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6.1 Erdős–Rényi Random Graphs . . . . . . . . . . . . . . . . . . . . . . . 941
6.2 Stochastic Block Model . . . . . . . . . . . . . . . . . . . . . . . . . . 942
6.3 Random Trees and Forests . . . . . . . . . . . . . . . . . . . . . . . . . 943

7 Applications 944
7.1 Game Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 944
7.2 Source Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 945
7.3 Detecting Network Motifs . . . . . . . . . . . . . . . . . . . . . . . . . 946
7.4 Embedding Biological Sequence Data . . . . . . . . . . . . . . . . . . . 947

8 Related Concepts 948
8.1 Doubly Resolving Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 948
8.2 Strong Metric Dimension . . . . . . . . . . . . . . . . . . . . . . . . . 949
8.3 Multilateration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 949
8.4 Truncated Metric Dimension . . . . . . . . . . . . . . . . . . . . . . . 950
8.5 Resolving Number, Upper Dimension, Random k-Dimensionality . . . 951
8.6 Directed Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 951
8.7 Other Related Notions . . . . . . . . . . . . . . . . . . . . . . . . . . . 952
8.8 Metric Space Connections . . . . . . . . . . . . . . . . . . . . . . . . . 953

9 Conclusion and Open Questions 953

Acknowledgments 954

References 954

1. Introduction. In the Euclidean plane, any set of three noncollinear points is
enough to uniquely distinguish all points in the space based on distances. This process,
called trilateration in R

2, is the basic technique through which global positioning
systems (GPS) are able to pinpoint a location on the surface of the Earth. More
generally, if k · k denotes the Euclidean distance and R = {r1, . . . , rn+1} ⇢ R

n is a
set of n + 1 a�nely independent points, the vectors (kx � r1k, . . . , kx � rn+1k) and
(ky � r1k, . . . , ky � rn+1k) for x,y 2 R

n are di↵erent when x 6= y.
The situation becomes more complex, however, if the space of interest is discrete
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A SURVEY OF METRIC DIMENSION AND ITS APPLICATIONS 921

instead of continuous. One class of discrete spaces of particular interest comprises
those that can be represented as graphs coupled with shortest path distance. On
a graph G = (V,E) the notion of metric dimension is analogous to the number of
satellites required for GPS to work e↵ectively. The goal is to pick a minimal set
of vertices R ✓ V capable of identifying every vertex based solely on shortest path
distances to R. Solving this problem exactly in an arbitrary graph is computationally
complex but provides information that is useful in a variety of settings. A small set
of “satellites” or “landmarks” in a discrete space can be valuable in assisting robots
navigating over a physical space or in tracking the progress of a disease as it spreads
between cities. Such sets can also be used for identifying a source of misinformation
in a social network, comparing network structure, categorizing chemical structures,
or representing symbolic data numerically.

In this work we collate and interpret a number of theoretical results and approx-
imation techniques associated with metric dimension, paying particular attention to
specific types of graphs and applications. We survey recent work and describe promis-
ing directions for future work.

2. Formal Definition and Examples. Let G = (V,E) be a graph, potentially
with weighted edges, and let d(u, v) denote the shortest path distance in G from
u 2 V to v 2 V . Unless otherwise stated, when no such path exists, d(u, v) = 1.

Definition 2.1 (resolving set). R ✓ V is resolving if, for all distinct u, v 2 V ,

there exists r 2 R such that d(r, u) 6= d(r, v). Such an r is said to resolve or distinguish

u and v. Such sets are also sometimes called locating sets [193], reference sets [195],
or metric generators [186].

In the context of Rn, any set of (n + 1) or more a�nely independent points is
analogous to a resolving set in a graph.

By definition, R = {r1, . . . , rk} is resolving if and only if the transformation

d(u|R) :=
�
d(r1, u), . . . , d(rk, u)

�

from V to (R [ 1)|R| is injective, i.e., every vertex u 2 V is uniquely represented
by the vector of distances from all vertices in R (listed in an arbitrary but specified
order) to u. In many settings, minimizing the dimension |R| of these vectors is a
central goal.

Definition 2.2 (metric dimension). The metric dimension �(G) of G (also some-

times denoted dim(G) or µ(G)) is the smallest cardinality of resolving sets on G. If

R is a resolving set on G and |R| = �(G), R is called a minimal resolving set, basis

set, or metric basis of G.

In the context of graphs, the concept of metric dimension was introduced sep-
arately by Slater in 1975 [193] and by Harary and Melter in 1976 [99], though the
dimension of graphs was discussed earlier by Erdős, Harary, and Tutte in 1965 [66]
and the dimension of general metric spaces by Blumenthal in 1953 [28]. Both the
Slater and Harary and Melter papers focus on the metric dimension of trees and de-
scribe equivalent exact formulae for graphs of this kind. Harary and Melter briefly
discuss the metric dimension of several other types of graphs including cycles, com-
plete graphs, and complete bipartite graphs, though the metric dimension of wheel
graphs is incorrectly stated as two. They also give an algorithm to reconstruct a tree
given distances from every node to the elements of a resolving set. This is not possible
for general graphs as not all edges are guaranteed to be represented in a shortest path
with an element of a resolving set as an endpoint (see section 8.2).
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922 RICHARD C. TILLQUIST, RAFAEL M. FRONGILLO, AND MANUEL E. LLADSER

Before continuing, we examine several types of graphs for which minimal resolving
sets are readily described and easily visualized. Through this examination, we hope
to strengthen the reader’s intuitive grasp of metric dimension and to solidify concepts
that are important in future sections.

2.1. Paths, Complete Graphs, and Cycles. For G = (V,E) connected with
|V | = n � 2, the path graph Pn and the complete graphKn represent the two extremes
of metric dimension. Indeed, �(G) = 1 if and only if G ' Pn, and �(G) = n�1 if and
only if G ' Kn [42]. Resolving sets for Pn and Kn are readily apparent (see Figure 1).
For a path, either of the end vertices resolves every vertex, as each distance 0 to (n�1)
is attained exactly once. For a complete graph, every vertex is at distance 0 from
itself and at distance 1 from all other vertices. This means that a single vertex v 2 V
uniquely identifies itself but no other vertices. In order to distinguish all vertices, a
resolving set of Kn must be of cardinality at least (n� 1). Moreover, any such set is
resolving as the excluded vertex is the only one at a strictly positive distance from all
other vertices.

(0, 1, 1, 1)

(1, 0, 1, 1)

(1, 1, 0, 1) (1, 1, 1, 0)

(1, 1, 1, 1)

(0) (1) (2) (3) (4)

(0, 1)

(1, 0)

(2, 1) (2, 2)

(1, 2)

(2,0) (3,1) (4,2) (5,3)

(1,1) (2,2) (3,3) (4,4)

(0,2) (1,3) (2,4) (3,5)

Fig. 1 Minimal resolving sets (shaded circles) for the complete graph K5 (upper left), the path P5

(upper right), the cycle C5 (lower left), and the grid G4,3 (lower right). Nodes are annotated
with their distance vectors d(u|R), which must be unique.

The cycle graph Cn on n > 2 vertices has metric dimension 2 [43]. No single
vertex can resolve Cn because every vertex has degree 2. Next, we construct a set
of cardinality 2 and show that it is resolving. Suppose that the vertex set of Cn is
{0, . . . , n� 1}, where consecutive integers are neighbors and so are 0 and n� 1. Let
R = {0, 1}. Then d(x|R) = (min{x, n � x},min{x � 1, n + 1 � x}). But using that
min{a, b} = (a+b�|a�b|)/2, it follows that if d(x|R) = d(y|R), then |n�2x| = |n�2y|
and |n � 2(x � 1)| = |n � 2(y � 1)|; in particular, x and y are at the same distance
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A SURVEY OF METRIC DIMENSION AND ITS APPLICATIONS 923

from n/2, and so are x � 1 and y � 1, which is possible only when x = y. Hence,
�(Cn) = 2 (see Figure 1).

2.2. Grids. Consider the two-dimensional grid Gm,n with m,n � 1 integers. The
vertices of this graph correspond to ordered pairs (x, y) 2 Z

2 such that 0  x < m
and 0  y < n. The edges correspond to pairs at Euclidean distance exactly 1 when
considered as points in R

2 (see Figure 1). In particular, every vertex has degree at
least 2 and no singleton can be resolving. Clearly, d((0, 0), (x, y)) = x+ y and, more
generally, d((u, v), (x, y)) = |u � x| + |v � y|. Thus, shortest path distance in this
case is equivalent to the `1-norm or Manhattan distance. Let R = {(0, 0), (0, n� 1)}.
Observe that d((a, b)|R) = (a+b, a+n�1�b). Then, for vertices (a, b) and (x, y), we
have d((a, b)|R) = d((x, y)|R) if and only if a = x and b = y. Hence, since no single
vertex can resolve this graph, �(Gm,n) = 2 [134, 159]. Symmetric arguments show
that {(0, 0), (m� 1, 0)}, {(0, n� 1), (m� 1, n� 1)}, and {(m� 1, 0), (m� 1, n� 1)}
are also resolving for Gm,n.

For the d-dimensional grid Gn1,...,nd defined in an analogous manner for ni > 1
with 1  i  d, �(Gn1,...,nd)  d [134]. The key idea is that if r0 := (0, . . . , 0), and
ri is the vector of zeros with entry (ni � 1) in the ith position, then for any vertex
v = (x1, . . . , xd) in the grid we have

d(r0, v) = x1 + · · ·+ xd,

d(r1, v) = (n1 � 1� x1) + x2 + · · ·+ xd,

· · ·

d(rd�1, v) = x1 + · · ·+ (nd�1 � 1� xd�1) + xd.

Since this linear system of d equations and d unknowns is invertible, {r0, . . . , rd�1}

resolves the d-dimensional grid.1

2.3. Fans and Wheels. Finally, we consider fans and wheels, which can be
thought of as simple modifications of paths and cycles with the addition of a sin-
gle fully connected vertex. Formally, the fan graph on n + 1 vertices, denoted Fn,
consists of a path Pn on n vertices and one additional vertex, a, adjacent to all ver-
tices on Pn. Similarly, the wheel graph Wn is a cycle Cn of cardinality n with an
additional vertex, which we also denote as a, adjacent to all vertices on Cn. As the
metric dimensions of Pn and Cn are elementary to determine (1 and 2, respectively),
one might expect the metric dimensions of Fn and Wn to be similarly trivial, yet
this is not the case. Part of this complexity stems from the diameter of these graphs
shrinking from order n to at most 2, reducing the possible shortest path distances to
the set {0, 1, 2}. Specifically, their metric dimensions are given as follows [189]:

(2.1) �(Fx+5k) = �(Wx+5k) =

(
3 + 2k when x 2 {7, 8},

4 + 2k when x 2 {9, 10, 11},

for all k � 0. We find it instructive to provide a high level proof of this result.
Accordingly, we assume in what follows that n > 6.

Focusing first on Fn, observe that node a appears in none of its minimal resolving
sets. To see this, suppose for a contradiction that R is a minimal resolving set of Fn

such that a 2 R. Since R is minimal, there must be two di↵erent vertices u, v 2 V

1Theorem 2.5 in [134] suggests that �(Gm,n,...) = d. We note, however, that G2,2,...,2 ' Qd, the
d-dimensional hypercube, and �(Qk) < k for k > 4.
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924 RICHARD C. TILLQUIST, RAFAEL M. FRONGILLO, AND MANUEL E. LLADSER

such that d(u|R \ {a}) = d(v|R \ {a}). Furthermore, without loss of generality we
must have u = a; otherwise d(u, a) = d(v, a) = 1 and R would not resolve u and v. As
u = a, and as d(a|R\{a}) is the all-ones vector, v must be distance 1 from every node
in R \ {a}. By definition of Fn, there are at most two nodes other than a at distance
1 from v, so |R \ {a}|  2. One can check that there are now at most six possible
values of d(·|R \ {a}), namely, (1, 2), (0, 2), (1, 1), (2, 0), (2, 1), (2, 2) if |R \ {a}| = 2,
and (0), (1), (2) if |R \ {a}| = 1. As a is distance 1 from all nodes on the path, and
n > 6, we cannot have resolved Fn. Hence, no minimal resolving set of Fn contains
the vertex a.

Let R be a minimal resolving set of Fn. Define � := |R|. Note that at most �
vertices of Pn can be adjacent to exactly one vertex of R. Otherwise, if there were
more, the pigeonhole principle would imply that at least two vertices are indistin-
guishable with respect to their distances to R. Since at most one vertex of Pn can be
distance 2 from all vertices in R, all the remaining nodes of Pn must either be in R
or be adjacent to exactly two vertices of R. Hence n  1 + 2� + �/2 or, equivalently,
d2(n� 1)/5e  �. But, because n > 6, we may write n = x+5k with 7  x  11 and
k � 0. In particular [189]

�(Fx+5k) �

(
3 + 2k when x 2 {7, 8},

4 + 2k when x 2 {9, 10, 11}.

It is easy to see that this lower bound on �(Fx+5k) is also an upper bound via a
simple construction. In particular, there is a resolving set of Fx+5k of cardinality 3+2k
when x is 7 or 8, and of cardinality 4 + 2k when x is 9, 10, or 11. Let m = n(mod5)
and let R be a minimal resolving set of Fn. For each consecutive, full block of five
vertices, vx, vy 2 R where x = 5j + 2 so that vx is the second vertex of the jth block
and y = 5j+4 so that vy is the fourth vertex of the jth block for j � 0. If m 2 {2, 3},
vn 2 R. If instead m = 4, v(n�2), vn 2 R (see Figure 2).

Fig. 2 A visualization of a minimal resolving set of the fan Fn when (n mod 5) = 3. Dashed lines
group separate consecutive blocks of five nodes.

Finally, we claim that �(Wn) = �(Fn) for n > 6. Indeed, suppose without loss of
generality that R is a minimal resolving set of Fn such that 1, n 62 R (any resolving
set of Fn can be made to satisfy this requirement by replacing 1 with 2 or 3, and n
with n� 1 or n� 2, depending on R \ {1, n}). Since the only di↵erence between the
fan and wheel graphs is the inclusion of the edge {1, n} in Wn, and since this edge
is not required to determine shortest path distances between elements of R and any
other vertices in Wn, R is also a resolving set for Wn. So �(Wn)  �(Fn). Conversely,
suppose that R is a minimal resolving set of Wn; in particular, |R|  �(Fn). Then
there must be at least one edge {i, j} in Wn such that i, j 62 R and i, j 6= a. This
follows from �(Wn) < d

n�1

2
e. Removing this edge, therefore, does not a↵ect R as

a resolving set. In particular, R also resolves Fn and �(Wn) = �(Fn), which shows
(2.1).
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A SURVEY OF METRIC DIMENSION AND ITS APPLICATIONS 925

3. Computational Complexity and Approximation. Verifying that a given set
of nodes R in G = (V,E) constitutes a resolving set is straightforward in theory. For
every v 2 V , the vector of distances d(v|R) can be generated in O(|E| + |V | log |V |)
time. This collection of |V | vectors then needs to be checked for duplicates. If all
vectors are unique, the set is resolving; otherwise there is at least one pair of indis-
tinguishable nodes in G based on R.

A brute force solution determining the exact metric dimension of a general graph,
on the other hand, requires an exhaustive search over a very large solution space. For
a fixed set of cardinality s, there are

�
|V |

s

�
subsets of nodes that must be considered.

Since we are interested in the smallest s for which a subset of nodes of this cardinality
resolves G, increasing values of s starting at 1 must be tested until a resolving set
is found. Indeed, for a positive integer k, deciding whether �(G)  k is a computa-
tionally di�cult problem. In light of this, researchers have turned to parameterized
complexity and approximation methods designed to find small resolving sets on gen-
eral graphs.

3.1. NP-Completeness. The decision problem associated with metric dimension
is NP-complete (for background on computational complexity, see, e.g., Goldreich
[88]). In this section, we present one proof of NP-completeness via reduction from
3-SAT, the problem of testing whether a given Boolean formula in conjunctive normal
form, with three literals per clause, has a satisfying assignment [129]. An alternative
reduction, from the three-dimensional matching problem, is cited in [82].

Formally, the 3-SAT problem is as follows. Let E be a Boolean expression in
conjunctive normal form with n variables x1, . . . , xn and m clauses C1, . . . , Cm. For
instance, the formula (x1 _ x2 _ x3) ^ (x2 _ x3 _ x4) consists of two clauses and four
variables. 3-SAT is the problem of determining, given such a formula E, whether
there exists an assignment mapping variables to truth values making E true. For
the previous formula, setting x1 and x2 to True and x3 and x4 to False is one such
assignment.

For an arbitrary 3-SAT instance E, we will construct a graph G such that E is
satisfiable if and only if �(G) = n + m. We follow the construction of [134]. For
every variable xi create a six cycle with nodes labeled Ti, a1i , b

1

i , Fi, b2i , and a2i , listed
clockwise (see Figure 3, left). For every clause Cj create a four star with nodes labeled
ckj , 1  k  5, and central node c2j (see Figure 3, right).

Ti

a1i

a2i

b1i

b2i
Fi

c1j c2j c3j

c4j c5j

Fig. 3 Visualization of gadgets from [134] for a single variable (left) and a single clause (right) in
a Boolean expression.

These cycles and stars are used to form a connected graph by including the edge
{Ti, c1j} for every variable xi and every clause Cj . In addition, when xi is used as a
positive literal in Cj , the edges {Fi, c1j} and {Fi, c3j} are added to the graph. Instead,
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926 RICHARD C. TILLQUIST, RAFAEL M. FRONGILLO, AND MANUEL E. LLADSER

when xi is used as a negative literal in Cj the edges {Fi, c1j} and {Ti, c3j} are added.
Otherwise, if xi does not appear in Cj , the edges {Fi, c1j}, {Fi, c3j}, and {Ti, c3j} are
added (see Figure 4). Since there are a total of 6n + 5m nodes in the final graph,
and there are at most four edges between the subgraphs representing xi and Cj for
all 1  i  n and 1  j  m, this construction takes polynomial time.

x1 x2 x3 x4

Fig. 4 The graph produced by the reduction for the Boolean formula E = (x1_x2_x3)^(x2_x3_x4).
Gadgets for variables and clauses are oriented as in Figure 3. As E is satisfiable, the graph
has a resolving set of cardinality 4 + 2 = 6, shown in red.

Notice that any resolving set R of G must include at least one of {a1i , a
2

i , b
1

i , b
2

i }

for all 1  i  n and at least one of {c4j , c
5

j} for all 1  j  m. Hence �(G) � n+m.
Showing that �(G) = n+m if E is satisfiable is straightforward. Given an assignment
of the variables, take R = {c4j | 1  j  m} [ {a1i | xi is true} [ {b1i | xi is false} (one
could also choose c5j , a

2

i , and/or b
2

i ).
To see that R is resolving, first consider the variable gadget for xi and any clause

Cj . Recall that c4j 2 R. The vertices of the xi gadget are split into two groups based
on distances to c4j : vertices {Ti, Fi} at distance 3 and {a1i , a

2

i , b
1

i , b
2

i } at distance 4.
Any vertex in the set {a1i , a

2

i , b
1

i , b
2

i }, therefore, serves to disambiguate the elements of
these groups: Ti and Fi will have distance 1 and 2, or vice versa, and the remaining
nodes will attain every distance in {0, 1, 2, 3}. As we have either a1i 2 R or b1i 2 R,
the variable gadget is resolved. In fact, this statement holds regardless of whether or
not the formula is satisfiable.

Now consider a clause Cj and a variable xi that causes this clause to be satisfied.
There are two cases: either xi is a positive literal in Cj and is given a value of true,
or xi is a negative literal in Cj and is given a value of false. In the first case, we
have a1i 2 R, and recall c4j 2 R. In the Cj gadget, c2j is the unique vertex at distance
1 from c4j , and c5j is the unique vertex at distance 4 from a1i , distinguishing these
vertices from all others. Finally, we have d(a1i , c

1

j ) = 2 and d(a1i , c
3

j ) = 3, finishing
the proof of the first case. The second case is symmetric to the first, with the edge
{Fi, c3j} becoming {Ti, c3j} and the role of a1i played by b1i instead.

Conversely, it can be shown that E is satisfiable if �(G) = n + m by setting xi

to true if either a1i or a2i is in the resolving set, and to false otherwise. Thus, this
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A SURVEY OF METRIC DIMENSION AND ITS APPLICATIONS 927

construction reduces 3-SAT to the metric dimension decision problem in polynomial
time.

3.2. Parameterized Complexity and Special Cases. Although metric dimen-
sion is a computationally di�cult problem on arbitrary graphs, there are e�cient
algorithms in certain restricted settings. For example, e�cient algorithms are known
to compute metric dimension on trees [99, 193], cographs [65], outerplanar graphs [59],
chain graphs [78], and cactus block graphs [107]. We discuss several of these cases in
sections 4 and 5. On the other hand, metric dimension remains NP-complete even
when restricting to planar graphs (including of bounded degree) [59], bipartite graphs
and variations (split, cobipartite, and line graphs of bipartite graphs) [65], and interval
graphs or permutation graphs (even of diameter 2) [81].

There are also fixed-parameter tractable algorithms with respect to certain pa-
rameters, such as vertex cover number [100], maximum leaf number [64], modular
width [25], and the sum of treelength and maximum degree [25]. The phrase fixed-

parameter tractable means that there is an algorithm whose runtime is polynomial in
the input size when the corresponding parameter of the graph is taken as fixed. Such
algorithms can be useful in practice when one needs a general algorithm, which does
not make any assumption on the input graph, but one expects the inputs to have
a low parameter value. Some dual parameterizations of metric dimension also have
tractable algorithms [94]. Unfortunately, under some natural parameters, metric di-
mension remains intractable even in a parameterized sense. Most notable is treewidth,
which has seen recent hardness results [30] culminating in the result that the metric
dimension problem is NP-hard even for graphs of treewidth 24 [151]. It remains open
at what treewidth (between 2 and 24) the problem becomes hard.

Finally, combining the two approaches above, there are also fixed-parameter
tractable algorithms for certain restricted families of graphs. For example, interval
graphs [81] and permutation graphs [25] have fixed-parameter tractable algorithms
with respect to the minimum resolving set cardinality.

3.3. Approximation and the Information Content Heuristic. Faced with the
hardness of the general metric dimension problem, it is natural to turn to approx-
imation algorithms. Khuller, Raghavachari, and Rosenfeld [134] give the first such
algorithm via reduction to set cover, where each node in the resolving set covers a
subset of pairs of vertices. Leveraging the well-known greedy approximation guar-
antee for set cover, this algorithm achieves an approximation factor 2 ln(n) + O(1),
where n = |V | (an algorithm for metric dimension with approximation factor ↵ means
the cardinality of the resolving set returned is always within ↵ times the true metric
dimension). Hauptmann, Schmied, and Viehmann [101] later improved this factor
to 1 + (1 + o(1)) · ln(n), via the information content heuristic (ICH) algorithm we
describe below. They also showed that this approximation factor is essentially the
best possible; specifically, it is impossible to ((1 � ✏) lnn)-approximate the metric
dimension for any ✏ > 0 unless NP is a subset of DTIME(nlog logn), i.e., unless all
problems in NP can be solved by deterministic algorithms in time O(nlog logn) in their
input size n. Other approximation hardness results are known as well; for example,
no o(log n)-approximation algorithm exists if P 6=NP [24], even on graphs of maximum
degree 3 [100].

The ICH algorithm of Hauptmann, Schmied, and Viehmann [101], based on one
originally devised for the test set problem [27], uses a heuristic similar to information
gain in the construction of decision trees [173]. Let G = (V,E) be a graph with
n = |V |. Consider the classification problem for which each vertex is a training
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928 RICHARD C. TILLQUIST, RAFAEL M. FRONGILLO, AND MANUEL E. LLADSER

example from a unique class. The feature vector of each v 2 V is simply d(v|V ) 2 R
n,

the shortest path distances to all vertices in the graph. In particular, the (n ⇥ n)
distance matrix D associated with G fully describes the training data. The choice of
resolving set R can thus be thought of as the choice of some subset of features: d(v|R)
is simply a selection of entries of d(v|V ) with v 2 V , corresponding to the “features”
R.

In the usual greedy algorithm to construct a decision tree, at each node of the
tree one selects the feature which maximizes the information gained about the true
class at the child nodes. In the case of resolving sets, each node of the decision tree
corresponds to the addition of some vertex u to R, with branches corresponding to
the possible values of d(·, u). To measure information in our setting, consider the
distribution pR induced by the equivalence classes of d(·|R), which assigns probability
|{v 2 V : d(v|R) = d}|/n to each possible value d 2 {d(v|R) : v 2 V }. Then the
information of R is measured by the Shannon entropy of pR, denoted H(R). Letting
Rt be the resolving set at iteration t, with R0 = ;, the ICH algorithm chooses a vertex
vt 2 V maximizing H(Rt [ {vt}). The algorithm terminates when H(Rt) = log(n),
the maximum possible entropy over n items, indicating that all n vertices are uniquely
represented by their distances to Rt.2 The runtime of the ICH algorithm is O(n3),
making it e↵ective only for relatively small graphs.

3.4. Other Heuristics. Among many heuristic methods commonly deployed in
nonconvex search problems, genetic algorithms and variable neighborhood search
(VNS) in particular have been used to find small resolving sets on general graphs
with some success. Genetic algorithms, inspired by the concept of biological evolu-
tion, seek optimal solutions to problems by incrementally changing a population of
candidate solutions from one generation to the next through the biologically moti-
vated operations of mutation and selective recombination [58]. This approach has
been shown to perform quite well when applied to metric dimension in comparison to
other state-of-the-art algorithms, including methods based on an integer programming
formulations and the CPLEX [111] optimization package [140].

The VNS technique starts with an initial, nonoptimal solution and iteratively
expands a neighborhood on which to perform a local search. When a point in the
space which improves upon the initial solution is found, the search is restarted with
this point at its center. In the context of searching for small resolving sets, VNS
seems to outperform genetic algorithm based methods on many kinds of graphs and
has been used to improve upon previous upper bounds for certain hypercubes [162].

4. Graph Features and Modifications. In this section, we overview some general
observations about metric dimension and its relationship to other graph quantities.
These observations are often useful in bounding or exactly determining the metric
dimension of a given graph.

4.1. Diameter and Metric Dimension. The diameter of a graph G = (V,E),
denoted diam(G), is the length of a longest shortest path in G. For ease of notation,

2In fact, the ICH algorithm is exactly the same as the information gain algorithm for decision
trees, under the constraint that the decision made at every node of the tree at the same level must
be the same, i.e., we choose the same vertex at iteration t for all decision nodes at level t � 1. To
see the equivalence, let nd = |{v 2 V : d(v|R) = d}| be the size of equivalence class d, and pd be
the distribution of labels within equivalence class d, i.e., the uniform distribution on all nd vertices
in the equivalence class. Then maximizing information gain, weighted by the size of each decision
node (recall that we must choose the same feature to split at all nodes), is the same as maximizing
H(pR) because min

P
d

1
nd

H(pd) = min
P

d
1
nd

log(nd) = max�
P

d
1
nd

log( 1
nd

) = maxH(pd).
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A SURVEY OF METRIC DIMENSION AND ITS APPLICATIONS 929

let � = diam(G) and k = �(G). It is not surprising that a relationship exists between
� and k. Indeed, let R ⇢ V be a minimum resolving set of G and consider d(v|R)
for each v 2 V . Since such vectors can only contain a 0 when v 2 R and, for v /2 R,
1  d(r, v)  �, it follows that |V |  �k +k [134]. This bound is usually loose, though
graphs with |V | = � + k have been fully characterized [105]. The related bound

n  (b2�/3c+ 1)k + k

d�/3eX

i=1

(2i� 1)k�1

is generally tighter [105]. This bound can be made tighter still for specific families of
graphs. A partial list of such results follows:

• If G is a tree, |V |  (�k + 4)(� + 2)/8, with equality for trees with even
diameter [23].

• If G is an outerplanar graph, |V | = O(�2k) [23].
• If Ki is not a minor of G, |V |  (�k + 1)i�1 + 1 [23].
• If G has constant treewidth, |V | = O(k�O(1)) [23].
• If the rankwidth of G is at most r, |V |  (�k + 1)�(3(2

r
)+2) + 1 [23].

• If G is an interval or permutation graph, |V | = O(�k2) [80].
• If G is a unit interval graph, |V | = O(�k) [80].

4.2. Twin Nodes and Metric Dimension. Let G = (V,E) be an undirected
graph and, for each v 2 V , define the closed-neighborhood of v as N(v) = {u |

{u, v} 2 E}. We call u, v 2 V twins when N(u) [ {u} = N(v) [ {v}. The twin graph

of G, sometimes denoted G⇤, includes a single vertex for each set of twins and an edge
between two vertices when an edge exists between the corresponding sets of twins in
G.

Twin nodes have an interesting relationship to metric dimension. In fact, when u
and v are twins, d(u,w) = d(v, w) for all w 2 V \{u, v}. As a result, any resolving set
of G, minimal or not, must include at least one of u and v. More formally, define over
V the equivalence relation: u ⌘ v if and only if u and v are twins. Let ⌧(G) be the set
of twin equivalence classes of G. Then, if R is a resolving set of G, |R \ ⌧ | � |⌧ |� 1
for each ⌧ 2 ⌧(G). In particular [105]

�(G) �
X

⌧2⌧(G)

(|⌧ |� 1).

Twin nodes have been used, for example, to study connections among metric dimen-
sion, diameter, and graph order [105].

4.3. Graphs with Extreme Metric Dimension. As we saw in section 2.1, for
G = (V,E), 1  �(G)  n � 1, where �(G) = 1 if and only if G ' Pn, and
�(G) = n � 1 if and only if G ' Kn. In fact, for every 1  k  n � 1 there is
a connected graph G with n vertices and �(G) = k [42].

Suppose G = (V,E) is such that �(G) = 2. Such graphs must have a set of
simple properties [134]. In particular, if {u, v} ⇢ V is a resolving set of G of minimum
cardinality, the following properties hold:

1. G cannot contain K5 as a subgraph.
2. G cannot contain K3,3 as a subgraph (Km,n denotes the complete bipartite

graph with partitions of cardinality m and n).
3. There is a unique shortest path between u and v.
4. deg(w)  5 for all nodes w 2 V on the shortest path between u and v.
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930 RICHARD C. TILLQUIST, RAFAEL M. FRONGILLO, AND MANUEL E. LLADSER

5. deg(u)  3 and deg(v)  3.
Properties (1) and (2) may bring Wagner’s theorem [211] to mind, a characterization
of planar graphs forbidding K5 and K3,3 as minors, suggesting that G must be planar.
On the contrary, there are nonplanar graphs with metric dimension 2 [134]. See [200]
for other properties satisfied by graphs with metric dimension 2. See also [85] for
constraints on graphs with any given metric dimension.

Graphs G = (V,E) with �(G) = (n � 2) have also been fully characterized [42].
For two graphs G1 and G2, let G1 [ G2 denote their disjoint union and let G1 + G2

denote the graph formed by taking a disjoint union and joining every node in G1 with
every node in G2. Furthermore, define Kn to be a graph with n nodes and no edges.
Then, the metric dimension of a graph with n nodes is n� 2 if and only if the graph
is one of the following:

• A complete bipartite graph, Ks,t with s, t � 1.
• Ks +Kt with s � 1 and t � 2.
• Ks + (K1 [Kt) with s, t � 1.

There is also a complete characterization of graphs with �(G) = (n� 3) based on an
enumeration of possible structures that G⇤, the twin graph of G, may have [123].

Finally, related to these results, one can ask more generally how metric dimension
relates to containing complete graphs. Let G be a graph with �(G)  k. Then if G
contains either Kn or Kn,n, we must have n  2⇥(k) [85].

4.4. Vertex and Edge Deletions. Given a graph G = (V,E) and a vertex v 2 V
or edge e 2 E, we denote by (G � v) and (G � e) the graphs obtained by deleting v
and e from G, respectively. A natural line of questioning is to ask what e↵ect such
deletions can have on the metric dimension.

Vertex deletions can yield arbitrarily large changes in metric dimension, both
positive and negative. Buczkowski et al. [34] show that the di↵erence �(G)��(G�v)
can be arbitrarily large; for example, as we saw in section 2.3, the wheel graph Wn has
metric dimension �(Wn) ⇡

2

5
n, whereas removing the center vertex reduces the metric

dimension to that of a cycle, �(Cn) = 2. Eroh et al. [69] show that the di↵erence
�(G� v)� �(G) can also be arbitrarily large. Their example takes k trees, each with
a root and three leaves, and connects the roots in a line. The resulting graph G0 is a
tree on 4k vertices; as we discuss in section 5.1, it has metric dimension �(G0) = 2k,
as two of the three leaves in every subtree must be added to the resolving set. Let
G be given by adding a single vertex v to G0 and connecting v to one leaf in each
subtree. Eroh et al. [69] show that the metric dimension drops to �(G) = k, as now
one only needs one leaf from each subtree.

Edge deletions can also arbitrarily decrease metric dimension, but can only in-
crease it by at most two. Eroh et al. [69] give an intricate example of the former,
given by chaining in parallel k copies of C7 and P3, all linked to two vertices A and
B. G is then given by adding an edge e = {A,B}. They show that �(G) = 2k as one
vertex from each C7 and P3 must be in the resolving set, whereas �(G � e) = k + 1
as the C7 vertices in the resolving set can be replaced by A. On the other hand, the
same authors show by a case analysis that �(G � e)  �(G) + 2 for any graph G
(considering that vertex deletions entail as many as n� 1 edge deletions, this bound
does not contradict the potentially large e↵ect of vertex deletions). The e↵ect of edge
deletion and addition on trees has also been studied [42, 70]; in particular, for a tree
T on at least three vertices, we have �(T )� 2  �(T + e)  �(T ) + 1.

A vertex is called pendant when it has degree 1. (An edge is called pendant when
it has a pendant end vertex.) If G is nontrivial and connected and G0 is obtained from
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A SURVEY OF METRIC DIMENSION AND ITS APPLICATIONS 931

G by the addition of a pendant vertex, then �(G)  �(G0)  �(G)+ 1 [34]. However,
if the added vertex has degree 2 or higher, the metric dimension of G0 may be outside
the interval [�(G),�(G) + 1]. This has motivated the study of the notion of pendant
graphs [144].

These results show how sensitive metric dimension is to elementary graph opera-
tions. While some bounds discussed above are tight, others may not be. In particular,
it would be interesting to see whether these bounds are tight in a multiplicative sense,
e.g., whether an edge deletion could reduce metric dimension from ⇥(n) to ⇥(1).

5. Families of Graphs. While determining the metric dimension of arbitrary
graphs is a computationally complex task, exact formulae, upper bounds, and poly-
nomial time algorithms exist for certain types of graphs. In practical applications
these analytic and algorithmic results are of crucial importance. Generic approxi-
mation algorithms tend to provide small resolving sets but do not scale well enough
with network size to be useful on larger networks, which routinely include more than
106 total nodes [40, 160, 203]. Tailored algorithms for specific graph structures can
therefore be useful in quickly discovering small resolving sets even on large networks.

In what follows, we discuss some of the more prominent graph families on which
metric dimension has been studied. See Tables 1 and 2 for exact formulae and bounds
for the metric dimension of various graph families. Tables 3 and 4 provide references
to formulae or e�cient computational methods for the metric dimension of diverse
graph families.

5.1. Trees and Unicyclic Graphs. Problems that are computationally di�cult
on general graph structures often admit more e�cient solutions on trees. This is the
case for metric dimension. A simple formula giving the metric dimension of trees
that are not also paths [42, 99, 193] leads immediately to a linear time algorithm for
finding resolving sets of minimum cardinality on trees. To begin, we present several
important definitions. Let G = (V,E) be a general graph, not necessarily a tree. In

Table 1 Exact values for the metric dimension of several di↵erent families of graphs.

Graph Type Symbol (Constraint) Metric Dimension Reference

Amalgamation of Cycles Bn, n � 2, e even cycles �(Bn) =

(
n, e = 0

n + e � 1, e � 1
[118]

Antiprisms An (n � 3) 3 [124]

Complete Graphs Kn n � 1 §2.1, [42]
Cycles Cn 2 §2.1, [43]
De Bruijn Graphs Bd,n dn�1

(d � 1) [77, 174]

Fans Fn (n 62 {1, 2, 3, 6}) b
2n+2

5 c §2.3, [104]
Hexagonal Graphs HX(n) (n > 1) 3 §5.6, [154]
Honeycomb Graphs HC(n) (n > 1) 3 §5.6, [154]
Jahangir Graphs J2n (n � 4) b

2n
3 c [206]

Kautz Graphs Kd,n (dn�1
+ dn�2

)(d � 1) [77, 174]

Paths Pn 1 §2.1, [42]
Petersen Graphs Pn,2 (n � 5) 3 [124]

Petersen Graphs P2m+1,m, m � 1 �(P2m+1,m) =

(
2, m = 1

3, m > 1
[4]

Prisms Dn 2 for odd n, 3 for even n [124]

Sierpiński Graphs St
Kn

, n, t � 1 n � 1 [135]

Sierpiński Graphs over Stars St
K1,n

, n, t � 2 (n + 1)
t�2

(n2
� n � 1) + 1 [6]

Trees Tn `(Tn) � ex(Tn) §5.1, [42, 99, 193]
Wheels Wn (n > 6) �(Wn) = �(Fn) §2.3, [189]
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932 RICHARD C. TILLQUIST, RAFAEL M. FRONGILLO, AND MANUEL E. LLADSER

Table 2 Bounds on the metric dimension of several di↵erent families of graphs.

Graph Type Symbol (Constraint) Metric Dimension Reference

Bilinear Forms Graphs Hq(n, d) (n � d � 2) �(Hq(n, d))  q
n+d�1+b d+1

n
c

[76]
Cartesian Product with K2 G⇤K2 �(G)  �(G⇤K2)  �(G) + 1 §5.2, [42]
Doubled Odd Graphs O(2e + 1, e, e + 1) (e � 2) �(O(2e + 1, e, e + 1))  2e + 1 [93]
Dual Polar Graphs �(q, d, e) �(�(q, d, e)) [19]

 (qd+e�1+1)(qd+e�1�qe�1+q�1)

(qe�1+1)(q�1)
Grids in d dimensions Gm,n,... �(Gm,n,...)  d §2.2, [134, 159]
Hamming Graphs Hk,a �(Hk,a)  �(Hk+1,a)  �(Hk,a)+ba/2c §5.2, [203]

Johnson Graphs J(n, e) �(J(n, e))  (e + 1)dn/(e + 1)e [17, 93]
Paley Graph Pp with p prime blog2(p)c  �(Pp)  blog2 pc [79]

and p ⌘ 1(mod4)
Para-line Graphs G?, n � 2 dlog2(max{deg(v)|v 2 G?})e [136]

 �(G?)  n � 1
Unicyclic Graphs T + e �(T ) � 2  �(T + e)  �(T ) + 1 §5.1, [42]

Table 3 Families of graphs for which metric dimension can be determined e�ciently.

Graph Type Metric Dimension

Benes Networks Polynomial time solvable [156]
Butterfly Networks Polynomial time solvable [156]
Cactus Block Graphs Linear time solvable [107]
Chain Graphs Linear time solvable [78]
Cographs Linear time solvable [65]
Outerplanar Graphs Polynomial time solvable, §5.6, [59, 60]
Two-Connected Bipartite

Polynomial time solvable [164]
Distance-Hereditary Graphs

Table 4 Additional families of graphs for which metric dimension is known or can be determined
e�ciently. See [104] for more bounds.

Graph Type Metric Dimension

Cayley Digraphs §5.4, [74, pp. 34–37]
Circulant Networks See [49, 91, 113, 175, 209]
Complete k-partite Graphs See [183]
Generalized Wheel Graphs §5.6, [197]
Graphs with Pendant Edges §4.4, [144]
Grassmann Graphs See [158, p. 98]
Harary Graphs H4,n See [124, p. 9]
Kneser Graphs See [17, p. 750]
Line Graphs See [77, pp. 803–804]
Petersen Graphs P (n, 3) See [114]
Regular Bipartite Graphs See [12, pp. 16–17]
Torus Network See [155, pp. 268, 271]
Twisted Grassmann Graphs See [93, p. 4]

what follows, for v 2 V , we use deg(v) = |{u 2 V | {v, u} 2 E}| to denote the degree
of v.

Definition 5.1 (leaf vertex). A vertex ` 2 V is called a leaf when deg(`) = 1.
The number of leaves in G is denoted `(G).

Definition 5.2 (major vertex and terminal degree). A vertex v 2 V is called a

major vertex when deg(v) � 3. The terminal degree of a major vertex v 2 V is the

number of leaves ` 2 V such that d(`, v) < d(`, u) for all other major vertices u 2 V .
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A SURVEY OF METRIC DIMENSION AND ITS APPLICATIONS 933

Definition 5.3 (exterior major vertex). A major vertex of G is called exterior

when its terminal degree is strictly positive. The number of exterior major vertices in

G is denoted ex(G).

From these definitions, we can write �(G) � `(G)� ex(G), with equality when G
is a tree such that ex(G) > 0 or, equivalently, when G is not a path [42]. Moreover,
any set R ⇢ V which contains every leaf, except one, associated with each exterior
major vertex is a subset of a minimal resolving set in G. When G is a tree, any such R
is resolving [42]. These observations permit an O(|V |+|E|) algorithm for constructing
minimal resolving sets on trees: after partitioning the leaves of a tree based on exterior
major vertices using a depth first search, one element of each partition may be dropped
to produce a resolving set of minimum cardinality (see Figure 5).

Similar ideas can be used to study the metric dimension of infinite trees. If T
is an infinite tree with finite metric dimension, the number of major vertices in T
must be finite [36]. Furthermore, if T is not an infinite path and has finite metric
dimension, �(T ) can be determined exactly. In particular

�(T ) =
X

v2{u| deg(u)�3}

max{PT (v)� 1, 0},

where PT (v) is the number of finite and infinite paths consisting only of nodes of
degree at most 2 with v as an endpoint [36]. Notably, this is analogous to the result
on finite graphs where the sum would be over major vertices.

1

2

6

12

7

13 14

3

8

4 5

9

15 16 17

10 11

18

Fig. 5 A tree of order 18. Vertices 4, 8, 10, 12, 13, 14, 15, 16, 17, and 18 are leaves. The vertices 1,
2, 5, 7, and 9 are exterior major vertices with terminal degree 2, 1, 2, 2, and 3, respectively.
R = {8, 13, 15, 16, 18} is a resolving set of minimum cardinality.

Let G = (V,E) be a unicyclic graph (i.e., a graph that can be expressed as a tree
with a single additional edge) with |V | � 3. Let T be any spanning tree of G and e
the only edge in G that is not in T . Then �(T )� 2  �(G)  �(T ) + 1 [42, 70, 171].3

As illustrated in Figure 6, there are unicyclic graphs achieving each of the values in
the integer interval {�(T )� 2, . . . ,�(T ) + 1}.

To justify the lower bound on �(G) for unicyclic G, we consider three cases. First,
if e is incident on leaves in T , then `(G) = `(T ) � 2, and ex(G)  ex(T ) because G
and T have the same major vertices but e reduces the terminal degree of at least
one major vertex in T . In particular, �(G) � `(G) � ex(G) � (`(T ) � 2) � ex(T ) =
�(T ) � 2. Instead, if e is incident on exactly one leaf in T , then `(G) = `(T ) � 1,
and ex(G)  ex(T ) + 1 because e may turn a vertex in T into an exterior major

3We note that [70] includes a complete proof of this result, correcting the outline in [42] and
adding detail not present in [171].
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934 RICHARD C. TILLQUIST, RAFAEL M. FRONGILLO, AND MANUEL E. LLADSER

vertex. So, �(G) � `(G) � ex(G) � (`(T ) � 1) � (ex(T ) + 1) = �(T ) � 2. Finally, if
e is not incident on any leaf in T , ex(G)  ex(T ) + 2 because both vertices that e
is incident on may become exterior major vertices. Hence, �(G) � `(G) � ex(G) �
`(T )� (ex(T ) + 2) = �(T )� 2.

Slightly more work is required to verify the upper bound on the metric dimension
of unicyclic graphs. One approach is to focus on a subset of major vertices on the cycle
in G. Let W contain every leaf in G, except one, associated with each exterior major
vertex, and let m be the number of major vertices on the cycle in G with a branch to
an element of W . Proceeding by cases, it can be shown that �(G)  �(T )+1 whether
m � 3, m = 2, m = 1, or m = 0 [42, 70].

Fig. 6 Example of trees T such that, when a single edge (dashed) is added to form the unicyclic
graph G, �(G) = �(T )�2 (top left), �(G) = �(T )�1 (top right), �(G) = �(T ) (bottom left),
or �(G) = �(T ) + 1 (bottom right) [42]. In each example, red nodes belong to a resolving
set for both G and T , light red nodes are used to resolve T , and light blue nodes are used to
resolve G.

5.2. Hamming Graphs. There are many ways to measure distance between pairs
of strings. One of the simplest and most common is the Hamming distance [98].
Comparing two strings of the same length, the Hamming distance counts the number
of positions in which the strings disagree. This distance can be used to define a graph.

Definition 5.4 (Hamming graph). Let V = Ak
be the set of all strings of length

k from the alphabet A of size a = |A|, and let d(u, v) be the Hamming distance between

u, v 2 V . The Hamming graph Hk,a contains a vertex associated with each v 2 V and

the edge {u, v} 2 E only when d(u, v) = 1.

Despite the highly symmetric nature of Hamming graphs, an e�cient algorithm
to compute their metric dimension is not known. However, some upper bounds on
�(Hk,a) have been established. See section 7.1 for additional results on the metric
dimension of Hamming graphs motivated by game theory.

For the special case when a = 2, Qk := Hk,2 is called a hypercube. The hypercube
turns out to be an important structure when studying a particular coin weighing
problem: given a set of k coins of two di↵erent weights, how many weighings are
required to determine which coins are lighter [196]?

An asymptotic result tells us that limk!1 �(Qk)
log2(k)

k = 2, suggesting a method
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A SURVEY OF METRIC DIMENSION AND ITS APPLICATIONS 935

using 2n � 1 weighings to find the answer when k = n2n�1 [67, 152]. This asymp-

totic behavior generalizes to arbitrary Hamming graphs as limk!1 �(Hk,a)
loga(k)

k =
2 [125].

Bounds related to the metric dimension of Cartesian products of connected graphs
(see section 5.3 for the definition) have proven useful in studying Hamming graphs.
In particular, �(G)  �(G⇤K2)  �(G) + 1 [42] and, since Hk,a = K ⇤ k

a is the
Cartesian product of k copies of the complete graph Ka, it follows that �(Qk) 

�(Qk+1)  �(Qk) + 1. This approach yields the identity �(H2,a) = b
2

3
(2a� 1)c [38].

Table 5 shows exact values of �(Qk) verified via brute force for 1  k  10, and upper
bounds based on a variable neighborhood search for 11  k  17 [162].

Table 5 Exact values of �(Qk) for 1  k  10 and upper bounds for 11  k  17 [162].

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
�(Qk) 1 2 3 4 4 5 6 6 7 7 8 8 8 9 9 10 10

The bounds for the metric dimension of hypercubes have been generalized for
arbitrary Hamming graphs as �(Hk,a)  �(Hk+1,a)  �(Hk,a)+ b

a
2
c [203]. The proof

is constructive, allowing for the generation of Rk+1, a resolving set for Hk+1,a, from
Rk, any resolving set for Hk,a.

Edge metric dimension, where the edges of a graph are distinguished based on
distances to vertices (see section 8.7), and mixed metric dimension, where both ver-
tices and edges are distinguished, have also been studied in the context of hypercubes.
In particular, �(Qk) and the mixed metric dimension of Qk are equivalent for k � 3.
Furthermore, edge metric dimension and metric dimension are equivalent when k is
odd and di↵er by at most 1 when k is even [132].

When dealing with very large Hamming graphs, verifying that a given subset of
vertices is resolving becomes intractable via the simple brute force approach. However,
the recursive structure and highly symmetric nature of Hamming graphs allows for
far more e�cient resolvability checks in practice. Indeed, by describing resolvability
on Hamming graphs as a linear system, integer programming techniques can be used
to verify quickly that a given set of vertices is resolving with high probability. A
somewhat slower but deterministic solution can be implemented using Gröbner bases.
These techniques have been used to discover a resolving set of cardinality 77 for the
Hamming graph H8,20, showing that �(H8,20)  77 [147]. With 25.6 billion vertices,
traditional methods for finding small resolving sets are not computationally feasible
in this setting.

There are other ways to measure distance between pairs of strings besides the
Hamming distance. The edit distance, also called Levenshtein distance [150], is defined
as the minimum number of character substitutions, deletions, or insertions needed to
transform one string into another. Several notions analogous to Hamming graphs have
been considered in the literature based on the edit distance [170, 182, 199, 208, 219].
In [179, 180], the Levenshtein graph Lk1,k2;a is defined as having as vertex set all strings
of length between k1 and k2 (inclusive), and two vertices are declared neighbors if and
only if their edit distance is 1. It follows that Lk1,k2;a is connected, and its geodesic
distance equals the edit distance if and only if k1 = k2  2 or k1 < k2. Otherwise,
if k1 = k2 > 2, then the corresponding graph is isomorphic to a Hamming graph.
Using novel formulae for the edit distance between an arbitrary string and a single-
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936 RICHARD C. TILLQUIST, RAFAEL M. FRONGILLO, AND MANUEL E. LLADSER

or double-run string, the authors in [180] characterized the automorphism group of
Lk1,k2;a and identified a resolving set of cardinality O

�
ak2(k2�k1+1)

�
; in particular,

�(Lk1,k2;a) = O
�
ak2(k2 � k1 + 1)

�
. Narrowing down on the metric dimension of

Levenshtein graphs remains a challenge, particularly due to the comparatively small
automorphism group of these graphs and di�culties arising from having to calculate
the edit distance between arbitrary strings via dynamic programming.

5.3. Product Graphs. The corona product of two graphs G and H, denoted
G � H, is the graph obtained by making one copy of G and |G| copies of H and
adding all possible edges between the ith vertex of G and the ith copy of H. In [119],
it is shown that �(Cn �K1) = 3 for n even and �(Cn �K1) = 2 for n odd. Also, if
m � 2, then �(G� K̄m) = |G| · (m� 1). In [144], which corrects some of the results
in [119], it is shown that for n � 3 and m � 2, �((Pn⇥Pm)�K1) = 3, and for m � 2,
�((Kn ⇥ Pm)�K1) = 3 for n = 3, but �((Kn ⇥ Pm)�K1) = (n� 1) for n � 4.

One can also consider G�H, where H = {H1, . . . , Hn} is a family of not neces-
sarily isomorphic graphs. Here, vertex i in G is adjacent to all vertices of Hi. In this
case, if G is connected with at least two vertices and the graphs Hi are nontrivial,
�(G�H) =

P
Hi2H1

�(K1 +Hi) +
P

Hi2H2
(�(K1 +Hi)� 1), where Hi 2 H1 if the

vertex in K1 is not an element of any minimal resolving set of K1 +Hi, and Hi 2 H2

otherwise [145]. In the case that all Hi 2 H are isomorphic to each other, this means
that �(G � H) = n · �(K1 + H1) if the vertex in K1 does not belong to a minimal
resolving set of K1 +H1, and �(G�H) = n · (�(K1 +H1)� 1) otherwise [145].

The graph G�
kH is defined recursively as G�

kH = (G�
k�1H)�H. The metric

dimension of such structures has been studied with respect to di↵erent constraints on
G and H. In particular, letting n1 and n2 be the order of two connected graphs G and
H, respectively, �(G �

k H) � n1(n2 + 1)k�1�(H), with equality when the diameter
of H is at most 2. In addition, if the diameter of H is at least 6 or H is a cycle,
�(G�

k H) = n1(n2 + 1)k�1�(K1 �H) [216].
Let G = (V1, E1) and H = (V2, E2). When H has a specified root vertex v, the

rooted product G �v H includes |V1| isomorphic copies of H with edges between the
roots such that these nodes induce a subgraph isomorphic to G. When v is not an
element of any minimal resolving set and G is connected, �(G�vH) = |V1| ·�(H). If v
is an element of some minimal resolving set, H is not a path, and G is connected, then
�(G �v H) = n · (�(H)� 1) instead [215]. This result is directly connected to the fact
thatG�H ' G�v(K1+H). For the specific case T �vPn, where T is a tree with at least
three vertices and v is an endpoint of Pn, �(T �v Pn) = `(T ) follows from the general
formula for the metric dimension of trees [215]. The rooted product of Harary graphs
Hm,n, a family of m-connected graphs on n vertices with the fewest possible edges,
with certain cycles and paths, has also been studied. Specifically, �(Hm,n �v Ck) = n
for k = 3, 4, 5 and any v on the cycle. Also, for n � 5, �(H4,n �v Pk) = 3 when
n mod 4 2 {0, 2, 3} and �(H4,n �v Pk)  4 when n mod 4 = 1 [117].

Results related to corona and rooted products have also been studied from the
perspective of cut vertices. Let G1, . . . , Gk be a family of nontrivial, connected, and
pairwise disjoint graphs. Consider a graph G constructed from this family by itera-
tively identifying or merging pairs of vertices in separate graphs Gi. These merged
vertices are called cut vertices in G. The attaching metric dimension of Gi, denoted
�⇤(Gi), is then defined as the cardinality of the smallest subset of vertices R in Gi

such that R [ A(Gi) is a resolving set of Gi, where A(Gi) is the set of vertices in Gi

that were merged during the construction of G. For any graph G that can be realized
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A SURVEY OF METRIC DIMENSION AND ITS APPLICATIONS 937

via this kind of construction, �(G) �
Pk

i=1
�⇤(Gi) [145]. Graphs that can be viewed

as corona or rooted products fall into this category.
The Cartesian product of two graphs G = (V1, E1) and H = (V2, E2), denoted

G⇤H, has vertex set V1 ⇥ V2, and two nodes (u, v) and (s, t) are connected by an
edge when u = s and {v, t} 2 E2, or when {u, s} 2 E1 and v = t. Assume that G
is connected. We have already mentioned in section 5.2 that �(G)  �(G⇤K2) 

�(G)+1 [42]. More generally, for n � 3, �(G⇤Kn)  �(G)+n�2 [37]. On the other
hand, �(G)  �(G⇤Pn)  �(G) + 1, and �(G⇤Cn)  �(G) + 1 if n is odd, whereas
�(G⇤Cn)  �(G) + 2 if n is even [37]. Exact formulae are also known for Cartesian
products of graphs in special families, including for infinite graphs [134, 104, 36].
For instance, �(Pm ⇤Pn) = 2, �(Cm ⇤Cn) = 3 if mn is odd, but �(Cm ⇤Cn) = 4
if mn is even. In addition, for m  n, �(Km ⇤Kn) = (n � 1) if 2(m � 1) < n,

but �(Km ⇤Kn) = b
2(m+n�1)

3
c otherwise. For n � 3, �(Pm ⇤Kn) = (n� 1). As for

Cartesian products involving infinite graphs, we have, for instance, that �(P1 ⇤Pn) =
2 and �(P21 ⇤Pn) = 3 as long as n � 2. Here, P1 and P21 are the one-way and two-
way infinite paths, respectively. Instead, for n � 4, �(P1 ⇤Kn) = �(P21 ⇤Kn) =
(n� 1). For simple, finite, and connected graphs G and H, it is known, for example,
that [37]

max{�(G),�(H)}  �(G⇤H)  min{�(G) + |V2|,�(H) + |V1|}� 1.

We emphasize that all the cited results concern undirected graphs. A roadblock for
analogous results about directed graphs is that the Cartesian product of two (strongly)
connected digraphs is not necessarily (strongly) connected.

The strong product of G and H, G⇥H, again has vertex set V1 ⇥ V2. (u, s) and
(v, t) are adjacent in G⇥H if and only if u = v and {s, t} 2 E2, s = t and {u, v} 2 E1,
or {u, v} 2 E1 and {s, t} 2 E2. In general,

�(G⇥H)  |V1| · �(H) + |V2| · �(G)� �(G) · �(H),

with equality when G and H are complete graphs [178]. The metric dimension of
strong products of several families of graphs has been studied. For paths in particular,
�(Pn1 ⇥ Pn1) = 3 [178] and �(Pn1 ⇥ Pn2) = d

n1+n2�2

n1�1
e [3] when 2  n1 < n2.

The direct product of two graphs G and H, denoted G⇥H, has vertex set V1⇥V2

and an edge between (u, s) and (v, t) exactly when {u, v} 2 E1 and {s, t} 2 E2. The
metric dimension of the direct product of several pairs of graph families is known. For
instance, there are exact results for complete graphs of particular orders and for the
direct product of isomorphic odd cycles. In particular, for k � 1, �(C2k+1⇥C2k+1) =
3. In addition, �(Pr ⇥Kt) = dr/3e(t� 1) for r � 4 and t � 3. For the direct product
of a cycle and a complete graph, dr(t� 1)/2e  �(Cr ⇥Kt)  dr/3e(t� 1) for r � 7
and t � 4. When r(mod3) = 0, �(Cr ⇥ Kt)  r(t � 1)/3 [143]. The strong metric
dimension (see section 8.2) of direct products has also been studied [143].

The lexicographic product of G and H, denoted G ·H, has vertex set V1⇥V2. Two
vertices (u, s) and (v, t) are adjacent when either {u, v} 2 E1 or u = v and {s, t} 2 E2.
It can be shown that if |V1|, |V2| � 2 and H has k � 1 components H1, . . . , Hk,

n ·

 
(�1) +

kX

p=1

�(Hp)

!
 �(G ·H)  n ·

 
�
k � 1

�
+

kX

p=1

�(Hp +K1)

!
+ (n� 2),

where n = |V1|. Furthermore,

n · �(H)  �(G ·H)  n · �(H +K1) + (n� 2),
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938 RICHARD C. TILLQUIST, RAFAEL M. FRONGILLO, AND MANUEL E. LLADSER

and both sets of bounds are tight [184]. Adjacency metric dimension, i.e., the metric
dimension when only neighbors of a node can be used to distinguish it from other
nodes (see section 8.4), has also been used as a tool to study the metric dimension of
lexicographic products of graphs [122].

5.4. Connections to Abstract Algebra. The Cayley graph associated with a
group (�, ⇤) and subset X ⇢ �, which usually does not contain the identity, is a
directed graph that has � as its vertex set, and an edge from a vertex u to another v
if and only if there is x 2 X such that u ⇤x = v. This graph is denoted as Cay(�, X),
and X is called its generator. Cayley graphs are strongly connected if and only if
� is generated by X (i.e., every element in � may be represented as the product of
elements in X).

For integers n > 0, let Zn := Z/nZ denote the cyclic group of order n. This
Abelian group may be presented as the n-roots of unity. An extensive study of
the metric dimension of Cayley digraphs associated with finite Abelian groups was
accomplished in [74, 167]. For integers k � 2 and 0 < n1  n2  · · ·  nk, if e1, . . . , ek
denotes the canonical basis of Rk and G = (Zn1 �Zn2 � · · ·�Znk ; {e1, . . . , ek}), then

nk�1  �(G)  nk�1 +
Pk�2

i=1
(ni � 1) [74]; in particular,

�
�
Cay(Zn1 � Zn2 , {(1, 0), (0, 1)})

�
= n1.

The previous bounds are sharp though various improvements are possible. For in-
stance, if 2  m  n  k, then �

�
Cay(Zm�Zn�Zk, {(1, 0, 0), (0, 1, 0), (0, 0, 1)})

�
= n

and �
�
Cay(Z2 � Z2 � Zk, {(1, 0, 0), (0, 1, 0), (0, 0, 1)})

�
= 3 [167].

A pioneering work on Cayley graphs associated with non-Abelian groups was
initiated in [74] and extended significantly in [1]. If � is a group generated by X, with
identity element e�, then for any integer m � 1 [74],

�
�
Cay(�, X)

�
 �

�
Cay(�� Zm, X ⇥ {0} [ {(e�, 1)})

�
 �

�
Cay(�, X)

�
+m� 1.

The dihedral group D2n of order 2n (i.e., group of symmetries of a regular poly-
gon with n sides) admits the presentation D2n = {r, s such that rn = 1, s2 = 1, srs =
r�1

}. Here, r and s are elements associated with the rotational and reflection symme-
tries of an n-gon. It turns out that �(Cay(D2n, {r, s})) = n and a minimal resolving
set of Cay(D2n, {r, s}) is {r0, . . . , rn�1

} [74]. More generally, the metric dimension
and minimal resolving set for Cayley graphs associated with the (split metacyclic)
group � = {a, b such that an = b2s = 1 and ba = a�1b}, where s � 1 is an integer,
and generator X = {a, b}, were determined in [1].

The metric dimension of the so-called power graph associated with a group has
also been studied. The power graph P� associated with a group (�, ⇤) has vertex set
� and there is an edge between two di↵erent vertices x and y if and only if there is
an integer m > 0 such that x = ym or y = xm. A general formula for the metric
dimension of the power graph of a finite group was determined in [75]. As a corollary,
the metric dimension of the power graph associated with the cyclic group Zn, where
n =

Qt
i=1

pr1i with p1 < · · · < pt primes and r1, . . . , rt > 0 integers, is given by [75]

�(PZn) =

8
>>><

>>>:

n� 1, t = 1, i.e., n is a prime;

n� 2r2 if (t, p1, r1) = (2, 2, 1);

n� 2r1 if (t, p1, r2) = (2, 2, 1);

n+ 1�
Qt

i=1
(ri + 1) otherwise.
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A SURVEY OF METRIC DIMENSION AND ITS APPLICATIONS 939

Let (R,+, ·) be a finite commutative ring. The total graph ⌧(R) associated with
any such ring has vertex set R, and two di↵erent vertices u, v 2 R are connected by
an edge if and only if (u + v) is a divisor of 0 (i.e., there is w 2 R \ {0} such that
(u+ v) ·w = 0). Let J(R) be the intersection of all the maximal ideals of R. If J(R)
is nontrivial, then �(⌧(R)) = |J(R)� 1| · |R/J(R)| [61]. Instead, if J(R) is trivial, R
is a direct product of fields and the metric dimension of ⌧(R) can be determined from
the characteristic (i.e., smallest multiple of 1 that is a divisor of 0) of each field. For
instance, if R = F1 ⇥ F2 with F1 and F2 fields satisfying max{2|F1|� 1, |F1|}  |F2|,
and either char(F2) 6= 2 or char(F1) = char(F2) = 2, then �(⌧(R)) = |F2|� 1 [61].

5.5. Strongly Regular and Distance Regular Graphs. A graph G = (V,E) is
regular when all vertices have the same degree. G is strongly regular if it is regular,
every pair of adjacent vertices has the same number of common neighbors, and every
pair of nonadjacent vertices has the same number of common neighbors. Strongly
regular graphs have diameter 2 and are closed under complementation. They are called
trivial when their connected components are complete graphs of the same dimension.

Interestingly, although the number of nodes in a strongly regular graph is uniquely
determined by its three parameters, that is not necessarily the case for their metric
dimension. Using an integer linear programming formulation [57] and the CPLEX
optimizer [111], the metric dimension of all nontrivial strongly regular graphs with
up to 45 vertices, a total of 43,759 unique structures, has been determined [139].

A graph G is said to be distance regular when it is regular and, for u, v 2 V ,
the number of vertices at distance i from u and at distance j from v depends only
on i, j, and d(u, v). The metric dimension of all such graphs on at most 34 vertices
and with vertex degree up to 13 (with the exception of three structures) has been
computed. The metric dimensions of rank-3 strongly regular graphs (graphs that are
both strongly regular and distance transitive) with up to 100 vertices and Hadamard
graphs with up to 20 vertices have been computed as well [14].

Let G = (V,E) be a distance regular graph with diameter � and let Gd = (V,Ed),
where {u, v} 2 Ed if and only if d(u, v) = d. G is primitive ifGd is connected for all 0 <
d  � and imprimitive otherwise. When G� is disconnected, G is antipodal. Distance
regular graphs can be grouped further into 13 classes based on several characteristics
including whether or not the graph is primitive, antipodal, or bipartite, and the
graph’s diameter [5, 15]. The metric dimension of graphs in many of these classes
has been studied. For instance, primitive graphs with diameter at least 2 and vertex
degree at least 3 have metric dimension �(G) < 4

p
n log(n) [8, 9]. Using similar

techniques, the metric dimension of graphs in several other classes can be shown to
have an upper bound of O(

p
n log(n)) [16]. Studying halved and folded graphs allows

for some insight into the metric dimension of graphs in other classes [15].
It is worth noting that studying metric dimension more directly with tools and

techniques from group theory has proven quite fruitful. Indeed, beyond those men-
tioned previously in this section, there are connections between metric dimension and
base size, permutation groups, coherent configurations, and association schemes. A
thorough review of these connections is given in [18].

5.6. Other Graph Families. Metric dimension has been studied on a wide vari-
ety of graphs with diverse characteristics. Here we briefly mention results for a handful
of graph families beyond those discussed previously. In section 2.3 we explored the
metric dimension of wheels. A number of graph structures related to wheels have
also been examined. In particular, �(Cn +Km) = �(Wn) +m� 1 when n 6= 3 or 6,
and �(Cn +Km) = m+ 1 otherwise. Here Cn +Km is isomorphic to the generalized
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940 RICHARD C. TILLQUIST, RAFAEL M. FRONGILLO, AND MANUEL E. LLADSER

wheel with m central vertices adjacent to all n vertices of a cycle [197]. The m-level

wheel Wn,m consisting of m cycles Cn sharing a common central vertex has metric
dimension �(Wn,m) = �(Wn,1) + (m� 1)b 2n+4

5
c for n � 7 and m � 3 [192].

The metric dimension of some convex polytopes related to wheels has also been
studied. Indeed, several families of convex polytopes with constant [112, 115] and
unbounded [116, 192] metric dimension exist.

While the problem of determining the metric dimension of planar graphs is NP-
hard, its value can be found for arbitrary outerplanar graphs in O(n12) time [60].
When attention is focused on maximal outerplanar graphs G where the addition
of any edge produces a nonouterplanar graph, it can be shown that 2  �(G) 

d
2n
5
e. Such graphs with �(G) = 2 have been fully characterized by considering an

embedding of G in Pn ⇥ Pn, the strong product of two paths. Furthermore, a linear
time algorithm exists for finding resolving sets of cardinality d

2n
5
e in any maximal

outerplanar graph [51].
In the context of infinite graphs where all vertices have finite degree, if �(G) = k,

then the maximum degree of any vertex is 3k � 1. Moreover, if G is an infinite graph
such that �(G) is finite, then deg(v)  M for all v 2 V and some positive integer
M . The metric dimension of Cartesian products of P1 and P21, the two-way infinite
path, with finite paths, cycles, and complete graphs, is also known [36]. Other lines of
research have focused on characterizing infinite families of graphs with finite metric
dimension; see [4, 192, 205].

In section 2.2, we examined two-dimensional grids, Gm,n, and argued that �(Gm,n)
= 2. Naturally, these grids correspond to a square tiling of R2. Similarly, following the
terminology and notation of [154], the honeycomb networks HC(n) and the hexagon

networks HX(N) correspond to partial hexagonal and equilateral triangle tilings of
R

2, respectively.
By identifying a useful coordinate system for dealing with distances in hexagonal

graphs, one can show that any three vertices of degree 3 forming adjacent corners
of the underlying hexagon in HX(n) serve as a resolving set. Since HX(n) violates
properties that any graph with metric dimension 2 must have [134], we conclude
that �(HX(n)) = 3 for n > 1 [154]. Noting that HC(n) is the so-called bounded
dual of HX(n + 1) and taking advantage of this relationship, it can be shown that
�(HC(n)) = 3 for n > 1 as well [154] (see Figure 7).

a

b

c

↵

�

�

Fig. 7 Visualization of the honeycomb network HC(2) (left), the hexagon network HX(3) (center),
and HC(2) (dashed) as the bounded dual of HX(3) (solid) with minimum resolving sets
{a, b, c} and {↵,�, �}, respectively, following the construction in [154] (right).
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A SURVEY OF METRIC DIMENSION AND ITS APPLICATIONS 941

Recall that projective planes are incidence systems of points and lines satisfying
certain axioms. In a projective plane of order q, which must be of the form pr, with
p a prime and r � 1 an integer, any line contains (q+1) points, and (q+1) lines pass
through each point. The metric dimension of the incidence graph of projective planes
of order q � 2 has been completely characterized [14, 102, 103]. For q = 2, 3, 4, 5, 7,
this is 5, 8, 10, 15, 23, respectively. For q � 8, the metric dimension is 4q � 4. The
metric dimension of the incidence graph of any a�ne plane of order q � 2 has also
been determined [20, 102]. For q = 2, this is 3, whereas for q > 2, this is 3q � 4.

Given two (disjoint) copies G1 = (V1, E1) and G2 = (V2, E2) of a graph G =
(V,E), and a bijection � : V ! V , the permutation graph G� has vertex set V1 [ V2

and edge set E1 [ E2 [
�
{u, v} such that �(u) = v or �(v) = u

 
. If G is connected

of order at least 2, then, for all permutations � of V , 2  �(G�)  n� 1 [97]. These
bounds are sharp: the lower bound is achieved by any connected graph G of order 2,
whereas the upper bound is achieved by any permutation graph of Kn when n � 3.

6. Random Graph Models. Real world networks rarely fully conform to the
requirements for structurally deterministic graph families. Random graph models,
which define distributions over graph structures, often in terms of some generative
process, are therefore useful in modeling real networks. Understanding the behavior
of metric dimension as a random variable with respect to these models allows for
the general study of metric dimension, resolving sets, and e�cient means for finding
small resolving sets in some situations. Though there has not been as much work
on metric dimension in this context as compared to deterministic graphs, there have
been several significant contributions in this area concerning Erdős–Rényi random
graphs [29] and random trees and forests [161].

6.1. Erdős–Rényi Random Graphs. For each 0  p  1, let Gn,p denote a
(simple) random graph with n vertices obtained by including each of the possible

�n
2

�

edges with probability p, independently of all other edges.
As n ! 1, the set of d(3 log n)/ log 2e highest degree vertices in Gn,1/2 su�ces

as a resolving set with high probability [11]. This upper bound on �(Gn,1/2) was
originally used as part of a simple heuristic algorithm for canonically labeling graphs
and determining whether or not two graphs are isomorphic [11]—see section 7.3. More
recently, focusing solely on adjacency information in Gn,p, this highly likely bound

has been generalized for arbitrary values of p to �(Gn,p) 
�3 ln(n)

ln(p2+(1�p)2) [201, 204].
The proof of this generalization does not rely on choosing a resolving set based on
any particular property. In fact, any subset of nodes in Gn,p of cardinality at least

�3 ln(n)
ln(p2+(1�p)2) is a resolving set with high probability for large n.

Detailed insight into the metric dimension of Erdős–Rényi graphs can be gained
from the following result, where p is a function of n.

Theorem 6.1 (adapted from [29]). Let d = (n � 1)p be the expected degree of

Gn,p. Suppose that

log5 n ⌧ d  n

✓
1�

3 log(logn)

log n

◆
.

Let i � 0 be the largest integer such that di = o(n) and let c = c(n) = ed
i+1/n

. If �n

denotes the metric dimension of Gn,p, then the following holds asymptotically almost
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942 RICHARD C. TILLQUIST, RAFAEL M. FRONGILLO, AND MANUEL E. LLADSER

surely:

�n =

8
><

>:

⇥(log n) if c = ⇥(1),

⇥(c log n) if c�1 = ⌦(di/n),

⇥(n logn
di ) if c�1

⌧ di/n.

The regimes of p described in this theorem produce a zig-zag pattern in �(Gn,p)
as a function of p. Indeed, it can be shown that logn(�(Gn,nx�1)) for 0 < x < 1
approaches the function f(x) = 1� xb1/xc as n ! 1 with high probability [29].

This zig-zag pattern can be anticipated by reasoning as follows. In a dense graph
(i.e., with many edges and low path length entropy), consider picking a single vertex
v to add to a growing resolving set. This vertex defines an equivalence relation on the
graph: two vertices are equivalent if they are the same distance away from v. In terms
of distances and cardinalities, the equivalence classes are nearly the same—regardless
of the vertex chosen. The ratio between the sizes of the two largest equivalence classes
has great influence on the overall metric dimension. When this ratio is close to 1,
picking a new vertex to add to the growing resolving set from the largest class will, on
average, lead to more new equivalence classes than when the largest equivalence class
contains many more vertices than the second largest. So, the overall metric dimension
might be smaller the closer the two largest equivalence classes are in terms of size [29].

The zig-zag pattern observed in �(Gn,p) comes from how this ratio evolves in Gn,p

with decreasing p. Let Dv(i) denote the set of vertices at a distance i from a chosen
vertex v. When p = 1, the graph is complete and |Dv(0)| = 1 and |Dv(1)| = n � 1
for all vertices v, so that �(Gn,1) = n� 1. As p decreases, |Dv(i)| for i > 1 increases.
At first, this increase is faster for smaller values of i. Eventually, |Dv(1)| ⇡ |Dv(2)|
and the metric dimension is small. Decreasing p further, the sizes of the two largest
distance sets move away from one another and the ratio between their sizes increases.
This pattern then repeats itself as the identities of the largest sets change [29].

Given two real-valued random variables, X and Y , define the following measure
of similarity between their distributions:

d(X,Y ) := sup
h

E
�
h(X)

�
� E

�
h(Y )

�

supx |h(x)|+ supx |h
0(x)|

,

where the supremum is taken over all bounded (test) functions h : R ! R with
bounded derivative, and E(·) is used to denote expectation. The behavior of �(Gn,p)
when p is comparatively small is described by the following result (the previous result
addressed the case when p is not as small).

Theorem 6.2 ([161]). Let �n denote the metric dimension of Gn,p.

(i) For p = o(n�1), �n = n(1 + o(1)) asymptotically almost surely.

(ii) For p = c/n with 0 < c < 1, the sequence of random variables

Xn =
�n � E(�n)p

Var(�n)

converges in distribution to a standard normal Z as n ! 1, at a rate

d(Xn, Z) = O(n�1/2). Moreover, E(�n) = Cn(1+o(1)) and Var(�n) = ⇥(n),
where C is an explicit constant that depends on c only.

6.2. Stochastic Block Model. The stochastic block model (SBM) is a generative
graph model used frequently to study networks with simple community structure. In
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A SURVEY OF METRIC DIMENSION AND ITS APPLICATIONS 943

its most basic form, the SBM has two main parameters, C and P . C is a partition of n
vertices into c � 1 disjoint communities C1, . . . , Cc, and P is a (c⇥c) symmetric matrix
of adjacency probabilities. The communities are also sometimes defined stochastically
using a probability vector of dimension c.

We say G ⇠ SBM(n;C,P ) when, for u 2 Ci and v 2 Cj with u 6= v, {u, v} 2 E
with probability Pi,j , the entry in row i and column j of P , independently of all
other pairs of nodes. Considered separately, each individual community is equivalent
to an Erdős–Rényi random graph. This suggests using bounds on �(Gn,p) to study
the metric dimension of the SBM. Intercommunity adjacency probabilities, however,
complicate the situation and must be dealt with carefully. For example, given c = 2
and

P =

"
o(1) 1

2

1

2
o(1)

#
,

the communities of the resulting graph will be sparse and individual vertices may be
di�cult to distinguish without the help of vertices from both communities. Unfor-
tunately, characterizing the precise interaction between vertices from di↵erent com-
munities is not trivial, especially given the complicated dependencies among shortest
path distances in such graphs.

Nevertheless, it can be shown that the adjacency metric dimension of a graph
(see section 8.4) serves as an upper bound on metric dimension [122]. In particular,
since the entries in the adjacency matrix of the SBM are by definition independent,
a probabilistic upper bound on the metric dimension of these kinds of graphs can be
established [201, 204]. Indeed, letting P(G;R) denote the probability that there are
nodes in G ⇠ SBM(n;C,P ) with the same neighbors in R, where R ✓ {1, . . . , n}
contains ki nodes in community i, the first-moment method implies that

P(G;R) 
X

1ijc

|Vi||Vj |

cY

`=1

Pi,`Pj,` + (1� Pi,`)(1� Pj,`)
k` .

This inequality serves as the basis of an e↵ective, fast algorithm for selecting vertices
in G such that

P
1ic ki is minimized and P(G;R) is less than a given threshold

value. In essence, this algorithm provides an intelligent strategy for determining how
the vertices of small resolving sets should be distributed across communities for any
graph G ⇠ SBM(n;C,P ) with fixed parameters [201, 204].

6.3. Random Trees and Forests. The metric dimension of a disconnected graph
is, by definition, the sum of metric dimension of its connected components. This is
because the distance between any two vertices from di↵erent components is regarded
as 1. Accordingly, it is not surprising that the metric dimension of Fn, a forest on
n vertices chosen uniformly at random, has the same limiting distribution as that
of Tn [161], a tree on n vertices also chosen uniformly at random. Furthermore, if
�n = �(Tn), then, as n ! 1, the random variables

Xn =
�n � E(�n)p

V ar(�n)

converge in distribution to a standard normal, where E(�n) = µn(1 + o(1)) and
V ar(�n) = �2n(1 + o(1)), with µ ' 0.14076941 and �2

' 0.063748151 (see Figure 8).
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944 RICHARD C. TILLQUIST, RAFAEL M. FRONGILLO, AND MANUEL E. LLADSER

Fig. 8 Histogram of the metric dimensions of 1000 random trees on 2000 vertices (blue bars), along
with the probability density function of a standard normal distribution (red curve). The
Jarque–Bera test produces a p-value of 0.222; in particular, the data carries little to no
evidence against the (null) hypothesis that it comes from a standard Gaussian.

7. Applications. Small resolving sets are useful in a variety of situations. The
direct analogy between metric dimension and trilateration of the plane makes poten-
tial applications regarding navigation [134] and location detection [193] in discrete
space immediately apparent. Resolving sets have also been used as a means of com-
paring graphs. The classification of chemical compounds based on general chemical
structure can be accomplished using resolving sets [42, 126, 127]. One method for
quickly determining whether many, though not all, pairs of graphs are isomorphic
relies on comparing vertex representations based on presumed resolving sets [11]. In
this section, we examine several applications of resolving sets including as a tool for
studying certain games [50, 87, 120, 121, 128], as observers in detecting the source of
a spread over a network [198], as a tool for detecting network motifs [110], and as the
basis of a method for embedding DNA sequences in real space [203].

7.1. Game Theory. The Mastermind game, a game closely related to the coin
weighing problem described in section 5.2, has been analyzed with the aid of Hamming
graphs. Mastermind is played between two players, A and B. Player A starts by
choosing s = s1 . . . sk, a sequence unknown to player B of k symbols from a reference
alphabet of size c. Player B attempts to guess s as quickly possible. After each guess
q, player A provides two values: a(q, s), the number of positions where q and s agree,
and b(q, s), the total number of correct symbols at incorrect positions. Donald Knuth
created an algorithm that solved the commercial version of the game with k = 4 and
c = 6 with at most five questions [137]. For arbitrary values of k and c, a number of
results and bounds exist [50, 87], though there is no known optimal solution.

A static variant of Mastermind, in which player B must make all guesses at
once with no feedback and player A only provides a(q, s), has been shown to be NP-
complete [89]. Indeed, notice that a(q, s) = k � d(q, s), where d(q, s) is the Hamming
distance between the two sequences. In particular, to guess s with the least number
of questions, player B should make guesses that reveal the Hamming distance from s
to a resolving set of Hk,c of cardinality �(Hk,c). A deeper analysis of this situation
yields an upper bound on �(Hk,c) when k is small in comparison to c. In particular,
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A SURVEY OF METRIC DIMENSION AND ITS APPLICATIONS 945

if ✏ < 1 and c < k1�✏, then �(Hk,c)  (2 + ✏)k 1+2 log2(c)
log2(k)�log2(c)

[50]. Optimal strategies

are known for k = 2 when c � 3, and for k = 3 when c � 2, showing that �(H2,c) =
d(4c� 1)/3� 1e [120] and �(H3,c) = b3c/2c in these cases [121].

The Maker-Breaker domination game [62] is a hybrid between the Maker-Breaker
game [68] and the domination game [33]. The analysis of a new version of the game
called the Maker-Breaker resolving game (MBRG) is centered around metric dimen-
sion and resolving sets. Given a graph G, two opponents called Resolver and Spoiler
alternate selecting vertices from G. The Resolver wins if they can eventually select
a subset of nodes in G that resolves it; otherwise, the Spoiler wins. In [128], various
general results relate the minimum number of moves to win the MBRG (assuming
there is such a strategy) to the metric dimension of G, its order, the outcome of the
game, and the optimal number of moves based on who starts the game. Specializa-
tions of these results are then given for nonpath trees, the Petersen graph, bouquets
of cycles, complete multipartite graphs, and some grid-like graphs.

7.2. Source Localization. A variety of transmission processes, such as informa-
tion and disease, occur on networks. News and rumors circulate over social networks
like Facebook and Twitter, and businesses take advantage of “influencers” to max-
imize the e↵ect of marketing campaigns [31, 131, 142, 207]. Physical interaction
networks are often used as a tool for studying the spread of diseases across commu-
nities [163, 166, 168, 169]. In many contexts, it is valuable to locate the source of a
transmission process, the node or set of nodes from which the spread began, for ex-
ample, to better understand the process and to decrease/increase transmission speed.
Existing approaches to solving this problem include dynamic message passing [153],
time reversal [190], and maximum likelihood estimators [169, 188].

Small resolving sets can also provide an elegant solution to source localization.
As a concrete example, suppose that a transmission process on the graph G = (V,E)
starts at an unknown source s 2 V at time t0 and travels at unit speed across the
edges. Suppose we can prespecify a set R ✓ V of observation nodes, such that we will
observe the times tr at which the process first reaches each node r 2 R. A natural
question is, therefore, for which sets R can we infer the source location s from the
observation times {tr}r2R [169, 218]? The answer is exactly the sets R which are
resolving for G. By definition of the process, we will have tr � t0 = d(r, s), and thus
the observation times uniquely identify s, for all possible sources s, exactly when R
is a resolving set.

While resolving sets present a promising solution to source localization, there are
two nontrivial di�culties that arise in real world transmission processes which require
attention. First, it is very unlikely that the start time t0 of the process will be known.
Second, the speed at which information or diseases traverse a given edge, often called
the edge length, is rarely deterministic or known precisely. Instead, edge lengths are
often modeled as randomly drawn from some known distribution.

An unknown start time may be addressed by strengthening the notion of resolving
sets to that of doubly resolving sets [38, 198]; see also section 8.1. We call R ✓ V
doubly resolving when, for every pair of nodes u, v 2 V , there is a pair r, r0 2 R such
that d(r, u)� d(r0, u) 6= d(r, v)� d(r0, v). If R is doubly resolving, it is also resolving.
Furthermore, one easily calculates d(r, v) � d(r0, v) = tr � t0 � tr0 + t0 = tr � tr0 for
all v 2 V and r, r0 2 R. Thus, as doubly resolving sets are based on relative and not
absolute distances, the source can once again be located from the set {tr}r2R, even
if the start time t0 is unknown.

Random edge lengths are more di�cult to address and solutions depend on the
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946 RICHARD C. TILLQUIST, RAFAEL M. FRONGILLO, AND MANUEL E. LLADSER

details of the transmission process. When the edge length variance is low relative to
its mean, observation times will be close to their expected value, and resolving sets
allow for exact solutions with high probability. When the edge length variance is
high, however, observation times will carry very little information about the expected
distances, especially for nodes at greater distance from the source s. In this case, we
can increase accuracy by adding nodes to R using a path covering strategy such as
truncated metric dimension (see section 8.4). In this way, distances between observa-
tion nodes are small and thus noise accumulation is low, and we maintain resolvability
of expected distances [198].

In some situations, knowledge of the network itself may be incomplete. This re-
sults in inaccurate shortest path information and potential misidentification of the
source. In the restricted setting where a set of k distinct subgraphs is known and
there are k� 1 unobserved edges connecting these subgraphs, extended resolving sets
can be used to address this shortcoming. Let H(G) be the set of all possible con-
nected graphs that can be formed by adding k� 1 edges to G = (V,E), a graph with
k separate components. R is an extended resolving set of G if, for all u, v 2 V and all
H1, H2 2 H(G), there is r 2 R such that dH1(u, r) 6= dH2(v, r), where dH(·, ·) is the
distance between two vertices in the graphH. When the components of G are all trees,
complete graphs, grids, or cycles, minimal extended resolving sets have been charac-
terized. More generally, extended metric dimension can be bounded by considering
minimal resolving sets of each component along with their boundary vertices [217].
This definition provides an interesting solution to the problem of missing edges in
the context of source localization and suggests a general framework for working with
metric dimension when the structure of the underlying graph is uncertain.

7.3. Detecting Network Motifs. A common tool in network science to compare
graphs is via motifs, i.e., subgraphs appearing with higher than expected frequency.
Network motifs are believed to play important roles in the structure and underly-
ing dynamics of networks in a variety of fields including social sciences [108, 109],
biology [63, 90, 148, 191], chemistry [95, 214], and data mining more generally [52,
210, 212]. By finding and analyzing these motifs, researchers gain insight into the
functional properties of di↵erent systems. The problem of discovering over- or under-
represented subgraphs in a large network, however, poses significant computational
challenges: the subgraph isomorphism problem (i.e., determining whether or not a
given graph occurs as a subgraph in a larger graph) is NP-complete [53, 213]. On the
other hand, graph isomorphism, the special case of subgraph isomorphism when the
graphs are of the same order, is believed to be an easier problem [56, 185], especially
given the recent quasi-polynomial time algorithm in [10]. A natural algorithm to count
k-node motifs is therefore to enumerate subgraphs of order k and test whether they
are isomorphic to the given motif. Resolving sets and metric dimension have been
used as the foundation of tools to solve graph isomorphism [11] and, in the manner
above, for motif detection [110].

One technique to solve graph isomorphism is through a canonical labeling, a way
to assign unique labels to nodes which is invariant under graph isomorphism. Since
resolving sets provide a unique label for each node in a graph, they can serve as
the basis of such labelings. In particular, suppose that one could uniquely identify
a resolving set R given a graph G = (V,E) and, furthermore, uniquely identify an
ordering R = {r1, . . . , r|R|}. Then assigning label d(u|R) 2 R

|R| to each node u 2 V
would give a canonical labeling, as both R and the ordering are uniquely determined
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A SURVEY OF METRIC DIMENSION AND ITS APPLICATIONS 947

by G, and given R and this ordering, the distance vectors are unique since R is
resolving.

Using this general approach, the following quadratic time canonical labeling al-
gorithm provably solves graph isomorphism with high probability for Erdős–Rényi
random graphs Gn,p, that is, graphs on n vertices such that each edge appears with
independent probability p [11]. Consider a graph G = (V,E) and let n = |V | and
R = {r1, . . . , r|R|} be the set of the d(3 log(n))/ log(2)e highest degree vertices in V .4

The algorithm labels each vertex in G with the set of nodes in R which are adjacent
(this step of the algorithm leverages the fact that the diameter of Gn,1/2 is 2 with high
probability as n increases, so the set of adjacent R nodes is equivalent to the distance
vector d(·|R)). This labeling is canonical, i.e., invariant under isomorphism, as long
as no pair of vertices in R has the same degree, and the labels are unique. Under
Gn,1/2, the probability that this algorithm succeeds in finding a canonical labeling is

at least 1� 7
p

1/n for large n [11].
Another recent algorithm uses the above technique more explicitly, by directly

computing a canonical resolving set and ordering [110]. The approach is as follows.
Enumerate all resolving sets R of cardinality �(G) and permutations ⇡ and compute
the corresponding adjacency matrix AR,⇡ for each one. In AR,⇡, the vertices of G are
ordered lexicographically with respect to their distance vectors d(·|R) ordered by ⇡.
Now take R and ⇡ such that AR,⇡ is lexicographically first (after flattening) among
all such choices. Given this choice of R and ⇡, labeling the vertices of G by their
distance vector representations gives a canonical labeling.

This approach can be time consuming, as it requires computing (an upper bound
for) �(G) and enumerating all resolving sets R of this cardinality and all orderings on
these sets. One can improve performance slightly by ignoring the relative ordering of
twin vertices (see section 4.2) [110]. Tests on a wide variety of graphs show that this
method is e↵ective but somewhat slower than the graph isomorphism tool provided
with the NAUTY program [157]. However, this method is faster than NAUTY on
multidimensional mesh graphs and was the core algorithm in a tool for identifying and
counting statistically significant subgraphs in the transcriptional regulation networks
of Saccharomyces cerevisiae (yeast) and Escherichia coli (E. coli) [110].

7.4. Embedding Biological Sequence Data. High-throughput sequencing tech-
nologies have enabled biologists to collect a wealth of DNA, RNA, and amino acid
sequence data. The abundance of this information makes computational analysis
methods, including those based on machine learning algorithms, indispensable. The
majority of these methods, however, cannot directly learn from symbolic data like
biological sequences, and they deal instead with numerical feature vectors. Methods
to embed symbolic sequences into real vector spaces are thus an important prepro-
cessing step [203]. Low-dimensional embeddings are especially useful, both to reduce
the computational cost of learning algorithms and to avoid overfitting.

Consider the task of embedding a sequence of length `, composed of symbols from
an alphabet of size a, into a real vector space. For example, DNA and RNA sequences
have a = 4, while amino acids are composed of a = 20 possible symbols. A näıve
approach to this embedding is the so-called one-hot encoding, which simply generates
an indicator vector for each of the a` possible sequences of length `. This approach is
untenable for most biological sequence data, where ` can be quite large. One lower-

4In fact, any set of vertices of this cardinality will su�ce as a resolving set with high probability,
not just vertices of high degree. This fact is directly related to the fact that the degree distribution
of Gn,p is binomial and therefore concentrated around its mean [7, 55].
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948 RICHARD C. TILLQUIST, RAFAEL M. FRONGILLO, AND MANUEL E. LLADSER

dimensional approach to embed such sequences uses binary representations, which
indicate the presence or absence of each character in the alphabet at each position
in the sequence, thus requiring a · ` dimensions [39]. Another common approach uses
k-mer count vectors, usually with k ⌧ `, which count the number of times that every
possible contiguous subsequence of length k occurs in the larger sequence using a
sliding window [149]. Unlike one-hot encodings and binary representations, k-mer
count vectors are not guaranteed to produce an injective embedding.

Resolving sets can be applied to this problem as well. Often the domain of interest
has some natural distance metric between sequences. For biological sequences and
several other domains, one possible choice is Hamming distance, which simply counts
the number of indices in which the two sequences di↵er. The Hamming distance
induces the Hamming graph H`,a on length-` sequences from a symbols, where there
are edges between sequences which di↵er in only one entry, and hence the path length
between two sequences is their Hamming distance (see section 5.2). Given a resolving
set R on H`,a, each sequence can be uniquely represented by its vector of distances to
the elements of R. These distance vectors are therefore an injective |R|-dimensional
embedding, and the metric dimension of H`,a gives the smallest possible embedding
dimension for this approach.

Embeddings based on resolving sets of H3,4 were used as features to classify DNA
sequences of length 20 as being centered, or not, at intron-exon boundaries in the
fruit fly genome [203]. In this study, the resolving set embedding outperforms k-mer
count vector and binary representation based features with respect to accuracy and
specificity, and is competitive with features based on other state-of-the-art embedding
techniques like node2vec [92] and multidimensional scaling [141].5 Resolving set em-
beddings are also generally more compact than those based on k-mer count vectors
or binary representations. For example, part of the genome of the Dengue virus codes
for a protease (i.e., an enzyme that digests proteins) that targets octapeptides (i.e.,
amino acid sequences of length 8) in human cells. While the space of all octapeptides
is large, consisting of 25.6 billion sequences, no more than 82 are required for a re-
solving set. Based on such a set, H8,20 may be embedded into R

82. In comparison,
3-mer count vectors use 8,000 dimensions, while binary vector representations require
160 dimensions [203].

8. Related Concepts. There is a wide variety of concepts closely linked to metric
dimension. Some strengthen or alter the constraints placed on the identifiability
of nodes, while others are extensions of the concept itself. In this section we will
briefly discuss several such notions. A survey by Chartrand and Zhang [48] contains
more complete characterizations of several of these concepts as well as information on
concepts not mentioned here. There is also a body of work on conditional resolvability
which focuses on resolving sets that have some additional property. For example, one
can consider the smallest resolving set of a graph that induces a connected subgraph
or that is also an independent set. For these conditional variants, we direct the reader
to a survey by Saenpholphat and Zhang [181]. See also another forthcoming survey
on variants of metric dimension [146].

8.1. Doubly Resolving Sets. As discussed in section 7.2, while one can uniquely
identify all nodes in a graph based on distances to a resolving set, this identification

5For this particular task, k-mer count vectors are not well suited. As positive examples consist of
half intronic and half exonic DNA, we might expect the location of k-mers within the larger sequence
to matter a great deal, yet k-mer count vectors do not directly encode this information.
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A SURVEY OF METRIC DIMENSION AND ITS APPLICATIONS 949

can fail if one only knows distances up to an additive constant. Doubly resolving
sets address this shortcoming and have proven useful in identifying the source of
a spread in a network [198] and in determining bounds on the metric dimension
of Cartesian products of graphs [38]. In particular, a set R ✓ V is called doubly

resolving if, for every pair of di↵erent nodes u, v 2 V , there is a pair r, r0 2 R such
that d(r, u)�d(r0, u) 6= d(r, v)�d(r0, v). Such sets di↵erentiate nodes based on relative
as opposed to absolute distances.

To fix ideas, consider the path graph Pn with nodes labeled consecutively from 1
to n and resolving set {1}. Suppose a signal is sent along the path from some node i
at an arbitrary time t. Traversing each edge in one time unit, this signal reaches node
1 at time (t+ i� 1). Since t is unknown, node i cannot be distinguished as the source
of the signal from this information alone. The set {1, n}, on the other hand, is doubly
resolving on Pn. Now a signal sent from i at time t will arrive at node 1 at time
(t+ i� 1) and at node n at time (t+ n� i). So for any node j 6= i, d(i, 1)� d(i, n) =
(t+i�1)�(t+n�i) = 2i�n�1 6= 2j�n�1 = (t+j�1)�(t+n�j) = d(j, 1)�d(j, n),
and the source of the signal can be uniquely determined.

A related notion is that of k-metric dimension, where one seeks a resolving set R
such that for any two nodes u, v 2 V , there are at least k elements r 2 R such that
d(r, u) 6= d(r, v). See [146, sect. 6] for a treatment of this concept, which we note is
di↵erent from truncated metric dimension (see section 8.4).

8.2. Strong Metric Dimension. Since all vertices in a graph G = (V,E) are
distinguished based on distance to a resolving set R ✓ V , it is tempting to think that
G may be reconstructed using R. These distances can only recover shortest paths,
however, and thus any edge in E that is not part of a unique shortest path from any
v 2 V to any r 2 R could be excluded in such a reconstruction. For instance, consider
the cycle C6 with the minimum resolving set R = {1, 3}. Notice that R remains
a minimum resolving set if the edge {2, 5} is added. Furthermore, for each v 2 V ,
d(v|R) is the same with or without this extra edge. As a result, R is not su�cient
to guarantee a faithful reconstruction of C6. Notably, any resolving set is enough to
reconstruct a tree, as the only path between any pair of vertices is the shortest path.

A set S ✓ V is said to strongly resolve G if, for every distinct u, v 2 V , there is a
vertex s 2 S such that u lies on a shortest path from s to v or v lies on a shortest path
from s to u [186]. The cardinality of smallest possible strongly resolving sets on a
graph is its strong metric dimension. By definition, every edge in E must be accounted
for by a shortest path distance d(v, s) for some v 2 V and s 2 S. This allows G to
be reconstructed exactly based on a strong resolving set [186]. For a survey of results
and approximation methods related to strong metric dimension, see [138].

8.3. Multilateration. The definition of metric dimension depends heavily on
graph structure and a notion of edge distances, yet there are pairwise distance ma-
trices that do not correspond to a graph or metric space. Consider the following
matrix:

M =

A B C
 !A 0 10 100

B 1 0 10
C 1 1 0

.

Notice that the points in M do not abide by the triangle inequality. While we can
circumvent the fact that values in this matrix are not symmetric by using directed
edges, violating the triangle inequality would require redefining the distance between
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950 RICHARD C. TILLQUIST, RAFAEL M. FRONGILLO, AND MANUEL E. LLADSER

pairs of nodes. Fortunately, metric dimension makes no use of the actual distance
between two vertices beyond checking equality, and thus one can imagine a relaxation
using a more general distance function. In fact, one could even allow the entries of
M to come from an arbitrary set other than the reals.

This more general problem on arbitrary matrices is called multilateration [203].
To be more precise, let I be a set of items associated with the rows of a matrix M ,
and let F be a set of functions over I associated with columns so that M(i, f) = f(i).
Analogous to metric dimension, the goal of multilateration is to determine a resolving
set R ✓ F of minimum size such that the vectors (r(i))r2R are unique for all i 2 I.
One can equivalently think of R as a set of columns of M such that the row vectors
of the induced submatrix are unique. Borrowing notation from metric dimension,
we set �(M) = |R| for a set R of minimum size. The entries M(i, f) need not be
numeric; one only needs a notion of equivalence on elements of f(I) for each f 2 F ,
i.e., for values in the same column of M . In the context of graphs, multilateration is
equivalent to metric dimension: if G is a graph with pairwise distance matrix D, then
we have �(G) = �(D).

8.4. Truncated Metric Dimension. In some scenarios, complete distance infor-
mation of a network is unavailable. In particular, it might be that only distances below
a certain threshold are available, perhaps because collecting long-distance information
is costly or prone to an excessive amount of noise. In such cases it might not be possible
to determine the metric dimension of the full graph. Instead, given a graph G = (V,E)
and a maximum distinguishable distance k � 1, let dk(u, v) = min{d(u, v), k + 1} be
the k-truncated distance between u, v 2 V and let Dk be the k-truncated distance ma-
trix of G. Then the k-truncated metric dimension of G is defined as �k(G) = �(Dk),
where �(Dk) is defined as in multilateration (see section 8.3) [86, 201, 202].

This notion is a generalization of the concept of adjacency metric dimension [122]
where k = 1 and a constrained version of (k, t)-metric dimension [73]. Here t, instead
of k, defines a maximum distinguishable distance, while k refers to the minimum
number of elements of a resolving set that must distinguish each pair of vertices. As a
result, (k, t)-metric dimension is equivalent to truncated metric dimension when k = 1.
When t � diam(G), this variation corresponds to k-metric dimension [2, 22, 72]. See
also section 8.1. There are also connections between truncated metric dimension and
locating-dominating sets [194], for which k = 1 and d(u, r)  1 for all u 2 V and
at least one r in the set, and to identifying codes [130], which have the additional
constraint that d(r0, r) = 1 for all vertices r in the code and at least one other r0 in
the code—so that no element can distinguish itself.

Beyond settings with restricted distance information, truncated metric dimension
can also be an e↵ective tool for studying metric dimension. For instance, it can be
shown that for all graphs G and all k � 1, �k(G) � �k+1(G) [86, 201, 202]; as �(G) =
�n�1(G), this means truncated metric dimension can give upper bounds on �(G).
As one application, an asymptotically tight upper bound on the metric dimension
of the Erdős–Rényi random graph Gn,p can be determined by focusing on �1(G),
i.e., on adjacency information alone [201, 204]. While Gn,p contains dependencies
between shortest path lengths, adjacencies are independent by definition, making the
1-truncated metric dimension of these graphs far easier to characterize than their
standard metric dimension (see section 6.2).

There are exact formulae for the truncated metric dimension of certain families of
graphs including paths, cycles, complete graphs, fans, wheels, trees with a particular
structure, and completem-partite graphs. Beside that, graphs for which the truncated
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A SURVEY OF METRIC DIMENSION AND ITS APPLICATIONS 951

metric dimension is 1, (n�2), and (n�1) have been fully characterized, and the e↵ect
of vertex and edge removal has been studied [86, 202].

8.5. Resolving Number, Upper Dimension, Random k-Dimensionality. Given
a resolving set R of G = (V,E), it is natural to consider removing elements of R while
keeping the set resolving, which some authors refer to as minimal. Let R(G) be the
set of all resolving sets which cannot be made smaller in this way, i.e., for which no
proper subset S ⇢ R is also resolving.

Resolving sets R 2 R(G), while minimal in the sense of set inclusion, are not
guaranteed to be minimal in the sense that |R| = �(G), the minimum possible cardi-
nality of any resolving set of G. For example, on the path P6 with vertices {1, . . . , 6},
the set R = {3, 4} is in R(P6), but �(P6) = 1. Resolving sets of cardinality �(G) are
also elements of R(G); however, the converse is not necessarily true. The cardinality
of largest set-inclusion-minimal resolving sets, on the other hand, is called the upper

dimension dim+(G), given by dim+(G) = maxR2R(G) |R|.
To generate sets in R(G), one could start with R = V and iteratively remove

vertices while keeping R resolving. In some cases, starting with a smaller set is
guaranteed to succeed as well. The resolving number of a graph, denoted res(G),
is the smallest integer such that all subsets S ⇢ V with |S| = res(G) are resolving
sets. It is known that the number of graphs with a resolving number greater than
or equal to four is finite [83]. Combined with the previous inequalities, we have
�(G)  dim+(G)  res(G)  n � 1 [43, 83]. Furthermore, for every pair of integers
2  m  n, there is a connected graph G such that �(G) = m and dim+(G) = n [83].

When k = �(G) = res(G), every R 2 R(G) with |R| = k is resolving and is of
minimum cardinality. In this case G is said to be randomly k-dimensional. The only
known randomly k-dimensional connected graphs are complete graphs Kk with k � 1,
and odd cycles Cn with n � 3 [83].

8.6. Directed Graphs. In directed graphs, or digraphs, the notion of (geodesic)
distance between pairs of nodes requires some care. Some authors regard d(u, v) as
undefined for a pair of vertices u and v where there is no directed path from u to v,
whereas others define d(u, v) = +1 in this case. Issues of this type also arise when
studying the e↵ect of edge orientations in undirected graphs.

If the geodesic distance is regarded as undefined when there is no directed path
between a pair of nodes in a digraph, its metric dimension may also be undefined.
The characterization of digraphs with a defined metric dimension remains elusive in
the literature. Of course, if a digraph is strongly connected, then its metric dimension
is defined. Also, if a (weakly) connected digraph D remains or becomes strongly
connected upon the removal of a vertex, then its �(D) is defined [44]. Interestingly,
the metric dimension of oriented trees is either 1 or is undefined and, when defined,
the tree must be a directed Hamiltonian path [44].

If D = (V,E) is a (weakly) connected digraph with a defined metric dimension
such that |V | � 3, and the outer degree of every vertex is at least 1, then �(D) 

n � 2. If instead |V | � 5 and the outer degree of every vertex is at least 2, then
�(D)  n� 3 [44]. This latter bound is sharp.

With the convention that d(u, v) := +1 if there is no directed path from u to v
in a digraph D, the analogue of metric dimension has been denoted MD(D), whereas
the worst possible value of MD(G) among all possible orientations of an undirected
graph G has been denoted WOMD(G). Upper bounds for the metric dimension of
strongly connected digraphs can be established based on their maximum in- and
out-degree, as well as the cardinality of a minimum vertex cover of certain auxiliary
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undirected graphs associated with the digraph [26]. Upper bounds for strong Eulerian
orientations (i.e., an orientation where the in- and out-degree of each vertex is the
same), tori (i.e., Cartesian products of two cycles), and grids (i.e., Cartesian product
of two paths) are also possible [26]. For a family G of undirected graphs which
admit strong orientations, in particular, each graph in the family is 2-edge-connected,
WOMD(G) := maxG2G WOMD(G)/|V (G)|. Asymptotic lower and upper bounds for
this quantity when the maximum degree of a graph in G is either 2, 4, or is allowed
to tend to infinity have also been obtained [26].

8.7. Other Related Notions. A graph is called uniquely dimensional when it
has a unique minimal resolving set. A uniquely dimensional graph with metric di-
mension k is called a uniquely k-dimensional graph. In [13], upper bounds for the
metric dimension of uniquely dimensional graphs based on order, diameter, and girth
are obtained. The authors also construct uniquely k-dimensional graphs of specific
diameters and orders and bound the order of the smallest graphs of particular char-
acteristics. A more refined question is whether a particular vertex must be present in
any minimal resolving set. Hakanen et al. [96] study such vertices as well as a dual
notion, specifically, vertices which do not appear in any minimal resolving set.

The notion of edge metric dimension of a graph G = (V,E) was introduced by
Kelenc, Tratnik, and Yero [133]. For a v 2 V and e = {x, y} 2 E, let d(e, v) :=
min{d(x, v), d(y, v)}. A vertex v is said to distinguish two edges e1 and e2 when
d(e1, v) 6= d(e2, v). The edge metric dimension of G, denoted edim(G), is the cardi-
nality of a smallest edge resolving set of vertices in the graph. For a tree T that is not
a path, �(T ) = edim(T ), and for a unicyclic graph G, |�(G) � edim(G)|  1. These
inequalities may be regarded as specializations of a more general result about cactus
graphs, i.e., graphs where all cycles have pairwise disjoint edges: a cactus graph G
with c edge-pairwise disjoint cycles satisfies |�(G)� edim(G)|  c [187]. Geneson [85]
shows that d-dimensional grids have edim(G) = d among other results and extremal
constructions; see also Zubrilina [220].

The notion of metric dimension has also been extended from vertices to vertex
partitions [45, 46]. Given an (ordered) partition P = {P1, . . . , Pk} of the vertex set V
of a graph G, define d(v|P ) := (d(v, P1), . . . , d(v, Pk)) for each v 2 V . A partition is
called resolving when for all u, v 2 V , if d(u|P ) = d(v|P ), then u = v. The partition

metric dimension of G, denoted dimP (G), is the cardinality of the smallest possible
resolving partition of the graph. It turns out that dimP (G)  1+�(G), and graphs of
any metric partition may be constructed as long as this relationship is preserved [41].
The partition dimension of a graph has been related to various parameters such as
clique number, diameter, maximum degree, and order [41].

Other notions which place additional constraints on resolving sets have been stud-
ied. As one particularly natural example, Eroh, Kang, and Yi [71] introduce the
connected metric dimension, which requires resolving sets to induce a connected sub-
graph. In general, the connected metric dimension of a graph G may be much larger
than its metric dimension: if G is a path Pn with one leaf vertex added to each end,
then �(G) = 2, whereas the connected metric dimension is n+ 2 as one needs to add
the entire path. The authors show that G having a connected metric dimension of 2,
i.e., being resolved by an edge in the graph, implies that G is planar, an interesting
contrast to metric dimension [134].

Finally, a subset D of nodes in a graph G = (V,E) is called determining when
any graph automorphism is uniquely determined by its action over the nodes in D.
Equivalently, if � is an automorphism of G and �(v) = v for all v 2 D, then �(v) = v
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for all v 2 V . The determining number Det(G) of a graph G is the cardinality of its
smallest determining set. It is well known that the determining number of a graph
is always a lower bound for its metric dimension [32], though their di↵erence can be
arbitrarily large. Indeed, for n � 8 [84],

�
2n

5

⌫
� 2  max

G: |V |=n

�
�(G)�Det(G)

�
 (n� 2).

These bounds, however, are not believed to be sharp. Indeed, it is conjectured that
for all n su�ciently large, maxG: |V |=n

�
�(G)�Det(G)

�
= bn/2c�1 [84]. On the other

hand, a linear time algorithm for computing the determining number and associated
minimum determining set of trees was provided in [35]. The determining number
of some Cartesian products of graphs was also determined in [35]. The determining
number of Levenshtein graphs (see section 5.2) was determined in [180].

8.8. Metric Space Connections. Graphs are special instances of metric spaces,
and the notion of metric dimension extends naturally to abstract metric spaces. Given
a metric space (X, d), a subset R ⇢ X is called resolving if for all u, v 2 X, with u 6= v,
there is an r 2 R such that d(r, u) 6= d(r, v). The metric dimension of (X, d), denoted
as �(X, d), corresponds to the cardinality of a smallest resolving set. When the metric
d is implicit from the context, we write �(X) instead of �(X, d).

If (X, d) is complete, convex, and every pair of di↵erent points resolves it, then
(X, d) is isometric to R [165]. If (X, d) is connected and compact, and �(X) = 1,
then X is homeomorphic to the interval [0, 1]. Instead, if (X, d) is connected and
noncompact, every closed ball is compact, and �(X) = 1, then X is homeomorphic to
the interval [0,+1) [21]. If V is an a�ne subspace of Rn, then �(V ) = dim(V )+1 [21];
in particular, �(Rn) = n+ 1.

Let x = (x1, . . . , xn) denote a generic element in R
n. The hyperbolic space

H
n := {x such that xi > 0 for i = 1, . . . , n} endowed with the path metric derived

from dx/xn, the spherical space S
n := {x such that kxk2 = 1} endowed with the

path metric induced by the Euclidean distance in R
n+1, and the unit ball B

n :=
{x such that kxk2  1} endowed with the path metric induced by 2|dx|/(1 � kxk2

2
),

have metric dimension (n + 1) each. The same applies to the metric dimension of
any open subset of these metric spaces or R

n [21]. Next, consider X ⇢ R
n with the

metric induced by the Euclidean distance. Then, any metric basis R = {r1, . . . , rk}
of X must be a�nely independent, i.e., the vectors (r2 � r1), . . . , (rk � r1) must be
linearly independent. Furthermore, if A(X) is the smallest a�ne subspace of R

n

containing X, then �(X)  �
�
A(X)

�
. If in addition X has a nonempty interior,

then �(X) 2 {n, n + 1}. Furthermore, if X is a convex subset with a nonempty
interior, then �(X) = n if and only if X has a supporting hyperplane H such that
A(X \H) = H [21].

We briefly mention some other connections. A metric space generalization of
corona product graphs (see section 5.3) is introduced and studied in [177]; in particu-
lar, a formula is given for their metric dimension. Results about the metric dimension
of so-called wreath products of two metric spaces can be found in [172], and about Rie-
mann surfaces and Riemannian manifolds in [106, 21]. Finally, the notion of k-metric
dimension (see section 8.1) has been generalized to metric spaces [22, 176, 54].

9. Conclusion and Open Questions. Metric dimension is a straightforward idea.
Its close relation to GPS and trilateration makes applications concerning locating
graphs’ nodes immediately apparent. While determining the exact metric dimension
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of general graphs is an NP-complete problem, several approximation methods exist,
including the ICH algorithm. The ICH gives resolving sets guaranteed to be close to
optimal cardinality but has cubic run time, which can be impractical for real world
networks. Nevertheless, a great deal is known concerning exact formulae, asymptotic
behavior, and bounds for an array of graph families. Recently, the metric dimension
of random trees and forests and Erdős–Rényi random graphs have also been charac-
terized. This understanding is a critical step toward practical application in di↵erent
settings.

Potential applications of metric dimension include identifying the source of a
spread in a network, detecting network motifs, and embedding symbolic data into
comparatively low-dimensional Euclidean spaces. A better theoretical understanding
of metric dimension on random graph models, coupled with new approximate or
exact algorithms tailored to specific families of graphs, will have a large impact on
these applications. Further, many of these settings may accommodate relaxations or
variations of metric dimension, such as doubly resolving sets and multilateration.

Possible directions for future work abound, both in deepening our theoretical
understanding of metric dimension and related concepts and in applying these con-
cepts in practice. For instance, the precise treewidth, between 2 and 24, at which the
decision version of metric dimension becomes NP-hard is unknown. Moreover, the ex-
istence of additional types of randomly k-dimensional graphs remains open [47], and
asymptotic or explicit characterizations of the metric dimension of graph families with
comparatively small automorphism groups, such as Levenshtein graphs, and that of
discrete (finite or infinite) metric spaces could prove helpful for generating Euclidean
embeddings in di↵erent contexts.
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dimension of graphs, Comput. J., 64 (2021), pp. 707–720. (Cited on p. 950)

[74] M. Fehr, S. Gosselin, and O. R. Oellermann, The metric dimension of Cayley digraphs,
Discrete Math., 306 (2006), pp. 31–41. (Cited on pp. 932, 938)

[75] M. Feng, X. Ma, and K. Wang, The structure and metric dimension of the power graph of
a finite group, European J. Combin., 43 (2015), pp. 82–97. (Cited on p. 938)

[76] M. Feng and K. Wang, On the metric dimension of bilinear forms graphs, Discrete Math.,
312 (2012), pp. 1266–1268. (Cited on p. 932)

[77] M. Feng, M. Xu, and K. Wang, On the metric dimension of line graphs, Discrete Appl.
Math., 161 (2013), pp. 802–805. (Cited on pp. 931, 932)

[78] H. Fernau, P. Heggernes, P. van’t Hof, D. Meister, and R. Saei, Computing the metric
dimension for chain graphs, Inform. Process. Lett., 115 (2015), pp. 671–676. (Cited on
pp. 927, 932)
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[187] J. Sedlar and R. Škrekovski, Bounds on metric dimensions of graphs with edge disjoint
cycles, Appl. Math. Comput., 396 (2021), art. 125908. (Cited on p. 952)

[188] D. Shah and T. Zaman, Rumors in a network: Who’s the culprit?, IEEE Trans. Inform.
Theory, 57 (2011), pp. 5163–5181. (Cited on p. 945)

[189] B. Shanmukha, B. Sooryanarayana, and K. Harinath, Metric dimension of wheels, Far
East J. Appl. Math., 8 (2002), pp. 217–229. (Cited on pp. 923, 924, 931)

[190] Z. Shen, S. Cao, W.-X. Wang, Z. Di, and H. E. Stanley, Locating the source of di↵u-
sion in complex networks by time-reversal backward spreading, Phys. Rev. E, 93 (2016),
art. 032301. (Cited on p. 945)

[191] S. S. Shen-Orr, R. Milo, S. Mangan, and U. Alon, Network motifs in the transcriptional
regulation network of Escherichia coli, Nature Genetics, 31 (2002), pp. 64–68. (Cited on
p. 946)

[192] H. M. A. Siddiqui and M. Imran, Computing the metric dimension of wheel related graphs,
Appl. Math. Comput., 242 (2014), pp. 624–632. (Cited on p. 940)

[193] P. J. Slater, Leaves of trees, in Proceedings of the Sixth Southeastern Conference on Com-
binatorics, Graph Theory and Computing, Congress. Numer. XIV, Utilitas Mathematica,

© 2023 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d 

03
/1

5/
24

 to
 2

12
.1

02
.4

4.
11

6 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
C

C
B

Y
 li

ce
ns

e 



962 RICHARD C. TILLQUIST, RAFAEL M. FRONGILLO, AND MANUEL E. LLADSER

Winnipeg, 1975, pp. 549–559. (Cited on pp. 921, 927, 931, 944)
[194] P. J. Slater, Domination and location in acyclic graphs, Networks, 17 (1987), pp. 55–64.

(Cited on p. 950)
[195] P. J. Slater, Dominating and reference sets in a graph, J. Math. Phys. Sci., 22 (1988),

pp. 445–455. (Cited on p. 921)
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