Discrete Mathematics 346 (2023) 113310

Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Levenshtein graphs: Resolvability, automorphisms & n

Check for

determining sets

Perrin E. Ruth, Manuel E. Lladser *

Department of Applied Mathematics, University of Colorado, Boulder, United States of America

ARTICLE INFO ABSTRACT

AffiC{e history: We introduce the notion of Levenshtein graphs, an analog to Hamming graphs but using
Received 26 July 2021 the edit distance instead of the Hamming distance; in particular, vertices in Levenshtein
Received in revised form 18 February 2022 graphs may be strings (i.e., words or sequences of characters in a reference alphabet)

Accepted 23 December 2022

Available online 13 January 2023 of possibly different lengths. We study various properties of these graphs, including a

necessary and sufficient condition for their shortest path distance to be identical to the
edit distance, and characterize their automorphism group and determining number. We

'ég{fvgiriime also bound the metric dimension (i.e. minimum resolving set size) of Levenshtein graphs.
Hamming graph Regarding the latter, recall that a run is a string composed of identical characters. We
Levenshtein graph construct a resolving set of two-run strings and an algorithm that computes the edit
Multilateration distance between a string of length k and any single-run or two-run string in O (k)
Node2vec operations.

Resolving set © 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

For a general unweighted graph G = (V,E), a set R C V is called resolving when for all u,v e V, if d(u,r) =d(v,r) for
each r e R then u = v. Here and in what follows, d(-,-) denotes the (graph) distance, i.e., shortest path distance, between
pairs of vertices in the corresponding graph. 8(G), the metric dimension of G, is defined as the size of a smallest possible
resolving set of G [23,11]. The problem of finding the metric dimension of an arbitrary graph is NP-Complete [6,9,14].
Nevertheless, when the distance matrix of a graph can be computed explicitly, resolving sets of size (1 + {14+ o0(1)}-
In |V|) - B(G) may be found using the so-called Information Content Heuristic (ICH) [12]. For a concise exposition of metric
dimension see [25], and for a detailed exposition see [26].

If R={rq,...,m} CV of cardinality n resolves G, then the transformation

d(vIR) := (d(v,r1),...,d(v, 1)) (1)

from V into R" represents nodes in G as n-dimensional vectors in a one-to-one manner. Furthermore, since for each
u,veV and r eR, |d(u,r) —d(v,r)| <d(u,v), d(-|[R) maps nearby nodes in G into tuples with similar coordinates in R".
These two properties are very appealing to represent nodes in G as Euclidean vectors—offering an alternative to other graph
embedding techniques such as node2vec [10]. To fix ideas, in the context of network science, graph distance is often a
relevant feature in the community recovery problem. Here, nodes in a graph are assumed to be partitioned into disjoint
but unknown subsets called communities, which influence how edges are placed between the nodes. Resolving set based

* Corresponding author.
E-mail address: manuel.lladser@colorado.edu (M.E. Lladser).

https://doi.org/10.1016/j.disc.2022.113310
0012-365X/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.disc.2022.113310
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/disc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.disc.2022.113310&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:manuel.lladser@colorado.edu
https://doi.org/10.1016/j.disc.2022.113310
http://creativecommons.org/licenses/by-nc-nd/4.0/

PE. Ruth and M.E. Lladser Discrete Mathematics 346 (2023) 113310

embeddings induce a natural numerical representation (i.e. feature vector) for each node on which to base the community
recovery. Of course, the smaller the cardinality of a resolving set, the smaller the dimension of the embedding, which
motivates the study of metric dimension, and of algorithms capable of efficiently finding small resolving sets.

The Hamming distance between two strings u and v of the same length, denoted as h(u, v), is the total number of
mismatches between u and v. (The length of a string w is denoted |w|.) Up to a graph isomorphism, the Hamming graph
M 4, with k,a > 1 integers, has as vertices all strings of length k formed using the characters in {0,...,a — 1}, and two
vertices u and v are neighbors if and only if h(u, v) = 1. As a result, the distance between nodes in Hy , is precisely their
Hamming distance; in particular, Hamming graphs are connected. We call k the dimension and a the alphabet size of Hj 4,
respectively.

Much is known already about Hamming graphs, including their automorphism group [5] and their asymptotic metric
dimension. Indeed [13]:

,B(Hk,a) ~ ask — 00,

2k
log, (k)’
and because the proof of this result is constructive, a resolving set of Hly , of approximate relative size 2k/log, (k) may be
found for k large enough. Otherwise, starting from a resolving set of Hi_; , of some size s (e.g., obtained using the ICH),
a resolving set for Hl , of size s +r|a/2] may be found recursively in 0 (ar?) time [27]. Recent work has shown how to
identify unnecessary nodes in a resolving set [15]; which may provide better non-asymptotic estimates for g(Hy q).

As mentioned earlier, resolving sets of graphs are useful to represent their nodes as Euclidean vectors by means of
transformations such as in equation (1). In particular, resolving sets in Hamming graphs may be used to represent symbolic
sequences (e.g., words and genomic sequences) numerically. Unfortunately, this capability is limited to sequences of the
same length, and a chief motivation of this paper is to overcome this equal length limitation.

The edit distance—also called the Levenshtein distance [16]—between two strings u and v of possibly different lengths
is defined as the minimal number of character substitutions, deletions, or insertions required to transform one string into
the other. We denote this quantity as £(u, v). Since the Hamming distance can be thought of as the minimal number of
substitutions to transform one string into the other, if |u| = |v| then ¢(u, v) <h(u, v).

The edit distance can be computed using so-called alignments. To explain how, consider two non-empty strings u and
v of possibly different lengths, and let S be the set of symbols (i.e., characters) forming the strings. Let - denote a symbol
outside S, from now on called a gap. A gap conveys either a character insertion in one of the strings or a character deletion
in the other.

An alignment between u and v is a pair of strings v’ =u/---u; and v’ =v/}---v, of some same length k > 1, formed
using characters in SU{-}, such that (i) u and v occur as possibly non-contiguous sub-strings of u’ and v’, respectively;
and (ii) there is no 1 <i <k such that u} = v =-. Alignments are visualized placing v’ and v’ in a two-dimensional array
so that for each 1 <i <k, the i-th character of u’ is aligned on top of the i-th character of v'. When u}, v; € S, we say that
there is a match at position i if u} = v}, and a mismatch if uj # v}. Otherwise, if u; = - or v{ = -, we say that there is a
gap at that position. Recall that no gap may be placed on top of another one in an alignment.

The score of the alignment is defined as Zi‘:l [u; # vi], where [-] is our notation for indicator functions. Namely, [-]
takes the value 1 if the statement within the double-bracket parentheses is true otherwise is 0. The edit distance between
two non-empty strings corresponds to the lowest score among all possible alignments of the strings [7]. Any such align-
ment is called optimal. To fix ideas, equations (2)-(4) display three different alignments between the strings 001 and 01.
The score of the alignment A is two because the second 0 in the first row is mismatched with the character 1 in the second
row, and the 1 in the first row is aligned against a gap. Similarly, the scores of alignments B and C are one. Since the score
of any alignment between different strings must be one or larger, it follows that £(001,01) =1, and B and C are optimal
alignments of 001 and 01.

0 0 1

A= O (2)
0 0 1

B:= I (3)
0 0 1

C=_, 1- (4)

Optimal alignments can be determined and scored through a well-known dynamic programming approach, which has
been invented many times in different contexts [16,19,30]. For strings u =uj...u, and v =vy...v, of lengths m and n,
respectively, where u; and v; denote alphabet characters, this algorithm computes the columns (or rows) of the m x n
matrix with entries d; j :=£(u1...u;, vi...Vv;) via the recursion:

d; j = min {difljfl +[ui #vjl.di—1,j+1,di j—1 + 1]. (5)

The time complexity of this algorithm is O(mn), which is expensive for long pairs of strings; however, by focusing on
the diagonals of the matrix (d;;), as oppose to its columns or rows, it is possible to speed up the calculations to an

0 (€(u, v) - min{m, n}) complexity [28].

PE. Ruth and M.E. Lladser Discrete Mathematics 346 (2023) 113310
Preliminaries and related work. To overcome the length limitation of Hamming graphs, we adopt the following definition.

Definition 1.1. For integers 0 < ki <k, and a > 2, the Levenshtein graph ILy, x,.q has as vertices all strings of a length
between ki and k; (inclusive) formed using the characters in {0,...,a — 1}, and two nodes u and v are connected
by an edge iff £(u,v) = 1. We denote the vertex and edge set of this graph as Vi, k,.a and Eg, k,.q, respectively. (See
Fig. 1.)

Fig. 1. Visual representation of Lo 1,3 (left), and L3 3,5 (right).

Unless otherwise stated, it is assumed in what follows that 0 < k; <k, and a > 2.

Observe that, for k1 <k <k;, the subgraph of nodes in Ly, r,.q of length k is precisely H 4. Further, only nodes of equal
or consecutive length can be neighbors in Ly, i,.q (see Fig. 2).

Ahead we write LLy., as shorthand for Lg .q. Accordingly, we denote the vertex and edge set of L., as V., and Ej.q,
respectively. The empty string, denoted as ¢, is the only vertex of length zero in this graph. Besides, we define L, as the
graph with vertex set Ug>1 V., where two nodes u and v of arbitrary length are neighbors if and only if £(u, v) = 1. All
nodes in L, have finite length.

Various other notions of Levenshtein graphs have been considered in the literature, usually motivated by specific appli-
cations. One common definition is that two nodes are neighbors when their edit distance is underneath some threshold.
For instance, Pisanti [20] defines Levenshtein graphs over a vertex set of arbitrary genes, and two genes u and v are joined
by an edge when £(u, v) < t; which they use to test random graphs as viable models for genomic data.

Sala et al. [22] define the vertex set of Levenshtein graphs as {0,...,a — 1}¥, and two nodes u and v are declared
neighbors when they may be aligned using at most 2t gaps (alternatively, u and v are said to have a fixed-length Lev-
enshtein distance of t [2]). They use this construction to find the maximal number of common supersequences between
two strings of the same length and the maximal number of subsequences of a given string. This is motivated by error
correcting codes on the insertion/deletion channel—the subject of Levenshtein’s seminal paper [16]. Motivated by the same
problem, Bar-Lev, Etzion, and Yaakobi [2] address the specific case with t =1 to study the size of balls of radius one on
these graphs.

Zhong, Heinicke, and Rayner [31] define the vertex set of the Levenshtein graph to have nodes corresponding to microR-
NAs in mice and people, and u and v are connected by an edge only when £¢(u, v) < 3.

Finally, Stahlberg [24] defines the vertex set of Levenshtein graphs from all strings of a given set M as well as all
strings that lie on a shortest path between two strings in M, and nodes u and v are then joined by an edge if and only if
L(u,v)=1.

Since L k. is isomorphic to Hy ,; Levenshtein graphs include Hamming graphs as special cases. Nevertheless, as pointed
out in [29], which implicitly uses a notion similar to ours, Levenshtein graphs cannot be represented as Cartesian products
when ki < k. This makes their study particularly challenging.

Fig. 2. Visualization of LL3.,. The sub-graphs of all strings of fixed length are Hamming graphs: the white, blue, red, and green nodes form Hp, Hj »,
H 2, and Hi3 », respectively. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

PE. Ruth and M.E. Lladser Discrete Mathematics 346 (2023) 113310

Paper organization. In this manuscript we initiate a study of Levenshtein graphs—as given in Definition 1.1. The manuscript
is based on the recent Honors Thesis by the first author [21].

In Section 2, we show that Levenshtein graphs are always connected, and provide a necessary and sufficient condition
for their distance to coincide with the edit distance between all pairs of nodes. Unlike Hamming graphs, the edit and
graph distance between all pairs of nodes in a Levenshtein graph is not necessarily the same. For instance, in LLs 3.2,
£(010,101) =2 but d(010, 101) = 3 (see Fig. 1). Nevertheless, in g 3.2, d(010,101) =2 (see Fig. 2).

In Section 3, we show a formula to describe the edit distance of an arbitrary string to a string with at most two runs
(a run is a maximal substring of a single repeated character in a string). This formula leads to an algorithm to compute the
distance from any string u to any string with at most two runs in O (Ju|) time, which is faster than many common methods
of computing the edit distance. The results in sections 4-5 rely heavily on Section 3. In Section 4, we construct a resolving
set of L, k,.a Of size O (aka(ky — k1 + 1)) explicitly. Since nodes on this set have at most two runs, we may utilize the
algorithm from Section 3 to multilaterate efficiently any string of length between kq and k.

In Section 5, we characterize the automorphism group of Levenshtein graphs, which has fixed size 2a! when ki < k;
and k; > 2. Finally, in Section 6, we address the determining number [3,8] of Levenshtein graphs. This notion is useful for
describing graph automorphisms. For a given graph G = (V,E), a set S C V is called determining if whenever f and g are
automorphisms of G such that f(s) = g(s), for all s € S, then f = g. The determining number of a graph is the size of its
smallest determining set. For ki1 < ky with ky > 2 and (k2, a) # (2, 2), we show that the determining number of]Lk],kz;a is

fa/k2].
2. Graph versus edit distance, and connectivity

The distance between pairs of nodes in a Hamming graph is equal to their Hamming distance; however, as already
pointed out in the Introduction, this is not necessarily the case for Levenshtein graphs. The main result in this section is the
following one.

Theorem 2.1. Levenshtein graphs are connected, and the distance between every pair of nodes on IL, ,.q is equal to their edit distance
ifand only ifky <k or kq =k, < 2.Ifk > 2 then the graph distance in Ly ., is the Hamming distance.

This theorem is a direct consequence of the following three lemmas.
Ahead, the length of a path is understood as the number edges that compose it. In addition, w) and w™ denote the
prefix and suffix of length n of a word w, respectively.

Lemma 2.1. Let ki < k. For all nodes u and v in Ly, ,.q, there is a path of length £(u, v) that connects u with v. In
particular, Ly, x,.q is connected, and for all u, v € Vi, k,.qa, d(u, v) < €(u, v).

Proof. We show something more general, namely, for any alignment between two nodes in a Levenshtein graph there is
a path of the same length as the alignment score that connects them, while visiting only nodes of a length between the
shortest and longest of the two. This suffices to prove the lemma because if A is an optimal alignment between u and v,
and p a path in Ly, x,.q of length score(A), then d(u, v) <length(p) = score(A) = £(u, v).

Consider any alignment A between two nodes u and v. Define § := |u| — |v|. Since alignment scores are invariant under
permutations of their rows, as well as their columns, we may assume without any loss of generality that |u| > |v|, and that
A is of the form:
U1 _k
8

)
k

Up
Vo

V2 ’
where the u;’s and v;’s are nodes in Ly, k,.q such that |ug| = [vo| > 0, |u1] =6, |uz| = |va| =k for some k >0, and -"
denotes n consecutive gaps.

Let sp denote the score of the alignment associated with ug and vg above. Clearly, we can construct a path of length sg
from u = uguquy to vouquy substituting, one at a time, the mismatched characters in ug by the corresponding characters in
vp. Since substitutions do not alter the length of a node, all nodes in this path have length |u|.

Next, we can construct a path of length § from vouiuy to vouy deleting, one at a time, the characters in uq. In particular,
the nodes in this path have a (decreasing) length between |voujuz| = |u| and |vouz| = |v|, inclusive.

We can now construct a path of length 2k from vouy to vovy = v, stitching the following paths of length 2. When
|v| < k2, each of these paths is obtained by inserting a character from v;, and subsequently deleting another in u;. As a
result, all nodes in these paths have a length between |v| and |v| + 1 <k, inclusive. The short paths are:

vouy’ vay. vouy " vay. vouy "V vaq):

k—1 k—2 k—2
Vou()V2(1), Voll;<)V2(1),V0u§)V2(2);

PE. Ruth and M.E. Lladser Discrete Mathematics 346 (2023) 113310

1 0 0
vous? vage1y, voul vage1y, vouy vag.

Similarly, when |v| = ky, each of these paths is obtained by deleting a character in v;, and subsequently inserting a character
from uy. All nodes in these paths have a length between |v| and |v| — 1 > k; inclusive.

Appending all the previous paths, we obtain a path from u to v of length so + § + 2k, which is precisely the score of A.
Since each node in this path is contained in Ly, k,.q, the lemma follows. O

Lemma 2.2. Let kq < k. For all nodes u and v in Ly, k,.q, d(u, v) > £(u, v).

Proof. Clearly, d(u, v) =0 if and only if £(u, v) = 0. Thus, without loss of generality, we may assume that n:=d(u,v) > 1.
Due to Lemma 2.1, Iy, ,.q is connected and hence n is finite. In particular, there is in Ly, k,.q @ (simple) path wo =

u,...,wp =v of length n that connects u and v. Since d(w;, wi+1) = £(w;, wiy1) = 1, the triangular inequality implies
that:
n—1 n—1
d(u, v) =Y d(wi, wiy1) =Y £(wi, wit1) > €, v),
i=0 i=0

which shows the lemma. O

Lemma 2.3. For all k>0, Ly y.q = Hi.q; in particular, L k., is connected. Further, the distance between every pair of nodes
on Ly k., is equal to their edit distance if and only if k < 2.

Proof. To show the first claim, it suffices to show that ILy ., and Hj, have the same edges. Indeed, if h(u, v) =1 then
u and v can be aligned perfectly except for one mismatch. In particular, ¢(u, v) < 1. But, since u # v, £(u, v) > 0, hence
£(u, v) = 1. Conversely, if £(u, v) =1 then an optimal alignment between u and v consists of a single mismatch, or a single
gap. Since the latter is not possible because |u| = |v|, h(u, v) =1, which shows the claim.

Due to the first claim, d(u, v) = h(u, v) for all pair of nodes u,v in Lj.,. We use this to show the second claim,
assuming, without loss of generality, that u # v.

The second claim is trivial when k = 0. If k =1 then, as we argued before, ¢(u, v) =1 =h(u, v) =d(u, v). Instead, if k =2
and h(u,v) =1 then, as we just argued, ¢(u,v) =1=h(u, v) =d(u, v). Otherwise, if k =2 but h(u, v) =2 then Lemma 2.2
implies that 0 < £(u, v) < 2; however, £(u,v) =1 is not possible because the optimal alignment between u and v would
then have to use a single gap, which in turn is not possible because u and v are of the same length. Hence, ¢(u, v) =2 and
again £(u, v) =h(u,v) =d(u, v).

Finally, if k > 2, and since a > 2, there is in Ly ., a node u of length k formed by alternating 0’s and 1’s. Let v be the
flip of u. Then h(u, v) =k but £(u, v) <2 because the strings -u and v- align perfectly except for their ends; in particular,
h(u,v) > £(u,v) ie. du,v)>£u,v). O

3. Edit distance to a string with at most two runs

In this section, we obtain rather explicit formulas for the edit distance between an arbitrary string and another one
with at most two runs. These will prove useful for studying the resolvability of Levenshtein graphs and their automorphism

group.
In what follows the total number of occurrences of an alphabet character « in a string w is denoted Ny (w), whereas

the number of runs in w is denoted r(w). For example, Ng(01121) =1, N1(01121) =3, N(01121) =1, and r(01121) = 4.
The main result in this section is the following.

Theorem 3.1. Let |, r > 0 be integers and «, 8 different alphabet characters. Then, for any string w:

2w, o) = max{|w|, I} — min{Ng (W), I}; 6)
ew, o'y = min £(wg), o) +e(wi¥I=D gr); .
lp=<I<l1

where ig := max{0, min{l, |w| — r}} and i1 := min{|w|, max{l, |[w| —r}}.
A noteworthy consequence of this theorem is the following.
Corollary 3.1. If u and v are strings such that |u| = |v|, and u or v have at most two runs, then £(u, v) = h(u, v).

Proof. Suppose that |u| =|v| =k, and write u = uq - - - u with uq, ..., uy alphabet characters. Without any loss of generality
assume that r(v) < 2.

PE. Ruth and M.E. Lladser Discrete Mathematics 346 (2023) 113310

If r(v) =0 then u = v; in particular, £(u, v) = 0 = h(u, v). Instead, if r(v) =1 then v = a* for some alphabet character
o, and Equation (6) implies that

k
€, v)=k—Ng() =Y [uj#a] =h(u,v).

i=1

Finally, if r(v) =2 then v = o/ 8% for some integer 1 <! < k and alphabet characters « # 8. Hence, from Equation (6), and
the previous result for when r(v) =1, we find that

C(u,v) =0y - -up, o) + (g - ug, B
=h(uy--up, @)+ h(upq - ug, B
=h(u,v),

as claimed. O

The proof of Theorem 3.1 follows from the next two results. Equation (6) is a direct consequence of Lemma 3.1, and
equation (7) follows from Lemma 3.2.

Lemma 3.1. For all string w, if | > 0 and « is an alphabet character then: £(w, o') = max{|w|, I} — min{Ny (w), I}.

Proof. Assume that w # € and | > 0, otherwise the statement is trivial. The score of an alignment is its length minus the
number of matches in it. But the length of an alignment is at least the length of the longest string, and the number of
matches is at most the number of characters shared by the strings. In particular, since the edit distance between w and o/
is the score of some optimal alignment, we have that: £(w, o!) > max{|w/, !} — min{Ng (w), I}.

To complete the proof, it suffices to expose an alignment with the same score as the right-hand side of this inequality.
For this let n:= Ny (w). Assume first that o" is a prefix of w. We now consider two cases. If |w| <[then w = a"u, with
Ne(u) =0, and the following alignment between w and ! has the desired score:

_I=lw]

alflwl

o u
om O[|w|—n

Otherwise, if |w| > 1, let § = min{n, I} and write w = o/

has the desired score:
b u
ad | ol

uv, with |u|=1—6 and |v| = |w| — L. Now, the following alignment

v
_lwi-L-

The previous argument assumes that «" is a prefix of w. If this is not the case, we may shuffle the columns of the
alignments to reproduce w on the top row but without altering their scores. From this, the lemma follows. O

Lemma 3.2. Let k, [, r > 0 be integers. If w = w1y ---wy is a string of length k and «, 8 are different alphabet characters then
tw, o' = min £wg),a)+ew*D, gn),
Ip=<I<I1
where ig := max{0, min{l, k — r}} and i; := min{k, max{l, k —r}}.
Proof. Without loss of generality assume that k > 0. Define I; := Ny (w;)) and 1 := Nﬁ(w("*")), for 0 <i < k. Furthermore,

define I; :=0 and r; := Ng(w) for i <0, and l; := Ny (w) and r; :=0 for i > k.
Any alignment A between w and «!A" may be segmented as

Up | U
Vo | Vi

A=

’

where ug and uq correspond to a possibly empty prefix and suffix of w, respectively, and vy and vq correspond to the
strings o/ and g, respectively. (ug, U1, vo, v1 may contain gaps.) Since this also applies to an optimal alignment between w
and !B, it follows that

(w,alph) = Omjnk Lwpy, al) + D gn)
<i

=

= min max{l,i} — min{l, ;} + max{r, k — i} — min{r, r;}

0<i<k

k=il k=T =i+ =L =+ Ir—r1i] =T

= min s
0<i<k 2

PE. Ruth and M.E. Lladser Discrete Mathematics 346 (2023) 113310

where for the second identity we have used Lemma 3.1, and for the third one the well-known identities max{a, b} =
(a+b+la—>bl)/2, and min{a,b} =(a+b — |a—b|)/2.
Consider the functions f1, f, : Z — Z defined as

o k=l—r =i+ k—T—i]
f1() = > + 5 ;
. ._|l—li|-‘r-l—li [r—ri|+1r—r;
fa@) = 5 + 5)

In particular, £(w, &!g") = ming<j<k f1(i) + f2(i). Next we show that this minimum is achieved at some ip <i <ij.
Observe that up to a constant summand, f1(i) is the average of the distance from i to I, and from i to k —r. So f1(i)
is strictly decreasing for i < min{i,k — r}, and strictly increasing for max{i, k — r} <i. In particular, when restricted to the
domain {0, ...,k}, f1 is monotone decreasing to the left of ip, constant between ip and i1, and monotone increasing to the
right of i1. Note that f1(i) =|u| —1—r, for ig <i <ij.
On the other hand, observe that f,(i) = g(Il — ;) + g(r —), where

gx) = M% forxeZ;

satisfies |g(x) — g(x — 1)| < 1. In particular, if wjy; =« then |fo(i+ 1) — f2(i)| <1 because li;1 =1 + 1 and ri4q =71i.
Similarly, if wiy; =8 then |f2(i+ 1) — f2(i)| <1 because lj11 =1I; and ri11 =r; — 1. Finally, if w;;q ¢ {o, B} then ;11 =1
and riyq =ry, hence fo(i 4+ 1) = f2(i). In either case, we find that | fo(i+ 1) — f2(i)] <1 for 0 <i <k. As a result, since f is
integer-valued, f1 + f is decreasing for i <ip but increasing for i; < i, from which the lemma follows. O

Efficient algorithmic calculation. The proof of Lemma 3.2 can be adapted into a method (see Algorithm 1) that finds
the distance between an arbitrary string w to a string of the form v = «!g" in O(Jjw|) time—assuming that «, 8,1, and r
are known in advance. The algorithm exploits that f;(i) is constant for iy <i < i, reducing the calculation of £(w, v) to
minimizing f, over the restricted domain. This can be done through a loop where f,(ip) can be found directly, and the
remaining values can be found recursively by finding f>(i + 1) — f2(i) through cases depending on [;, r;, and w;4. This is
faster than standard methods of finding the edit distance between strings with O (|Jw||v|)) time complexity.

A number of papers suggest methods for effectively computing the edit distance between run-length encoded strings [1,
18]. These methods adapt the standard dynamic programming approach to compute £(u, v) in O(r(u)|v| 4+ r(v)|u|) time.
Comparatively, Algorithm 1 has a few benefits and quirks: it assumes only one string is run-length encoded, it is fast due
to specificity, and it provides a formula that is useful for proofs.

Algorithm 1 For computing the edit distance to a two-run string

Input. w a string, o # B alphabet characters, and [, r > 0 integers
Output. £(w, a!g")
k < |w|
ip < max{0, min{l, k — r}}
i1 < min{k, max{l, k —r}}
li <= No (w1 -+ wij)
i < Ng(Wig41 -+ Wy)
o= =bI+1=1)2+(r=ri|+1—17)/2
m< f,
fori=ip+1toi; do
if w; = B then
if rj <r then
fo< fa+1
end if
ri<ri—1
end if
if wi =« and [; <[then
fa<fa-1
m < min{m, f}
li<li+1
end if
end for
fi—k=1=1)/24(k=1=r1])/2
return f; +m

4. Metric dimension of Levenshtein graphs

Recall that a subset of nodes R in a graph G is said to resolve it when R resolves all pairs of different nodes, namely, for
all nodes u and v, with u # v, there exists r € R such that d(u,r) # d(v, r). The metric dimension of the graph, 8(G), is the
size of its smallest resolving set.

PE. Ruth and M.E. Lladser Discrete Mathematics 346 (2023) 113310
The main result in this section is the following bound on the metric dimension of Levenshtein graphs.
Theorem 4.1. O<log kz) < Bk, kyza) < O(a((kz + 12 — k3)). In particular, if A :=k; — k1 + 1 then B(Lk, ky:a) = O (akz A).

Observe that if A = ®(kp) then B(ILy, k,.a) grows at most quadratically in terms of the maximum string length kj.
However, if A =©(1) then B(ILy, k,.a) grows linearly with the largest string length. By setting k; =k, Theorem 4.1 may be
applied to Hamming graphs as well. In this case, the lower bound of the theorem is tight because g(Hy) ~ 2k/log, (k) [13].

The remainder of this section is devoted to proving Theorem 4.1. The lower-bound is almost immediate from [14, Theo-
rem 3.6]; nevertheless, for the sake of a self-contained exposition, we include its proof here. Indeed, if R = {rq,...rg} is a
resolving set of cardinality 8 := B(ILi, k,:q), then the transformation d(v|R) := (é(v, r),...,L(v, r,g)) is one-to-one. Hence,
since 0 < £(v,r) <max{|v|, |r|} <k, for all v,r € Vi, k,.q,» we must have that

a* <1V kpzal < (ka2 + 1)ﬁ,

from which the left-hand side inequality in Theorem 4.1 follows. (In the above argument the inequality |V, k,.al > akz,
which neglects the parameter k1, may seem absurdly loose; however, this is not the case because |Vi, k,.ql < 2dk2)
The upper-bound in Theorem 4.1 follows directly from the following three results.

Lemma 4.1. Let k1 <k <kj. In Iy, k,.q, the following subset of nodes resolves any pair of different strings of length k:

la/2)—1 ' ‘
Reai= | {(2n)'(2n+1)’<—' :Ogisk]. (8)
n=0

Proof. Let u=1uq---ug and v =vq--- v be nodes in Ly, k,.q of the same length k that differ at certain position j. Define
o :=u;. Without loss of generality assume that « # (a — 1) when a is odd.

Due to Theorem 2.1, the distance between pairs of nodes in Ly, r,.q is either their Hamming or edit distance. But, since
nodes in Ry, have at most two runs, Corollary 3.1 implies that £(u,r) =h(u,r) and £(v,r) = h(v,), for each r € R 4. Hence,
the distance between u and v to any node in Ry 4 is always the Hamming distance.

If « is even, we claim that {o/~T(ex + 1)¥=I*+1 i (or + 1)*~} resolves u and v. By contradiction suppose otherwise,
i.e. assume that d(u, od~1(a + D* 1) =d(v, /(@ + D*7*1) and d(u, o (@ + D¥) =d(v, af (@ + 1)¥~J). Define § :=
du, od= T + DI+ =d(v, @/~ (o + 1)*=7*1). Then

d(u, od (@ + Dk J)—h(u ol (o + k)

j— k

=Z[[u17éa]]+[[u]7éa]] + Z [ui#o+1] £ [u; #a+1]
i=1 i=j+1

=h@, o N+ D -1

=46-1.

On the other hand, since v; # a:

d(v, ol (@ + 1)) = h(v, o/ (@ + D¥)

j—1

=) [viZa]+[vj#a] + Z[vl#a—i-l]]j:[[vﬁéa—i-l]]
i=1 i=j+1
=hv, 0/ Na+ D) 41— [v;£a+1]

> 6,

implying that d(u, o (o + 1D*J) £ d(v, o (@ + 1)¥~J), which is not possible. So, {or/ =1 (o + 1)* 3+, od (o + 1)k~ I} resolves
u and v.

Likewise, if o is odd, one can show that {(o¢ — 1)\~ Ta*~™*1 (o — 1)iak~7} resolves u and v, from which the lemma
follows. O

Lemma 4.2. If ¢ is the string bijection induced by the transformation 6(«) := (o + 1) (mod a), for @ € {0, ...,a — 1}, then
the set 6(Rk—1.q) U Rk+1.q Tesolves all pairs of different strings of length k that are permutations of each other.

8

PE. Ruth and M.E. Lladser Discrete Mathematics 346 (2023) 113310

U F Upyq +1 U F U +1 w=ujyq+1 U =ujq+1
V=V +1 Vi E Vi +1 Vi #F Vi +1 V=V +1

u;evenanduy; #a—1,
orv;evenandv; # a—1

u; and v; odd

u; odd and
v; =a—1even

u; =a—1even
and v; odd

Fig. 3. Diagram associated with the different cases in the proof of Lemma 4.2.

Proof. Recall that w(,; and w® denote the prefix and suffix of a string w of length n, respectively.

Let u be a string of length k > 1, and v # u correspond to a permutation of the characters in u. Let i be the first position
at which u and v differ; in particular, ug_1, = v(i-1), and u®=*+1D and v&=*1 are permutations of each other. We show
the lemma by cases, see Fig. 3.

Case 1: Without loss of generality assume that u; even and u; # (a — 1). Define « := u;; in particular, o/ (o + D¥t1 - € Rit1:a-
We claim that the later string resolves u and v. Indeed, we may define

%= No (ui-1) = No(vin);
¥ = Nai1 (u(k—1+1)) = Ng1 (v(k—l+1)).

Next, using Lemmas 3.2 and 3.1 we find that

C(u, ol (o + Dk

= min{¢(u-1), &) + Lu D @+ D), L@, o) + e, (@ + D)
< L(ugpy, o) + LD (o + kT

=k—r-vy,

where for the second identity we have used that u; = . Similarly, using that v; # o we obtain that

(v, ol + DD —minfk+1—-A—y. k+1—rA—y +[vi=a+1]}=k+1—-1—y,

which shows the lemma for the Case 1.

We emphasize that Case 1 is the only one required for a = 2. In particular, without any loss of generality we may assume
in what remains of this proof that a > 3.

Case 2: Without loss of generality assume that u; # u; 1 + 1 and that u; and v; are odd, or that u; is odd and vi =a — 1 is even.
Define o := u; — 1; in particular, uj;1 # o and ot (@ 4+ 1)k ¢ Ri+1:q¢- We claim u and v are resolved by the later string.
Indeed, preserving the definitions of A and y from Case 1, and using similar arguments to the ones used for that case, we
find now that

(ot o+ D) =minfk+2 -2 —p k+2—A—py +up =a+1]}=k+2 -1 —y.
On the other hand, note that v; = « otherwise u; = a, which is not possible. Hence, using that v; « we obtain that

ev, oo+ D =minfk + 1 -2 — ¥, £V, o) +e*TD g <k 12—y,

which shows the lemma for the Case 2.
Case 3: u; and v; odd, u; = uj41 + 1, and vi = vi;q1 + 1. Define o := u; and B := 0 (). We claim that algk-i-1¢ 0(Rk-1:a)
resolves u and v. To show so define

PE. Ruth and M.E. Lladser Discrete Mathematics 346 (2023) 113310

X = NgWi-1)) = N (Vi-1));
7// = Nﬂ(u(k71+1)) — Nﬁ(v(k*l+1))

Note that uj1 # « and u;11 # B because a > 3; in particular, Ny (u(j4+1)) <i and Ng (u®Dy <k —i—1. As a result, due to
Lemmas 3.2-3.1, we find that

E(u, aiﬂl<7i71) S z(u(l), al) + E(u(kfl)’ ﬂk*l*l) — k _ A,/ _ 7// _ -l

Likewise:

ev, ot BTy = minfe (v, o) + e(v®D, BTN gy, al) 4 e(v*TITD gty

But note that N (v(i+1)) < i because & is odd and v;;; even, and Ng(v*") = Ng(u®~D) <k —i — 1 because u*~*+1 and
v&=i+1) are permutations of each other and u;, v; # B. Finally, since v; # « and v;y1 # o, we obtain that

(v, By =mink— A —y/ k=N —y' + [viei=B]}=k—-X —y,

which shows the lemma for the Case 3.

Case 4. Without loss of generality assume that u; = u; 1 + 1 is odd and that vi = viy1 + 1 =a — 1 is even. In particular, a is odd
and o171 € §(R_1.q) where o :=u; and g :=a + 1. We claim that a’g*~1~7 resolves u and v. To see this, note that
ujr1 ¢ {o, @ + 1}; specifically, Ny (u(iy1y) <i and Nﬂ(u("‘i)) <k—i—1.So, if and y’ are as in Case 3 then Lemma 3.2
and Lemma 3.1 imply that

Cu,a' BN < t(ugy, o) + e gy =k — A -y -1,

On the other hand, v; # « hence Ny (v(it1)) <i. Additionally, there must be some v; = u;;1 for some j > i, so Nﬂ(u("‘i)) <
k—1i—1. Thus:

o(v, aiﬁk_i_l)

= min{e(vep, o) + L 0, BT 0, o) + v D)
=min{k — A" —y'+ [vi=Bl.k= 2" =y +[vi=B] - [viy1 =]}
=k—N -y,

where for the final identity we have used that [viy1 = «] = [v; = B]. This shows the lemma for the Case 4.
Case 5. Withoqt loss of generality assume that u; = Uip1+1 is odd and vi=a—1# vj;1 + 1iseven. In particular, a is odd and
(a—2)i@-1nki-1¢ 0 (Rk—1.q). We claim that (a —2)'(a — 1)k=i-1 resolves u and v. To show so, define

A" = Ng—2(U@i-1)) = Na—2(V(i-1));
y" = Naoa @ D) = Ny (vEH),
Observe that 0 <ujy1 <u; <a—2 so ujy1 #a— 1. As a result, due to Lemma 3.2-3.1:
e, (@—2)'@— DN < ey, @ =2 + e @ - Dk
=k—2'—y"—[ui=a-2]
S k _)\.” _ J///.
On the other hand, since vi =a — 1, Nq—2(v(i+1)) <i. Additionally, vi;q # a — 2. So:
e, (a—2)'@— 1
= min{€(vp, @—2)) +v* ™, @ =D, gy, (@ = 2H + e T, @ - D)
=minfk— A" —y"+1,k—=2"—y" +1+[viz1 =a—1]}
:’C—)»”—]/”-i-],

which completes the proof of the lemma. O

Corollary 4.1. Ly, , 4 is resolved by a set of size O (a((kz + 1)> — k3)).

10

PE. Ruth and M.E. Lladser Discrete Mathematics 346 (2023) 113310

Proof. Let 6 be the character bijection defined in Lemma 4.2. Consider the sets

Ro:={0%, ..., (a— 1Dk}

Lk2—k1)/2]

i @, ko — kq even;
Ry:= 0" (R, —2i30) U
g) e Rky:a» ka2 —kq odd.

We claim that R := Ro U R1 resolves Ly, k,.q. For this, let u and v be different nodes in this Levenshtein graph. We show
that R resolves these nodes by considering different cases.

First, suppose that u and v are not permutations of each other; in particular, for some alphabet character o, N, (1) #
Ng (v). If [u] = |v| then, due to Lemma 3.1, £(u, &*2) =ky — N (1) # ky — N (v) = £(v, @*2) ie. u and v are resolved. Instead,
if |u| # |v| and Ro did not resolve them, then

a—1 a—1 a—1 a—1
ul =Y Ne)=Y (ky — £@,u) =) (kg — €@, v)) = > "Ny (v) =],
a=0 a=0 a=0 a=0

which is not possible. Hence Rg resolves all pairs of nodes in Ly, x,., that are not permutations of each other.

Next, suppose that u # v are permutations of each other. Let k := |u| = |v|. If kp —k is even or k =k then Hi(R,<;a) CR
for some integer 0 <i < [(kp — k1)/2]. Further, since 6 is an automorphism, ug := 6~ () and vg :=60~i(v) are distinct
strings of the same length k, and the distances from u and v to the nodes in Gi(Rk;a) are the same as those from ug and
Vo to Ri.q. But, due to Lemma 4.1, ug and vq are resolved by Ry.q, so u and v are resolved by Oi(Rlc;a).

Instead, if ky — k is odd and k # kq then 61 (Ry_1.4) U8 (Ri11.0) C R for some integer 0 <i < [(ka — k1)/2]. But ug :=
6~ (u) and vo :=6~I(u) are also permutations of each other so, by Lemma 4.2, ug and vg are resolved by 0(Rk-1:a) URk+1:q-
Hence, since 6 is an automorphism, u and v are resolved by 9i+1(Rk,1;a) U Qi(Rk+1;a). This shows that R resolves Ly, k,:q-

Finally, observe that

1, ifk=0;
|Rk‘,a| = a .
19)(k+1), ifk>0.

Therefore
L"Z;li
IRI <IRol + IRky:al + Y 16" (Riy—2i:0)|
i=0

ka—kq
a

—a+ |5] w4+ S g —2i+ D
i=0

=0(atkz + 1)(kz — k1 + 1))
=0 (a(tz +12 = K)).

from which the result follows. O

5. Automorphisms of Levenshtein graphs

In what follows, A(G) denotes the automorphism group of a graph G.

In addition, p denotes the string reversal, i.e. if u = uj---uy is a string of length k > 1 then p(u) := uy---uj.
By definition, p(¢) := €. On the other hand, given an alphabet bijection & : {0,...,a — 1} — {0,...,a — 1}, we define
E() :=&(q)---E(ug) and &(e) := &. We refer to any such transformation as a character bijection.

The main result in this section completes the characterization of automorphisms of Levenshtein graphs. The cases not
covered by our result have implicitly been addressed in the literature. In fact, Lo 1.4 is isomorphic to the complete graph
Ka+1, whose automorphism group is the permutation group Sq4+1 (i.e. the set of all permutations of {0, ..., a}). In particular,
|A(Lo 1:9)| = (@ + 1)!. These Levenshtein graphs are somewhat degenerate in that they are the only Levenshtein graphs
where automorphisms do not necessarily preserve string lengths.

On the other hand, LLj ., is isomorphic to the Hamming graph Hj, (Lemma 2.3), whose automorphism group is
(xf.‘=15a) x Sk [5,27]. In other words, the automorphisms of L., are the composition of character permutations with
character-wise alphabet bijections. Accordingly, |A (L j.q)| =k! - (ank.

The remaining Levenshtein graphs are addressed by our next result.

11

PE. Ruth and M.E. Lladser Discrete Mathematics 346 (2023) 113310

Theorem 5.1. Let k1 # ko and ky > 2. In L, k,.q, a node bijection o is an automorphism if and only if o is a character bijection, string
reversal, or a composition of both. In particular, L, k,.q has a! - 2 automorphisms.

The proof of this theorem is given at the end of this section. It is based on the following lemmas.
Lemma 5.1. The string reversal and character bijections are automorphisms of L, ,:q-

Proof. Let £ be a character bijection. Since & and p preserve string lengths, £(V, k,:a) C Vi ky:a and 0(Vi, k2:0) C Vi kyia-

Furthermore, since the character bijection associated with the alphabet bijection £~! is an inverse for &, and p is an

involution, £ and p are bijections from Vy, ,.q onto itself. It is convenient to extend £ to strings formed from the enlarged

alphabet {0, ...,a—1,-}, defining £(-) = -. Likewise, extend p to strings that may include gaps besides alphabet characters.
Let u, v € Vi, k,;a and A an alignment of length k > 1 between them:

%2 R ¢ 7
B B
Define the following alignment between &(u) and &(v):
_) . &)
§B1) ... EB)’

Clearly, score(¢(A)) = score(A), which implies that £(&(u),£(v)) < £(u,v), for all u,v € Vi, x,.q and character bijection &.
In particular, £((&), E~1(E(V))) < £(E(u), £(v)), implying that £(u, v) = £(£(u), £(v)). A similar argument shows that
£(u, v) =£(p(u), p(v)), which completes the proof. O

A

£(A):

Next, we discuss the degree of nodes on the infinite graph IL,. Our result can be generalized to arbitrary Levenshtein
graphs by restricting the length of the neighbors of a node.

Recall that the number of runs in a node u is denoted r(u). The next result may be regarded a corollary of the proof
of [16, Theorem 1] in the context of binary strings and was stated without proof in [17]. We include its proof for the sake
of completeness.

Lemma 5.2. ([16,17].) A node u on LL; has r(u) neighbors of length |u| — 1, |u|(a — 1) neighbors of length |u|, and a + |u|(a —
1) neighbors of length |u| + 1. In particular, u has degree a + r(u) + 2|u|(a — 1).

Proof. Recall that substitutions keep the length of a node, whereas character deletions and insertions reduce and increase,
respectively, its length by one unit. In particular, u has |u|(a — 1) neighbors of length |u|, and r(u) neighbors of length
lul — 1.

Let us now focus on the neighbors of u that can be reached due to a single insertion. An insertion may either keep or
increase the number of runs. The former occurs only if a run is enlarged by one character, and there are r(u) ways to do so.
The latter occurs only if a run is split by a character into two, or two consecutive runs are separated by a single-character
run, which can be done in (Jju|+1)(a—1) — (r(u) —1) =a+ |u|(a— 1) —r(u) ways. In particular, r(u)+a+ |ul[(a—1) —r(u) =
a+ |u|(a — 1) nodes can be reached from u through a single insertion. From this, the proposition follows. O

Lemma 5.3. If k1 + 1 <k, then any automorphism of Ly, ,., preserves the length of strings of length k».

Proof. Let o be an automorphism of Ly, ,.q (recall the implicit assumption that a > 2). We claim that o (Vi, k,.a) C
Vi ky—2:a U Viy ky:a- By contradiction suppose that there is a node u such |u| =k; and |o(u)| =k, — 1. Then, due to
Lemma 5.2:

deg(u) =r(u) +ka(a—1);
deg(o(u)) =r(oc)) +a+ 2k, —1)(@—1).

As a result, using that 1 <r(w) < |w| for any non-empty string w, we obtain that

deglo)>1+a+2k, —1)@—1)
>14+a+ Uk —@—1)4+ (k2 —1)
=ky+ky@a—1)+1
> deg(u),

which is not possible because automorphisms preserve node degrees.

12

PE. Ruth and M.E. Lladser Discrete Mathematics 346 (2023) 113310

Finally, we show that o (Vi, k,:a) = Vi, k,:a- FOr this note that no vertex in Vi, r,—2.q can be a neighbor of a vertex in
Vi, ky:a Decause any alignment between a word of length k, —2 and another of length k, must include at least two gaps. On
the other hand, since Vi, x,.q is the vertex set of Hl,.q, which is a connected sub-graph of Ly, x,:a, 0 (Vi, k,:a) is the vertex
set of a connected subgraph of Ly, ,:q. As a result, since o (V, ky:a) C Vi ky—2:a Y Vi ky:ar €ither o (Vi, ky:0) C Vi ky—2:a OT
0 (Viey ky:a) C Vg kpza- Since the former inclusion is not possible because Vi, k,—2.al < |V, ky:al, We must have o (Vi, k,.a) C
Vi, ky:a» Which shows the proposition. O

Lemma 5.4. Let ky £k, and k, > 2, and define X := {0%2, ..., (a — 1)*2}. If o is an automorphism of L, ky:q then o (X) = X.

Proof. Let o be an automorphism of Ly, ,:q.

We first show that o (X) C Vi, k,.q- Due to Lemma 5.3, this is direct when k; +1 < ky. Hence assume that k1 +1=k;; in
particular, Vi, ky:a = Vi kyia YU Vig ky:a- Suppose that o (X) N Vi, ,.q # 9. Then, there would be x € X such that |0 (X)| =kq.
In particular, due to Lemma 5.2, it would follow that

deg(o(x)) =a+2(ka —(@—-1)
>a+(ky,—1)@a—1)
=1+ky(a—1)
= deg(»),

which it is not possible because automorphisms preserve node degrees. As a result, o (X) N\ Vi, k.0 =9, i.e. 0(X) C Vi, ky:a0
which shows the claim.

Finally, since o (X) C Vi, k,:q» for each x € X, Lemma 5.2 implies that deg(x) =1+ kz(a — 1) and deg(o (x)) =1(0 (x)) +
ka(a —1). Since deg(x) = deg(o (x)), we must have r(o (x)) =1, i.e. o (x) € X, which shows the lemma. O

Lemma 5.5. Let ky # kp and kp > 2. If o is an automorphism of Ly, r,.q then the following properties apply:

1. There is a character bijection & such that, for every alphabet character and string u € Vi, k,.q» No (1) = Ng(o) (0 (0));
in particular, o (o) = &()¥ for each alphabet character and ki <k <k;.

2. For all u € Vi, ky:a, lo(W)] = [u].

3. For all u € Vi, k,.q With |u| =ka, r(o () =r(u).

Proof. Consider an automorphism o of Ly, ,.q, and let X be as in Lemma 5.4. In particular, o (X) = X. Since o is bijective,
there exists an alphabet bijection & : {0,...,a — 1} — {0, ...,a — 1} such that o (x) = £(x)*2, for each x € X. As before, we
denote the automorphism associated with & with the same symbol.

Let o be an alphabet character, and u a node in ILy, ,.q. Since ok2 € X, it follows from Lemma 3.1 that

Lo (u), o (")) = £(0), E(@)*2) =k — Ne (o) (0 (u)).

Since £(u, ak?) = ky — Ny (1), and we must have £(u, ak?) = £(o (u), o (@*?)), Property 1 follows. From this, Property 2 is
immediate because

a—1 a—1
ul =) Neg) =Y Nee) (o) =|oW)].
a=0 a=0

Finally, due to Property 2 and Lemma 3.1, if |u| =k then deg(o (u)) =r(o (u))+ka(a—1). Likewise, deg(u) =r(u)+ky(a—1).
In particular, r(u) =r(o (u)) because deg(u) = deg(o (u)), which shows Property 3. O

Proof of Theorem 5.1. Let o be an automorphism of Iy, k,.q,» and & be the corresponding character bijection described
in Lemma 5.5. Observe that (§~! o o) preserves character counts because, due to property (1) in the lemma, Ny (u) =
Ne((~'oo)(u)) for each character & and u € Vi, ky:q-

Next observe the string 02=11. From properties (2) and (3) in Lemma 5.5, we find that (¢~' 0 5)(0%2~11) is a string of
length k, with two runs. In particular, since (6! o o) preserves character counts, (6! o ¢)(0%2711) e {0%2~11, 10%2~1}. If
(1 o0)(0%211) = 10k2~1, define v := p, otherwise define ¥ to be the identity. In either case, ¢ is its own inverse; in
particular, if we define

L:=1//o$;‘_1 o()’:lﬁ_1 05_1 oo,
then
(02 11) = ok 11, (9)

13

PE. Ruth and M.E. Lladser Discrete Mathematics 346 (2023) 113310

We aim to show next that ¢ is the identity, focusing first on strings of length k, with two runs. In fact, note that ¢
preserves character and run counts because v and (6! o o) do. Hence, if o # B are characters and 0 < k < k, then

l(akz_kﬂk) c {akz—kﬂk7 ’Bkakz—k}. (—10)
First, let « =0 and B = 1. Assume that ¢((0*2—¥1%) = 1¥0*2=¥ for some 0 < k < k,. Then, using Theorem 2.1, Corollary 3.1,
and Equation (9), we find the following distances are
d(0k27k1k, Okzil‘l) — h(0k27k1k, 0’(2711) — k _]’
d((02 7*1%, 102711y = h(akoR K 02Ty =k + 1
which is not possible because automorphisms preserve distances. Thus ¢(0¥2=K1%) = 0k2=k1¥ for all 0 < k < k.
Second, if « =1, B =0, and t(1k27%0k) = 0k1%2=k for some 0 < k < ky, then ((1k2K0k) = Ok1k2—* = ;(OK1%2—%) which is
not possible because ¢ is one-to-one. Therefore ¢(1¥27%0K) = 1%2=*0k, for all 0 < k < k.
Third, let & # 1 and g = 1. Assume that (a2 %1¥) £ o/k2%1¥ for some 0 < k < k,. Then, due to Equation (10):
d(ake7k1k gkak1ky = hake =K1k oke=k1ky = (ky — k) [# 0] ;
ko, 0<k<ky/2and o #0;
d(u(e®2 %1%y, (02K 1ky) = h(kake = okek1ky = Lok, 0<k<ky/2and o =0;
2(ky — k), ka/2 <k <k;.
In particular, d(ak2—%1k ok2—k1k) #* d(t(o*2—*1k), ((0k2—k1%)) which is a contradiction because ¢ must preserve distances. So,
t(ak2*1ky = ok2—k1k for all @ £ 1 and 0 < k < k.
Finally, let o # B be arbitrary characters in the alphabet. If &« =1 let y =0, otherwise let y = 1. Through our second

and third cases we have shown that t(ak2=y k) = ak2=%* for all 0 < k < k,. Next, assume that t(ak2—%gk) £ oka=k gk for
some 0 < k < ky. Then, as we have argued before we find that:

d*7*gk, af2 7Ry k) = naka kg aka Ry k) = k[# y]);

ko, ka/2 <k <kyand B #y;
d(u(@k27* by, (k2 Ry ky) = h(Brake 7k ke Ry Ry = 1ok — k), ka/2 <k <kyand B =y;
2k, 0<k<ky/2.

But then, once again we find that d(a*2 =gk, ak2=kyky £ d(1 (k2% gK), L(ak2*9/%)), which is not possible. Consequently, for
all @ # B and 0 <k < ko, t(ak27*gky = k2 =k gk,

Thus far, we have shown that if u is a string where |u| =k, and r(u) <2 then t(u) = u.

Let Rk, q ={r1,...,m} be as defined by Equation (8). Note, for any r; € Ry, 4 that |rj| =k and r(r;) =k, implying that
t(ry) =rj. Further, from Lemma 4.1, the transformation ®(u) := (cl(u, r),...,d(u, rn)) is one-to-one over nodes of length k.
Consider an arbitrary node u such that |u| = k. From Theorem 5.5, we know that [¢(u)]| = ka. As a result:

D) = (d(u,r),...,du,m))
= (d), t(r1)), ..., d(t(w), t(rn)))
= (d@),r1), ..., d@@),m))
= d(L(w)).

In particular, since ® is one-to-one over vectors of length k,, ¢t(u) = u for all node u such that |u| =k;.

Finally, we prove by induction in k, with ky <k <kp, that ((v) =v for all v € Vi ,.q. The base case with k =k, was
just shown above. Next, consider a k; <k <k, and suppose that ((v) = v, for all v € Vyiqx,.q. If k=0, property 2 of
Lemma 5.5 implies that t(€) = €; in particular, ¢(v) = v for all v € Vi ,.q. Instead, if k > 0, consider a string u of length
k. From Lemma 5.2, u has a + |u|(a — 1) > 3 neighbors of length k + 1. Let v1, v, and v3 be different neighbors of u of
length k + 1. By the inductive hypothesis: t(v;) = v;, for 1 <i < 3. So, since ¢ is an automorphism, v, vy, and v3 are also
neighbors of ¢(u). The end of the proof relies on the following result.

Lemma 5.6. (Adjusted from [17, Theorem 4].) A node v in IL, is uniquely determined by three of its different neighbors of
length |v|+ 1.

The lemma implies that ¢(u) =u for all |u| =k, i.e. t(v) =v for all v € Vi k,.q.
The above shows that t =1 o0&~ 1 oo is the identity. In particular, c = & o v, where £ is a character bijection and

is either the string reversion or the identity, which completes the proof of Theorem 5.1. O

14

PE. Ruth and M.E. Lladser Discrete Mathematics 346 (2023) 113310

6. Determining number of Levenshtein graphs

For a graph G = (V,E), a set of nodes D C V is called determining when the identity is the only ¢ € A(G) such that
o (x) =x, for all x € D (this is equivalent to the definition given at the end of the Introduction). The determining number of
G, denoted Det(G), is the size of its smallest determining set. (A graph with a trivial automorphism group has a determining
number of 0.)

We implicitly encountered determining sets of Levenshtein graphs in the proof of Theorem 5.1, which essentially uses
that {0%2,..., (a — 1)*2, w}, with w any non-palindromic string such that k; < |w| < k, is a determining set of Lk, ky:a
when k1 #k, and ky > 2.

Since LLg,1.q is isomorphic to K41, it follows from [3] that Det(ILg 1.q) = a. On the other hand, since Ly x., is isomorphic
to H 4, which may be described as the Cartesian product of k copies of K, tight bounds on Det(ILy y.q) follow from [4].

On the other hand, it can be shown by an exhaustive test that if ky # ky and (kz,a) = (2,2) then Det(LLy, 7.2) =2 >
la/kz]. In this case, {01,00} is one of a few minimal determining sets. Our following result addresses the determining
number of the remaining Levenshtein graphs.

Theorem 6.1. If k1 # k2, ko > 2, and (k3. a) # (2, 2) then Det(L, ky:a) = {%—‘

The remainder of this section is devoted to stating and proving two auxiliary results and showing this theorem.

Lemma 6.1. If k1 # ky and ky > 2 then at least (a — 1) of the a alphabet characters must be represented in a determining
set of L, ky:a-

Proof. Let D = {d, ...,dp}, with n > 1, be a determining set, and S the set of alphabet characters that occur at least once
in D, ie, S={(d;j)j:1<i<n,1<j<|di]}. If |S| <a—1 then there would exist at least two distinct alphabet characters
o, B ¢S. Let u be the character bijection that swaps « and 8, i.e. w(o) =g and w(B) = «, but acts as the identity on every
other character. Then, u(d) =d, for all d € D; in particular, since 4 is not the identity, D could not be a determining set.
Since this is not possible, |S| > a — 1, which shows the lemma. O

Lemma 6.2. If k1 # ko and kp > 2 then Det(ILy, k,:q) > {%—‘

Proof. Let D ={d, ..., d,}, with n > 1, be a determining set, and S the set of alphabet characters that occur at least once in
D. Define £p =0 and ¢; = Z'j:] |d;] for 1 <i<n.

We claim that ¢, > a. By contradiction, assume that ¢, < a. Since £, > |S|, Lemma 6.1 implies that £, =|S|=a — 1. In
particular, up to a character bijection, we may assume that S={0,...,a—2}, and that dj =¢;_1...(¢; — 1) for 1 <i <n.
Consider the character bijection w such that u(@—1)=a—1,and u(j)=¢;+¢i—1—1—jfor¢; 1 <j<¢—1land 1<i<n.
In particular, u acts as a reversal on each string in D. Then (1 o p)(d;) =d;, for all 1 <i <n, hence (i o p) must be the
identity. However, this is not possible because (u o p)(0(a — 1)) = (a — 1)(a — 2). Hence ¢, > a, which implies the lemma
because n-ky > >0 ldi| =€y >a. O

Proof of Theorem 6.1. Define n:= r%}; in particular, n > 1. Due to Lemma 6.2, it suffices to construct a determining set of
size n, for which we consider three cases. First, if k; > a, define D := {d} where

e ok2-11, a=2;
T okemat21.. (@ —2), a>3.

Since at least a — 1 alphabet characters are represented in d, the identity is the only character bijection that preserves d.
On the other hand, if ¢ = it o p, where w is any character bijection then, for a =2, o (d) = (1) (0)¥2~1 with ky — 1> 2;
in particular o (d) # d. Similarly, if a > 3 then o (d) = u(a —2) - - - (1) (0)2=92 with k; —a+2 > 2, and again o (d) #d.
Therefore, D is a determining set.

Second, if 2 <k, <a, let D :={d1,...,dy} be of cardinality n such that dy :=0012... (k; —2), dq, ..., d, are of length kj,
and every character in {0,...,a — 2} is used by at least one node in D. Since a — 1 alphabet characters are represented in
D, the identity is the only character bijection that maps each d; to itself. However, if 0 = u o p, where w is any character
bijection, then o (d1) = u(ky —2) --- (1) (0)? % dy. So, D is a determining set.

Finally, if ko = 2; in particular, a > 3, let D ={dq,...,dp} be of cardinality n such that d; :=01, d :=12, dy, ..., d, are
of length 2, and every character in {0, ...,a — 2} is used by at least one node in D. Once again, since at least a — 1 alphabet
characters are represented in D, the identity is the only character bijection that maps each d; to itself. Next, let 0 = o p,
where w is any character bijection. If 6(01) = 01 then w(1) = 0. If this is the case then o(12) = u(2)0 # 12, i.e. either
0(01) #01 or 0(12) # 12. Hence D is determining and the theorem follows. O

15

PE. Ruth and M.E. Lladser Discrete Mathematics 346 (2023) 113310

7. Conclusion

In this manuscript, we have introduced the notion of Levenshtein graphs, which generalize Hamming graphs but allow
for nodes (words) of different lengths. The underlying motivation for this is to use resolving sets in Levenshtein graphs to
represent words of varying size as points in Euclidean spaces using graph embeddings of the form given in Equation (1).

We have shown that Levenshtein graphs are connected; however, unlike Hamming graphs, their distance is not nec-
essarily equal to edit distance between nodes. We have also bounded the metric dimension of Levenshtein graphs and
constructed resolving sets composed only of two-run strings. This construction is based on novel formulas to compute the
edit distance to any one-run or two-run string. In addition, we have thoroughly characterized their automorphism group
and determining number.

It remains to characterize the metric dimension of Levenshtein graphs more explicitly, or at least asymptotically. A
technical difficulty for this is the lack of symmetries of these graphs, exemplified by their relatively small automorphism
group. Nevertheless, numerical trials through the ICH algorithm suggest that the actual metric dimension of L., grows
at most linearly with the maximal string length k. However, these trials are limited due to the exponential growth of
Levenshtein graphs, and further theoretical findings may be necessary to settle this claim.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgements

We thank the reviewers for their thorough reading and constructive remarks about our manuscript. This research was
partially funded by NSF IIS grant 1836914.

References

[1] O. Arbell, G.M. Landau,].S. Mitchell, Edit distance of run-length encoded strings, Inf. Process. Lett. 83 (6) (2002) 307-314.
[2] D. Bar-Ley, T. Etzion, E. Yaakobi, On Levenshtein balls with radius one, in: 2021 IEEE International Symposium on Information Theory (ISIT), IEEE, 2021,
pp. 1979-1984.
[3] D.L. Boutin, Identifying graph automorphisms using determining sets, Electron. J. Comb. (2006) R78.
[4] D.L. Boutin, The determining number of a Cartesian product, J. Graph Theory 61 (2) (2009) 77-87.
[5] EA. Chaouche, A. Berrachedi, Automorphisms group of generalized Hamming graphs, in: Fifth Cracow Conference on Graph Theory USTRON ’06, in:
Electronic Notes in Discrete Mathematics, vol. 24, 2006, pp. 9-15.
[6] S.A. Cook, The complexity of theorem-proving procedures, in: Proceedings of the Third Annual ACM Symposium on Theory of Computing, STOC '71,
ACM, New York, NY, USA, 1971, pp. 151-158.
[7] R. Durbin, S.R. Eddy, A. Krogh, G. Mitchison, Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids, Cambridge University
Press, 1998.
[8] D. Erwin, F. Harary, Destroying automorphisms by fixing nodes, Discrete Math. 306 (24) (2006) 3244-3252.
[9] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W.H. Freeman & Co., New York, NY, USA, 1979.
[10] A. Grover,]. Leskovec, Node2vec: scalable feature learning for networks, in: Proceedings of the 22nd ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, ACM, 2016, pp. 855-864.
[11] E. Harary, R.A. Melter, On the metric dimension of a graph, Ars Comb. 2 (191-195) (1976) 1.
[12] M. Hauptmann, R. Schmied, C. Viehmann, Approximation complexity of metric dimension problem, J. Discret. Algorithms 14 (2012) 214-222, Selected
papers from the 21st International Workshop on Combinatorial Algorithms (IWOCA 2010).
[13] Z. Jiang, N. Polyanskii, On the metric dimension of Cartesian powers of a graph, J. Comb. Theory, Ser. A 165 (2019) 1-14.
[14] S. Khuller, B. Raghavachari, A. Rosenfeld, Landmarks in graphs, Discrete Appl. Math. 70 (3) (1996) 217-229.
[15] L. Laird, R.C. Tillquist, S. Becker, M.E. Lladser, Resolvability of Hamming graphs, SIAM]. Discrete Math. 34 (4) (2020) 2063-2081.
[16] V.. Levenshtein, Binary codes capable of correcting deletions, insertions, and reversals, in: Soviet Physics Doklady, vol. 10, 1966, pp. 707-710.
[17] V.1 Levenshtein, Efficient reconstruction of sequences from their subsequences or supersequences, J. Comb. Theory, Ser. A 93 (2) (Feb. 2001) 310-332.
[18] V. Mdkinen, E. Ukkonen, G. Navarro, Approximate matching of run-length compressed strings, Algorithmica 35 (4) (2003) 347-369.
[19] S.B. Needleman, C.D. Wunsch, A general method applicable to the search for similarities in the amino acid sequence of two proteins,]J. Mol. Biol. 48 (3)
(1970) 443-453.
[20] N. Pisanti, Recent Duplications in Genomes: A Graph Theory Approach, Université de Marne-la-Vallée, 1998, DEA memoire.
[21] P. Ruth, Numerical Encoding of Symbolic Data: Standard, State of the Art, and New Techniques, Undergraduate Honors Thesis, University of Colorado,
March 2021.
[22] F. Sala, R. Gabrys, C. Schoeny, L. Dolecek, Three novel combinatorial theorems for the insertion/deletion channel, in: 2015 IEEE International Symposium
on Information Theory (ISIT), IEEE, 2015, pp. 2702-2706.
[23] PJ. Slater, Leaves of trees, Congr. Numer. 14 (549-559) (1975) 37.
[24] F. Stahlberg, Discovering vocabulary of a language through cross-lingual alignment, PhD thesis, Karlsruhe Institute of Technology, 2011.
[25] R.C. Tillquist, R.M. Frongillo, M.E. Lladser, Metric dimension, Scholarpedia 14 (10) (2019) 53881, revision #190769.
[26] R.C. Tillquist, R.M. Frongillo, M.E. Lladser, Getting the lay of the land in discrete space: A survey of metric dimension and its applications, to appear in
SIAM Rev. (2021).
[27] R.C. Tillquist, M.E. Lladser, Low-dimensional representation of genomic sequences,]J. Math. Biol. 79 (1) (2019) 1-29, p. 7.
[28] E. Ukkonen, Algorithms for approximate string matching, Inf. Control 64 (1-3) (1985) 100-118.
[29] L.R. Varshney, J. Kusuma, V.K. Goyal, On palimpsests in neural memory: an information theory viewpoint, IEEE Trans. Molec. Biol. Multi-Scale Commun.
2 (2) (2016) 143-153, p. 12.
[30] R.A. Wagner, MJ. Fischer, The string-to-string correction problem, J. ACM 21 (1) (1974) 168-173.
[31] X. Zhong, F. Heinicke, S. Rayner, miRBaseMiner, a tool for investigating miRBase content, RNA Biol. 16 (11) (2019) 1534-1546.

16

http://refhub.elsevier.com/S0012-365X(22)00516-7/bibC5D9F376910DEE44DE144B97C6E0DC28s1
http://refhub.elsevier.com/S0012-365X(22)00516-7/bib2952A28C3AA212874D102416A99488D6s1
http://refhub.elsevier.com/S0012-365X(22)00516-7/bib2952A28C3AA212874D102416A99488D6s1
http://refhub.elsevier.com/S0012-365X(22)00516-7/bibA5DFD161AC30F96C59736BF94C0BD119s1
http://refhub.elsevier.com/S0012-365X(22)00516-7/bibCF962E99AF43B7C29988616D3AF76EBFs1
http://refhub.elsevier.com/S0012-365X(22)00516-7/bib8F8723DC55201DDBE83C3C3546280FF1s1
http://refhub.elsevier.com/S0012-365X(22)00516-7/bib8F8723DC55201DDBE83C3C3546280FF1s1
http://refhub.elsevier.com/S0012-365X(22)00516-7/bib6FBD0721869DC1A8415B712DD505806Ds1
http://refhub.elsevier.com/S0012-365X(22)00516-7/bib6FBD0721869DC1A8415B712DD505806Ds1
http://refhub.elsevier.com/S0012-365X(22)00516-7/bib144E58F64FFF2EDE1B3FA82B4DA3447Fs1
http://refhub.elsevier.com/S0012-365X(22)00516-7/bib144E58F64FFF2EDE1B3FA82B4DA3447Fs1
http://refhub.elsevier.com/S0012-365X(22)00516-7/bibA5B7388C59C82001F7F74240627AFB72s1
http://refhub.elsevier.com/S0012-365X(22)00516-7/bib06D7ADA72117F8C806E0E7A19DC32372s1
http://refhub.elsevier.com/S0012-365X(22)00516-7/bib989C6140A9DDEEED1CA8E378EC7FB6B0s1
http://refhub.elsevier.com/S0012-365X(22)00516-7/bib989C6140A9DDEEED1CA8E378EC7FB6B0s1
http://refhub.elsevier.com/S0012-365X(22)00516-7/bib5AA60107058D02D98F1BEA03B7919EC1s1
http://refhub.elsevier.com/S0012-365X(22)00516-7/bib04F8945B4E06ED2117320DCBF9711FDFs1
http://refhub.elsevier.com/S0012-365X(22)00516-7/bib04F8945B4E06ED2117320DCBF9711FDFs1
http://refhub.elsevier.com/S0012-365X(22)00516-7/bib1C493C97CF6FA4AE572A804F9D28BE6Es1
http://refhub.elsevier.com/S0012-365X(22)00516-7/bibEBAEF7098AAF306FB53034CF638517ADs1
http://refhub.elsevier.com/S0012-365X(22)00516-7/bib1B5C26DD72872FF81860A666670FC7B7s1
http://refhub.elsevier.com/S0012-365X(22)00516-7/bib73727A1A090BF68B204F7CED84E4ABF4s1
http://refhub.elsevier.com/S0012-365X(22)00516-7/bibB20A11B876BA4BED3FBAA87C1A569003s1
http://refhub.elsevier.com/S0012-365X(22)00516-7/bibEF5BE32AD5DCD9B33A417F85F84C0B4Cs1
http://refhub.elsevier.com/S0012-365X(22)00516-7/bibE99A58A17032F718865348D052A899E6s1
http://refhub.elsevier.com/S0012-365X(22)00516-7/bibE99A58A17032F718865348D052A899E6s1
http://refhub.elsevier.com/S0012-365X(22)00516-7/bib7DFA8139DD6C7B2E00E0A6B092B8EE01s1
http://refhub.elsevier.com/S0012-365X(22)00516-7/bibC7455F71F71643FCD0213A3601E7D5A8s1
http://refhub.elsevier.com/S0012-365X(22)00516-7/bibC7455F71F71643FCD0213A3601E7D5A8s1
http://refhub.elsevier.com/S0012-365X(22)00516-7/bib0763A60E3FFE4FA86FF6A474620079C0s1
http://refhub.elsevier.com/S0012-365X(22)00516-7/bib0763A60E3FFE4FA86FF6A474620079C0s1
http://refhub.elsevier.com/S0012-365X(22)00516-7/bib98D16DF69342948888BE288A3F9C1F33s1
http://refhub.elsevier.com/S0012-365X(22)00516-7/bib87228F5500BFC7394319091C4DF44560s1
http://refhub.elsevier.com/S0012-365X(22)00516-7/bibEDB4B7F303D3CEEAB4F72E1D07EB759Fs1
http://refhub.elsevier.com/S0012-365X(22)00516-7/bib15799D4ADF6DE6E1F8C26085EDA0B5FDs1
http://refhub.elsevier.com/S0012-365X(22)00516-7/bib15799D4ADF6DE6E1F8C26085EDA0B5FDs1
http://refhub.elsevier.com/S0012-365X(22)00516-7/bib2798F18131289309F6BD30C294EF56A7s1
http://refhub.elsevier.com/S0012-365X(22)00516-7/bib54CDA50868D52CB0F03B030009C305BDs1
http://refhub.elsevier.com/S0012-365X(22)00516-7/bibE27081A27511C9D5A302D17D77E2F335s1
http://refhub.elsevier.com/S0012-365X(22)00516-7/bibE27081A27511C9D5A302D17D77E2F335s1
http://refhub.elsevier.com/S0012-365X(22)00516-7/bib384AC296FADEA57C82D0C187BA3F2470s1
http://refhub.elsevier.com/S0012-365X(22)00516-7/bibC0DD00CDEF469ECA4D2138159D9F84CAs1

	Levenshtein graphs: Resolvability, automorphisms & determining sets
	1 Introduction
	2 Graph versus edit distance, and connectivity
	3 Edit distance to a string with at most two runs
	4 Metric dimension of Levenshtein graphs
	5 Automorphisms of Levenshtein graphs
	6 Determining number of Levenshtein graphs
	7 Conclusion
	Declaration of competing interest
	Acknowledgements
	References

