
LEARNING OPTIMAL ADVANTAGE FROM PREFERENCES AND

MISTAKING IT FOR REWARD

A PREPRINT

W. Bradley Knox*1,2, Stephane Hatgis-Kessell1, Sigurdur Orn Adalgeirsson2, Serena Booth3, Anca
Dragan4, Peter Stone1,5, and Scott Niekum6

1University of Texas at Austin
2Google Research

3MIT CSAIL
4UC Berkeley

5Sony AI
6University of Massachusetts Amherst

ABSTRACT

We consider algorithms for learning reward func-
tions from human preferences over pairs of tra-
jectory segments, as used in reinforcement learn-
ing from human feedback (RLHF). Most recent
work assumes that human preferences are gener-
ated based only upon the reward accrued within
those segments, or their partial return. Recent
work casts doubt on the validity of this assumption,
proposing an alternative preference model based
upon regret. We investigate the consequences of
assuming preferences are based upon partial return
when they actually arise from regret. We argue that
the learned function is an approximation of the op-
timal advantage function, Â∗

r , not a reward func-
tion. We find that if a specific pitfall is addressed,
this incorrect assumption is not particularly harm-
ful, resulting in a highly shaped reward function.
Nonetheless, this incorrect usage of Â∗

r is less de-
sirable than the appropriate and simpler approach
of greedy maximization of Â∗

r . From the perspec-
tive of the regret preference model, we also pro-
vide a clearer interpretation of fine tuning contem-
porary large language models with RLHF. This pa-
per overall provides insight regarding why learn-
ing under the partial return preference model tends
to work so well in practice, despite it conforming
poorly to how humans give preferences.

∗

Correspondence to:

bradknox@cs.utexas.edu

1 Introduction

When learning from human preferences (in RLHF), the
dominant model assumes that human preferences are de-
termined only by each segment’s accumulated reward, or
partial return. Knox et al. [2022] argued that the partial
return preference model has fundamental flaws that are
removed or ameliorated by instead assuming that human
preferences are determined by the optimal advantage of
each segment, which is a measure of deviation from opti-
mal decision-making and is equivalent to the negated re-
gret. This past work argues for the superiority of the regret
preference model (1) by intuition, regarding how humans
are likely to give preferences (e.g., see Fig. 2); (2) by the-
ory, showing that regret-based preferences have a desir-
able identifiability property that preferences from partial
return lack; (3) by descriptive analysis, showing that the
likelihood of a human preferences dataset is higher under
the regret preference model than under the partial return
preference model; and (4) by empirical analysis, showing
that with both human and synthetic preferences, the regret
model requires fewer preference labels. Section 2 of this
paper provides details on the general problem setting and
on these two models.

In this paper, we explore the consequences of using algo-
rithms that are designed with the assumption that prefer-
ences are determined by partial return when these prefer-
ences are instead determined by regret. We show in Sec-
tion 3 that these algorithms learn an approximation of the
optimal advantage function, A∗

r , not of the reward func-
tion, as presumed in many prior works. We then study the
implications of this mistaken interpretation. When inter-
preted as reward, the exact optimal advantage is highly
shaped and preserves the set of optimal policies, which
enables partial-return-based algorithms to perform well.
However, the learned approximation of the optimal advan-

a
rX

iv
:2

3
1
0
.0

2
4
5
6
v
1

[c

s.
L

G
]

 3
 O

c
t

2
0
2
3

Learning Optimal Advantage from Preferences and Mistaking it for Reward A PREPRINT

Loss function When learning a reward function from a
preference dataset, D≻, preference labels are typically as-
sumed to be generated by a preference model P based on
an unobservable ground-truth reward function r.We learn
r̂, an approximation of r, by minimizing cross-entropy
loss:

loss(r̂, D≻) =

−
∑

(σ1,σ2,µ)∈D≻

µ1 logP (σ1 ≻ σ2|r̂) + µ2 logP (σ1 ≺ σ2|r̂) (1)

If σ1 ≻ σ2, the sample’s likelihood is P (σ1 ≻ σ2|r̂)
and its loss is therefore −logP (σ1 ≻ σ2|r̂). If σ1 ≺ σ2,
its likelihood is 1 − P (σ1 ≻ σ2|r̂). This loss is under-
specified until the preference model P (σ1 ≻ σ2|r̂) is de-
fined. Algorithms in this paper for learning approxima-
tions of r or A∗

r from preferences can be summarized sim-
ply as “minimize Equation 1”.

Preference models A preference model determines the
probability of one trajectory segment being preferred over
another, P (σ1 ≻ σ2|r̃). Preference models can be used to
model preferences provided by humans or other systems,
or to generate synthetic preferences.

2.2 Preference models: partial return and regret

Partial return The dominant preference model (e.g.,
Christiano et al. [2017]) assumes human preferences are
generated by a Boltzmann distribution over the two seg-
ments’ partial returns, expressed here as a logistic func-
tion:2

PΣr
(σ1 ≻ σ2|r̃) = logistic

(
Σσ1

r̃ − Σσ2
r̃
)
. (2)

Regret Knox et al. [2022] introduced an alternative
human preference model. This regret-based model as-
sumes that preferences are based on segments’ deviations
from optimal decision-making: the regret of each transi-
tion in a segment. We first focus on segments with deter-
ministic transitions. For a single transition (st, at, st+1),

regretd(σt|r̃) ≜ V ∗
r̃ (s

σ
t) − [r̃t + V ∗

r̃ (s
σ
t+1)]. For a full

segment,

regretd(σ|r̃) ≜

|σ|−1∑

t=0

regretd(σt|r̃)

= V ∗
r̃ (s

σ
0)− (Σσ r̃ + V ∗

r̃ (s
σ
|σ|)),

(3)

with the right-hand expression arising from cancelling out
intermediate state values. Therefore, deterministic regret
measures how much the segment reduces expected return
from V ∗

r̃ (s
σ
0). An optimal segment σ∗ always has 0 regret,

and a suboptimal segment σ¬∗ always has positive regret.

Stochastic state transitions, however, can result in
regretd(σ

∗|r̂) > regretd(σ
¬∗|r̃), losing the property

above. To retain it, we note that the effect on ex-
pected return of transition stochasticity from a transition

2Unless otherwise stated, we ignore the temperature because
scaling reward has the same effect as changing the temperature.

(st, at, st+1) is [r̃t +V ∗
r̃ (st+1)]−Q∗

r̃(st, at) and add this
expression once per transition to get regret(σ), removing
the subscript d that refers to determinism. The regret for
a single transition becomes regret(σt|r̃) = [V ∗

r̃ (s
σ
t) −

[r̃t + V ∗
r̃ (s

σ
t+1)]] + [[r̃t + V ∗

r̃ (s
σ
t+1)] − Q∗

r̃(s
σ
t , a

σ
t)] =

V ∗
r̃ (s

σ
t) − Q∗

r̃(s
σ
t , a

σ
t) = −A∗

r̃(s
σ
t , a

σ
t). Regret for a full

segment is:

regret(σ|r̃) =

|σ|−1∑

t=0

regret(σt|r̃)

=

|σ|−1∑

t=0

[
V ∗
r̃ (s

σ
t)−Q∗

r̃(s
σ
t , a

σ
t)
]

=

|σ|−1∑

t=0

−A∗
r̃(s

σ
t , a

σ
t).

(4)

The regret preference model is the Boltzmann distribution
over the sum of optimal advantages, or the negated regret:

Pregret(σ1 ≻ σ2|r̃)

≜ logistic
(|σ1|−1∑

t=0

A∗
r̃(σ1,t)−

|σ2|−1∑

t=0

A∗
r̃(σ2,t)

)

= logistic
(
regret(σ2|r̃)− regret(σ1|r̃)

)
.

(5)

(Notationally, A∗
r̃(σt) = A∗

r̃(s
σ
t , a

σ
t).) Lastly, if two

segments have deterministic transitions, end in termi-
nal states, and have the same starting state, this regret
model reduces to the partial return model: Pregret(·|r̃) =
PΣr

(·|r̃).

Intuitively, the partial return preference model always as-
sumes preferences are based upon outcomes while the re-
gret model is able to account for preferences based upon
outcomes (Eq. 3) and preferences over decisions (Eq. 4).

Figure 2: Two segments in an undiscounted task with −1 re-
ward each time step. The partial return of both segments with
respect to the true reward function is −2. The regret of the left
segment is 4. The right segment is optimal and therefore has a
regret of 0. The regret preference model is more likely to pre-
fer the right segment—as we suspect our human readers are—
whereas the partial return preference model is equally likely to
prefer each segment.

Knox et al. [2022] showed the regret both has desirable
theoretical properties (i.e., it is identifiable where partial

3

Learning Optimal Advantage from Preferences and Mistaking it for Reward A PREPRINT

return is not) and is a better model of true human prefer-
ences. Since regret better models true human preferences,
and since many recent works use true human preferences
but assume them to be generated according to partial re-
turn, we ask: what are the consequences of misinterpreting
the optimal advantage function as reward?

3 Learning optimal advantage from

preferences and using it as reward

We ask: what is actually learned when preferences are as-
sumed to arise from partial return but actually come from
regret (Equation 2), and what implications does that have?

Our results can be reproduced via our code repository, at
github.com/Stephanehk/Learning-OA-From-Prefs.

3.1 Learning the optimal advantage function

To start, let us unify the two preference models from Sec-
tion 2.2 into a single general preference model.

Pg(σ1 ≻ σ2|r̃) ≜ logistic
(|σ1|−1∑

t=0

g(σ1,t)−

|σ2|−1∑

t=0

g(σ2,t)
)

(6)
In the above unification, the segment statistic in the pref-
erence model is expressed as a sum of some function

g over each transition in the segment:
∑|σ|−1

t=0 g(σt) =∑|σ|−1
t=0 g(sσt , a

σ
t , s

σ
t+1). When preferences are generated

according to partial return, g(σt) = r̃(sσt , a
σ
t , s

σ
t+1), and

the reward function r̃ is learned via Equation 1.

When preferences are instead generated according to re-
gret, g(σt) = A∗

r̃(σt) = A∗
r̃(s

σ
t , a

σ
t) and the parameters

of this optimal advantage function can be learned directly,
also via Equation 1. Â∗

r can be learned and then acted
upon greedily, via argmaxaÂ

∗
r(s, a), an algorithm we call

greedy Â∗

r
(bottom algorithm of Fig. 1). Notably, this al-

gorithm does not require the additional step of policy im-
provement and instead uses Â∗

r directly. No reward func-
tion is explicitly represented or learned, though we still
assume that preferences were generated by regret under a
hidden reward function r.

The remainder of this section considers first the conse-
quences of using the error-free A∗

r as a reward func-
tion: rA∗

r

= A∗

r . We call this mistaken approach
greedy Q∗

rA∗

r

. We then consider the consequences of us-

ing the approximation Â∗
r as a reward function, rÂ∗

r
= Â∗

r ,
which we refer to as greedy Q∗

rÂ∗

r

. The following investi-
gation is an attempt to answer why learning while assum-
ing the partial return preference model tends to work so
well in practice, despite its poor fit as a descriptive model
of human preference.

3.2 Using A∗

r
as a reward function

Under the assumption of regret-based preferences, learn-
ing a reward function with the partial return preference
model effectively uses an approximation of A∗

r as a re-

ward function, r̂ = Â∗
r . Let us first assume perfect infer-

ence of A∗
r (i.e., that Â∗

r = A∗
r), and consider the conse-

quences. We will refer to the non-approximate versions of
greedy Â∗

r and rÂ∗
r

as greedy A∗

r and rA∗

r

.

Optimal policies are preserved. Using A∗
r as a reward

function preserves the set of optimal policies. To prove
this statement, we first prove a more general theorem.

For r̃, an arbitrary reward function, maxaA
∗
r̃(·, a) = 0 by

definition. Let the set of optimal policies with respect to r̃
be denoted Π∗

r̃ .

Theorem 3.1 (Greedy action is optimal when the maxi-
mum reward in every state is 0.).
Π∗

r̃ = {π : ∀s, ∀a [π(a|s) > 0 ⇔ a ∈ argmaxar̃(s, a)]}
if maxar̃(·, a) = 0.

Theorem 3.1 is proven in Appendix A. The sketch of the
proof is that if the maximum reward in every state is 0,
then the best possible return from every state is 0. There-
fore, V ∗

r̃ (·) = 0, making ∀(s, a) ∈ S × A,Q∗
r̃(s, a) =

r̃(s, a) + γEs′ [V
∗
r̃ (s)] = r̃(s, a).

We now return to our specific case, proven in Appendix B.

Corollary 3.1 (Policy invariance of rA∗
r
).

Let rA∗
r
≜ A∗

r . If maxaA
∗
r(·, a) = 0, Π∗

rA∗
r

= Π∗
r .

An underspecification issue is resolved. As we discuss
in Section 4, when segment lengths are 1, the partial re-
turn preference model ignores the discount factor γ, mak-
ing its choice arbitrary despite it often affecting the set
of optimal policies. With rA∗

r
, however, the lack of γ in

Corollary 3.1 establishes γ does not affect the set of opti-
mal policies. To give intuition, we apply the intermediate
result within the proof of Theorem 3.1 that V ∗

r̃ (·) = 0 to
the specific case of Corollary 3.1, we see that V ∗

rA∗
r

(·) = 0.

Therefore, Q∗
rA∗

r

(s, a) = rA∗
r
(s, a) + γEs′ [0], making γ

have no impact on Q∗
rA∗

r

(s, a) and therefore on on Π∗
r .

Reward is highly shaped. In Ng et al. [1999]’s seminal
research on potential-based reward shaping , they high-
light φ(s) = V ∗

r (s) as a particularly desirable potential
function. Algebraic manipulation reveals that the MDP
that results from this φ actually uses as a reward func-

tion rA∗
r
≜ A∗

r . See Appendix C for the derivation. Ng et

al. also note that that it causes V ∗
rA∗

r

(·) = 0 and therefore

results in “a particularly easy value function to learn; ... all
that would remain to be done would be to learn the non-
zero Q-values.” We characterize this approach as highly
shaped because the information required to act optimally
is in the agent’s immediate reward.

4

Learning Optimal Advantage from Preferences and Mistaking it for Reward A PREPRINT

Acknowledgments

This work has taken place in part in the the Interactive
Agents and Colloraborative Technologies (InterACT) lab
at UC Berkeley, the Learning Agents Research Group
(LARG) at UT Austin and the Safe, Correct, and Aligned
Learning and Robotics Lab (SCALAR) at The University
of Massachusetts Amherst. LARG research is supported
in part by NSF (FAIN-2019844, NRT-2125858), ONR
(N00014-18-2243), ARO (E2061621), Bosch, Lockheed
Martin, and UT Austin’s Good Systems grand challenge.
Peter Stone is financially compensated as the Executive
Director of Sony AI America, the terms of which have
been approved by the UT Austin. SCALAR research is
supported in part by the NSF (IIS-1749204), AFOSR
(FA9550-20-1-0077), and ARO (78372-CS, W911NF-19-
2-0333). InterACT research is supported in part by ONR
YIP and NSF HCC. Serena Booth is supported by NSF
GRFP.

References

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda
Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan, et al.
Training a helpful and harmless assistant with reinforce-
ment learning from human feedback. arXiv preprint
arXiv:2204.05862, 2022.

Erdem Bıyık, Dylan P Losey, Malayandi Palan,
Nicholas C Landolfi, Gleb Shevchuk, and Dorsa
Sadigh. Learning reward functions from diverse sources
of human feedback: Optimally integrating demonstrations
and preferences. The International Journal of Robotics
Research, page 02783649211041652, 2021.

Stephen Casper, Xander Davies, Claudia Shi,
Thomas Krendl Gilbert, Jérémy Scheurer, Javier Rando,
Rachel Freedman, Tomasz Korbak, David Lindner, Pedro
Freire, et al. Open problems and fundamental limitations
of reinforcement learning from human feedback. arXiv
preprint arXiv:2307.15217, 2023.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Mar-
tic, Shane Legg, and Dario Amodei. Deep reinforcement
learning from human preferences. In Advances in Neu-
ral Information Processing Systems (NIPS), pages 4299–
4307, 2017.

Amelia Glaese, Nat McAleese, Maja Tre
’
bacz, John

Aslanides, Vlad Firoiu, Timo Ewalds, Maribeth Rauh,
Laura Weidinger, Martin Chadwick, Phoebe Thacker,
et al. Improving alignment of dialogue agents via targeted
human judgements. arXiv preprint arXiv:2209.14375,
2022.

Adam Gleave, Mohammad Taufeeque, Juan Rocamonde,
Erik Jenner, Steven H. Wang, Sam Toyer, Maximilian
Ernestus, Nora Belrose, Scott Emmons, and Stuart Rus-
sell. imitation: Clean imitation learning implementa-
tions. arXiv:2211.11972v1 [cs.LG], 2022. URL https:
//arxiv.org/abs/2211.11972.

Joey Hejna and Dorsa Sadigh. Inverse preference learn-
ing: Preference-based rl without a reward function. arXiv
preprint arXiv:2305.15363, 2023.

Borja Ibarz, Jan Leike, Tobias Pohlen, Geoffrey Irving,
Shane Legg, and Dario Amodei. Reward learning from
human preferences and demonstrations in atari. arXiv
preprint arXiv:1811.06521, 2018.

W Bradley Knox, Stephane Hatgis-Kessell, Serena Booth,
Scott Niekum, Peter Stone, and Alessandro Allievi. Mod-
els of human preference for learning reward functions.
arXiv preprint arXiv:2206.02231, 2022.

Kimin Lee, Laura Smith, and Pieter Abbeel. Peb-
ble: Feedback-efficient interactive reinforcement learning
via relabeling experience and unsupervised pre-training.
arXiv preprint arXiv:2106.05091, 2021a.

Kimin Lee, Laura Smith, Anca Dragan, and Pieter
Abbeel. B-pref: Benchmarking preference-based rein-
forcement learning. arXiv preprint arXiv:2111.03026,
2021b.

A.Y. Ng, D. Harada, and S. Russell. Policy invariance
under reward transformations: Theory and application to
reward shaping. Sixteenth International Conference on
Machine Learning (ICML), 1999.

OpenAI. Chatgpt: Optimizing language models for di-
alogue. OpenAI Blog https://openai.com/blog/chatgpt/,
2022. Accessed: 2022-12-20.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L Wainwright, Pamela Mishkin, Chong Zhang, Sand-
hini Agarwal, Katarina Slama, Alex Ray, et al. Training
language models to follow instructions with human feed-
back. arXiv preprint arXiv:2203.02155, 2022.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zem-
ing Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito,
Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chin-
tala. Pytorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett,
editors, Advances in Neural Information Processing
Systems 32, pages 8024–8035. Curran Associates, Inc.,
2019. URL http://papers.neurips.cc/paper/9015-pytorch-
an-imperative-style-high-performance-deep-learning-
library.pdf.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-
learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

Dorsa Sadigh, Anca D Dragan, Shankar Sastry, and San-
jit A Seshia. Active preference-based learning of reward
functions. Robotics: Science and Systems, 2017.

9

Learning Optimal Advantage from Preferences and Mistaking it for Reward A PREPRINT

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec
Radford, and Oleg Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert,
Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov,
Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al.
Llama 2: Open foundation and fine-tuned chat models.
arXiv preprint arXiv:2307.09288, 2023.

Xiaofei Wang, Kimin Lee, Kourosh Hakhamaneshi, Pieter
Abbeel, and Michael Laskin. Skill preferences: Learning
to extract and execute robotic skills from human feed-
back. In Conference on Robot Learning, pages 1259–
1268. PMLR, 2022.

Christopher JCH Watkins and Peter Dayan. Q-learning.
Machine learning, 8:279–292, 1992.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B
Brown, Alec Radford, Dario Amodei, Paul Christiano,
and Geoffrey Irving. Fine-tuning language models from
human preferences. arXiv preprint arXiv:1909.08593,
2019.

10

Learning Optimal Advantage from Preferences and Mistaking it for Reward A PREPRINT

A Proof of Theorem 3.1

Theorem 3.1 (Greedy action is optimal when the maximum reward in every state is 0.)
Π∗

r̃ = {π : ∀s, ∀a [π(a|s) > 0 ⇔ a ∈ argmaxar̃(s, a)]} if maxar̃(·, a) = 0.

The main idea is that if the maximum reward in every state is 0, then the best possible return from every state is 0.
Therefore, V ∗

r̃ (·) = 0, making ∀(s, a) ∈ S ×A,Q∗
r̃(s, a) = r̃(s, a) + γEs′ [V

∗
r̃ (s)] = r̃(s, a).

The proof follows.

∀(s, a) ∈ S ×A, r̃(s, a) ≤ 0, so ∀s ∈ S, V ∗
r̃ (s) ≤ 0.

∀s ∈ S, ∃a ∈ A : r̃(s, a) = 0, so ∀s ∈ S, V ∗
r̃ (s) ≥ 0.

V ∗
r̃ (s) ≤ 0 and V ∗

r̃ (s) ≥ 0 implies V ∗
r̃ (s) = 0, so ∀s ∈ S, V ∗

r̃ (s) = 0.

∀(s, a) ∈ S ×A,

Q∗
r̃(s, a) = r̃(s, a) + γEs′ [V

∗
r̃ (s

′)]

Q∗
r̃(s, a) = r̃(s, a) + γEs′ [0]

Q∗
r̃(s, a) = r̃(s, a)

argmaxaQ
∗
r̃(s, a) = argmaxar̃(s, a)

(7)

By definition, Π∗
r̃ = {π : ∀s, π(s) = argmaxaQ

∗
r̃(s, a)}.

Since argmaxaQ
∗
r̃(s, a) = argmaxar̃(s, a), Π

∗
r̃ = {π : ∀s, π(s) = argmaxar̃(s, a)}. □

B Proof of Corollary 3.1

Corollary 3.1 (Policy invariance of rA∗
r
)

Let rA∗
r
≜ A∗

r . If maxaA
∗
r(·, a) = 0, Π∗

rA∗
r

= Π∗
r .

Since maxaA
∗
r(·, a) = 0 and rA∗

r
≜ A∗

r , maxarA∗
r
(·, a) = 0.

Therefore, by Theorem 3.1, Π∗
rA∗

r

= {π : ∀s, ∀a [π(a|s) > 0 ⇔ a ∈ argmaxarA∗
r
(s, a)]}.

Also, by definition, Π∗
r = {π : ∀s, ∀a [π(a|s) > 0 ⇔ a ∈ argmaxaA

∗
r(s, a)]}.

Consequently,

Π∗
rA∗

r

= {π : ∀s, ∀a [π(a|s) > 0 ⇔ a ∈ argmaxarA∗
r
(s, a)]}

= {π : ∀s, ∀a [π(a|s) > 0 ⇔ a ∈ argmaxaA
∗
r(s, a)]}

= Π∗
r

(8)

C Used as reward, A∗

r
is highly shaped

In Section 3.2, we stated that following the advice below of Ng et al. [1999] is equivalent to using A∗
r as reward. We

derive this result after reviewing their advice.

In their paper on potential-based reward shaping, the authors suggest a potent form of setting Φ(s), which is Φ(s) =
V ∗
M (s). Their notation includes MDPs M and M ′, where M is the original MDP and M ′ is the potential-shaped MDP.

The notation for these two MDPs maps to our notation in that the reward function of M is r, and we ultimately derive
that the reward function of M ′ is rA∗

r
.

11

Learning Optimal Advantage from Preferences and Mistaking it for Reward A PREPRINT

Ng et al.’s Corollary 2 includes the statement that, under certain conditions, for any state s and action a, Q∗
rA∗

r

(s, a) =

Q∗
r(s, a)− Φ(s).

Q∗
rA∗

r

(s, a) = Q∗
r(s, a)− Φ(s)

Q∗
rA∗

r

(s, a) = Q∗
r(s, a)− V ∗

r (s)

Q∗
rA∗

r

(s, a) = A∗
r(s, a)

maxaQ
∗
rA∗

r

(s, a) = maxaA
∗
r(s, a)

maxaQ
∗
rA∗

r

(s, a) = 0

V ∗
rA∗

r

(s, a) = 0

(9)

Eqn 9 above establishes two things that will be applied within Eqn 10 below, that Q∗
rA∗

r

(s, a) = A∗
r(s, a) and that

V ∗
rA∗

r

(s, a) = 0.

Q∗
rA∗

r

(s, a) = rA∗
r
+ γEs′ [V

∗
r̃ (s

′)]

Q∗
rA∗

r

(s, a) = rA∗
r
+ γEs′ [0]

Q∗
rA∗

r

(s, a) = rA∗
r

A∗
r(s, a) = rA∗

r

(10)

□

D Detailed experimental settings

Here we provide details regarding the gridworld tasks and the learning algorithms used in our experiments. The
learning algorithms described include both algorithms for learning from preferences and for policy improvement.
Because much of the details below are repeated from Knox et al. [2022], some of the description in this section is
adapted from that paper with permission from the authors.

D.1 The gridworld domain and MDP generation

Gridworld domain Each instantiation of the gridworld domain consists of a grid of cells. In the following sections,
each gridworld domain instantiation is referred to interchangeably as a randomly generated MDP.

A cell can contain up to one of four types of objects: ”mildly good” objects, ”mildly bad” objects, terminal success
objects, and terminal failure objects. Each object has a specific reward component, and a time penalty provides another
reward component. The reward received upon entering a cell is the sum of all reward components. The delivery agent’s
state is its location. The agent’s action space consists of a single step in one of the four cardinal directions. The episode
can terminate either at a terminal success state for a non-negative reward, or at a terminal failure state for a negative
reward. The reward for a non-terminal transition is the sum of any reward components. The procedure for choosing
the reward component of each cell type is described later in this subsection.

Actions that would move the agent beyond the grid’s perimeter result in no motion and receive reward that includes
the current cell’s time penalty reward component but not any ”mildly good” or ”mildly bad” components. In this work,
the start state distribution is always uniformly random over non-terminal states. This domain was introduced by [Knox
et al. 2022].

Standardizing return across MDPs and defining near optimal performance To compare performance across
different MDPs, the mean return of a policy π, V π

r , is normalized to (V π
r − V U

r)/V ∗
r , where V ∗

r is the optimal
expected return and V U

r is the expected return of the uniformly random policy (both given the uniformly random start
state distribution). Normalized mean return above 0 is better than V U

r . Optimal policies have a normalized mean return
of 1, and we consider above 0.9 to be near optimal.

Additionally, when plotting the mean of these standardized returns, we floor each such return at -1, which prevent the
mean from being dominated by low performing policies that never terminate. Such policies can have, for example,

12

Learning Optimal Advantage from Preferences and Mistaking it for Reward A PREPRINT

• The true reward component for blank cells is always −1.

For 30/90 of the MDPs, it is always optimal to eventually terminate at a terminal success cell:

• For each MDP there is always a terminal failure cell that exists and is randomly placed on one of the four
corners of the board.

• The ground-truth reward component for the terminal failure cell is always −10.

• The true reward component for blank cells is always −1.

For 30/90 of the MDPs, it is always optimal to loop forever and never terminate:

• For each MDP there is always a terminal failure cell that exists and is randomly placed on one of the four
corners of the board.

• The ground-truth reward component for the terminal failure cell is always −10.

• The true reward component for blank cells is always +1.

All parameters for randomly sampling MDPs that are not explicitly discussed above are the same as for Figures 3, 4,
and 6.

D.2 Learning algorithms

Doubling the training set by reversing preference samples To provide more training data and avoid learning
segment ordering effects, for all preference datasets we duplicate each preference sample, swap the corresponding
segment pairs, and reverse the preference.

Discounting during value iteration and Q learning Despite the gridworld domain being episodic, a policy may
endlessly avoid terminal states. In some MDPs, such as a subset of those used in Figure 5, this is an optimal behavior.
In other MDPs this is the result of a low-performing policy. To avoid an infinite loop of value function updates, we
apply a discount factor of γ = 0.999 during value iteration, Q learning, and when assessing the mean returns of
policies with respect to the ground-truth reward function, r. We chose this high discount factor to have negligible
effect on the returns of high-performing policies (since relatively quick termination is required for high performance)
while still allowing for convergence within a reasonable time.

Hyperparameters for learning Â∗
r as seen in Figures 3, 4, 5, and 10 These hyperparameters exactly match those

used in [Knox et al. 2022], except that we decreased the number of training epochs. For all experiments, each algorithm
was run once with a single randomly selected seed.

• learning rate: 2

• number of seeds used: 1

• number of training epochs: 1, 000

• optimizer: Adam

– β1 = 0.9

– β2 = 0.999

– eps= 1e− 08

Hyperparameters for learning Â∗
r as seen in Figure 6 These hyperparameters exactly match those used in [Knox

et al. 2022]. For all experiments, each algorithm was run once with a single randomly selected seed.

• learning rate: 2

• number of seeds used: 1

• number of training epochs: 30, 000

• optimizer: Adam

14

