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A B S T R A C T   

This study employs supervised machine learning algorithms to test whether locomotive features during 
exploratory activity in open field arenas can serve as predictors for the genotype of fruit flies. Because of the 
nonlinearity in locomotive trajectories, traditional statistical methods that are used to compare exploratory 
activity between genotypes of fruit flies may not reveal all insights. 10-minute-long trajectories of four different 
genotypes of fruit flies in an open-field arena environment were captured. Turn angles and step size features 
extracted from the trajectories were used for training supervised learning models to predict the genotype of the 
fruit flies. Using the first five minute locomotive trajectories, an accuracy of 83% was achieved in differentiating 
wild-type flies from three other mutant genotypes. Using the final 5 min and the entire ten minute duration 
decreased the performance indicating that the most variations between the genotypes in their exploratory ac
tivity are exhibited in the first few minutes. Feature importance analysis revealed that turn angle is a better 
predictor than step size in predicting fruit fly genotype. Overall, this study demonstrates that features of tra
jectories can be used to predict the genotype of fruit flies through supervised machine learning methods.   

1. Introduction 

Features of locomotor activity of animals in open field arenas have 
been used to demonstrate differences between different genotypes or 
even in the same genotype in response to stimuli over time and across 
different situations (Bell et al., 2009; Perals et al., 2017). For example, 
an analysis of the locomotive behavior of mice deficient in the so
matostatin receptor 4 (sst4) gene, which mediates anti-depressant ef
fects and is a target for drug development, revealed that ss4 influences 
locomotive and exploratory movement in young mice but not during 
normal aging (Szentes et al., 2019). Likewise, the analysis of locomotive 
activities of different alleles of the Drosophila clock gene showed that 
double-time gene is responsible for setting up the period of locomotor 
activity rhythms of fruit flies (Price et al., 1998). Increasingly, re
searchers find that locomotive behavioral analyses can reveal insights in 
studies investigating models of memory, anxiety, pain, sensorimotor 
control, etc. (Browne et al., 2017; Harris, 1943; Leal et al., 2015; Soibam 
et al., 2013). 

This paper focusses the differences in locomotive exploratory activity 
between different genotypes of fruit flies during a common form of non- 
associative learning behavioral mechanism called habituation (Harris, 

1943). Habituation, even though is a basic form of behavioral plasticity, 
is a complex mechanistic trait involving dynamic interactions between 
the animal’s learning, memory system, and the environment. One of the 
widely studied behavioral patterns related to habituation is the decrease 
in the exploratory activity of many animal species during exposure to a 
novel open-field arena (Soibam et al., 2013). Exploratory behavior is 
motivated by the novelty of the arena is defined as a collection of acts 
and postures that allows an animal to gather information on a new 
environment (Liu et al., 2007; Soibam et al., 2014; Soibam, Goldfeder 
et al., 2012; Soibam, Mann et al., 2012). Exploration behaviors decrease 
as the novelty subsides (Soibam et al., 2013). To understand habitua
tion, the exploratory behavioral patterns of different genotypes of fruit 
flies in open field arenas has been studied and compared using tradi
tional statistical tests. Mutant genotypes consistently show deviations in 
features of locomotive trajectories of wild-type fruit flies during 
exploratory activity (Soibam et al., 2013). This observation provides a 
platform to further link these quantitative behavioral observations in 
habituation to genetic loci using QTL mapping studies. However, loco
motive trajectories of fruit flies during habituation may have non-linear 
components which may not be addressed completely by some of the 
statistical tests. These methods cannot test whether trajectory features 
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can serve as predictors to discriminate different genotypes of fruit flies 
with different forms of exploratory behavior. Supervised machine 
learning methods are ideal for such kind of purpose which involves 
building a mathematical model that predicts the label of input data 
based on some features of the input data. In recent years machine 
learning methodologies have been employed in many behavioral studies 
(Berman et al., 2014; Branson et al., 2009; Dankert et al., 2009). 

In this paper, supervised machine learning methods were employed 
to predict the genotype of fruit flies based on the features of their 
locomotive trajectories inside an open field arena. Prediction of geno
type and species of small insects is of immense importance in many areas 
of monitoring and population estimation for pest control, research in 
entomology, and agriculture (Cardim Ferreira Lima et al., 2020; Ger
ovichev et al., 2021; Høye et al., 2021). Our approach applies to pre
dicting genotypes based only on trajectory information which doesn’t 
require high-quality images revealing small body parts of small insects 
(Gerovichev et al., 2021; Høye et al., 2021). Even though we use fruit 
flies’ movement in a laboratory setting, it can provide a proof of concept 
that species of small insects can be predicted by relying on the move
ment trajectories. Besides these applications in different areas, using 
supervised models in the genotype prediction allow deciphering and 
ranking behavioral features that can distinctly discriminate the different 
genotypes. 

2. Methods and materials 

2.1. Fly stocks and husbandry 

Fly stocks and husbandry details have been described in previous 
studies (Soibam et al., 2012; Soibam, Mann et al., 2012; Soibam et al., 
2013). All stocks were raised and maintained on standard 
yeast-cornmeal agar food at room temperature. Flies that were raised on 
standard food at 250 C, 60% humidity, with 12 hr of light/dark. The four 
Drosophila genotypes used were wild-type Canton-S, and three mutants: 
norpA7, rutabaga2080, and w1118. The number of experiments for each 
genotype is shown in Fig. 1A. The norpA7 mutant flies are defective in 
phospholipase Cβ, fail to perform a receptor potential, and are 
completely blind (Harris and Stark, 1977). The rutabaga2080 mutants are 
defective in a type I adenylyl cyclase and have learning defects 

(Lebreton and Martin, 2009). The w1118 mutants have mutations in the 
white gene leading to increased sensitivity to light and decreased visual 
acuity (Ferreiro et al., 2018). The norpA7 mutants were obtained from 
the Bloomington Stock Center. The rutabaga2080 and w1118 mutants were 
obtained from Ronald Davis (Scripps FL). The mutations were all crossed 
into a wild-type Canton-S genotype for a minimum of 6 generations. 

2.2. Trajectories 

As described in previous studies (Soibam et al., 2012; Soibam, Mann 
et al., 2012; Soibam et al., 2013), a circular open-field arena was used to 
collect the trajectories of fruit flies (Fig. 1A). It was made of transparent 
plexiglass by the University of Houston Physics Machine shop. The cir
cular arena was 0.7 cm in height and 4.2 cm in radius. The arena’s top 
was a lid of 15-cm Petri plates (Fisher Scientific). The aspiration of a fly 
into the arena was done through a 2-mm hole in the lid top (Soibam 
et al., 2013). Once the fly was introduced, the hole was shifted out of the 
active arena area to prevent the fly from escaping. The arena was illu
minated by two 23 W compact fluorescent floodlights (R40, 1200 lu
mens, 5100 K) (Soibam et al., 2012; Soibam, Mann et al., 2012; Soibam 
et al., 2013). Ethovision XT v5.0 (Noldus Information Technology, 
Leesburg VA) was used to track and extract the (x,y) locations of the fly 
within the arena at a recording rate of 30 frames per second for 10 min. 
Each trajectory was discretized with a time unit of 1 s, and motion 
within this time interval was assumed to be linear. Therefore, the tra
jectory of a fruit fly can be represented by a sequence of (x,y) locations 
for 600 time steps: {(x,y)1, (x,y)2, ….(x,y)t, (x,y)t+1, ……(x,y)T}, where 
T = 600. The total number of experiments for each fly genotype is 
shown in Fig. 1B. We assumed the locomotion to be linear between two 
consecutive time points. 

2.3. Calculation of step size and turn angle 

The step size at time t (dt), was the distance the fly moved between 
time t and t + 1. It was calculated as the Euclidean distance between 
positions of the fly at time t and t + 1 ((x,y)t and (x,y)t+1) (Fig. 1C). The 
positions (x,y)t-1, (x,y)t, (x,y)t+1 at three consecutive time-points t-1, t, 
and t + 1, respectively were used to compute the turn angle (θt) at time t 
using the cosine rule: (Rt-1,t+1)2 = (Rt-1,t)2 + (Rt,t+1)2 + 2(Rt-1,t)(Rt,t+1)cos 

Fig. 1. : Fruit fly genotypes used in this study. (A) An illustration showing how the trajectories of fruit flies inside a circular open-field arena were collected. (B) Four 
genotypes of fruit flies and their characteristics. (C) Calculation of turn angle (θt) and step size (dt) at a specific time point t in a trajectory is shown. 

M. Nguyen et al.                                                                                                                                                                                                                                



Behavioural Processes 212 (2023) 104944

3

(1800 - θt), where (Rt,t’) is the Euclidean distance between positions (x,y)t 
and (x,y)t’ (Fig. 1C). 

2.4. Features 

In supervised machine learning, given a set of N training examples of 
the form {(z1, g1), …. (zN, gN)} such that zi is the feature vector (of some 
length n) of the ith example and gi is its label (i.e class label), a learning 
algorithm finds a function that maps/predict the label gi based on the 
feature vector zi. In our context, N is the number of experiments (flies), gi 
is the genotype of the fly used in the ith experiment, zi contains turn 
angles and step sizes of the ith fly at different time points. Since the 
duration of one experiment was 10 min (600-time points) long, the 
feature vector consisted of 598 turn angles and 598 step sizes. This was 
because the calculation of turn angle required three-time points 
(Fig. 1C). 

2.5. Models and training 

The goal was to test whether supervised machine learning models 
can be used to accurately differentiate wild-type Canton-S flies from 
“non-wild-type” flies based on features from the trajectories such as turn 
angles and step sizes (Fig. 2A). No other anatomical features such as 
body or wing size were used. Since, there was a lesser number of ex
periments for mutant flies norpA7, rutabaga, and w1118 flies, we simply 
posed a binary classification problem of predicting the genotype of fruit 
flies (class label = 1 or 0) by using turn angles and step sizes as features. 
Class label 1 represented Canton-S flies, while the three other types of 
flies were assigned a single class label 0 (Fig. 2B). This means there were 
275 and 254 experiments belonging to class labels 1 and 0, respectively. 
The total 529 experiments were split into training (80%) and testing sets 
(20%) (Fig. 2B). The split was done in such a way that a roughly equal 
number of experiments from class labels 1 and 0 ended up in the training 
set. Feature scaling in the training set was performed so that the mean 
and standard deviation of each feature were adjusted to 0 and 1, 
respectively. The parameters obtained from the scaling training set were 
used to scale the features in the testing set so that the training process of 
the model is independent of the testing set. Besides considering the 

features from the entire 10-minute duration, we also considered five 
different scenarios where the turn angles and step sizes were in the first 
2.5, and 5 min, the last 2.5 and 5 min, and the entire 10 min (Fig. 2B). 

A 5-fold cross-validation sampling technique was used on the 
training set to train five different supervised machine learning models 
(Logistic Regression, Support Vector Machine, Random Forest, Gradient 
Boosting Classifier, and Explainable Boosting Classifier). Optimal values 
of parameters in these models were obtained by performing hyper
parameter optimization using “grid-search” over parameter space. The 
parameter space for the models is provided in Table 1. For Explainable 
Boosting Classifier, the default parameters’ values were used. Accuracy 
was used as the metric to decide the optimal model. The accuracies of 
the models on the testing set were reported for comparison. The training 
was done using Python and the scikit-learn package (Pedregosa et al., 
2012). For the Explainable Boosting classifier, the “interpret” Python 
library was used. 

Different supervised models used in this study are well-known 
methods and were selected to compare their performances (Durugkar 

Fig. 2. : Features and supervised machine learning model training. (A) An illustration showing the extraction of turn angle and step size features from a trajectory is 
shown. Besides the 10-minute duration, different smaller sections of the entire 10-minute duration were also considered. (B) Training, validation, and evaluation of a 
model for fruit fly genotype prediction. For the binary classification problem, fruit flies were grouped into two classes: “wild type” or class label “1” and “non-wild 
type” or class label “0”. 

Table 1 
Parameter space in models explored by cross-validation method. The first col
umn represents the model. The second column represents the parameter space 
that was explored. Names of the parameters (based on scikit-learn python 
package) and their values are provided.  

Model Parameter space 

Logistic Regression  

• Penalty: l1, l2  
• Random_state: 0, 42  
• Solver: newton-cg, lbfgs, sag, saga  
• max_iter: 100,200,300,1000 

Support Vector Machine  
• C: 0.1, 1, 10, 100  
• Gamma: scale, auto  
• Kernel: linear, rbf 

Random Forest  
• Criterion: gini, entropy  
• Max_features: auto, sqrt, log2  
• Max_samples: 0.25, 0.5, 0.75, 1.0 

Gradient Boosting Classifier  
• loss: deviance, exponential  
• n_estimators: 500, 1000  
• max_depth: 3, 5  
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et al., 2022; Ruppert, 2004). A simple model like logistic regression 
performs well when the data points from different class labels are line
arly separated (Durugkar et al., 2022; Ruppert, 2004). In our context, 
this can be used to test if the trajectories feature linearly separate the 
different genotypes. Support vector machines and ensemble models such 
as Random Forest and Gradient Boosting have been shown to perform 
well on data sets with a high number of features (Durugkar et al., 2022; 
Ruppert, 2004). Finally, Explainable Boosting was also chosen because it 
allows interpretation and ranking of the features used in prediction (Lou 
et al., 2012). 

2.6. Feature importance 

The importance of each of trajectory features (turn angles and step 
sizes) was calculated using the Explainable Boosting Machine (Hastie 
and Tibshirani, 1987; Lou et al., 2012, 2013). Explainable Boosting 
Machine (EBM) is a tree-based, cyclic gradient boosting Generalized 
Additive Model with automatic interaction detection (Hastie and Tib
shirani, 1987; Lou et al., 2012, 2013) and the model can also provide the 
contribution of each feature to a final prediction (Hastie and Tibshirani, 
1987; Lou et al., 2012, 2013). 

2.7. Class imbalance and multi-genotype classification 

For the multi-genotype classification problem, the goal was to pre
dict the genotype of the fruit fly as one of the four options: Canton-S, 
norpA7, w1118, or rutabaga2080. Since the number of experiments 
differed across these four genotypes, the training set was not “class 
balanced”. To prevent the supervised learning model to be biased 

towards the majority class (Canton-S), we used the sampling strategy 
called SMOTE (Synthetic Minority Over-sampling Technique) to balance 
the training set (Sugimura et al., 2008). Python package “imbal
anced-learn” was used for this purpose (Lemaitre et al., 2016). We 
resample all three classes (norpA7, w1118, or rutabaga2080) except the 
majority class (Canton-S). The testing set was kept imbalanced. 

3. Results 

3.1. Turn angle and step size are dependent on fly genotype but also on 
time 

To investigate whether features of trajectories (step sizes and turn 
angles) of fruit flies inside an open field arena are dependent on geno
type and time, we divided the 10-minute duration trajectory into four 
different time sections: 0–2.5 min, 2.5–5 min, 5–7.5 min, and 
7.5–10 min, and explore whether the turn angles and step sizes were 
significantly affected by the time sections in the trajectories. 

Between any two different time sections, the step sizes for each ge
notype were significantly different (Fig. 3A, Table S1, Kruskal-Wallis: p- 
value < 0.001). This means the step size decreased significantly as time 
progressed for each genotype. Canton-S had the largest decrease 
(0.58 cm) in step size from 0.73 cm during the first 2.5 min to 0.15 cm 
during the final 2.5 min (Fig. 3A). In contrast, mutant genotypes had a 
smaller decrease in the step size: 0.30 cm, 0.31 cm, 0.26 cm for norpA7, 
w1118, and rutabaga2080, respectively (Fig. 3A). Next, we also confirmed 
that during a specific time section of the 10-minute duration, the step 
sizes between any two genotypes of the fly were significantly different 
(Fig. 3A, Table S2, Kruskal-Wallis test, p-value < 0.001). In each time 

Fig. 3. : Turn angle and step size depend on time and ge
notype. Mean step size (cms) and turn angle (degrees) 
during different time sections of the 10-minute experiment 
are shown as bar plots in (A) and (B), respectively. Error 
bars are standard errors of the mean. Genotypes are 
colored-coded. The x-axis indicates the four different time 
sections, and the y-axis indicates step size (panel A) or turn 
angle (panel B). Statistical analyses testing the effect of 
genotype and time on the turn angle and step size are 
shown in Tables S1, S2, S3, and S4.   
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section, norpA7 mutant flies showed the highest step sizes (Fig. 3A). 
Except for three comparisons (norpA7: 2.5–5 mins vs 5–7.5 mins, 

rutabaga2080: 0–2.5 mins vs 2.5–5 mins and 5–7.5 mins vs 7.5–10 mins), 
the turn angles for each genotype were significantly different between 
any two different time sections (Fig. 3B, Table S3, Kruskal-Wallis: p- 
value < 0.001). In general, the turn angle increased as time increased for 
each genotype (Fig. 3B). However, the increase in turn angle was more 
significant in Canton-S flies compared to the mutant flies. For example, 
the Canton-S flies exhibited an average turn angle of 46o, 66 o, 79 o, and 
85o during the 0–2.5 min, 2.5–5 min, 5–7.5 min, and 7.5–10 min sec
tions, respectively (Fig. 3B). The rutabaga2080 mutant flies showed 
averaged turn angles of 41o, 49 o, 57 o, and 60o during the four different 
time sections (Fig. 3B). Except for Canton-S and w1118 at 5–7 min sec
tion, any two genotypes exhibited different turn angles during each time 
section (Fig. 3B, Table S4, Kruskal-Wallis test, p-value < 0.001). During 
the 0–2.5 min and 2.5–5 min sections, w1118 had the largest turn angles 
(Fig. 3B). However, during the 5–7.5 min and 7.5–10 min sections, 
Canton-S had the largest turn angles because Canton-S showed the 
largest increase in their turn angles with time (Fig. 3B). Overall, these 
results indicate that not only turn angle and step size are dependent on 
fly genotype but also on time. 

3.2. Turn angle and step size predict the genotype of fruit fly 

Since turn angles and step sizes were different across the genotypes 
of the fruit flies, we aimed to test whether the genotype of a fruit fly can 
be predicted from turn angles and step sizes associated with their 
locomotive trajectories. Since there was an unequal number of experi
ments across the four different genotypes, a binary classification prob
lem was posed where the genotype or class label of the fly (class label 1: 
“wild type/Canton-S” or class label 0: “not wild type/Canton-S”) can be 
predicted using turn angles and step sizes from the trajectories. There 
were 275 and 254 (from three mutant genotypes) experiments 
belonging to class labels 1 and 0, respectively. This classification was 
done to have a balanced number of samples across the two class labels. 

To differentiate Canton-S flies from three mutant genotypes, we used 
five different supervised machine learning models (Logistic Regression, 
Support Vector Machine, Random Forest, Gradient Boosting, and 
Explainable Boosting Classifier) with turn angles and step sizes at 
different time points during the 10-minute duration. Besides utilizing 
these measures from the entire 10-min duration, we also considered 
shorter time intervals: first 2.5 and 5 min, final 2.5, and 5 min (Fig. 2A). 
The training, validation, and testing of these models were performed 
using a 5-fold cross-validation method (Fig. 2B). When the first 2.5 min 
of the trajectories were considered, the Gradient Boosting classifier 
yielded the highest accuracy of 78%, while logistic regression obtained 
only 58% accuracy (Fig. 4). The accuracy of other models ranged be
tween 70% and 75% (Fig. 4). On the other hand when the first 5 min of 
the trajectories were considered, Explainable Boosting Classifier 

achieved the highest accuracy of 83% followed by Gradient Boosting 
with 80% (Fig. 4). The Logistic Regression model had the lowest accu
racy of 60% (Fig. 4). Random Forest and Support Vector Machines 
achieved 75% and 78% accuracies, respectively (Fig. 4). The accuracies 
of all models dropped when the final 2.5 and 5 min were considered. In 
these cases, the best accuracies achieved were 76% (Gradient Boosting) 
and 72% (Explainable Boosting Classifier), respectively (Fig. 4). The 
reduction in accuracies indicates that the variation in turn angle and 
step sizes across the genotypes in the first few minutes was more sig
nificant than the final few minutes in the trajectories. Training the 
models with the entire 10-minute duration reached 82% accuracy with 
the Explainable Gradient Boosting Classifier (Fig. 4). Logistic regression 
was the worst model, which suggests that there is a non-linear rela
tionship between turn angles/step sizes and the genotype of fruit flies 
(Fig. 4). To check for overfitting or underfitting, we focused on the best 
model (explainable Boosting Machine on 5 min data). It had comparable 
accuracies in training and testing data of 86% and 83%, respectively 
indicating that the trained model was able to generalize to the testing 
set. Overall, our results indicate that step sizes and turn angles are suf
ficient to differentiate wild-type Canton-S flies from other mutant ge
notype fruit flies. 

3.3. Turn angle is a better predictor than step size for the genotype of fruit 
fly 

The Explainable Boosting Machine yielded the highest accuracies 
among the models. It is also a highly interpretable model that yields 
each feature’s importance score based on the training set. Therefore, we 
used this model to evaluate the importance of each feature in differen
tiating wild-type flies from other mutant genotypes. When the first 
5 min were considered, turn angles had the highest importance scores 
during the first minute (Fig. 5). The importance scores of turn angles 
decreased as time increased (Fig. 5). Unlike turn angle, there was no 
clear observable pattern in the importance scores of the step size fea
tures (Fig. 5). In general, the importance score of step size remained 
roughly the same throughout the 5-minute duration (Fig. 5). Similar 
observations were made when the first 2.5-minute duration was 
considered (Fig. 5). These results indicate that turn angles of fruit flies 
are better predictors for genotype compared to step sizes. Interestingly, 
when the final 2.5 or 5 min were considered, the importance scores of 
turn angles and step sizes did not follow an increasing or decreasing 
trend throughout the 2.5- or 5-minute duration (Fig. 5). This was most 
likely because the features during the final minutes are not sufficient to 
distinguish the genotypes. 

Since the turn angles were better predictors compared to the step 
sizes, we further checked whether turn angles and step sizes displayed 
any correlation and whether using turn angles only improved model 
performance. We took the first 5 min of the trajectories and computed 
the Pearson correlation coefficient between turn angles and step sizes for 

Fig. 4. : Accuracies of different supervised machine learning models. Accuracies of five different models are indicated and differentiated by different line types. The 
y-axis indicates the accuracies of the models in differentiating Canton-S flies from three mutant flies. Five different cases where different portions of the 10-minute 
duration are represented along the x-axis. For each case, the highest accuracy % is indicated. 
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Fig. 5. : Importance score of turn angle and step size in predicting fruit fly genotype. The x-axis indicates the time points (in seconds), and the y-axis indicates 
importance scores obtained using Explainable Boosting Classifier. 
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each fly. The averaged Pearson correlation coefficient was − 0.14 
indicating that there may be a small negative correlation between the 
turn angles and step sizes. This may be because flies need to slow down 
while executing larger turn angles. To test whether using only turn an
gles improve model performance, we trained the Explainable Boosting 
Classifier model using only the turn angles in the first five minutes. This 
yielded an accuracy of 80% in binary genotype classification which was 
slightly less than the 83% accuracy achieved by using both turn angles 
and step sizes features. Interestingly, only using step sizes achieved a 
much-reduced accuracy of 72%. This confirms that turn angles are better 
predictors than step sizes. However, using both turn angles and step 
sizes increases model performance compared to using only turn angles. 

3.4. Prediction accuracy decreased in the multi-genotype classification 
setting 

Instead of a binary classification problem of predicting “wild type/ 
Canton-S” from “non-wild type” flies, we posed a multi-genotype clas
sification problem of predicting the genotype of the fly from one of the 
four possible genotypes. Because of the imbalance in the number of 
experiments across the four genotypes, the training set was balanced 
using a resampling technique called SMOTE (Sugimura et al., 2008). The 
testing set was kept unbalanced. Because of its superior performance, 
Explainable Boosting Machine was used for training, validation, and 
testing. The best performance occurred when the first 5 min were 
considered achieving 80%, 67%, 60%, and 56% accuracies in predicting 
the four genotypes Canton-S, norpA7, w1118, or rutabaga2080, respectively 
(Table 2). The accuracy was the highest for Canton-S and lowest for the 
rutabaga2080 mutant (Table 2). This is most likely because rutabaga2080 

had the least number of experiments. The low accuracy for other mutant 
genotypes is most likely because of the lesser number of experiments in 
the training set. 

In summary, the performance of the supervised models was depen
dent on the time sections of the trajectories that were used in the model. 
Using the first 5-minute locomotive trajectories, we achieved the best 
accuracy of 83% in differentiating wild-type flies from three other 
mutant genotypes. This means that different genotypes of fruit flies 
exhibit the most variations in the first few minutes of their exploratory 
activity. Accuracy was decreased when the prediction was performed to 
identify each genotype in a multi-genotype prediction supervised 
learning problem. Feature importance analysis revealed that turn angle 
was a better predictor than step size in predicting fruit fly genotype. 
Overall, this study shows that features of trajectories can be used to 
predict the genotype of fruit flies. 

4. Discussion 

In this paper, we explored the possibility of detecting the genotype of 
small insects solely from trajectories by using turn angles and step sizes 
of fruit flies executed inside a circular open-field arena. By testing five 
different supervised machine-learning models, we were able to achieve 
an accuracy of 83% in differing wild-type flies from three other mutant 
genotypes. These data show that genotypes can be predicted entirely 
from locomotive trajectories without other anatomical information 
about the flies. The best accuracy was achieved when the first 5 min of 

locomotion inside the arena were considered. Accuracy was lower when 
the final 5 min were considered. This result indicates that the first few 
minutes showed the maximum variation in the locomotive trajectories 
across different genotypes. The varying locomotive trajectories exhibi
ted by different genotypes may be closely related to the phenomena of 
habituation in a novel environment. Habituation is a common form of 
non-associative learning in which an organism gradually decreases its 
response to repeated stimuli (Harris, 1943; Soibam et al., 2013). In 
general, initial locomotive trajectories of animals show directional 
persistence (small turn angles) and large step sizes, which are motivated 
by the novelty of an environment (Soibam et al., 2013). Previous 
theoretical studies have shown that there is a strong relationship be
tween movement patterns and the efficacy of animal search strategies in 
a novel environment (Bartumeus et al., 2008; Bartumeus and Levin, 
2008; Viswanathan et al., 1999). As an animal learns the environment 
through repeated exposure, the directional persistence and movement 
decrease (Liu et al., 2007; Soibam, Mann et al., 2012; Soibam et al., 
2013). However, the locomotive response can vary across different ge
notypes of fruit flies depending on their learning acuity. NorpA7 lacks 
visual learning ability and hence may not be able to learn the environ
ment even with continued exposure (Soibam et al., 2013). Therefore, 
these mutant flies failed to habituate and showed the least amount of 
change in step sizes and turn angles during the 10-minute duration. 

Feature analysis with explainable gradient boosting revealed that 
turn angle was more important than step size. This finding resonates 
with studies reporting that turn angle is an essential feature of animal 
locomotive behavior (Bartumeus et al., 2008; Bartumeus and Levin, 
2008). Animals tend to execute their movements in a new environment 
to maximize the net gain of resources, usually energy (Bartumeus et al., 
2008; Bartumeus and Levin, 2008; Viswanathan et al., 1999). It has been 
shown that the frequency and extent of turns are pivotal in employing a 
search strategy (Janson and Bitetti, 1997; Vasquez, 2002). Considering 
different step size with random turn angles are not enough to accurately 
describe realistic animal movements (Wilson et al., 2013). The timing 
and amount of turn angles are critical, and it is most likely dependent on 
different factors including the genotype of the animal. 

This paper shows that turn angles and step sizes extracted from 
trajectories can be used as predictors for genotype discrimination in 
supervised machine-learning methods. This idea may have applications 
in areas of pest management. Pest management involves the application 
of a proper number of insecticides at accurate locations. This requires 
proper monitoring and estimation of pest count. Current methods rely 
on computer vision and high-quality images of pests for monitoring 
purposes. In a study to identify fruit fly Drosophila suzukii from static 
images, optimal results were observed only when the image quality was 
sufficient, i.e., when the black spots on the wings of flies were visible to 
the naked eye (Roosjen et al., 2020). Current off-the-shelf camera sys
tems are not capable of collecting images of high enough quality for the 
detection of objects as small as some target insects like fruit flies. Our 
method relies only on (x,y) positions of the fruit flies and doesn’t need 
high spatial resolution images that reveal the body parts of the fruit flies. 
We used trajectories of fruit flies in an open-field arena in a controlled 
environment. In real scenarios, the environmental factors are not 
consistent. Factors such as wind, sunlight, and temperature may vary 
and can affect the trajectories of insects. These variables should be 
considered while developing a predictive model. 

In our study, we primarily focused on binary classification where the 
wild-type Canton-S flies were distinguished from three other mutants. 
This was done because of a lack of experiments for the three genotypes. 
However, a practical model needs to perform multi-class prediction. We 
attempted to solve the lack of experiments for the other three genotypes 
by synthesizing new samples using a technique called SMOTE (Sugimura 
et al., 2008). Unfortunately, this resulted in mediocre accuracies in 
predicting the mutant genotypes. This means the synthesized samples 
did not accurately represent the trajectories of the mutant genotypes. In 
our approach, we only used the simplest features of animal trajectories: 

Table 2 
Accuracy in multi-genotype classification. The table describes the accuracy 
achieved by Explainable Boosting Machine in predicting each genotype.  

Time section Canton-S norpA7 w1118 rutabaga2080 

First 2.5 min 84% 56% 56% 56% 
First 5 min 80% 67% 60% 56% 
Final 2.5 min 73% 61% 36% 56% 
Final 5 min 64% 67% 44% 56% 
Entire 10 min 77% 72% 48% 56%  
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turn angles and step sizes. In general, traditional machine learning 
models used in this study assumed that the turn angles and step sizes at 
different time points were independent of each other, which is not the 
case in animal trajectories. There is some dependency between turn 
angles and step sizes across a certain period. Deep learning models such 
as convolution and recurrent neural networks can leverage this fact and 
may be able to improve the detection of different genotypes. Deep 
learning models can also learn different locomotive patterns that 
differentiate different genotypes. However, a large training set is 
required for such models and will require acquiring a significant number 
of trajectories. These issues will be addressed in future studies by per
forming more experiments with a wider variety of genotypes of fruit 
flies. 

5. Conclusions 

The study demonstrates that by relying only on the features of tra
jectories of fruit flies, supervised machine learning methods can 
discriminate genotypes of fruit flies. The features of the trajectories that 
were used were step sizes and turn angles. The performance of the su
pervised models was dependent on the time section of the trajectory that 
was used in the models. Utilizing the first 5 min of locomotion yields the 
best prediction accuracy compared to the entire ten minutes or the final 
5 min of the trajectories. This indicates that the variations in the 
exploratory activity across genotypes are most prevalent in the first few 
minutes of introduction to the novel arena. Turn angles served as better 
predictors in the supervised methods compared to the step sizes. We also 
found that in a multi-genotype supervised classification problem, more 
data acquisition to train the models may improve model performance. 
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