
Physical Communication 61 (2023) 102194

Contents lists available at ScienceDirect

Physical Communication

journal homepage: www.elsevier.com/locate/phycom

Full length article

Neural layeredmin-sumdecoders for cyclic codes

Ming Wang a, Yong Li a, Jianqing Liu b, Taolin Guo a,∗, Huihui Wu c, Francis C.M. Lau d

a College of Computer Science, Chongqing University, Chongqing, 400044, China
b Department of Computer Science, North Carolina State University, Raleigh, 27606, NC, USA
c Department of Electrical and Computer Engineering, McGill University, Montreal, Quebec, Canada
d Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hong Kong, China

a r t i c l e i n f o

Article history:

Received 24 May 2023

Received in revised form 30 July 2023

Accepted 11 September 2023

Available online 17 September 2023

Dataset link: https://github.com/Dies-Irae/N

eural-Layered-Min-sum-Decoders-for-Cycli

c-Codes

Keywords:

Channel codes

Neural network decoders

Layered min-sum algorithm

Modified random redundant decoding

a b s t r a c t

This paper proposes a low-complexity neural network decoder based on the layered min-sum

algorithm to decode cyclic codes. By generalizing the layered min-sum algorithm to its neural network

counterpart, the number of network weights decreases while retaining a good error correction

performance. The Bose–Chaudhuri–Hocquenghem (BCH) codes, quadratic residue (QR) codes, and

punctured Reed–Muller (RM) codes are selected as three exemplary binary cyclic codes. Simulation

results show that the proposed neural decoder achieves superior performance with less computational

complexity compared with the state-of-the-art neural network decoder. Further, a neural decoder

incorporating the modified random redundant decoding (mRRD) algorithm is investigated to approach

the performance of maximum-likelihood decoding for some short codes.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

Cyclic codes such as Bose–Chaudhuri–Hocquenghem (BCH)

codes and quadratic residue (QR) codes are important chan-

nel codes used in physical-layer digital communications. For ex-

ample, BCH codes have been applied in satellite communica-

tions [1] and Compact Disc players. The (24,12) extended Golay

code has been used in the imaging systems for space explo-

ration [2] and high-frequency radio systems [3]. Recently, short

cyclic codes have returned to the spotlight for their good decod-

ing performance under maximum-likelihood (ML) approaching

decoding algorithms [4]. However, extensive computations are

required to attain such a good decoding performance. Taking the

BCH(63,45,7) code as an example, it needs up to 50 × 50 × 5

iterations to achieve the near ML performance when the modified

random redundant decoding (mRRD) [5] algorithm with neural

BP decoding is employed [6]. Accordingly, efficient decoders for

these codes have been in high demand, especially for achieving

near ML performance.

Due to the great success of AI in various fields, the idea of

using machine learning to design or decode channel codes has

been extensively investigated in recent years. In [7], the authors

∗ Corresponding author.

E-mail addresses: mwang42@ncsu.edu (M. Wang), yongli@cqu.edu.cn

(Y. Li), jliu96@ncsu.edu (J. Liu), tguo@cqu.edu.cn (T. Guo),

huihui.wu@mail.mcgill.ca (H. Wu), francis-cm.lau@polyu.edu.hk (F.C.M. Lau).

showed that recurrent neural networks (RNN) can be trained

to decode convolutional codes and turbo codes, and in [8–10],

data-driven end-to-end autoencoders have been utilized to learn

to encode and decode simultaneously. Huang et al. [11] used

reinforcement learning and genetic algorithm to design some

binary codes, which achieve equivalent performance to some

existing codes and even outperform certain codes constructed

by traditional methods. An important branch of these studies is

the neural belief propagation (BP) based decoders. It is known

that BP-based decoders can achieve near-capacity performance

for decoding low-density parity-check (LDPC) codes and it also

has been used in the optimization of Gaussian multiple access

channel (GMAC) [12]. However, the performance of BP-based

decoders deteriorates significantly for decoding some cyclic codes

such as BCH and QR codes since the parity-check matrices of

these codes are much denser. As an iterative message passing

algorithm, the BP-based algorithms can be naturally generalized

to neural networks. In [13], a neural BP decoder was introduced.

It assigns different weights to each edge of the Tanner graph and

trains these weights, and greatly outperforms the conventional

BP algorithm for decoding BCH codes. Further, the complex-

ity of neural BP decoder is reduced in [6,14] by replacing the

sum–product operations with min-sum functions. The authors

also proposed using additive weights instead of multiplicative

weights to further lower the computational complexity. In [15],

the authors proposed a neural BP-based scalable decoder of which

parameters are determined by full-connected neural networks.

https://doi.org/10.1016/j.phycom.2023.102194

1874-4907/© 2023 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.phycom.2023.102194
https://www.elsevier.com/locate/phycom
http://www.elsevier.com/locate/phycom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.phycom.2023.102194&domain=pdf
https://github.com/Dies-Irae/Neural-Layered-Min-sum-Decoders-for-Cyclic-Codes
https://github.com/Dies-Irae/Neural-Layered-Min-sum-Decoders-for-Cyclic-Codes
https://github.com/Dies-Irae/Neural-Layered-Min-sum-Decoders-for-Cyclic-Codes
https://github.com/Dies-Irae/Neural-Layered-Min-sum-Decoders-for-Cyclic-Codes
https://github.com/Dies-Irae/Neural-Layered-Min-sum-Decoders-for-Cyclic-Codes
https://github.com/Dies-Irae/Neural-Layered-Min-sum-Decoders-for-Cyclic-Codes
https://github.com/Dies-Irae/Neural-Layered-Min-sum-Decoders-for-Cyclic-Codes
https://github.com/Dies-Irae/Neural-Layered-Min-sum-Decoders-for-Cyclic-Codes
https://github.com/Dies-Irae/Neural-Layered-Min-sum-Decoders-for-Cyclic-Codes
https://github.com/Dies-Irae/Neural-Layered-Min-sum-Decoders-for-Cyclic-Codes
https://github.com/Dies-Irae/Neural-Layered-Min-sum-Decoders-for-Cyclic-Codes
https://github.com/Dies-Irae/Neural-Layered-Min-sum-Decoders-for-Cyclic-Codes
https://github.com/Dies-Irae/Neural-Layered-Min-sum-Decoders-for-Cyclic-Codes
https://github.com/Dies-Irae/Neural-Layered-Min-sum-Decoders-for-Cyclic-Codes
https://github.com/Dies-Irae/Neural-Layered-Min-sum-Decoders-for-Cyclic-Codes
https://github.com/Dies-Irae/Neural-Layered-Min-sum-Decoders-for-Cyclic-Codes
https://github.com/Dies-Irae/Neural-Layered-Min-sum-Decoders-for-Cyclic-Codes
https://github.com/Dies-Irae/Neural-Layered-Min-sum-Decoders-for-Cyclic-Codes
https://github.com/Dies-Irae/Neural-Layered-Min-sum-Decoders-for-Cyclic-Codes
https://github.com/Dies-Irae/Neural-Layered-Min-sum-Decoders-for-Cyclic-Codes
https://github.com/Dies-Irae/Neural-Layered-Min-sum-Decoders-for-Cyclic-Codes
https://github.com/Dies-Irae/Neural-Layered-Min-sum-Decoders-for-Cyclic-Codes
https://github.com/Dies-Irae/Neural-Layered-Min-sum-Decoders-for-Cyclic-Codes
https://github.com/Dies-Irae/Neural-Layered-Min-sum-Decoders-for-Cyclic-Codes
https://github.com/Dies-Irae/Neural-Layered-Min-sum-Decoders-for-Cyclic-Codes
https://github.com/Dies-Irae/Neural-Layered-Min-sum-Decoders-for-Cyclic-Codes
https://github.com/Dies-Irae/Neural-Layered-Min-sum-Decoders-for-Cyclic-Codes
https://github.com/Dies-Irae/Neural-Layered-Min-sum-Decoders-for-Cyclic-Codes
https://github.com/Dies-Irae/Neural-Layered-Min-sum-Decoders-for-Cyclic-Codes
https://github.com/Dies-Irae/Neural-Layered-Min-sum-Decoders-for-Cyclic-Codes
https://github.com/Dies-Irae/Neural-Layered-Min-sum-Decoders-for-Cyclic-Codes
https://github.com/Dies-Irae/Neural-Layered-Min-sum-Decoders-for-Cyclic-Codes
https://github.com/Dies-Irae/Neural-Layered-Min-sum-Decoders-for-Cyclic-Codes
https://github.com/Dies-Irae/Neural-Layered-Min-sum-Decoders-for-Cyclic-Codes
https://github.com/Dies-Irae/Neural-Layered-Min-sum-Decoders-for-Cyclic-Codes
https://github.com/Dies-Irae/Neural-Layered-Min-sum-Decoders-for-Cyclic-Codes
https://github.com/Dies-Irae/Neural-Layered-Min-sum-Decoders-for-Cyclic-Codes
https://github.com/Dies-Irae/Neural-Layered-Min-sum-Decoders-for-Cyclic-Codes
https://github.com/Dies-Irae/Neural-Layered-Min-sum-Decoders-for-Cyclic-Codes
https://github.com/Dies-Irae/Neural-Layered-Min-sum-Decoders-for-Cyclic-Codes
https://github.com/Dies-Irae/Neural-Layered-Min-sum-Decoders-for-Cyclic-Codes
https://github.com/Dies-Irae/Neural-Layered-Min-sum-Decoders-for-Cyclic-Codes
https://github.com/Dies-Irae/Neural-Layered-Min-sum-Decoders-for-Cyclic-Codes
https://github.com/Dies-Irae/Neural-Layered-Min-sum-Decoders-for-Cyclic-Codes
https://github.com/Dies-Irae/Neural-Layered-Min-sum-Decoders-for-Cyclic-Codes
https://github.com/Dies-Irae/Neural-Layered-Min-sum-Decoders-for-Cyclic-Codes
https://github.com/Dies-Irae/Neural-Layered-Min-sum-Decoders-for-Cyclic-Codes
https://github.com/Dies-Irae/Neural-Layered-Min-sum-Decoders-for-Cyclic-Codes
https://github.com/Dies-Irae/Neural-Layered-Min-sum-Decoders-for-Cyclic-Codes
https://github.com/Dies-Irae/Neural-Layered-Min-sum-Decoders-for-Cyclic-Codes
https://github.com/Dies-Irae/Neural-Layered-Min-sum-Decoders-for-Cyclic-Codes
https://github.com/Dies-Irae/Neural-Layered-Min-sum-Decoders-for-Cyclic-Codes
https://github.com/Dies-Irae/Neural-Layered-Min-sum-Decoders-for-Cyclic-Codes
https://github.com/Dies-Irae/Neural-Layered-Min-sum-Decoders-for-Cyclic-Codes
https://github.com/Dies-Irae/Neural-Layered-Min-sum-Decoders-for-Cyclic-Codes
https://github.com/Dies-Irae/Neural-Layered-Min-sum-Decoders-for-Cyclic-Codes
https://github.com/Dies-Irae/Neural-Layered-Min-sum-Decoders-for-Cyclic-Codes
https://github.com/Dies-Irae/Neural-Layered-Min-sum-Decoders-for-Cyclic-Codes
https://github.com/Dies-Irae/Neural-Layered-Min-sum-Decoders-for-Cyclic-Codes
https://github.com/Dies-Irae/Neural-Layered-Min-sum-Decoders-for-Cyclic-Codes
https://github.com/Dies-Irae/Neural-Layered-Min-sum-Decoders-for-Cyclic-Codes
https://github.com/Dies-Irae/Neural-Layered-Min-sum-Decoders-for-Cyclic-Codes
https://github.com/Dies-Irae/Neural-Layered-Min-sum-Decoders-for-Cyclic-Codes
https://github.com/Dies-Irae/Neural-Layered-Min-sum-Decoders-for-Cyclic-Codes
https://github.com/Dies-Irae/Neural-Layered-Min-sum-Decoders-for-Cyclic-Codes
https://github.com/Dies-Irae/Neural-Layered-Min-sum-Decoders-for-Cyclic-Codes
https://github.com/Dies-Irae/Neural-Layered-Min-sum-Decoders-for-Cyclic-Codes
https://github.com/Dies-Irae/Neural-Layered-Min-sum-Decoders-for-Cyclic-Codes
https://github.com/Dies-Irae/Neural-Layered-Min-sum-Decoders-for-Cyclic-Codes
https://github.com/Dies-Irae/Neural-Layered-Min-sum-Decoders-for-Cyclic-Codes
https://github.com/Dies-Irae/Neural-Layered-Min-sum-Decoders-for-Cyclic-Codes
https://github.com/Dies-Irae/Neural-Layered-Min-sum-Decoders-for-Cyclic-Codes
https://github.com/Dies-Irae/Neural-Layered-Min-sum-Decoders-for-Cyclic-Codes
https://github.com/Dies-Irae/Neural-Layered-Min-sum-Decoders-for-Cyclic-Codes
https://github.com/Dies-Irae/Neural-Layered-Min-sum-Decoders-for-Cyclic-Codes
https://github.com/Dies-Irae/Neural-Layered-Min-sum-Decoders-for-Cyclic-Codes
https://github.com/Dies-Irae/Neural-Layered-Min-sum-Decoders-for-Cyclic-Codes
mailto:mwang42@ncsu.edu
mailto:yongli@cqu.edu.cn
mailto:jliu96@ncsu.edu
mailto:tguo@cqu.edu.cn
mailto:huihui.wu@mail.mcgill.ca
mailto:francis-cm.lau@polyu.edu.hk
https://doi.org/10.1016/j.phycom.2023.102194

M. Wang, Y. Li, J. Liu et al. Physical Communication 61 (2023) 102194

The benefit is that the number of weights is independent of code

length and the network trained on short codes can be easily

scaled to long codes. In [16], the authors modified the activation

function of nodes to maintain the sparse property. The authors

also proposed a method to learn from the teacher decoder, which

is a decoder with better performance. The proposed algorithm

improves the error performance while the complexity is the same

as the neural BP decoder. Recently, the authors of [17] proposed a

cyclically equivariant neural decoder to decode cyclic codes. They

exploited the cyclic property of the codes to reduce the number

of trainable weights, and the decoding procedure is performed on

cyclic redundant parity-check matrices. The cyclically equivariant

neural decoder achieves better error correction performance than

the decoders proposed in [6,18]. Additionally, the authors in [17]

proposed a list decoding method to improve the performance

of cyclically equivariant decoder. Particularly, it requires up to

64 × 20× 5 iterations to achieve the near ML performance of

the BCH(63,45,7) code. This is much less than that of the mRRD

decoder in [6] which otherwise requires up to 50 × 50 × 5

iterations. Buchberger et al. [19] proposed to perform decoding

on large redundant matrices to obtain better performance. In

order to construct these huge parity-check matrices, the authors

used all the codewords with the minimum weight from the

dual codes of original codes as rows. Next, they trained neural

networks representing these matrices and pruned the rows and

the corresponding neural network at each iteration. The proposed

decoder achieves near ML performance on certain Reed–Muller

codes without using the list decoder or mRRD algorithm. How-

ever, the number of codewords with the minimum weight may

be numerous in the dual code, and it is even difficult to calculate

the minimum distances of some codes. We also point out that

the computational complexity at each iteration increases with

the growing dimension of parity-check matrices for the BP-based

algorithms. In contrast, [20] proposed a bottom-up neural min-

sum method which introduces trainable parameters gradually to

decode LDPC codes. This method allows better tradeoff between

complexity and performance. Neural BP-based algorithms have

also been utilized to decode quasi-cyclic (QC) LDPC codes [21].1

It is noted that the layered min-sum algorithm [22] enjoys

much faster convergence compared with the flooding scheduled

version. This motivates us to construct neural networks based on

the layered min-sum algorithm, so as to further reduce the com-

putational complexity and enhance the decoding performance.

To summarize, the main contributions of this paper include the

following aspects.

• We propose a low complexity neural decoder based on the

layered min-sum algorithm. The proposed decoder achieves

better performance using the same number of iterations

while fewer trainable weights compared to existing neural

decoders. It also supports that neural BP-based decoders

achieve better performance by attenuating the magnitude

of messages rather than compensating for short cycles.

• We apply the mRRD algorithm to the proposed decoder

to obtain near ML performance for some codes, and we

introduce an early stopping criterion to accelerate the de-

coding process. The average number of iterations needed

for different signal-to-noise ratios (SNR) are significantly

lower than that of the list decoder in [17] and the maximum

number of iterations is merely 1/5 of the latter.

1 The algorithm assigns weights by exploiting the quasi-cyclic structure of

QC-LDPC codes, which makes it inapplicable for common cyclic codes.

2. Preliminaries

An (n, k, d) linear block code is a code of length n, dimension k

and minimum Hamming distance d. Assume the communication

channel is a binary input additive white Gaussian noise (BI-

AWGN) channel. A codeword u = (u1, u2, . . . , un) ∈ {0, 1}n is

first modulated as y = ((−1)u1 , (−1)u2 , ..(−1)un) and then y is

sent over the channel. Let the noise vector be n ∈ R
n, where

ni ∼ N (0, σ 2). Then the received vector is r = y + n. In the

flooding scheduled min-sum algorithm, the log-likelihood ratios

(LLRs) are passed simultaneously and repeatedly between the

check nodes and variable nodes, and the update rules at the kth

iteration can be described as follows.

1. Variable nodes vi to check nodes cj update:

lkvi→cj
= lchvi +

∑

cj′∈N(vi)\{cj}

lkcj′→vi
, (1)

where lchvi is the channel LLR of vi and N(vi) refers to the

check nodes that are adjacent to node vj and ‘‘\’’ is a

subtraction between two sets.

2. Check nodes cj to variable nodes vi update:

lk+1
cj→vi

= min
vi′∈N(cj)\{vi}

|lkvi′→cj
| ·

∏

vi′∈N(cj)\{vi}

sign(lkvi′→cj
). (2)

To perform a min-sum algorithm with imax iterations, the above

updates are repeated for imax times. In the neural normalized

min-sum (NNMS) algorithm [6], Eq. (2) is modified as

lk+1
cj→vi

= wk
vi′→cj

min
vi′∈N(cj)\{vi}

|lkvi′→cj
| ·

∏

vi′∈N(cj)\{vi}

sign(lkvi′→cj
), (3)

where wvi→cj ∈ (0, 1) is the trainable weight of the edge (vi, cj).

In contrast to the flooding min-sum algorithm, the layered (or

asynchronous) min-sum algorithm converges much faster while

retaining the same or better error correction performance. The

reason is that the check nodes are not updated simultaneously

but sequentially in the layered min-sum algorithm. Therefore, the

check nodes updated later could utilize the latest LLR information

from the previously updated nodes in the same iteration. This

motivates us to generalize the layered min-sum algorithm to its

neural network counterpart as described next.

3. The proposed neural decoder

3.1. Neural layered min-sum

The layered min-sum algorithm divides the Tanner graph into

several clusters and serially performs decoding iterations within

each cluster. Thus, nodes can acquire newer information from

priorly updated nodes and accelerate the convergence. In ad-

dition to generalizing neural min-sum algorithm to its layered

counterpart, we will explore a different policy of weight assign-

ment. BP-based algorithms usually have unsatisfactory perfor-

mance on codes with dense parity-check matrices, and short

cycles are commonly considered as the main reason for this phe-

nomenon [6,13,15,19]. As a result, edge-wise weight assignment

are proposed to compensate the effect of short cycles by making

messages in short cycles less reliable. However, according to [23],

the edge-wise weighted neural BP decoder do not significantly

change the distribution of errors, and in some circumstances,

small cycles are not the main factor of performance degradation.

Which means the performance gain of neural BP-based decoders

may not be achieved by compensating short cycles or trapping

sets. Therefore, we set iteration-wise weights for the neural lay-

ered min-sum decoder to reduce the number of weights, while

2

M. Wang, Y. Li, J. Liu et al. Physical Communication 61 (2023) 102194

Fig. 1. The exemplary structure of the proposed neural layered min-sum decoder in accordance to the Tanner graph at the bottom. The purple dashed lines correspond

to trainable weights, and it is noted that they share the same values at each iteration. The black circles represent the additions of LLRs from the previous update.

still retaining the error correction performance (see Fig. 2). The

reduction on trainable weights is significant. For example, an

(n − k) × n parity-check matrix of the (63,45,7) BCH code has

ne = 432 edges and row weight nr = 24. If we use edge-wise

weights as in the NNMS algorithm with imax iterations, the total

number of weights would be ne × imax = 432× imax. The cyclically

equivariant decoder (CEBP) [17] requires an n×n cyclic redundant

matrix and needs nr × nr × imax = 576 × imax weights. The edge-

wise weighted NNMS would need n × nr × imax = 1512 × imax

weights using cyclic redundant matrix. The original matrix H and

cyclic redundant matrix Hcyc have the form of Eq. (4), where H1

is the first row of H and ‘‘k’’ is cyclically right shift.

H =

⎡

⎢

⎣

H1

H1 k 1

· · ·
H1 k (n − k − 1)

⎤

⎥

⎦
,Hcyc =

⎡

⎢

⎣

H

H1 k (n − k)

· · ·
H1 k (n − 1)

⎤

⎥

⎦
(4)

On the other hand, if we employ the iteration-wise weights,

the total number of weights would be only imax regardless of

the utilization of decoding matrices. The update rule for each

iteration in the neural layered min-sum algorithm is described

as follows.

For each check node cj, variable nodes vi ∈ N(cj), and 1 f k f
imax:

1. Variable nodes to check nodes update, where l1vi = lchvi and

l0cj→vi
= 0:

lkvi = lkvi − lk−1
cj→vi

. (5)

2. Check nodes to variable nodes update:

lkcj→vi
= wk min

vi′∈N(cj)\{vi}
|lkvi′

|
∏

vi′∈N(cj)\{vi}

sign(lkvi′
). (6)

3. Variable nodes LLR update:

lk+1
vi

= lkvi + lkcj→vi
(7)

By replacing wk
vi′→cj

in Eq. (3) by wk in Eq. (6), we greatly reduce

the number of weights.

The structure of the neural layered min-sum algorithm is
demonstrated in Fig. 1. The output vector o can be interpreted as

an estimation of the LLR vector, i.e. oi ≈ log
P(ui=0|r)

P(ui=1|r)
. Therefore,

the output can be converted to the probability estimation from
the sigmoid function (sig(x) = 1/(1 + e−x)). In other words,
sig(oi) ≈ P(ui = 0|r) and sig(−oi) ≈ P(ui = 1|r). In order
to measure the difference between the output vector o and the
labels (i.e., the true codeword u), a binary cross entropy loss
function is used, i.e.,

L(o,u) = −
1

n

n
∑

i=1

ui log(sig(−oi)) + (1 − ui) log(sig(oi)). (8)

3.2. Accelerated neural mRRD

To further enhance the decoding performance of the pro-
posed neural layered min-sum algorithm, the mRRD algorithm
is incorporated. It permutes the received vector multiple times
and then decodes these permuted vectors. A simple example of
permutation is described as follows. Given a permutation π =
(

1 2 3
3 2 1

)

, it permutes any codeword u = (u1, u2, u3) to π (u) =
(u3, u2, u1). The permutations used in the decoding process are
chosen from the automorphism group Per(C), which consists of
all permutations that preserve the codewords from the code
ensemble C. The automorphism group is defined by

Aut(C) = {π |π (u) ∈ C, ∀u ∈ C} . (9)

We also apply an early stopping criterion [24,25] to the mRRD
algorithm, and it enables the decoding procedure to stop im-
mediately once the ML codeword is found. The mRRD algorithm
of size (W,L, imax) is summarized in Algorithm 1. The size of a
decoder is denoted by (W,L, imax), implying the required number
of iterations in the worst case is W × L × imax. The core idea of
the mRRD algorithm is to permute the input vector, and thus the
input diversity grows greatly. As a consequence, the application of
permutation may yield different outputs and increases the prob-
ability of producing a correct result. Moreover, permuting the
codewords during the decoding procedure can effectively prevent
the propagation of false information caused by trapping sets or
short cycles [23]. Finally, we can choose the best estimation from

3

M. Wang, Y. Li, J. Liu et al. Physical Communication 61 (2023) 102194

all the successfully decoded results in terms of their correlation

discrepancies λ(r, û). Herein, a threshold GT (û, d) [25] defined to

be the sum of magnitude of some components from r is used to

check whether a decoded vector is an ML codeword, where û is a

decoding result. The details of this early stop criterion is described

as follows. Firstly we define

zi =

{

0 if ri g 0

1 if ri < 0
, (10)

D0(û) = {i |vi = zi}, D1(û) = {i |vi ̸= zi} , (11)

λ(r, û) =
∑

i∈D1(û)

|ri| . (12)

Assume there are n
û
elements in D1(û), and the index set D0(û)

has n − n
û
elements, which can be arranged in ascending order

of reliability. That is, D0(û) = {l1, l2, . . . , ln−n
û
} and |rli | f |rlj | for

i < j. The first j elements in D0(û) is denoted as:

D
(j)

0 (û) = {l1, l2, . . . , lj} . (13)

Define δ = d − n
û
and GT (û, d) =

∑

i∈D
(δ)
0

(û)
|ri|. If λ(r, û) f

GT (û, d), then û is the ML codeword of r.

Algorithm 1 The proposed mRRD(W,L, imax)

Input: Received vector r

Output: Decoded vector û

Initialize: o = r, S = ∅
for i ∈ {1, . . . ,W} do

for j ∈ {1, . . . ,L} do

Randomly draw a permutation π from Per(C)

o = Min-sum(π (o)) /* Perform min-sum decoding with

input π (o), up to imax iterations*/

û = Hard-Decision(o)

o = π−1(o), û = π−1(û) /*Reorder the bits to its original

(unpermuted) order*/.

if ûHT = 0 then

S = S∪{û} /*Append a successfully decoded result to the

candidate codeword set*/

if λ(r, û) f GT (û, d) then

return û /*End the decoding process immediately

when the ML codeword is found.*/

end if

break /*End the j-loop if a codeword is found.*/

end if

end for

end for

if |S| ̸= 0 then

return argmin
û∈Sλ(r, û) /*Return the most likely codeword if

there is no ML codeword identified.*/

else

Declare a decoding failure.

end if

4. Simulation results and discussions

In this section, we will use the acronym ‘‘CEBP’’ to refer to the

cyclically equivariant BP decoder in [17], and the acronyms ‘‘LMS’’

and ‘‘NLMS’’ to denote the layered min-sum and neural layered

min-sum algorithms, respectively. It is worth mentioning that the

CEBP can only be applied to cyclic redundant matrices. Similar to

other neural BP-based decoders, e.g., [6,19], our proposed decoder

is trained using 400,000 all-zero codewords corrupted by ran-

domly generated Gaussian noise of SNR vary from 1 to 7 dB and

imax = 5 is set for all decoders. The optimizer used in training is

RMSProp with learning rate of 0.01, and other parameters remain

Fig. 2. The performance of NLMS over H, where dashed lines and solid lines

correspond to the performance of edge-wise weighted NLMS and iteration-wise

weighted NLMS, respectively.

Fig. 3. Bit error rate (BER) performance of BCH(63,45,7) code.

the same as PyTorch’s default value. The batch size and number

of epoch are set to 2000 and 10, respectively. For the test stage,

randomly generated codewords and Gaussian noise are used for

performance evaluation. All reported data points are obtained by

simulation until no less than 100 error frames occur.

4.1. Performance of NLMS decoding

Fig. 2 shows that our proposed decoder achieves similar per-

formance with reduced number of weights compared to the de-

coder with edge-wise weights. Edge-wise weights are proposed

to mitigate the effects of 4-cycles [6]. However, according to [23],

instead of 4-cycles, small trapping sets are sometimes the main

cause of performance degradation in high-density parity-check

(HDPC) codes, and edge-wise weights cannot reduce the im-

pact of trapping sets. Result in Fig. 2 also shows that edge-wise

weight assignment may be unnecessary, and implies that neu-

ral BP-based decoders achieve better performance by properly

attenuating the message instead of compensating short cycles.

Because iteration-wise assignment cannot compensate for short

cycles while can achieve the same performance as edge-wise

assignment.

Simulation results of the (63,45,7) BCH code are shown in

Fig. 3. The first row of its parity-check matrix (i.e. H1) is (1, 1, 0,

4

M. Wang, Y. Li, J. Liu et al. Physical Communication 61 (2023) 102194

Fig. 4. BER performance of BCH(63,36,11) code.

Fig. 5. BER performance of QR(47,24,11) code.

0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1,

1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0). It can be observed that the LMS has similar

bit error rate (BER) performance over H and Hcyc . Note that the

NLMS decoder achieves a significant gain over the LMS coun-

terpart in both cases of H and Hcyc , and the improvement are

0.35 dB and 1.12 dB, respectively at BER = 10−4. Moreover, it is

found that the NLMS decoder with Hcyc significantly outperforms

the one using the original matrix H, and this phenomenon is

also observed for codes of different lengths. Additionally, the

performance gain of the NLMS decoder over the CEBP decoder

is 0.06 dB at BER = 4 × 10−6.

The performance comparison of different decoders on the

(63,36,11) BCH code is illustrated in Fig. 4. The H1 of this code is

(1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1,

1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0). It is noted that the NLMS decoder

achieves a gain of 0.58 dB over the LMS decoder in the case of

H, and a gain of 1.20 dB in the case of Hcyc at BER = 2 × 10−4.

Further, we found that the NLMS decoder outperforms the CEBP

counterpart by 0.37 dB at BER = 10−5.

The BER performance of different decoders on the (47,24,11)

QR code is plotted in Fig. 5 . The H1 of this code is (1, 1, 0, 0, 1, 0,

1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0). It can be seen that the NLMS

decoder achieves a gain of 0.64 dB over the LMS decoder using

Fig. 6. BER performance of QR(71,36,11) code.

H, and a gain of 1.18 dB in the case of Hcyc for BER = 2 × 10−4.
We also observe that the NLMS decoder outperforms the CEBP
decoder by 0.32 dB at BER = 10−5.

The BER curves of different decoders on the (71,36,11) QR code
are depicted in Fig. 6 . The H1 of this code is (1, 1, 1, 1, 0, 0, 0, 1, 0,
0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1,
0, 1, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0). The NLMS decoder achieves a gain of
0.90 dB over the LMS decoder with H and a gain of 1.38 dB in the
case of Hcyc at BER = 4 × 10−4. Moreover, it is noticed that the
NLMS decoder outperforms the CEBP decoder by 0.29 dB at BER
= 10−5. The NLMS over Hcyc demonstrates superior performance,
so we will use Hcyc throughout the remaining experiments.

4.2. Discussions on cyclic redundant matrices

The complexity of BP-based algorithms is proportional to the
size of parity-check matrices and iterations. After applying the
cyclic redundant matrix, each iteration is more complex than
the decoder using the original matrix. For example, the original
parity-check matrix H of the QR (47,24) code has the size of
23 × 47, and the cyclic redundant matrix Hcyc has the size of
47 × 47, which result in a 2.04 times complexity. As a result, we
need to set the maximum iterations of the decoder using H to 2
times than that of the decoder using Hcyc . For BCH (63, 45) code,
this number should be 3.5 times.

From Fig. 7 we can see that the NLMS decoder based on
Hcyc outperforms NOMS [14] based on H consistently. It is noted
that Hcyc have much more short cycles than H. For example,
there are 1455 4-cycles and 57,130 6-cycles in the original H
of the QR (47, 24) code, however, the Hcyc has 4371 4-cycles

and 277,488 6-cycles. In contrast, 92 small trapping sets2 were
found in H but 0 was found in Hcyc . This also explains why neural
network decoders based on Hcyc can outperform that based on H
at comparable complexity.

4.3. Discussions on the number of iterations

In previous works, e.g. [6,13,14,18,23], the neural network
decoders are usually trained with a few iterations. One could
argue that neural BP-based methods achieve better performance
only by accelerating the convergence through message atten-
uation, consequently, these neural BP-based algorithms cannot

2 Here, ‘‘small trapping sets’’ refers to trapping sets satisfying a+b < 8, where

a, b are the number of variable nodes and unsatisfied check nodes, respectively.

5

M. Wang, Y. Li, J. Liu et al. Physical Communication 61 (2023) 102194

Fig. 7. BER performance of different decoders based on different matrices at a

comparable complexity.

Fig. 8. BER performance of decoders for the QR (47, 24) with different maximum

iterations.

outperform original BP-based algorithms when we increase the
number of iterations. From Fig. 8 we can see that the performance
gap between LMS and NLMS over H vanishes when the number of
iterations reaches 100. This validates the argument we mentioned
before. However, the NLMS over Hcyc consistently outperforms all
the other decoders with a noticeable gain. We also noted that the
LMS over Hcyc has higher BER than LMS over H when the number
of iterations are large. This is probably because the Hcyc has more
check nodes than the regular H, thus producing extreme extrinsic
information magnitudes. But the NLMS can properly attenuate
the extrinsic information to achieve a better error rate.

4.4. Performance of neural mRRD algorithm

The ML decoding performance of BCH codes in this section is
cited from the database in [26]. The ML performance of QR and
punctured RM codes is obtained by simulation, and the details are
described in [27]. The ‘‘LD’’ refers to the list decoder with CEBP
decoding of [17] and the term ‘‘NmRRD’’ refers to our proposed
neural mRRD in Algorithm 1.

It can be seen from Fig. 9 that with the growing width W of
decoders, both the NmRRD and LD can achieve near ML perfor-
mance. For the NmRRD and LD with the best performance, the
worst-case number of iterations of the LD is 5 times that of the
NmRRD algorithm (i.e., 64×20×5 = 5×(256×5×1)). In addition,

Fig. 9. FER performance of the BCH(63,45,7) code.

Fig. 10. FER performance of the punctured RM(127,99,7) code.

our mRRD(256,5,1) algorithm achieves a gain of 0.34 dB over the
LD(16,20,5) with comparable number of iterations. Moreover, the
NmRRD(16,5,1) and NmRRD(32,5,1) algorithms achieve similar
performance as LD(8,20,5) and LD(16,20,5), respectively. But the
number of iterations used in the NmRRD algorithm is reduced
significantly by 90%.

Fig. 10 shows the FER performance of the NmRRD algorithm
and LD algorithm with different sizes for the (127,99,7) punctured
Reed–Muller (RM) code of which H1 = (1, 0, 1, 0, 1, 0, 1, 0, 0, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1,
1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0,
0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0,
0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0). Both the NmRRD and LD can
achieve close ML performance. But our decoder can achieve
similar FER performance with fewer iterations.

The FER performance of the NmRRD algorithm with different
sizes for the (47,24,11) QR code is shown in Fig. 11. The per-
formance of the LD on the QR code is absent since the affine
permutations used in the LD cannot be applied directly to the QR
code. Notably, one can see that the NmRRD(128,5,1) algorithm
approaches the optimal ML decoding performance with a gap of
0.1 dB when FER is 1 × 10−5.

5. Complexity analysis

We point out that both the proposed NLMS and NmRRD algo-
rithms can be conducted in parallel. But for the sake of simplicity,

6

M. Wang, Y. Li, J. Liu et al. Physical Communication 61 (2023) 102194

Fig. 11. FER performance of the QR(47,24,11) code.

Fig. 12. Comparison of average iterations on the BCH(63,45,7) code.

the complexity analysis in Table 1 counts the total numbers of

various operations, i.e. when all operations run serially. Given

an n × n cyclic redundant matrix Hcyc , let nr be its row weight.

Then the column weight of Hcyc is also nr . For each iteration,

the LD needs n(nr − 1) additions, n(3nr − 2) multiplications, n

tanh(·) operations and n tanh−1(·) operations. In contrast, each

NmRRD iteration consists of n(nr −1) additions, n multiplications,

n(nr − 2) sign flips and n min(·) operations. The complexities

of the LD and the proposed NmRRD algorithm are evaluated by

simulating 10,000 frames for each SNR and then calculating the

average number of iterations, as shown in Fig. 12. Recall that

the maximum number of iterations of the NmRRD algorithm is

only 1/5 of that of the LD when similar near ML performance is

attained. Now it can be noticed from Fig. 12 that the complexity

reduction is further magnified with increasing Eb/N0, e.g. the

average number of iterations of NmRRD(256,5,1) is about 5% of

that of LD(64,20,5) when Eb/N0 = 5 dB, which could be attributed

to the early stopping criterion in the proposed NmRRD algorithm.

6. Conclusion

This paper proposes a neural layered min-sum (NLMS) de-

coding algorithm to decode binary cyclic codes. Using the cyclic

Table 1

The number of operations for different decoders on an (n, k, d) code.

Algorithm + × tanh tanh−1 sign flips min

LD n(nr − 1)i n(3nr − 2)i n × i n × i 0 0

NmRRD n(nr − 1)i n × i 0 0 n(nr − 2)i n × i

redundant matrix, we observed that the performance of the NLMS

decoding could be greatly improved, while the performance im-

provement over the original parity-check matrix is limited. More-

over, the proposed NLMS decoder with the cyclic redundant

matrix consistently outperforms the neural decoder proposed

in [17], and it also has lower computational complexity. In order

to approach the maximum likelihood (ML) decoding performance,

we further combine the mRRD method with the proposed NLMS

decoder. The resultant NmRRD algorithm achieves near ML per-

formance for certain codes and reaches a significant reduction of

computations compared to the list decoder of [17].

Declaration of competing interest

The authors declare that they have no known competing finan-

cial interests or personal relationships that could have appeared

to influence the work reported in this paper.

Data availability

Source code available in https://github.com/Dies-Irae/Neural-

Layered-Min-sum-Decoders-for-Cyclic-Codes.

Acknowledgements

This work was supported by National Natural Science Founda-

tion of China under Grant (No. U22A2026 and No.61771081), the

Fundamental Research Funds for the Central Universities (China)

under Grant cstc2019jcyjmsxmX0110. The work by Jianqing Liu

was supported in part by National Science Foundation, China

under grant ECCS-2312738.

References

[1] K.-M. Cheung, F. Pollara, Phobos Lander Coding System: Software and

Analysis, Telecommun and Data Acquisition Report, 1988.

[2] S.B. Wicker, Error Control Systems for Digital Communication and Storage,

Prentice-Hall, Inc., USA, 1994.

[3] B. Honary, B. Hunt, M. Maundrell, Improving automatic link establishment

through a new soft decision trellis decoder for the (24,12) Golay code, in:

1994 Sixth Int. Conference on HF Radio Systems and Techniques, 1994, pp.

182–185, http://dx.doi.org/10.1049/cp:19940489.

[4] M. Shirvanimoghaddam, M.S. Mohammadi, R. Abbas, A. Minja, C. Yue, B.

Matuz, G. Han, Z. Lin, W. Liu, Y. Li, S. Johnson, B. Vucetic, Short block-length

codes for ultra-reliable low latency communications, IEEE Commun. Mag.

57 (2) (2019) 130–137, http://dx.doi.org/10.1109/MCOM.2018.1800181.

[5] I. Dimnik, Y. Be’ery, Improved random redundant iterative HDPC decoding,

IEEE Trans. Commun. 57 (7) (2009) 1982–1985, http://dx.doi.org/10.1109/

TCOMM.2009.07.070621.

[6] E. Nachmani, E. Marciano, L. Lugosch, W.J. Gross, D. Burshtein, Y. Be’ery,

Deep learning methods for improved decoding of linear codes, IEEE J. Sel.

Top. Signal Process. 12 (1) (2018) 119–131, http://dx.doi.org/10.1109/JSTSP.

2017.2788405.

[7] H. Kim, Y. Jiang, R.B. Rana, S. Kannan, S. Oh, P. Viswanath, Commu-

nication algorithms via deep learning, in: Int. Conference on Learning

Representations, 2018.

[8] Y. Zhang, H. Wu, M. Coates, On the design of channel coding autoencoders

with arbitrary rates for ISI channels, IEEE Wirel. Commun. Lett. 11 (2)

(2022) 426–430, http://dx.doi.org/10.1109/LWC.2021.3131848.

[9] Y. Jiang, H. Kim, H. Asnani, S. Kannan, S. Oh, P. Viswanath, LEARN codes:

Inventing low-latency codes via recurrent neural networks, IEEE J. Sel.

Areas Inf. Theory 1 (1) (2020) 207–216, http://dx.doi.org/10.1109/JSAIT.

2020.2988577.

7

https://github.com/Dies-Irae/Neural-Layered-Min-sum-Decoders-for-Cyclic-Codes
https://github.com/Dies-Irae/Neural-Layered-Min-sum-Decoders-for-Cyclic-Codes
https://github.com/Dies-Irae/Neural-Layered-Min-sum-Decoders-for-Cyclic-Codes
http://refhub.elsevier.com/S1874-4907(23)00197-0/sb1
http://refhub.elsevier.com/S1874-4907(23)00197-0/sb1
http://refhub.elsevier.com/S1874-4907(23)00197-0/sb1
http://refhub.elsevier.com/S1874-4907(23)00197-0/sb2
http://refhub.elsevier.com/S1874-4907(23)00197-0/sb2
http://refhub.elsevier.com/S1874-4907(23)00197-0/sb2
http://dx.doi.org/10.1049/cp:19940489
http://dx.doi.org/10.1109/MCOM.2018.1800181
http://dx.doi.org/10.1109/TCOMM.2009.07.070621
http://dx.doi.org/10.1109/TCOMM.2009.07.070621
http://dx.doi.org/10.1109/TCOMM.2009.07.070621
http://dx.doi.org/10.1109/JSTSP.2017.2788405
http://dx.doi.org/10.1109/JSTSP.2017.2788405
http://dx.doi.org/10.1109/JSTSP.2017.2788405
http://refhub.elsevier.com/S1874-4907(23)00197-0/sb7
http://refhub.elsevier.com/S1874-4907(23)00197-0/sb7
http://refhub.elsevier.com/S1874-4907(23)00197-0/sb7
http://refhub.elsevier.com/S1874-4907(23)00197-0/sb7
http://refhub.elsevier.com/S1874-4907(23)00197-0/sb7
http://dx.doi.org/10.1109/LWC.2021.3131848
http://dx.doi.org/10.1109/JSAIT.2020.2988577
http://dx.doi.org/10.1109/JSAIT.2020.2988577
http://dx.doi.org/10.1109/JSAIT.2020.2988577

M. Wang, Y. Li, J. Liu et al. Physical Communication 61 (2023) 102194

[10] Y. Jiang, H. Kim, H. Asnani, S. Kannan, S. Oh, P. Viswanath, Turbo

autoencoder: Deep learning based channel codes for point-to-point

communication channels, in: NeurIPS, 2019, pp. 2754–2764.

[11] L. Huang, H. Zhang, R. Li, Y. Ge, J. Wang, AI coding: Learning to construct

error correction codes, IEEE Trans. Commun. 68 (1) (2020) 26–39, http:

//dx.doi.org/10.1109/TCOMM.2019.2951403.

[12] P. Chen, L. Shi, Y. Fang, F.C.M. Lau, J. Cheng, Rate-diverse multiple access

over Gaussian channels, IEEE Trans. Wireless Commun. (2023) 1, http:

//dx.doi.org/10.1109/TWC.2022.3233798.

[13] E. Nachmani, Y. Be’ery, D. Burshtein, Learning to decode linear codes

using deep learning, in: 2016 54th Annual Allerton Conference on Com-

munication, Control, and Computing (Allerton), 2016, pp. 341–346, http:

//dx.doi.org/10.1109/ALLERTON.2016.7852251.

[14] L. Lugosch, W.J. Gross, Neural offset min-sum decoding, in: 2017 IEEE Int.

Symp. on Info. Theory (ISIT), 2017, pp. 1361–1365, http://dx.doi.org/10.

1109/ISIT.2017.8006751.

[15] K. Tian, C. Yue, C. She, Y. Li, B. Vucetic, A scalable graph neural network

decoder for short block codes, 2022, arXiv:2211.06962.

[16] E. Nachmani, Y. Be’ery, Neural decoding with optimization of node activa-

tions, IEEE Commun. Lett. 26 (11) (2022) 2527–2531, http://dx.doi.org/10.

1109/LCOMM.2022.3197974.

[17] X. Chen, M. Ye, Cyclically equivariant neural decoders for cyclic codes, in:

Int. Conf. on Machine Learning (ICML), PMLR, 2021, pp. 1771–1780.

[18] E. Nachmani, L. Wolf, Hyper-graph-network decoders for block codes, in:

Advances in Neural Information Proc. Systems, 32, Curran Associates, Inc.,

2019.

[19] A. Buchberger, C. Häger, H.D. Pfister, L. Schmalen, A. Graell i Amat, Pruning

and quantizing neural belief propagation decoders, IEEE J. on Sel. Areas

in Comm. 39 (7) (2021) 1957–1966, http://dx.doi.org/10.1109/JSAC.2020.

3041392.

[20] G. Li, X. Yu, Y. Luo, G. Wei, A bottom-up design methodology of neural

min-sum decoders for LDPC codes, IET Commun. 17 (3) (2023) 377–386,

http://dx.doi.org/10.1049/cmu2.12547.

[21] N. Shah, Y. Vasavada, Neural layered decoding of 5G LDPC codes, IEEE Com-

mun. Lett. 25 (11) (2021) 3590–3593, http://dx.doi.org/10.1109/LCOMM.

2021.3113610.

[22] D. Hocevar, A reduced complexity decoder architecture via layered decod-

ing of LDPC codes, in: IEEE Workshop on Signal Proc. Systems, 2004, 2004,

pp. 107–112, http://dx.doi.org/10.1109/SIPS.2004.1363033.

[23] M. Wang, Y. Li, R. Liu, H. Wu, Y. Hu, F.C.M. Lau, Decoding quadratic

residue codes using deep neural networks, Electronics 11 (17) (2022)

http://dx.doi.org/10.3390/electronics11172717.

[24] T. Kaneko, T. Nishijima, H. Inazumi, S. Hirasawa, An efficient maximum-

likelihood-decoding algorithm for linear block codes with algebraic

decoder, IEEE Trans. Inform. Theory 40 (2) (1994) 320–327, http://dx.doi.

org/10.1109/18.312155.

[25] Y. Li, P. Zhang, L. Wang, T.-K. Truong, Comments on ‘‘on decoding of the

(89, 45, 17) quadratic residue code’’, IEEE Trans. Commun. 63 (2) (2015)

578–579, http://dx.doi.org/10.1109/TCOMM.2014.2386854.

[26] M. Helmling, S. Scholl, F. Gensheimer, T. Dietz, K. Kraft, S. Ruzika, N.

Wehn, Database of channel codes and ML simulation results, 2019, URL

www.uni-kl.de/channel-codes.

[27] Y. Li, Q. Chen, H. Liu, T.-K. Truong, Performance and analysis of quadratic

residue codes of lengths less than 100, 2014, http://dx.doi.org/10.48550/

ARXIV.1408.5674, URL https://arxiv.org/abs/1408.5674.

Ming Wang is currently pursuing the Ph.D degree in

Computer Science from North Carolina State University.

He received the B.Eng. degree from Chongqing Uni-

versity of Posts and Telecommunications, Chongqing,

China in 2020 and the M.Sc degree from Chongqing

University. His research interests include channel

coding, neural network and machine learning.

Yong Li received the B.Sc. degree in electronic and

information engineering from the Chongqing University

of Posts and Telecommunications (CQUPT), Chongqing,

China, in 2003, and the M.S. and Ph.D. degrees in

communication engineering from Xiamen University,

Fujian, China, in 2006 and 2012, respectively. Since

May 2018, he has been with the College of Computer

Science, Chongqing University, where he is currently

a Full Professor. He has published over 30 articles

in peer-reviewed journals or conference proceedings,

and held seven granted national patents and two U.S.

patents. His primary research interests include channel coding, computer vision,

and deep learning.

Jianqing Liu is currently an Assistant Professor at the

Department of Computer Science at NC State Univer-

sity. He received a Ph.D. degree from The University of

Florida in 2018 and a B.Eng. degree from the University

of Electronic Science and Technology of China in 2013.

His research interest is wireless communications and

networking, security and privacy. He received the U.S.

National Science Foundation Career Award in 2021.

He is also the recipient of several best paper awards

including the 2018 Best Journal Paper Award from

IEEE Technical Committee on Green Communications

& Computing (TCGCC)

Taolin Guo is currently an assistant researcher at the

College of Computer Science in Chongqing University,

China. He received the Ph.D. degree in Computer Sci-

ence in 2020 from Southeast University. His research

interests include security, privacy and social networks.

Huihui Wu received the B.Sc. degree in communication

engineering from Southwest University for National-

ities, Chengdu, China, in 2011, and the M.S. degree

in communication engineering from Xiamen Univer-

sity, Xiamen, China, in 2014. He received the Ph.D.

degree in electrical and computer engineering from

McMaster University, Hamilton, Canada, in 2018. From

2018 to 2019, he was a Postdoctoral Research Scien-

tist with Columbia University, New York, USA. He is

currently a Postdoctoral Researcher with McGill Uni-

versity, Montreal, Canada. His research interests include

channel coding, joint source and channel coding, signal quantization, wireless

communications, and deep learning.

Francis C.M. Lau (Fellow, IEEE/IET) received the B.Eng.

degree (Hons.) in electrical and electronic engineering

and the Ph.D. degree from King’s College London, Uni-

versity of London, U.K. He is currently a Professor at the

Department of Electronic and Information Engineering,

The Hong Kong Polytechnic University, Hong Kong. He

is the coauthor of two research monographs. He is

also a co-holder of six U.S. patents. He has published

more than 330 papers. His main research interests

include channel coding, cooperative networks, wireless

sensor networks, chaos-based digital communications,

applications of complex-network theories, and wireless communications.

8

http://refhub.elsevier.com/S1874-4907(23)00197-0/sb10
http://refhub.elsevier.com/S1874-4907(23)00197-0/sb10
http://refhub.elsevier.com/S1874-4907(23)00197-0/sb10
http://refhub.elsevier.com/S1874-4907(23)00197-0/sb10
http://refhub.elsevier.com/S1874-4907(23)00197-0/sb10
http://dx.doi.org/10.1109/TCOMM.2019.2951403
http://dx.doi.org/10.1109/TCOMM.2019.2951403
http://dx.doi.org/10.1109/TCOMM.2019.2951403
http://dx.doi.org/10.1109/TWC.2022.3233798
http://dx.doi.org/10.1109/TWC.2022.3233798
http://dx.doi.org/10.1109/TWC.2022.3233798
http://dx.doi.org/10.1109/ALLERTON.2016.7852251
http://dx.doi.org/10.1109/ALLERTON.2016.7852251
http://dx.doi.org/10.1109/ALLERTON.2016.7852251
http://dx.doi.org/10.1109/ISIT.2017.8006751
http://dx.doi.org/10.1109/ISIT.2017.8006751
http://dx.doi.org/10.1109/ISIT.2017.8006751
http://arxiv.org/abs/2211.06962
http://dx.doi.org/10.1109/LCOMM.2022.3197974
http://dx.doi.org/10.1109/LCOMM.2022.3197974
http://dx.doi.org/10.1109/LCOMM.2022.3197974
http://refhub.elsevier.com/S1874-4907(23)00197-0/sb17
http://refhub.elsevier.com/S1874-4907(23)00197-0/sb17
http://refhub.elsevier.com/S1874-4907(23)00197-0/sb17
http://refhub.elsevier.com/S1874-4907(23)00197-0/sb18
http://refhub.elsevier.com/S1874-4907(23)00197-0/sb18
http://refhub.elsevier.com/S1874-4907(23)00197-0/sb18
http://refhub.elsevier.com/S1874-4907(23)00197-0/sb18
http://refhub.elsevier.com/S1874-4907(23)00197-0/sb18
http://dx.doi.org/10.1109/JSAC.2020.3041392
http://dx.doi.org/10.1109/JSAC.2020.3041392
http://dx.doi.org/10.1109/JSAC.2020.3041392
http://dx.doi.org/10.1049/cmu2.12547
http://dx.doi.org/10.1109/LCOMM.2021.3113610
http://dx.doi.org/10.1109/LCOMM.2021.3113610
http://dx.doi.org/10.1109/LCOMM.2021.3113610
http://dx.doi.org/10.1109/SIPS.2004.1363033
http://dx.doi.org/10.3390/electronics11172717
http://dx.doi.org/10.1109/18.312155
http://dx.doi.org/10.1109/18.312155
http://dx.doi.org/10.1109/18.312155
http://dx.doi.org/10.1109/TCOMM.2014.2386854
http://www.uni-kl.de/channel-codes
http://dx.doi.org/10.48550/ARXIV.1408.5674
http://dx.doi.org/10.48550/ARXIV.1408.5674
http://dx.doi.org/10.48550/ARXIV.1408.5674
https://arxiv.org/abs/1408.5674

	Neural layered min-sum decoders for cyclic codes
	Introduction
	Preliminaries
	The Proposed Neural Decoder
	Neural Layered Min-Sum
	Accelerated Neural mRRD

	Simulation Results and Discussions
	Performance of NLMS Decoding
	Discussions on Cyclic Redundant Matrices
	Discussions on the Number of Iterations
	Performance of Neural mRRD Algorithm

	Complexity Analysis
	Conclusion
	Declaration of competing interest
	Data availability
	Acknowledgements
	References

