ultimately learned is not restricted to be in the input set of reward
functions, which is used only to create an approximation of regret.

One potential source of the input set of policies is a set of reward functions, where each input policy is the result
of policy improvement on one reward function. We follow this method in our experiments, randomly generating
reward functions and then estimating an optimal policy for each reward function. Specifically, for each reward
function, we seek the the maximum entropy optimal policy, which resolves ties among optimal actions in a state
via a uniform distribution over those optimal actions.

Further details of our instantiation of Algorithm 1 for the delivery domain can be found in Appendix F.1, along
with preliminary guidance for choosing an input set of policies (Appendix F.1.1) and for extending it to reward
functions that might be non-linear (Appendix F.1.2).

6.2 Results from synthetic preferences

Before considering human preferences, we first ask how each preference model performs when it correctly
describes how the preferences in its training set were generated. In other words, we investigate empirically how
well the preference model could perform if humans perfectly adhered to it. Recall that the ground-truth reward
function, r, is used to create these preferences but is inaccessible to the reward-learning algorithms.
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6.3 Results from human preferences

We now consider the reward-learning performance of each preference model on preferences generated by humans
for our specific delivery task. We randomly assign human preferences from our gathered dataset to different
numbers of same-sized partitions, resulting in different training set sizes, and test each preference model on each
partition. Figure 11 shows the results. With smaller training sets (20–100 partitions), the regret preference
model results in near-optimal performance more often. With larger training sets (1–10 partitions), both
preference models always reach near-optimal return, but the mean return from the regret preference model is
higher for all of these partitions except for only 3 partitions in the 10-partition test. Applying a Wilcoxon paired
signed-rank test on normalized mean return to each group with 5 or more partitions, p<0.05 for all numbers
of partitions except 100 and p< 0.01 for 20 and 50 partitions. To summarize, we find that both the regret
and the partial return preference models achieve near-optimal performance when the dataset is sufficiently
large—although the performance of the regret preference model is nonetheless almost always higher—and we
also find that regret achieves near-optimal performance more often with smaller datasets.

Figure 11: Performance comparison over various amounts of
human preferences. Each partition has the number of preferences
shown or one less.

Using the human preferences dataset, Appendix F.3
contains further analyses: learning without segments
that terminate before their final transition, learning
via additional novel preference models, and testing
the learned reward functions on other MDPs with the
same ground-truth reward function.

7 Conclusion

Over numerous evaluations with human preferences,
our proposed regret preference model (Pregret) shows
improvements summarized below over the previous
partial return preference model (PΣr).When each pref-
erence model generates the preferences for its own
infinite and exhaustive training set, we prove that
Pregret identifies the set of optimal policies, whereas
PΣr is not guaranteed to do so in multiple common
contexts. With finite training data of synthetic preferences, Pregret also empirically results in learned policies
that tend to outperform those resulting from PΣr. This superior performance of Pregret is also seen with
human preferences. In summary, our analyses suggest that regret preference models are more effective both
descriptively with respect to human preferences and also normatively, as the model we want humans to follow if
we had the choice.

Independent of Pregret, this paper also reveals that segments’ changes in state values provide information about
human preferences that is not fully provided by partial return. More generally, we show that the choice of
preference model impacts the performance of learned reward functions.

This study motivates several new directions for research. Future work could address any of the limitations
detailed in Appendix A.1. Specifically, future work could further test the general superiority of Pregret or apply
it to deep learning settings. Additionally, prescriptive methods could be developed via the subject interface or
elsewhere to nudge humans to conform more to Pregret or to other normatively appealing preference models.
Lastly, this work provided conclusive evidence that the choice of preference model is impactful. Subsequent
efforts could seek preference models that are even more effective with preferences from actual humans.
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After Appendix A, the appendix is organized according to the major sections and subsections of the main
content.

A Limitations and ethics

A.1 Limitations

Some limitations of the regret preference model are discussed in the paragraph “Regret as a model for human
preference” in Section 2.2, including assumptions that a person giving preferences can distinguish between
optimal and suboptimal segments, that they follow a Boltzmann distribution (i.e., a Luce Shepard choice rule),
and that they base their preferences on decision quality even when transition stochasticity results in segment
pairs for which the worse decision has a better outcome.

Our proposed algorithm (Section 6.1) has a few additional limitations. Generating candidate successor features
for the approximations Q̃∗

r̂ and Ṽ ∗
r̂ may be difficult in complex domains. Specifically, challenges include

choosing the set of policies or reward functions for which to compute successor features (line 3 of Algorithm 1,
discussed in Appendix F.1.1) and creating a reward feature vector ϕ for non-linear reward functions (discussed
in Appendix F.1.2). Additionally, although learning with Pregret is more sample efficient in our experiments, it
is computationally slower than learning with PΣr because of the additional need to compute successor features
and the use of the softmax function to approximate Q∗

r̂ and V ∗
r̂ . Nonetheless, we may accept the tradeoff of an

increase in computational time that reduces the number of human samples needed or that improves the reward
function’s alignment with human stakeholders’ interests. Lastly, the loss during optimization with Pregret was
unstable, which we addressed by taking the minimum loss over all epochs during training. Therefore, for more
complex reward feature vectors (ϕ) than our 6-element vector for the delivery task, extra care might be needed
to avoid overfitting r̂, for example by withholding some preference data to serve as a test set.

We also generally assume that the RL algorithm and reward learning algorithm use the same discount factor as
in the MDP\r specification. One weakness of contemporary deep RL is that RL algorithms require artificially
lower discount factors than the true discount factor of the task. The interaction of this discounting with
preference models is considered in Appendix F.2. Our expectation though is that this weakness of deep RL
algorithms is likely a temporary one, and so we focused our analysis on simple tasks in which we do not need to
artificially lower the RL algorithm’s discount factor. However, further investigation of the interaction between
preference models and discount factors would aid near-term application of Pregret to deep RL domains.

This work also does not consider which segment pairs should be presented for labeling with preferences used for
reward learning. However, other research has addressed this problem through active learning (Lee et al., 2021a;
Christiano et al., 2017; Akrour et al., 2011), and it may be possible to simply swap our Algorithm 1 into these
active learning methods, combining the improved sample efficiency of Pregret with that of these active learning
methods.

Regarding the human side of the problem of reward learning from preferences, further research could provide
several improvements. First, we are confident that humans can be influenced by their training and by the
preference elicitation interface, which is a particularly rich direction for follow-up study. We also do not consider
how to handle learning reward functions from multiple human stakeholders who have different preferences, a
topic we revisit in Appendix A.2. Lastly, we expect humans to deviate from any simple model, including Pregret,
and a fine-grained characterization of how humans generate preferences could produce preference models that
further improve the alignment of the reward functions that are ultimately learned from human preferences.

A.2 Ethical statement

This work is meant to address ethical issues that arise when autonomous systems are deployed without properly
aligning their objectives with those of human stakeholders. It is merely a step in that direction, and overly
trusting in our methods—even though they improve on previous methods for alignment—could result in harm
caused by poorly aligned autonomous systems.
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When considering the objectives for such systems, a critical ethical question is which human stakeholders’
interests the objectives should be aligned with and how multiple stakeholders’ interests should be combined
into a single objective for an autonomous system. We do not address these important questions, instead making
the convenient-but-flawed assumption that many different humans’ preferences can simply be combined. In
particular, care should be taken that vulnerable and marginalized communities are adequately represented
in any technique or deployment to learn a reward function from human preferences in high-impact settings.
The stakes are high: for example, a reward function that is only aligned with a corporation’s financial interests
could lead to exploitation of such communities or more broadly to exploitation of or harm to users.

In this specific work, our filter for which Mechanical Turk Workers could join our study is described in Appendix D.
We did not gather demographic information and therefore we cannot assess how representative our subjects are
of any specific population.

A.3 On the challenge of using regret preference models in practice

We have provided evidence—theoretically and with experimentation—that the regret preference model is
more effective when precisely measured or effectively approximated. The challenge of efficiently creating such
approximations presents one clear path for future research. We believe this challenge does not justify staying
within the local maximum of the partial return preference model.

Like the regret preference model, inverse reinforcement learning (IRL) was founded on an algorithm that
requires solving an MDP in an inner loop of learning a reward function. For example, see the seminal work
on IRL by Ng & Russell (2000). IRL has been an impactful problem despite this challenge, and handling this
inner-loop computational demand is the focus of much IRL research.

Future work on the application of the regret preference model can face the challenge of scaling to more complex
problems. Given that IRL has made tremendous progress in this direction and Brown et al. (2020) have scaled
an algorithm with similar needs to those of Algorithm 1, we are optimistic that the methods to scale can be
developed, likely with light adaptation from existing methods (e.g., in Brown et al. or in Appendix F.1.1 and
F.1.2).

B Preference models for learning reward functions

Here we extend the content of Section 2, focusing on preference models and learning algorithms that use them.
This corresponding section of the appendix provides a simple derivation of the logistic form of these preference
models, discusses extensions of the regret preference model, sketches an alternative way to learn a policy with
it, and discusses the relationship of inverse reinforcement learning to learning reward functions with a regret
preference model.

B.1 Derivation of the logistic expression of the Boltzmann distribution

For the reader’s convenience, below we derive the logistic expression of a function that is based on two subtracted
values from the Boltzmann distribution (i.e., softmax) representation that is more common in past work. These
values are specifically the same function f applied to each segment, which is a general expression of both of the
preference models considered here.

P (σ1≻σ2)=
exp [f(σ1)]

exp [f(σ1)]+exp [f(σ2)]

=
1

1+ exp [f(σ2)]
exp [f(σ1)]

=
1

1+exp [f(σ2)−f(σ1)]

= logistic(f(σ1)−f(σ2)).

(7)
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B.2 Learning reward functions from preferences, with discounting

For the equations from the paper’s body that assume that there is no temporal discounting (i.e., γ= 1), we
share in this section versions that do not make this assumption. If γ=1, then the equations below simplify to
those in the body of the paper. To allow for fully myopic discounting with γ=0, we define 00 =1.

Recall that r̃ indicates an arbitrary reward function, which may not be the ground-truth reward function, r,
and r̂ refers to a learned reward function. Similarly, γ̃ refers to an arbitrary exponential discount factor, which
may not be the ground-truth discount factor, γ, and γ̂ refers to the discount factor during learning, which could
be inferred or hand-coded. Also, the notation of V ∗

r̃ and Q∗
r̃ are expanded in this subsection to denote the

discounting in their expected return: V ∗
(r̃,γ̃) and Q∗

(r̃,γ̃), respectively.

In most of this article, the discount factor used during reward function inference is hard-coded as γ̂=1. However,
in the theory of Section 3, we assume γ is not known to reach more general conclusions. In this subsection,
for generality we likewise assume that γ is not known, using γ̃ generally and using γ̂ in notation we consider
specific to reward function inference.

The discounted versions of the preference models below rely on a cross entropy loss function that is identical to
Equation 1 except for the inclusion of discounting notation:

loss(r̂,γ̂,D≻)=−
∑

(σ1,σ2,µ)∈D≻

µ1logP (σ1≻σ2|r̂,γ̂)+µ2logP (σ1≺σ2|r̂,γ̂) (8)

Partial return With discounting, the partial return of a segment σ is
∑|σ|−1

t=0 γtr̃σ,t. This notation differs
from that in Section 2.1 in that the subscript of the reward symbol r̃σ,t is now expanded to include which
segment it comes from.

The preference model based on partial return with exponential discounting is expressed below, generalizing
Equation 2.

PΣr(σ1≻σ2|r̃,γ̃)= logistic
(

|σ1|−1
∑

t=0

γ̃tr̃σ1,t −

|σ2|−1
∑

t=0

γ̃tr̃σ2,t

)

. (9)

Regret With discounting, for a transition (st,at,st+1) in a segment containing only deterministic transitions,
regretd(σt|r̃,γ̃)≜V ∗

(r̃,γ̃)(s
σ
t )−[r̃t+γ̃V ∗

(r̃,γ̃)(s
σ
t+1)].

For a full deterministic segment, regretd(·|r̃,γ̃) with exponential discounting is defined as follows, generalizing
Equation 3.

regretd(σ|r̃,γ̃)≜

|σ|−1
∑

t=0

γ̃tregretd(σt|r̃,γ̃)

=V ∗
(r̃,γ̃)(s

σ
0 )−

(

|σ|−1
∑

t=0

γ̃tr̃σ,t + γ̃|σ|V ∗
(r̃,γ̃)(s

σ
|σ|)

)

,

(10)

Like Equation 3, this discounted form of deterministic regret also measures how much the segment reduces
expected return from the start state value, V ∗

(r̃,γ̃)(s
σ
0 ).

To create the general expression of discounted regret that accounts for potential stochastic transitions, we note
that, with discounting, the effect on expected return of transition stochasticity from a transition (st,at,st+1) is
[r̃t + γ̃V ∗

(r̃,γ̃)(st+1)]−Q∗
(r̃,γ̃)(st,at) and add this expression once per transition to get regret(σ|r̃,γ̃), removing

the subscript d that refers to determinism. The discounting does not change the simplified expressions in
Equation 4, the regret for a single transition:

regret(σt|r̃,γ̃)= [V ∗
(r̃,γ̃)(s

σ
t )−[r̃t+γ̃V ∗
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σ
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σ
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σ
t )]
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σ
t )−Q∗

(r̃,γ̃)(s
σ
t ,a

σ
t )

=−A∗
(r̃,γ̃)(s

σ
t ,a

σ
t ).

(11)
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With both discounting and accounting for potential stochastic transitions, regret for a full segment is

regret(σ|r̃,γ̃)=

|σ|−1
∑

t=0

γ̃tregret(σt|r̃,γ̃)

=

|σ|−1
∑

t=0

γ̃t
[

V ∗
(r̃,γ̃)(s

σ
t )−Q∗

(r̃,γ̃)(s
σ
t ,a

σ
t )

]

=

|σ|−1
∑

t=0

−γ̃tA∗
(r̃,γ̃)(s

σ
t ,a

σ
t ).

(12)

The expression of regret above is the most general in this paper and can be used in Equation 5 identically as can
the undiscounted version in Equation 4.

Equation 6, the approximation P̃regret of the regret preference model derived in Section 6.1, is expressed with
discounting below.

P̃regret(σ1≻σ2|r̂,γ̂)= logistic

(

∑|σ2|-1
t=0 γ̂t

[

Ṽ ∗
(r̂,γ̂)(s

σ2

t )−Q̃∗
(r̂,γ̂)(s

σ2

t ,aσ2

t )
]

−
∑|σ1|-1

t=0 γ̂t
[

Ṽ ∗
(r̂,γ̂)(s

σ1

t )−Q̃∗
(r̂,γ̂)(s

σ1

t ,aσ1

t )
]

)

(13)

Note that the successor features used in Section 6.1 to determine these approximations, Ṽ ∗
(r̂,γ̂) and Q̃∗

(r̂,γ̂),
already include discounting.

As with the undiscounted versions of the above equations, if two segments have deterministic transitions, end
in terminal states, and have the same starting state, this regret model reduces to the partial return model:
Pregret(·|r̃,γ̃)=PΣr(·|r̃,γ̃).

If hard-coding γ̂, when to set γ̂ <1 during reward function inference In reinforcement learning, both
γ and r together determine the set of optimal policies. Changing either γ or r while holding the other constant
will often change the set of optimal policies.

For both preference models, we suspect that learning would benefit from using the same discounting during
reward inference as the human used while evaluating segments to provide preferences (i.e., setting γ̂=γ. And
this same γ̂ would be used for learning a policy from the learned reward function. On the other hand, when γ̂ is
hand-coded and γ̂ ≠γ, the reward inference algorithm will regardless attempt to find an r̂ that explains those
preferences; however, a set of optimal policies is determined by a reward function with the discount, and the set
of optimal polices created by the human’s reward function and discounting may not be determinable under a
different discounting.

Not only is a specific human rater’s γ unobservable, but psychology and economics researchers have firmly
established that humans do not typically follow exponential discounting (Frederick et al., 2002), which should
evoke skepticism for hard-coding γ̂ <1 during reward function inference. One exception is humans who have been
trained to apply exponential discounting, such as in certain financial settings. The best model for how humans
discount future rewards and punishments is not settled, but one popular model is hyperbolic discounting. Some
exploration of RL with hyperbolic discounting exists, including approximating hyperbolically discounted value
function using a mixture of exponentially discounted value functions (Kurth-Nelson & Redish, 2009; Redish &
Kurth-Nelson, 2010). However, it has not found clear usage beyond as an auxiliary task to aid representation
learning (Fedus et al., 2019). The interpretation of human preferences over segments appears to us to be a
strong candidate for using these methods to approximate hyperbolic discounting.

This research topic currently lacks a rigorous treatment of discounting when learning reward functions from
human preferences and such an investigation is beyond our scope, and so we leave our guidance above as
speculative.

B.3 Logistic-linear preference model

In Appendices E.2, F.2.5, and F.3.2 we also consider preference models that arise by making the noiseless
preference model a linear function over the 3 components of Pregretd

. Building upon Equation 7 above, we set
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f(σ)= w⃗·⟨V ∗
r̃ (sσ

0 ),Σσ ,V
∗

r̃ (sσ
|σ|)⟩. This preference model, Plog−lin, can be expressed after algebraic manipulation

as

Plog−lin(σ1≻σ2|r̃)= logistic
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w⃗ · ⟨V ∗
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r̃−Σσ2

r̃, V ∗
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∗

r̃ (sσ2

|σ2|)⟩

)

. (14)

This logistic-linear preference model is a generalization of PΣr and also of Pregretd
, the regret preference model

for deterministic transitions. Specifically, if w⃗=⟨0,1,0⟩, then Plog−lin(·|r̃)=PΣr(·|r̃). And if w⃗=⟨−1,1,1⟩, then
Plog−lin(·|r̃) =Pregretd

(·|r̃). More generally, for some constant c, w⃗= ⟨0,c,0⟩ and w⃗= ⟨−c,c,c⟩ recreate PΣr

and Pregretd
respectively but with different reward function scaling, which is the same as allowing a different

temperature in the Boltzmann distribution that determines preference probabilities. In Appendix E.2, we fit w⃗
to maximize the likelihood of the human preference dataset under Plog−lin(·|r), using the ground-truth r, and
compare the learned weights to those of PΣr and Pregretd

.

B.4 Adding a constant probability of uniformly distributed preference

Appendix E.2 also considers adaptations of PΣr, Pregretd
, and Plog−lin that add a constant probability of

uniformly distributed preference, as was done by Christiano et al. (2017). The body of the paper does not
consider these adaptations.

We create this adaptation, which we will call P ′ here, from another preference model P by P ′(σ1 ≻ σ2) =
[(1−logistic(c))∗P (σ1≻σ2)]+[logistic(c)/2], where c is a constant that in practice we fit to data and logistic(c)
is the constant probability of uniformly random preference. The logistic(c) allows any constant c to result in a
the constant probability of uniformly distributed preference to be in (0,1). The term logistic(c)/2 gives half of
the constant probability to σ1 and half to σ2. The term [1−logistic(c)] scales the P (σ1≻σ2) probability—which
could be PΣr, Pregretd

, or Plog−lin—to a proportion of the remaining probability. The only difference in this
adaptation and Christiano et al.’s 0.1 probability of uniformly distributed preference is that we learn the value
of c from training data (in a k-fold cross-validation setting), as we see in Appendix E, whereas Christiano et al.
do not share how 0.1 was chosen.

B.5 Expected return preference model

In Appendix F.3, we test reward learning on a third preference model. This expected return preference model is
derived by making f(σ)=−(Σσ r̃+V ∗

r̃ (sσ
|σ|)), in Equation 7. This segment statistic f(σ) can be considered be

in between deterministic regret (Equation 3) and partial return, differing from each by one term.

We include this preference model because judging by expected return is intuitively appealing in that it considers
the partial return along the segment and the end state value of the segment, and we found it plausible that
human preference providers might tend to ignore start state value, as this preference model does. However,
reward learning with the regret model outperforms or matches that by this expected return preference model,
as we show in Appendix F.3.

B.6 Relationship to inverse reinforcement learning

Like learning reward functions from pairwise preferences, inverse reinforcement learning (IRL) also involves
learning a reward function. However, the inputs to IRL and learning reward functions from pairwise preferences
are different: IRL requires demonstrations, not preferences over segment pairs. However, because a a regret-based
preference model always prefers optimal segments over suboptimal segments, at least one further connection can
be made. If one assumes that a demonstrated trajectory segment is noiselessly optimal—as in the foundational
IRL paper on apprenticeship learning (Abbeel & Ng, 2004)—then such a demonstration is equivalent to
expressing preference or indifference for the demonstrated segment over all other segments. In other words, no
other segment is preferred over the demonstrated segment. However, IRL has its own identifiability issues in
noiseless settings (e.g., see Kim et al. (2021)) that, viewed from the lens of preferences, come in part from the
“indifference” part of the above statement: since there can be multiple optimal actions from a single state, it
is not generally correct to assume that a demonstration of one such action shows a preference over all others,
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and therefore it remains unclear in IRL what other actions are optimal. Note that since partial-return-based
preferences can prefer suboptimal segments over optimal segments, the common assumption in IRL that
demonstrations are optimal does not map as cleanly to partial-return-based preferences.

The regret preference model also relates to IRL in that the most basic version of IRL requires solving an MDP
in the inner loop (see Algorithm 1 in the survey of IRL by Arora & Doshi (2021)), as appears necessary for a
perfect measure of regret while learning a reward function. The progress that IRL has made addressing this
challenge gives us optimism that it is similarly addressable for complex tasks in for our proposed algorithm. We
discuss potential solutions in Appendix F.1.1 and F.1.2.

C Theoretical comparisons

The relevance of noiseless preference generators Because we model preferences as stochastic in Section 2,
one might reasonably wonder how the above theoretical analysis of noiseless preference generators are relevant.
We offer four arguments below.

First, having structured noise provides information that can help both preference models, but these proofs
show that there are cases where the signal behind the noise—either regret or partial return—is not sufficient in
the partial return case to identify an equivalent reward function. So, in a rough sense, regret more effectively
uses both the signal and the noise, which might explain its superior sample efficiency in our experiments across
both human labels and synthetic labels. Relatedly, the noiseless setting can help us understand each preference
model’s sample efficiency in a low-noise setting.

Second, noiseless preferences are also feasible, even if they are rare. Therefore, understanding what can be
learned from them is worthwhile. Theorem 3.2 shows that there are MDPs in which there is no class of preference
models—stochastic or deterministic—that can identify an equivalent reward function from partial-return-based
preferences if the preference generator noiselessly prefers according to partial return. Specifically, we show that
the mapping from two reward functions with different sets of optimal policies to partial-return based preferences
is a many-to-one-mapping, and therefore the information simply does not exist to invert that mapping and
identify a reward function with the same set of optimal policies. In contrast, Theorem 3.1 shows that preferences
generated noiselessly (and in certain stochastic settings) by regret do not have this issue.

Third, noise is often motivated as modeling human error. Having an algorithm rely on noise—structured in a
very specific, Boltzmann-rational way—is an undesirable crutch. Skalse et al. (2022) justify including noiseless
preferences in their examinations of identifiability with a similar argument: “these invariances rely heavily on
the precise structure of the decision noise revealing cardinal information in the infinite-data limit”.

Beyond the work of Skalse et al. (2022), there is broader precedent for considering noiseless human input
for theory or derivations. For instance, the foundational IRL research on apprenticeship learning (Abbeel &
Ng, 2004) treats demonstrations as noiselessly optimal. Recent work by Kim et al. (2021) focuses on reward
identifiability with noiseless, optimal demonstrations.

D Additional information for creating a human-labeled preference dataset

D.1 The preference elicitation interface and study overview

Here we share miscellaneous details about the preference elicitation interface from which we collected human
subjects’ preferences. This description builds on Section 4.2.

In selecting preferences, subjects had four options. They could prefer either trajectory (left or right), or they
could express their preference to be the same or indistinguishable. To provide these preferences, subjects could
either click on each of the buttons labeled "LEFT", "RIGHT", "SAME", or "CAN’T TELL" (shown in Figure 7)
or by using the arrow keys to select amongst these choices.

For the interface, all icons used to visualize the task were obtained from icons8.com under their Paid Universal
Multimedia Licensing Agreement.
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We paid all subjects $5 per experiment (i.e., for each a Mechanical Turk HIT), which was chosen using the
median time subjects took during a pilot study and then calculating the payment to result in $15 USD per hour.
This hourly rate of $15 was chosen because it is commonly recommended as an improved US federal minimum
wage. The human subject experiments cost $2,145 USD in total.

An experimental error resulted in the IRB-approved consent form not being presented to human subjects after
Mechanical Turk Workers accepted our study. We reported this error to our IRB and received their approval to
use the data.

Table 2: The task comprehension survey, designed to test participant’s comprehension of the domain for the purpose of filtering
data. Each full credit answer earned 1 point; each partial credit answer earned 0.5 points. We discarded the data of participants
who scored less than 4.5 points overall.

Question Full credit answer Partial credit answer Other answer choices
What is the goal of
this world? (Check
all that apply.)

• To maximize profit • To get to a specific loca-
tion.

• To maximize profit

Partial credit was given if both
answers were selected.

• To drive as far as possible to explore
the world.

• To collect as many coins as possible.

• To collect as many sheep as possible.

• To drive sheep to a specific location.

What happens
when you run into a
house? (Check all
that apply.)

• You pay a gas penalty.

• You can’t run into a house;
the world doesn’t let you
move into it.

Full credit was given if both
answers were selected.

• You pay a gas penalty.

• You can’t run into a house;
the world doesn’t let you
move into it.

Partial credit was given if only
one answer was selected.

• The episode ends.

• You get stuck.

• To collect as many sheep as possible.

What happens
when you run into a
sheep? (Check all
that apply.)

• The episode ends.

• You are penalized for run-
ning into a sheep.

Full credit was given if both
answers were selected.

• The episode ends.

• You are penalized for run-
ning into a sheep.

Partial credit was given if only
one answer was selected.

• You are rewarded for collecting a
sheep.

What happens
when you run into a
roadblock? (Check
all that apply.)

• You pay a penalty. • The episode ends.

• You get stuck.

• You can’t run into a roadblock; the
world doesn’t let you move into it.

Is running into a
roadblock ever a
good choice in any
town?

• Yes, in certain circum-
stances.

• No.

What happens
when you go into
the brick area?
(Check all that
apply.)

• You pay extra for gas. • The episode ends.

• You get stuck in the brick area.

• You can’t go into the brick area; the
world doesn’t let you move into it.

Is entering the brick
area ever a good
choice?

• Yes, in certain circum-
stances

• No

D.2 Filtering subject data

To join our study via Amazon Mechancial Turk, potential subjects had to meet the following criteria. They had
to be located in the United States, have an approval rating of at least 99%, and have completed at least 100
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other MTurk HITs. We selected these criteria to improve the probability of collecting data from subjects who
would attentively engage with our study and who would understand our training protocol.

We assessed each subject’s understanding of the delivery domain and filtered out those who did not comprehend
the task, as described below. Specifically, subjects completed a task-comprehension survey, through which we
assigned them a task-comprehension score. The questions and answer choices are shown in Table 2. Each fully
correct answer was worth 1 point and each partially correct answer was worth 0.5 points. Task-comprehension
scores were bounded between 0 and 7. We removed the data from subjects who scored below a threshold of 4.5.
The threshold of 4.5 was chosen based on visual analysis of a histogram of scores, attempting to balance high
standards for comprehension with retaining sufficient data for analysis.

In addition to filtering based off the task comprehension survey, we also removed a subject’s data if they ever
preferred colliding the vehicle into a sheep over not doing so. Since such collisions are highly undesirable in this
task, we interpreted this preference as evidence of either poor task understanding or inattentiveness.

In total, we collected data from 143 subjects. Data from 58 of these subjects were removed based on subjects’
responses to the survey. From what remained, data from another 35 subjects were removed for making the
aforementioned sheep-collision preference errors. After this filtering, data from 50 subjects remained. This
filtered data consists of 1812 preferences over 1245 unique segment pairs and is used in this article’s experiments.

Regarding potential risks to subjects, this data collection had limited or no risk. No offensive content was shown
to subjects while they completed the HIT. Mechanical Turk collected Worker IDs, which were used only to link
preference data with the results from the task-comprehension survey for filtering data (see Appendix D.2) and
then were deleted from our data. No other potentially personally identifiable information was collected.

D.3 The two stages of data collection

We collected the human preference dataset in two stages, as mentioned in Section 4.2. Here we provide more
detail on each stage. These stages differed largely by their goals for data collection and, following those goals,
how we chose which segment pairs were presented to subjects for their preference.

First stage Figure 12 illustrates the coordinates that segment pairs were sampled from in the first stage of
data collection, varying by state value differences and by differences in partial returns over the segments. We
sought a range of points that would allow a characterization of human preferences that is well distributed across
different parts of the plot. To better differentiate the consequences of each preference model, we intentionally
chose a large number of points in the gray area of Figure 8, where the regret and partial return preference
models would disagree (i.e., each giving a different segment a preference probability greater than 0.5).

Figure 12: Coordinates from which seg-
ment pairs were sampled from during the
first stage of data collection. The x-axis
is state value differences between the two
segments and the y-axis is partial return
differences between the two segments. The
areas of the circles are proportional to the
number of samples at that point, and the
proportionality is consistent across this
plot and the 3 subplots of Figure 13.

We now describe our segment-pair sampling process more specifically. We
first we constructed all unique segments of length 3 and then exhaustively
paired them, resulting in nearly 30 million segment pairs. Each segment
pair’s partial returns, start-state values, end-state values place the segment
pair on a coordinate in Figure 8, and segment pairs that are not on any
of the dots in Figure 8 were discarded. For the segment pairs at each
coordinate, we further divided them into 5 bins: non-terminal segments
with the same start state and different end states, non-terminal segments
with different start states and different end states, terminal segments with
the same start state and same end state, terminal segments with a different
start states and the same end state, and bin of segment pairs that fit in
none of the other bins. Segment pairs in the 5th bin were discarded. From
each of the 4 bins corresponding to each point in Figure 8, we randomly
sampled 20 segment pairs. If the bin did not have at least 20 segment
pairs, all segment pairs in the bin were “sampled”. All sampled segment
pairs from all bins for all points in Figure 8 made up the pool of segment
pairs used with Mechanical Turk. For each subject, 50 segment pairs were
randomly sampled from this pool. We gathered data until we had roughly
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20 labeled segment pairs per bin. After filtering subject data, this first stage contributed 1437 segment pairs out
of the 1812 pairs used in our reward learning experiments in Section 6.3 and Appendix F.3.

Figure 13: Coordinates from which segment pairs were sampled from during the second stage of data collection. The points are
in 3 distant clusters, so they are presented in 3 separate subplots for readability. The areas of the circles are proportional to the
number of samples at that point, and the proportionality is consistent across these 3 subplots and Figure 12.

Second stage When we conducted the reward-learning evaluation in Section 6 with only the data from the first
stage, PΣr performed very poorly, always performing worse than uniformly random. This performance difference
is shown in Appendix F.3. In contrast Pregret performed well, always achieving near-optimal performance. To
better assess PΣr, we investigated its results with synthetic preferences in detail and speculated that two types
of additional segment pairs would aid its performance. The first of these two types include one segment that is
terminal and one that is non-terminal, which we expected to help differentiate the reward for reaching terminal
states from that of reaching non-terminal ones.

The second of these two types are two segments that each terminate at different t values. For example, one
segment terminates on its end state, sσ

|σ|, and another terminates after its first transition, at sσ
1 . These

early-terminating segments can be viewed either as shorter segments or as segments of the same length as
the other segments (|σ|=3), where they reach absorbing state from which no future reward can be received.
We speculated that this second type of segment pairs would help learn the negative reward component for
each move (i.e., the gas cost). Specifically, in the first stage’s data, both segments in a pair always have the
same number of non-terminal transitions, seemingly preventing preferences from providing information about
whether an extra transition (from non-absorbing state) generally resulted in positive or negative reward. These
segment pairs were included in all results unless otherwise stated. Note that this second type addresses the
identifiability issue of the partial return model related to a constant shift in the reward function and discussed
in Section 3.2.2 and Appendix F.2.2. The speculation described above was a conceptual predecessor of our
understanding of this identifiability issue. In particular, any change to this gas cost—which is given at every
time step—is equivalent to a constant shift in the reward function.

We now describe our segment-pair sampling process for the second stage more specifically. For the first additional
type of segment pair, where one segment is terminal and one is not, we randomly pair terminal and non-terminal
segments from the first-stage pool of segment pairs drawn from to present to subjects. In this pairing, each
segment is only used once, and pairing stops when one of all terminal segments or all non-terminal segments have
been paired. The corresponding coordinates for these pairs are shown in the two right most plots of Figure 13.
For the second additional type of segment pair, we utilize all terminal segments from the pool of segment pairs
shown to subjects in the first stage. For each of these terminal segments, we construct two additional segments:
one that shifts the segment earlier, removing the first state and action and adds a dummy transition within
absorbing state at the end, and another that shifts the segment two timesteps earlier and adds two such dummy
transitions at the end. These two newly constructed segments are then each paired with the original segment,
producing two new pairs for each terminal segment in the data set. The corresponding coordinates for these
segment pairs are shown in the left most plot of Figure 13.

All of both types of additional segments pairs are then characterized by the coordinates shown in Figure 13. Then,
as with the first stage, we randomly sampled 20 segment pairs from each coordinate to make the experimental
pool for the second round of Mechanical Turk data collection. If 20 segment pairs were not available at a
coordinate, we used all segment pairs for that coordinate. As in the first stage, 50 segment pairs were randomly
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sampled from this pool to be presented to each subject during preference elicitation. After filtering subject data,
this first stage contributed 311 segment pairs out of the 1812 pairs used in our reward learning experiments in
Section 6.3 and Appendix F.3.

D.4 The study design pattern

This work follows an experimental design pattern that is often used for studying methods that take human
input for evaluating the desirability of behaviors or outcomes. This pattern is illustrated for the specific case of
learning reward functions from preferences in Figure 9. In this pattern, human subjects are taught to understand
a specific task metric and/or are incentivized to align their desires with this metric. The human subjects then
provide input to some algorithm that has no knowledge of the performance metric, and this algorithm or learned
model is evaluated on how well its output performs with respect to the hidden metric. For another example, see
Cui et al. (2020).

E Descriptive results

E.1 Derivation of regretd(σ2|r̃)−regretd(σ1|r̃)=(∆σ1
Vr̃−∆σ2

Vr̃)+(Σσ1
r̃−Σσ2

r̃)

The derivation below supports our assertion in the first paragraph of Section 5.1.
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(15)

E.2 Losses of an expanded set of preference models on the human preferences dataset

Table 3: Expanding on Table 1, mean cross-entropy test
loss over 10-fold cross validation (n=1812) from predicting
human preferences. Lower is better.

Loss

Preference model (n=1,812)

P (·)=0.5 (uninformed) 0.693

PΣr (partial return) 0.620
Pregret (regret) 0.573
Plog-lin (logistic linear) 0.548

PΣr with prob of uniform response 0.620
Pregret with prob of uniform response 0.573
Plog-lin with prob of uniform response 0.548

Table 3 shows an expansion of Table 1, including models
introduced in Appendix B. The logistic linear preference
model, Plog−lin, provides a lower bound, given that it can
express either Pregret or PΣr and that we do not not observe
any overfitting of its 3 parameters.

Including the constant probability of a uniformly random
response, as in Christiano et al. (2017), also increases the
expressivity of the model. The final three results in Table 3
show the best test loss achieved across different training
runs that differ by initializing logistic(c) of this model to
be 0.01, 0.1, or 0.5. Surprisingly, no benefit is observed
from including a constant probability of a uniformly random response. Because this augmentation of our models
appears to have no effect on the likelihood, we do not include it in further analysis.

Across the 10 folds, the mean weights learned for Plog−lin(·|r̃) were w⃗=⟨−0.18,0.34,0.32⟩, where each weight
applies respectively to segments’ start state values, partial returns, and end state values. Scaled to have a
maximum weight of 1 for easy comparison with PΣr and Pregretd

, w⃗scaled = ⟨−0.53,1.0,0.94⟩. First, we note
that these weights are closer to those that make Plog−lin =Pregretd

(i.e., w⃗=⟨−1,1,1⟩) than to those that make
Plog−lin =PΣr (i.e., w⃗=⟨0,1,0⟩). Also, the notable deviation from the weights of Pregretd

is the weight for the
start state value, which has half as much impact as the regret preference model gives it. In other words, this
lower weight suggests that our subjects did tend to weigh the maximum possible expected return from each
segment’s start state, but they did so less than they weighed the reward accrued along each segment and the
maximum expected return from each segment’s end state.
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F Results from learning reward functions

This section provides additional implementation details for Section 6, discussion of potential improvements,
and additional analyses that thematically fit in Section 6.

F.1 An algorithm to learn reward functions with regret(σ|r̂)

We describe below additional details of our instantiation of Algorithm 1.

Doubling the training set by reversing preference samples Because the ordering of preference pairs is
arbitrary—i.e., (σ1≺σ2)⇐⇒(σ2≻σ1)—for all preference datasets we double the amount of data by duplicating
each preference sample with the opposite ordering and the reversed preference. This provides more training
data and avoids learning any segment ordering effects.

Collecting the policies from which successor feature functions are calculated For this article’s
instantiation of Algorithm 1, we collect successor feature functions by randomly sampling a large number of
reward functions and then calculating the successor feature functions for their optimal polices. This procedure
is more precisely described below.

1. Create a reward function by sampling with replacement each element of its weight vector, wr̃, from
{−50,−10,−2,−1,0,1,5,10,50}.

2. For this reward function, use value iteration to approximate its maximum entropy optimal policy and
that policy’s successor feature function.

3. If this successor feature function policy differs from all previously calculated successor feature functions,
save it and go to step 1.

4. Otherwise it is a redundant policy. If less than 300 consecutive redundant policies have been found, go
to step 1.

The policy collection process above is terminated after 300 consecutive redundant policies are found. Finally,
we calculate the maximum entropy optimal policy for the optimal policy for the ground-truth reward function,
r, and remove the successor feature function for any policy that matches the optimal policy for r. In other
words, we remove any policies for other reward functions that were also optimal for r, making the regret-based
learning problem more difficult. We ensured that the ground-truth reward function was not represented to
better approximate real-world reward learning applications, in which one would be unlikely to have the optimal
policy for learning a successor features function. On the specific delivery task on which we gathered human
preferences, the process above resulted in 70 reward functions.

Early stopping without a validation set During training, the loss for the Pregret model tended to show
cyclical fluctuations, reaching low loss and then spiking. To handle this volatility, we used the r̂ that achieved
the lowest loss over all epochs of training, not the final r̂. For PΣr and Pregret, we found no evidence of overfitting
with our linear representation of the reward function, but with a more complex representation, such early
stopping likely should be based upon the loss of the model on a validation set. A better understanding of the
cyclical loss fluctuations we observe during training could further improve learning with Pregret.

Discounting during value iteration Despite the delivery domain being an episodic task, a low-performing
policy can endlessly avoid terminal states, resulting in negative-infinity values for both its return and successor
features based on the policy. To prevent such negative-infinity values, we apply a discount factor of γ=0.999
during value iteration—which is also where successor feature functions are learned—and when assessing the
mean returns of policies with respect to the ground-truth reward function, r. We chose this high discount factor
to have negligible effect on the returns of high-performing policies (since relatively quick termination is required
for high performance) while still allowing value iteration to converge within a reasonable time.
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Hyperparameters for learning Below we describe the other specific hyperparameters used for learning a
reward function with both preference models. These hyperparameters were used across all experiments. For all
models, the learning rate, softmax temperature, and number of training iterations were tuned on the noiseless
synthetic preference data sets such that each model achieved an accuracy of 100% on our specific delivery task
and then were tuned further on stochastic synthetic preferences on our specific delivery task.

Reward learning with the partial return preference model
learning rate: 2; number of training epochs: 30,000; and optimizer: Adam (with β1 =0.9 and β2 =0.999, and
eps= 1e−08).

Reward learning with the regret preference model
learning rate: 0.5; number of training epochs: 5,000; optimizer: Adam (with β1 = 0.9, β2 = 0.999, and
eps=1e−08); and softmax temperature: 0.001.

Logistic regression with both preference models, for the likelihood analysis in Section 5.2 and Appendix E.2
learning rate: 0.5; number of training iterations: 3,000; optimizer: stochastic gradient descent; and evaluation:
10-fold cross validation.

Computer specifications and software libraries used The computer used to run experiments shown in
Figures 15,16,17,18, 19, 21, 22, and 23 had the following specification. Processor: 2x AMD EPYC 7763 (64
cores, 2.45 GHz); Memory: 284 GB.

The computer used to run all other experiments had the following specification. Processor: 1x Core™ i9-9980XE
(18 cores, 3.00 GHz) & 1x WS X299 SAGE/10G | ASUS | MOBO; GPUs: 4x RTX 2080 Ti; Memory: 128 GB.

Pytorch 1.7.1 (Paszke et al., 2019) was used to implement all reward learning models, and statistical analyses
were performed using Scikit-learn 0.23.2 (Pedregosa et al., 2011).

F.1.1 For Algorithm 1, choosing an input set of policies for learning successor feature functions

A set of policies is input to Algorithm 1 and used to create successor feature functions, which are in turn used
for generalized policy improvement (GPI) to efficiently estimate optimal value functions for r̂ during learning.
Which policies to insert is an important open question for successor-feature-based methods in general, but our
intuition is that the performance of GPI under successor-feature-based methods is improved with a greater
diversity of successor feature functions (via a diverse set of policies) and by having some policies that perform
decently (but not necessarily perfectly) on the reward functions for which V ∗ and Q∗ outputs values are being
estimated via GPI.

Recalling that an input policy can come from policy improvement with an arbitrary reward function, we offer
the following ideas for how to source an input set of policies.

• Choose reward function parameters according to some random distribution (as we do).

• Create a set of reward functions that differ in a structured way, such as each reward function being a
point in a grid formed in parameter space.

• Learn policies from a separate demonstration dataset, using an imitation learning algorithm.

• Bootstrap from r̂. Specifically, during learning augment the current set of successor feature functions
(ΨπSF

Q
and ΨπSF

V
) by learning one new successor feature function via policy improvement on the current

r̂; then continue reward learning with the augmented set of successor feature functions and repeat this
process as desired.

The input set of policies could come from multiple different sources, including the ideas above.

31



F.1.2 Instantiating Algorithm 1 for reward functions that may be non-linear

Algorithm 1 operates under the assumption that the reward function can be represented as a linear combination
of reward features. These reward features are obtained through a reward-features function φ, which is given as
input to the algorithm. Here we address situations when the linearity assumption does not hold.

If the state and action space are discrete, one could linearly model all possible (deterministic) reward functions
by creating a feature for each (s,a,s’) that is 1 for (s,a,s’) and 0 otherwise. A downside of this approach is that
the learned reward function cannot benefit from generalization, which has two negative consequences. First, in
complex tasks, generalization would typically have decreased the training set size required to learn a reward
function r̂ with optimal policies that perform well on the ground-truth reward function, r. Second, the reward
function will not generalize to different tasks that share the same symbolic reward function, such as always
having the same reward from interacting with a particular object type.

If the reward features are unknown or the reward is known to be non-linear, another method is to create a
reward features function that permits a linear approximation of the reward function. Several methods to derive
some or all of these reward features appear promising:

• Reward features can be learned by minimizing several auxiliary losses in a self-supervised fashion, as by
Brown et al. (2020). After optimizing for these various objectives using a single neural network, the
activations of the penultimate layer of this network can be used as reward features. Such auxiliary
tasks may include minimizing the mean squared error of the reconstruction loss for the current state
from a lower-dimensional embedding and the original state, predicting how much time has passed
between states by minimizing the mean squared error loss (i.e., learning a temporal difference model),
predicting the action taken between two states by minimizing the cross entropy loss (i.e., learning an
inverse dynamics model), predicting the next state given the current state and action by minimizing
the mean squared error loss(i.e., learning a forward dynamics model), and predicting which of two
segments is preferred given a provided ranking by minimizing the t-rex loss.

• Reward features could also be learned by first learning a reward function represented as a neural
network using a partial return preference model, and then using the activations of the penultimate layer
of this neural network to provide reward features.

F.2 Results from synthetic preferences

F.2.1 Learning reward functions from 100 randomly generated MDPs

Here we describe how each MDP in the set of 100 MDPs discussed in section 6.2 was generated. We also extend
the analysis to illustrate how often each preference model performs better than uniformly random and give
further details on our statistical tests.

Design choices The 100 MDPs are all instances of the delivery domain, but they have different reward
functions. The height for each MDP is sampled from the set {5,6,10}, and the width is sampled from {3,6,10,15}.
The proportion of cells that are terminal failure states is sampled from the set {0,0.1,0.3}. There is always
exactly one terminal success state. The proportion of “mildly bad” cells were selected from the set {0,0.1,0.5,0.8},
and the proportion of “mildly good” cells were selected from {0,0.1,0.2}. Mildly good cells and mildly bad
cells respectively correspond to cells with coins and roadblocks in our specific delivery task, but the semantic
meaning of coins and roadblocks is irrelevant here. Each sampled proportion is translated to a number of cells
(rounding down to an integer when needed) and then cells are randomly chosen to fill the grid with each of the
above types of states until the proportions are satisfied.

Then, the ground-truth reward component for each of the above cell types were sampled from the following sets:

• Terminal failure states: {0,1,5,10,50}

• Terminal success states: {−5,−10,−50}
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• Mildly bad cells: {−2,−5,−10}

Mildly good cells always have a reward component of 1, and the component for white road surface cells is always
-1. There are no cells with a higher road surface penalty (analogous to the bricks in the delivery domain).

Better than random performance Figure 14 complements the results in Figure 10, showing the percentage
of MDPs in which each preference model outperforms a policy that chooses actions according to a uniformly
random probability distribution. We can see that at this performance threshold, lower than that in Figure 10,
the regret preference model outperforms the partial return preference model in most conditions. Even when their
performance in this plot—based on outperforming uniformly random actions—is nearly identical, Figure 10
shows that the regret preference model achieves near optimal performance at a higher proportion.

Figure 14: Comparison of performance over 100 randomly generated
deterministic MDPs, showing the percentage of MDPs in which each model
performed better than an agent taking actions by a uniformly random
policy. This plot complements Figure 10, which shows the percentage of
MDPs in which the models perform near-optimally.

Details for statistical tests We per-
formed a Wilcoxon paired signed-rank test
on the normalized average returns achieved
by each model over the set of 100 randomly
generated MDPs. All normalized average re-
turns below−1 were replaced with−1, so that
all such returns were in the range [−1,1]. This
clipping was done because any normalized av-
erage return below 0 is worse than uniformly
random, so the difference between a normal-
ized return of−1 and−1000 is relatively unim-
portant compared to the difference between
1 and 0. Results are shown in Table 4.

Table 4: Results of the Wilcoxon paired signed-rank test on normalized average returns for each preference model.

Preference
generator
type

|D≻|=3 |D≻|=10 |D≻|=30 |D≻|=100 |D≻|=300 |D≻|=1000 |D≻|=3000

Noiseless
(Pregret vs.
PΣr)

w=1003,
p=0.115

w=917,
p=0.007

w=739,
p=0.012

w=487,
p=0.007

w=284,
p<0.001

w=301,
p=0.002

w=289,
p=0.001

Stochastic
(Pregret vs.
PΣr)

w=979,
p=0.541

w=1189.5,
p=0.018

w=891,
p=0.027

w=710,
p=0.018

w=285,
p<0.001

w=460,
p=0.002

w=199,
p<0.001

Additionally, we investigate whether Pregret and PΣr learn near-optimal policies on the same MDPs within this
set of 100 randomly generated MDPs. Results for this analysis are shown below.

Table 5: A table showing the count of the number of MDPs where both, either, or neither of the models achieved near optimal
performance.

Model(s) |D≻|=3 |D≻|=10 |D≻|=30 |D≻|=100 |D≻|=300 |D≻|=1000 |D≻|=3000
Both models 31 40 66 72 83 87 88
Only Pregret 20 26 17 18 14 8 8
Only PΣr 10 12 7 8 3 3 3
Neither 39 22 10 2 0 2 1

F.2.2 The effect of including transitions from absorbing state

In Section 3.2.2 we describe one context in which partial return is not identifiable because reward functions that
differ by a constant can have different sets of optimal policies yet will have identical preference probabilities
according to the partial return preference model (via Eqs. 2 and 9). This lack of identifiability arises specifically
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in tasks that have the characteristic of having at least one state from which trajectories of different lengths
are possible. Tasks that terminate upon completing a goal or reaching a failure state typically have this
characteristic. Below we describe an imperfect method to remove this lack of identifiability. Then we show that
the partial return preference model does much worse in our main experiments with synthetic preferences and
human preferences when this method is not applied.

An imperfect method to prevent this source of unidentifiability for partial return Put simply, the
approach to prevent all constant shifts of reward from resulting in the same preference probabilities is to force
r̂(s,a,s’)=0 in at least one tuple of state, action, and next state, (s,a,s′), and include in the training dataset one
or more segments with that tuple.

Figure 15: Performance comparison over 100 randomly generated determin-
istic MDPs. The results in this plot expand upon the experiments in Figure 10,
adding results for datasets that do not have any segments that terminate early.

Technically, this solution addresses the
source of this identifiability issue, that any
constant shift in the output of the reward
function will not change the likelihood of
a preferences dataset (but can change the
set of optimal policies). With this solution,
a constant shift cannot be applied to all
outputs, since at least one reward output is
hard-coded to 0. And applying a constant
shift to all other outputs would change
the likelihood of the infinite, exhaustive
preferences dataset that is assumed in iden-
tifiability theory.

More intuitively, setting one r̂(s,a,s′)=0
for one (s,a,s′) tuple anchors the reward
function. To explain, reward function in-
ference effectively learns an ordering over (s,a,s′) tuples. Let us arbitrarily assume this ordering is in ascending
order of preference. Then setting the reward for one such tuple to 0 forces all (s,a,s′) tuples that are later in the
ordering to have positive reward and all (s,a,s′) tuples that are earlier in the ordering to have negative reward.
(s,a,s′) tuples that are equal in the ordering are assigned a reward of 0.

However, assuming that reward is 0 in any state has at least two undesirable properties. First, it requires
adding human task knowledge that is beyond what the preferences dataset contains, technically changing the
learning problem we are solving. Second, while it resolves some ambiguity regarding what reward function has
the highest likelihood, this resolution may not actually align with the ground-truth reward function. In an
attempt to reduce the impact of these undesirable properties, we only set the reward for absorbing state to 0.
Absorbing state is the theoretical state that an agent enters upon terminating the task. All actions from the
absorbing state merely transition to the absorbing state.

In practice, to include segments with transitions from absorbing state, we add early terminating segments,
meaning that termination in an n-length segment occurs before the final transition.

The method above is not a perfect fix, however. Assuming that transitions from absorbing state have 0 reward
also consequently assumes that humans consider time after termination to have 0 return. We are uncertain that
humans will always provide preferences that are aligned with this assumption. For instance, if termination frees
the agent to pursue other tasks with positive reward, then we might be mistaken to assume that humans are
giving preferences as if there is only 0 reward after termination.

As mentioned in Section 3.2.2, past authors have acknowledged this issue with learning reward functions under
the partial return preference model, apparently unaware of this solution of including transitions from absorbing
states. Instead, they have used normalization (Christiano et al., 2017; Ouyang et al., 2022), tanh activations (Lee
et al., 2021a), and L2 regularization (Hejna & Sadigh, 2023) that resolve their algorithms’ insensitivity to
constant shifts in reward. However, these papers do not discuss what assumptions regarding alignment are
implicitly made by these ambiguity-resolving choices. Curiously, artificially forcing episodic tasks to be fixed
horizon is common (e.g., as done by Christiano et al. (2017, p. 14) and Gleave et al. (2022)) but has not, to
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Figure 18: The results from Figure 16 (noiselessly gen-
erated preferences) divided by preference model, allowing
further perspective.

Figure 19: The results from Figure 17 (stochastically
generated preferences) divided by preference model, allowing
further perspective. Segment lengths 4 and 6 are added here.

pairs, resulting in datasets that differ only in their labels, and then each preference model is used for reward
learning on the same dataset it labeled.

We observe the following:

• With noiselessly generated preferences (Figure 16), the performance with each preference model is
similar for segments with 20 transitions, though it is sometimes slightly better with the partial return
preference model. At a segment length of 10, performance with the regret preference model is better or
similar, depending on the number of preferences. For all other segment lengths, performance with the
regret preference model is better.

• With stochastically generated preferences (Figure 17), the performance with each preference model is
generally better with the regret preference model, although sometimes the partial return preference
model has marginally better performance. Additionally, the variance of performances with the partial
return preference model is higher.

Additionally, we conduct Wilcoxon paired signed-rank tests for a positive effect of segment length on performance.
Four tests are conducted, one per combination of preference model and whether preferences are generated
noiselessly or stochastically. The steps to conduct this test are below. For each combination of preference model
and each preference dataset of size |D≻|∈{3,10,30,100,300,1000,3000}, we calculate Kendall’s τ correlation
measures between the following two orderings:

• segment lengths in ascending order, (1,2,3,10,20), and

• segment lengths in the ascending order of the corresponding percentage of MDPs in which near-optimal
performance was achieved (e.g., if performance is near-optimal in 90% of MDPs for |σ|= 20 and is
near-optimal in 60% of MDPs for |σ|=10, then |σ|=20 would be later in the ordering than |σ|=10).

For each of the resultant 7 τ values—one for each |D≻|—we create a pair for a Wilcoxon paired signed-ranked
test: (τ,0). The 0 in the pair is the expected Kendall’s τ value for uniformly random orderings of segment
lengths. Therefore, the pair represents a comparison between the correlation between a training dataset’s
segment length and its performance and no correlation. Each Wilcoxon paired signed-rank test is conducted on
these 7 pairs.

• With noiselessly generated preferences and the partial return preference model (Figure 18), p=0.016
and the mean τ across the 7 training dataset sizes is 0.80, indicating a significant and large correlation
between segment length and ordering by performance. Our visual inspection of Figure 18 shows that
the effect size is large, so we conclude that in this experiment increasing segment length meaningfully
improves performance.
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• With stochastically generated preferences and the partial return preference model and (Figure 19),
p=0.016 and the mean τ across the 7 training dataset sizes is 0.51, indicating a significant and moderate
correlation between segment length and ordering by performance. Our visual inspection of Figure 19
shows that the effect size is smaller but still observable, so we conclude that in this experiment increasing
segment length somewhat improves performance.

• With noiselessly generated preferences and the regret preference model (Figure 18), p=0.219 and the
mean τ across the 7 training dataset sizes is 0.25, which is not a significant between segment length and
ordering by performance. Likewise, our visual inspection of Figure 19 does not reveal any effect, so we
conclude that in this experiment increasing segment length does not improve performance.

• With stochastically generated preferences and the regret preference model (Figure 19), p=0.016 and
the mean τ across the 7 training dataset sizes is 0.47, indicating a significant and moderate correlation
between segment length and ordering by performance. Our visual inspection of Figure 19 does not reveal
this effect, indicating that the effect size is small, so we conclude that in this experiment increasing
segment length improves performance with only minor effect.

F.2.4 Reward learning in stochastic MDPs

Table 6: Stochastic MDPs: Proportion of 10 MDPs in which performance was near optimal, with varied reward functions.
Entering a terminal risk cell results in rwin and rlose, each with 50% probability.

Preference generator rwin =1 rwin =1000 rwin =100 rwin =100
rlose =−50 rlose =−50 rlose =−1 rlose =−1000

Noiseless Pregret 1.0 1.0 1.0 1.0
Stochastic Pregret 1.0 1.0 1.0 1.0
Noiseless PΣr 1.0 0.0 1.0 0.0
Stochastic PΣr 1.0 0.0 1.0 1.0

Although we theoretically consider MDPs with stochastic transitions in Section 3, we have not yet empirically
compared PΣr and Pregret in tasks with stochastic transitions, which we do below.

We randomly generated 20 MDPs, each with a 5×5 grid. Instead of terminal cells that are associated with
success or failure, these MDPs have terminal cells that are either risky or safe. A single terminal safe cell
was randomly placed, and the number of terminal risk cells was sampled from the set {1,2,7} and then these
terminal risk cells were likewise randomly placed. No other special cells were used in this set of MDPs. To add
stochastic transitions, the delivery domain was modified such that when an agent moves into a terminal risk cell
there is a 50% chance of receiving a lower reward, rlose, and a 50% chance of receiving a higher reward, rwin.
All other transitions are deterministic. As in the unmodified delivery domain, moving to any non-terminal state
results in a reward of -1. Moving to the terminal safe state yields a reward of +50, like the terminal success
state of the unmodified delivery domain. Therefore, depending on the values of rwin and rlose, it may be better
to move into a terminal risk state than to avoid it. All segments were generated by choosing a start state and
three actions, all uniformly randomly. For each MDP, the preference dataset D≻ contains 3000 segment pairs.

The 10 MDPs of each condition differed from those of the other conditions by their ground-truth reward function
r, with different rwin and rlose values. As in Section 6.2, regardless of whether the stochastic or noiseless version
of preference model generates the preference labels, the stochastic version of the same preference model is used
for learning the reward function.

The results are shown below in Table 6, indicating that for both noiseless and stochastic preference datasets,
Pregret is always able to achieve near-optimal performance, whereas PΣr is not. These results expand upon and
support the first proof of Theorem 3.2 in Section 3.

F.2.5 Generating preferences and learning reward functions with different preference models

Using synthetically generated preferences, here we investigate the effects of choosing the incorrect model.
Specifically, either Pregret or PΣr generates preference labels, and then the other preference model is used to
learn a reward function from these preference labels. Through this mixing of preference models, we add two new
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partial return preference model fails to reach near-optimal performance approximately twice as often as the
regret preference model.

For each training set size, we conduct the same Wilcoxon paired signed-rank test as in Section 6.3 and
Appendix F.3.1, except that for each of the 100 MDPs, we calculate the normalized mean return, and the mean
of normalized mean returns across all 100 MDPs represents a single sample for the statistical test. Across all 7
training set sizes, no statistical significance is found (p>0.2). Unlike most other analyses in this paper, we
cannot here conclude superior performance from assuming the regret preference model.
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