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Ultrametric matrices appear in many domains of
mathematics and science; nevertheless, they can be
large and dense, making them difficult to store
and manipulate, unlike large but sparse matrices. In
this manuscript, we exploit that ultrametric matrices
can be represented as binary trees to sparsify them
via an orthonormal base change based on Haar-
like wavelets. We show that, with overwhelmingly
high probability, only an asymptotically negligible
fraction of the off-diagonal entries in random but large
ultrametric matrices remain non-zero after the base
change; and develop an algorithm to sparsify such
matrices directly from their tree representation. We
also identify the subclass of matrices diagonalized
by the Haar-like wavelets and supply a sufficient
condition to approximate the spectrum of ultrametric
matrices outside this subclass. Our methods give
computational access to a covariance matrix model
of the microbiologists’ Tree of Life, which was
previously inaccessible due to its size, and motivate
introducing a new wavelet-based (beta-diversity)
metric to compare microbial environments. Unlike the
established metrics, the new metric may be used to
identify internal nodes (i.e. splits) in the Tree that link
microbial composition and environmental factors in a
statistically significant manner.

1. Introduction
Ultrametric matrices appear across many domains of
mathematics and science. They comprise an important
class of matrices called inverse-M matrices [1] and are
a key object of study in potential theory and Markov
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Chains [2]. In scientific applications, ultrametric matrices act as covariance models in
phylogenetic comparative analysis [3], network inference [4] and energy models in statistical
physics [5]. In the context of modern data science, recent work has shown that the matrix
of normalized Euclidean distances between points in some random subsets of Rd converge in
probability to an ultrametric matrix as d tends to infinity [6,7].

In many applications, the underlying ultrametric matrix can be dense and potentially too large
to store in computer memory and manipulate. Nonetheless, if a sparse representation of such a
matrix can be found, many otherwise impossible tasks may become computationally feasible,
such as matrix inversion and eigenvalue decompositions.

This paper tackles the challenge of sparsifying ultrametric matrices, which we define next.
In what remains of this manuscript, n≥ 1 is an integer and [n] := {1, . . . , n}. Vectors and

sometimes functions are represented as column vectors, and the transpose of a vector or matrix A
is denoted A′.

Definition 1.1 ([8]). A matrix S ∈Rn×n is ultrametric if it is symmetric with non-negative
entries, and S(i, j)≥min{S(i, k), S(k, j)} for all i, j, k ∈ [n]. In particular, S(i, i)≥max{S(i, t) : t ̸= i} for
all i ∈ [n]. Accordingly, S is called strictly ultrametric when it is ultrametric and S(i, i) > max{S(i, t) :
t ̸= i} for all i ∈ [n]. For n = 1, the last inequality is replaced with S(i, i) > 0.

Ultrametric matrices have rich properties that are not made evident by their definition [1]. In
particular, if S is strictly ultrametric then it is positive definite (hence invertible), S−1 is strictly
diagonally dominant with non-positive off-diagonal entries, and S(i, j) = 0 if and only if S−1(i, j) =
0. These properties were initially proved using probabilistic methods [9]. An alternative proof is
based on a representation of strictly ultrametric matrices as weighted and rooted binary trees with
special characteristics [10, proposition 2.1]. Notably, using a perturbation argument, analogous
representations also apply to ultrametric matrices that are not necessarily strictly ultrametric [8].
See also [1, proposition 3.4]. Indeed, if n > 1 and S is a symmetric matrix of dimensions n× n with
non-negative entries, then S is ultrametric if and only if there exists a permutation matrix P and
ultrametric matrices A and B such that

P
(
S−min(S) 11′

)
P′ =

[
A 0
0 B

]

, (1.1)

where min(S) is the smallest entry in S, and 1 ∈Rn is the column vector of ones. Since A and B
are of the same kind as S, this process may be applied recursively and the matrix S encoded as
a binary tree (an ordered one). Here, we adopt a slightly different encoding to the one in [8,10],
which is more suitable for our purposes. The reader unfamiliar with the jargon and notation of
trees may skip ahead to §1b and come back to make better sense of the construction below.

Recall that a bifurcating tree is a tree where each node has degree one or three. We can represent
an ultrametric matrix S of dimensions n× n as a weighted bifurcating tree with 2n nodes (of which
half are leaves) and hence (2n− 1) edges, satisfying the following definition.

Definition 1.2. An out-rooted bifurcating tree (ORB-tree) with n leaves is a weighted rooted
tree with the following properties: each vertex has degree 1 or 3; its leaf set is [n] and excludes the
root, which has degree 1; each edge is labelled by the subset of leaves that descend from it; and
the length ℓ(e) of each edge e is non-negative.

ORB-trees are therefore isomorphic to bifurcating trees rooted at a leaf, which is deemed an
internal node. This unconventional choice ensures a one-to-one correspondence between their
internal nodes and vectors in an associated orthonormal basis (see definition 2.1).

We emphasize that ORB-trees are determined by both their topology and branch lengths.
The representation of an ultrametric matrix S as an ORB-tree may be obtained as follows. The

only edge emanating from the root is labelled as [n] and defined to have length min(S). The only
child of the root has two children. One child descends from an edge labelled by the rows (or
columns) of S associated with the matrix A before applying the permutation matrix P in (1.1).

 D
ow

nl
oa

de
d 

fro
m

 h
ttp

s:/
/ro

ya
lso

ci
et

yp
ub

lis
hi

ng
.o

rg
/ o

n 
15

 M
ar

ch
 2

02
4 



3

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A479:20220847

..........................................................

3

1 2

{1,2,3}

{1,2} {3}

{1} {2}

e (e) δe
{1,2,3} 2 (1,1,1)!
{1,2} 0 (1,1,0)!
{1} 3 (1,0,0)!
{2} 1 (0,1,0)!
{3} 2 (0,0,1)!

Figure 1. ORB-tree and ultrametric matrix correspondence. ORB-tree with interior nodes coloured blue (the root), yellow and
red, and branch lengths as given in the table. Accordingly, it encodes a (strictly) ultrametric matrix.

This edge has length min(A). Likewise, the other child descends from an edge labelled by the
rows associated with the matrix B and has length min(B). Since A and B are ultrametric, just of
smaller dimensions, the tree may be grown recursively from any descendent of the root that is not
associated with an ultrametric matrix of dimensions 1× 1. The latter represent edges that parent
a leaf in the ORB-tree. (When S is strictly ultrametric, these edges must have a strictly positive
length because 1× 1 strictly ultrametric matrices are strictly positive real numbers.) Conversely,
the matrix may be recovered from the ORB-tree as follows. For each edge e in the ORB-tree, let δe
be the vector of dimension n with entries δe(i) = 1 for i ∈ e and δe(i) = 0 for i /∈ e. It follows that

S =
∑

e∈E

ℓ(e) δe δ′e; in particular, S(i, j) =
∑

e∈[i∧j,◦]
ℓ(e). (1.2)

In particular, an ultrametric matrix may be uniquely recovered from any of its ORB-tree
representations. We say ‘any’ because several trees may represent the same matrix, for example,
when the matrix A or B in equation (1.1) is diagonal.

To fix ideas, see figure 1.
We call a matrix with entries such as (1.2) the covariance matrix of the ORB-tree. This

terminology is borrowed from the ecology literature where matrices like this are commonly
referred to as a tree-structured or phylogenetic covariance matrices [11]. In this setting, the
leaves represent organisms, and the matrix entries denote a trait’s covariance between pairs of
organisms. (The term of cophenetic matrix or cophenetic distance has also been used occasionally
in the hierarchical clustering literature [12].) For instance, the matrix encoded by the tree in
figure 1 is

2 δ{1,2,3}δ
′
{1,2,3} + 3 δ{1}δ

′
{1} + δ{2}δ

′
{2} + 2 δ{3}δ

′
{3} =

⎛

⎜⎝
5 2 2
2 3 2
2 2 4

⎞

⎟⎠ .

Due to the identity in equation (1.2), ultrametric matrices are usually dense; in fact, all the
entries in a strictly ultrametric matrix must be non-zero. Nevertheless, precisely because of this
identity, their entries contain much redundancy, suggesting they may be amenable to some form
of compression. In this manuscript, we apply a change of bases—a discrete wavelet, in fact—with
respect to which the covariance matrix of an ORB-tree often becomes sparse.

Wavelets are localized, wave-like functions developed to analyse non-stationary and noisy
continuous signals. Traditional wavelets are defined only in Euclidean spaces and have been
remarkably successful in identifying multi-scale structures in signals and producing sparse
representations of the same [13].

The Haar wavelet is among the oldest and involves averaging a signal locally at different time
or space scales [14]. Recently, the authors of [15] extended it past continuous signals introducing
the Haar-like wavelet. This new, discrete, wavelet is designed for the multi-scale analysis of
discrete datasets equipped with a partition tree—a hierarchical structure that clusters the data
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into smaller subsets recursively. Due to the organization of such datasets into different tree levels
(i.e. scales) and clusters (i.e. localizations), Haar-like wavelets may identify meaningful patterns in
data that would be impossible to detect otherwise—especially in noisy high dimensional datasets.

This paper exploits the representation of ultrametric matrices as ORB-trees to sparsify and
sometimes diagonalize the former via a change of basis. This basis is composed of the so-called
Haar-like wavelets of the associated ORB-trees. The sparsification achieved by these wavelets
can be substantial in large, ultrametric matrices, which would otherwise be inaccessible due
to their size. These sparse representations can be valuable in phylogenetic applications [3],
network inference [4] and hierarchical clustering problems [12,16] as their models often rely on
tree-structured covariance matrices.

(a) Paper organization
In §2, we specialize the Haar-like basis from [15] and give a geometric interpretation of its action
on ORB-trees. This results in a closed-form expression for the transformed ultrametric matrix
that can be computed efficiently—without having to pre-compute the matrix from the tree. In §3,
we present conditions under which the Haar-like basis can be used to sparsify large ultrametric
matrices, and show that the basis can substantially sparsify most large random ORB-tree’s
covariance matrices. Following in §4, we show that the Haar-like basis can be used sometimes
to estimate the eigenvalues of an ultrametric matrix. In particular, §4a introduces the concept of
trace-balanced trees; these are the ORB-trees whose covariance matrices are diagonalized by their
Haar-like basis. Section 4b then details the possible spectrums of trace-balanced trees through
a constructive proof that is of consequence for the symmetric non-negative inverse eigenvalue
problem [17–19].

Section 5 is devoted to an extensive proof of concept of our methods in metagenomics (i.e.
the study of microbial environments based on genetic material extracted directly from them).
Specifically, we sparsify the covariance matrix associated with microbiologists’ Tree of Life. The
significant sparsification achieved by our methods motivates introducing a new but wavelet-
based phylogenetic (β-diversity) distance, corresponding to a multi-scale analysis of organism
abundances in microbial environments. This new distance gives remarkably similar results to
other well-known metrics on a previously studied dataset. However, unlike the established
metrics, it can also determine the splits in the Tree responsible for the observed microbial
compositions and quantify their respective importance.

Finally, technical proofs can be found in appendix B.

(b) General notation and terminology
For real-vectors x = (xi)1≤i≤k and y = (yi)1≤i≤k of dimension k, let x̄ := 1

k
∑k

i=1 xi, ⟨x, y⟩ := x′y =
∑k

i=1 xiyi and ||x||2 :=
√
⟨x, x⟩. Also, let [[·]] denote the indicator function of the proposition within

the parentheses.
In our context, trees are finite undirected connected graphs without cycles.
In what remains of this manuscript, T denotes an ORB-tree with n leaves and branch length

function ℓ : E→ [0,∞). We denote the vertex and edge set of T as V and E, respectively. The root
of T is denoted as ◦. Recall that ◦must have degree one. The set of internal nodes of T is denoted
as I, whereas its set of leaves is denoted as L. By definition, ◦ ∈ I and I and L partition V. It follows
that |L| = |I| = n, hence |V| = 2n. Also |E| = |V|− 1 because T is a tree. We define |T| := |V| and use
this notation when we want to emphasize a direct relationship with the ORB-tree.

For i, j ∈V, a path of length l between i and j is a sequence v0, . . . , vl ∈V such that v0 = i, vl = j
and {vk, vk+1} ∈ E for 0≤ k < l. Unless otherwise stated, we write [i, j] to denote the set of edges in
the shortest path between i and j in T. This path is unique because trees have no cycles. The depth
of i, denoted depth(i), is defined as |[i, ◦]|, i.e. the number of edges that connect i with the root.
We say that i is an ancestor of j, or alternatively j is a descendent of i, when i ∈ [◦, j]. In particular,
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every node is an ancestor and a descendant of itself. Further, (i ∧ j) denotes the so-called least-
common ancestor to i and j. This is the v ∈V that maximizes |[v, ◦]|, among all the nodes that are
ancestors to both i and j.

We define

ℓ(i, j) :=
∑

e∈[i,j]

ℓ(e).

In addition, for J⊂ L and i ∈V, define ℓ(J, i) as the column vector of dimension |J| with entries
ℓ(j, i), for j ∈ J. ℓ(i, J) is the transpose of ℓ(J, i).

For each i ∈V, T(i) denotes the subtree of T rooted at i. In particular, the vertex set of T(i) is the
subset of nodes in T that descend from i, and its edge set is the subset of edges that connect two
descendants of i. L(i) denotes the leaf set of T(i). Likewise, for each e = {i, j} ∈ E, if i is closer to the
root than j, T(e) and L(e) denote T(j) and L(j), respectively.

2. Haar-like basis of ORB-trees
In this section, we specialize the concept of Haar-like basis given in [15] to our setting of ORB-
trees. (The authors of [15] consider multi-furcating trees, which encompass bifurcating ones.)

The key result in this section is theorem 2.3, which provides a rather explicit expression for the
entries of the covariance matrix of an ORB-tree with respect to its Haar-like basis—see equation
(2.2). This expression is helpful because it lets us anticipate entries that vanish when transitioning
between bases by directly analysing the tree’s topology.

To construct the Haar-like wavelets, it is convenient to represent the nodes in I \ {o} as binary
strings. With this convention, the (only) child of the root is denoted as ε—the so-called empty
string. Further, the children of each node v ∈ I \ {o} are v0 (i.e. the string v with the character zero
appended at the end) and v1 (i.e. v with the character one appended at the end). In particular, ε0 =
0 and ε1 = 1. Keeping this notation in mind, the Haar-like wavelets associated with an ORB-tree
are given by the following definition.

Definition 2.1 (Specialization from [15]). The Haar-like basis associated with T is the set of
transformations {ϕv}v∈I defined as follows:

ϕo(i) := 1√
|L|

, for all i ∈ L;

and, for each v ∈ I with v ̸= o

ϕv(i) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

+
√

|L(v1)|
|L(v0)| · |L(v)|

, i ∈ L(v0);

−
√

|L(v0)|
|L(v1)| · |L(v)|

, i ∈ L(v1);

0, otherwise.

The Haar-like matrix associated with T is the matrix Φ with columns ϕv , v ∈ I.

That is, for each interior node v, ϕv is supported on L(v), the set of leaves that descend from v.
Further, for v ̸= ◦, there are constants α, β such that ϕv(i) = α for leaves on the left-subtree dangling
from v, and ϕv(i) = β for leaves on the right-subtree dangling from v. These constants are such that
ϕv has mean zero and unit norm (i.e. |L(v0)| · α + |L(v1)| · β = 0 and |L(v0)| · α2 + |L(v1)| · β2 = 1).
In this manuscript, we adopt the convention that α > 0 > β. To fix ideas, see figure 2.

We remark that, in the context of compositional data analysis, the Haar-like basis is equivalent
to the orthonormal basis used in the isometric log-ratio (ILR) transform [20]. We revisit the
implications of this connection in §5.
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1 2

{1,2,3}

{1,2} {3}

{2}{1}

(a)

1/"3

1/"2

1/"6

–2/"6

–1/"2

i

i

i

(b)

Figure 2. Visualization of the Haar-like wavelet basis associated with an ORB-tree. (a) Tree with leaves 1, 2, 3 and coloured
interior nodes (blue root). Edges are labelled by the subsets of leaves that descend from them. (b) Haar-like wavelets associated
with the interior nodes of the ORB-tree. These depend on its topology but not its branch lengths.

The terminology of basis in definition 2.1 is justified by the fact that

if u, v ∈ I then ⟨ϕu, ϕv⟩= [[u = v]]. (2.1)

(Recall that [[·]] denotes the indicator function of the proposition within.) In particular, {ϕv}v∈I is
an orthonormal basis for the vector space of functions from L to R. (See appendix Ba for a self-
contained justification of the orthonormality of the wavelets.) Note that the Haar-like matrix Φ

has its rows indexed by L and its columns indexed by I. Since |L| = |I|, Φ is a square matrix, an
orthonormal one. Further, Φ ′SΦ has its rows and columns indexed by I.

The following definition is useful to understand the relationship between the Haar-like basis
of an ORB-tree and its associated covariance matrix.

Definition 2.2. The trace branch length of T is the function ℓ∗ : E→ [0,∞) defined as ℓ∗(e) :=
|L(e)| ℓ(e), for each e ∈ E.

Theorem 2.3. If v ∈ I then S ϕv = diag(ℓ∗(L, v)) ϕv .

It follows from the theorem that for each u, v ∈ I

(Φ ′SΦ)(u, v) = ϕ′uSϕv =
∑

i∈L(v)∩L(u)

ϕu(i) ϕv(i) ℓ∗(i, v). (2.2)

In particular, (Φ ′SΦ)(u, v) = 0 when u, v ∈ I are such that L(u) ∩ L(v) = ∅. This suggests that the
Haar-like matrix can be used to sparsify the covariance matrix of the ORB-tree. The following
result is critical to assess how effective this sparsification is in practice.

Lemma 2.4. For all u, v ∈V, L(u) ∩ L(v) ̸= ∅ if and only if u is an ancestor of v or vice versa.

(a) Fast sparsification algorithm
A non-trivial challenge to storing and manipulating large ultrametric matrices is that they are very
dense in practice. In many applications, however, particularly metagenomics, these matrices are
encoded in advance as ORB-trees. This allows us to sparsify them without explicitly computing or
storing them in computer memory. It also allows us to anticipate which entries may remain non-
zero after sparsification. In fact, due to equation (2.2) and lemma 2.4, all that is required to sparsify
an ultrametric matrix from its ORB-tree representation is to precompute the leaves that descend
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from each internal node (i.e. the sets L(v), with v ∈ I) and the trace branch length between them
(definition 2.2). This can be achieved with two postorder traversals of the ORB-tree. We convey
these ideas in the following pseudo-code (algorithm 1), which is fully coded and available on
https://github.com/edgor17/Sparsify-Ultrametric.

Algorithm 1. Phylogenetic covariance matrix sparsification.

Input. ORB-tree T with covariance matrix S
Output. Only possibly non-zero entries in Φ ′SΦ

for v ∈ I in postorder traversal of T do
for i ∈ L do

if v=◦ then
ϕo(i)← 1√

|L|
else if i ∈ L(v0) then

ϕv(i)←+
√

|L(v1)|
|L(v0)|·|L(v)|

ℓ∗(v, i)← ℓ∗(i, v0) + |L(v0)| · ℓ(v0, v)
else if i ∈ L(v1) then

ϕv(i)←−
√

|L(v0)|
|L(v1)|·|L(v)|

ℓ∗(v, i)← ℓ∗(i, v1) + |L(v1)| · ℓ(v1, v)
else

ϕv(i)← 0
end if

end for
end for
for v ∈ I in postorder traversal of T do

while parent(v) ̸= ∅ do
u← parent(v)
M(u, v)←

∑

i∈L(v)∩L(u)
ϕu(i) ϕv(i) ℓ∗(v, i) %{equation (??)}

end while
end for
return M(u, v) for u, v ∈ I such that L(u) ∩ L(v) ̸= ∅

3. Sparsification of covariance matrices of ORB-trees
In this section, we quantify how much of the covariance matrix of an ORB-tree can be sparsified
by its Haar-like matrix. To state our main result, we require the following definitions.

Definition 3.1. Recall that |T| denotes the total number of nodes in T. The average subtree size
of T is the quantity avg(T) :=

∑
v∈V |T(v)|/|T|.

Definition 3.2 ([21]). The internal and external path lengths of T are the quantities defined as
IPL(T) :=

∑
v∈I depth(v) and EPL(T) :=

∑
v∈L depth(v), respectively. The total path length of T is

the quantity TPL(T) := IPL(T) + EPL(T).

We note the relationship

avg(T) = 1 + TPL(T)
|T|

, (3.1)

because

TPL(T) =
∑

v∈V

∑

u∈V\{◦}
[[v ∈ T(u)]] =

∑

u∈V\{◦}
|T(u)| =

{
∑

u∈V

|T(u)|
}

− |T|.

Definition 3.3. The interior of T is the tree
◦
T obtained by trimming the leaves of T.
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°°

Figure 3. Visualization of (a) a perfect binary tree and (b) a binary caterpillar tree of heights 3.

Clearly, IPL(T) = TPL(
◦
T).

As mentioned earlier, the identity in (2.2) guarantees that some entries of Φ ′SΦ vanish. The
following result gives a lower-bound for the number of such entries. This bound is independent
of the branch lengths and depends—only—on the tree topology.

Theorem 3.4. Let S be the covariance matrix associated with an ORB-tree T with Haar-like matrix Φ.
If ζ denotes the fraction of vanishing entries in Φ ′SΦ then

ζ ≥ 1 + 1
|L|
− 2

avg(
◦
T)

|
◦
T|

= 1− 1
|L|
− 2

TPL(
◦
T)

|
◦
T|2

.

It follows from the first lemma in [21, Section 6.4] that for an ORB-tree T, EPL(T)− IPL(T) =
2|I|− 1, which together with the previous theorem lets us conclude the following asymptotic
result.

Corollary 3.5. If either avg(
◦
T)≪ |

◦
T|, TPL(

◦
T)≪ |

◦
T|2, IPL(T)≪ |I|2, or EPL(T)≪ |L|2 as |T|→∞,

then ζ = 1− o(1).

In other words, if T grows so that either of the asymptotic inequalities in the above corollary
applies, then an asymptotically negligible fraction of the off-diagonal entries in Φ ′SΦ will be
non-zero.

The last asymptotic condition in the corollary 3.5 (i.e. that EPL(T)≪ |L|2) is of relevance in
phylogenetic studies. In that context, the external path length of a tree is called its Sackin’s index
[22–24]. This index is used as a measure of the balance or unbalance of phylogenetic trees.

We end this section testing the efficacy of theorem 3.4 in sparsifying the covariance matrices of
two types of ORB-trees, each representing an extreme of balance (or imbalance), as given by the
following definitions.

For the first definition, recall that ε denotes the empty string.

Definition 3.6. A perfect binary tree of height h≥ 1 is the ORB-tree whose nodes are ◦ (the root)
and all binary strings of length at most (h− 1), and whose edges are of the form {◦, ε} and {u, v},
with u and v binary strings with lengths that differ by one.

Definition 3.7. A binary caterpillar tree of height h≥ 1 is the ORB-tree with nodes ◦ (the root),
1, . . . , h, 1′, . . . , (h− 1)′ and edges of the form {◦, 1}, {i, i + 1}, for i = 1, . . . , (h− 1), and {j, j′} for
j = 1, . . . , (h− 1).

See figure 3 to fix ideas on the above definitions.
Perfect binary trees give the most balanced topology among the ORB-trees. If T is a perfect

binary tree then avg(
◦
T)≪ |

◦
T| (see appendix Be). In particular, due to theorem 3.5, the associated

Haar-like matrix can be used to asymptotically annihilate (via a similarity transformation) the
off-diagonal entries of the covariance matrix of a perfect binary tree as its height tends to infinity.
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By contrast, binary caterpillar trees give the most unbalanced topology among the ORB-trees.
If T is such a tree then avg(

◦
T)∼ |

◦
T|/2 (see appendix Bf). Hence, the lower-bound provided by

theorem 3.4 is trivial, and we cannot guarantee that the Haar-like matrix associated with a sizeable
binary caterpillar tree annihilates the off-diagonal entries of the associated ultrametric matrix in
any significant way.

(a) Covariance matrices of large random ORB-trees
Perfect binary trees and caterpillar trees are opposite extremes of how balanced (or unbalanced)
ORB-trees can be. It is therefore unclear how much sparsification the Haar-like matrix of a large
but generic ORB-tree can induce on its covariance matrix. To address this issue, we consider a
natural ensemble of random ORB-trees.

In what follows, T denotes a uniformly at random ORB-tree with n leaves, i.e. with n internal
nodes and hence of size 2n. Such trees may be generated using the Catalan distribution [21,
Section 6.7]. This probability model produces full binary trees (i.e. trees in which each node has 0
or 2 children) with a given number of leaves, which we may turn into an ORB-tree by appending
their root to a new external one.

Let S denote the covariance matrix of T, and ζ the fraction of vanishing entries in Φ ′SΦ, where
Φ is the Haar-like matrix associated with T. It turns out that the mean and variance of the internal
path length of T are given by

E
(

IPL(T)
)
∼
√

πn3 (3.2)

and

V
(

IPL(T)
)
∼
(

10
3
− π

)
n3. (3.3)

The identity in equation (3.2) follows from [25, Proposition VII.3.]. The identity in (3.3) may be
regarded a refinement of [25, Note VII.12].

As the following result implies, the Haar-like basis of most large ORB-trees should be highly
effective in sparsifying their covariance matrix.

Corollary 3.8. If T is a uniformly at random ORB-tree with n leaves, then limn→∞ ζ = 1 in probability.
Namely, for each δ > 0, ζ > (1− δ) with overwhelmingly high probability as n→∞.

4. Spectra of ultrametric matrices
The ORB-tree representation of ultrametric matrices offers new approaches to studying their
spectrum. This is of interest for domains such as structural biology [26] and metagenomics
[27], where ultrametric matrices emerge as phylogenetic covariance ones. In PCA, a widely
used statistical technique to represent high-dimensional data in low dimension (usually two or
three), eigenvalue estimates can provide information about the relative importance of different
eigenvectors onto which to project data with a correlation structure described by an ultrametric
matrix, such as certain trait models in Ecology [27]. Similarly, since ultrametric matrices are
symmetric, one can use eigenvalue estimates to establish a threshold for determining the number
of singular values required for an accurate low-rank approximation. This section examines how
to approximate the spectrum of ultrametric matrices.

In what follows, for a given function x : L→R and non-empty J⊂ L, we define the mean value
and variance of x over J naturally as the following quantities:

avg(x; J) := 1
|J|
∑

j∈J

x(j)

and

var(x; J) := 1
|J|
∑

j∈J

(
x(j)− avg(x; J)

)2.
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For each v ∈V, let parent(v) denote the parent of node v in T. Define

ρv := |L(v)|
|L
(
parent(v)

)
|
.

In addition, define for v ∈ I the quantities

λv := (Φ ′SΦ)(v, v) = ϕ′vSϕv =
∑

i∈L(v)

ϕ2
v (i) ℓ∗(i, v), (4.1)

where the last identity is based on equation (2.2). Note that, because ϕv has L(v) as its support
and ||ϕv ||2 = 1, λv is a weighted average of the trace branch length between each leaf in L(v) and
v. In particular, since L(u)⊃ L(v) when u is an ancestor of v, the closer the internal node v is to
the root, the more terms are averaged. (This emulates the averaging at different scales that the
standard Haar wavelet transform does to a continuous signal.) Furthermore, since ℓ∗(e)≥ 0 for all
e ∈ E, λv ≥ 0.

The next result provides a sufficient condition for λv , with v ∈ I, to be a good approximation of
an eigenvalue of S. It also quantifies rather explicitly the cosine between Sϕv and λvϕv to assess
how close ϕv is to be an eigenvector of S.

In stating and proving the result, we reuse the notation of definition 2.1, and define ¬0 := 1
and ¬1 := 0. Also, for λ ∈R and non-empty A⊂R, we define

|λ− A| := min
a∈A

|λ− a|.

Theorem 4.1. If v ∈ I then λv = ρv0 · ℓ∗(L(v1), v) + ρv1 · ℓ∗(L(v0), v), and

|λv − σ (S)|≤

√√√√ρv0 · ρv1 ·
{
ℓ∗(L(v0), v)− ℓ∗(L(v1), v)

}2
+

∑

α∈{0,1}
ρvα · var

(
ℓ∗(L, v); L(v¬α)

)
.

Furthermore, if λv = 0 then Sϕv = 0. Otherwise, if λv ̸= 0 then

cos(Sϕv , λvϕv) = 1
√

1 + {||(S− λv)ϕv ||2/λv}2
.

(a) Exact spectrum of trace-balanced ultrametric matrices
While theorem 3.4 guarantees that some entries in Φ ′SΦ vanish—regardless of branch lengths,
additional constraints on the latter can lead to further sparsification. In this section, we identify
the class of ORB-trees whose Haar-like basis fully sparsifies (i.e. diagonalizes) their covariance
matrix.

Due to theorem 4.1, if ℓ∗(L(v1), v) = ℓ∗(L(v0), v) and var(ℓ∗(L, v); L(vα)) = 0 for α ∈ {0, 1}, i.e.
ℓ∗(i, v) = ℓ∗(j, v) for all i, j ∈ L(v), then Sϕv = λvϕv . Conversely, due to theorem 2.3, if Sϕv = λvϕv

then λv ϕv(i) = ℓ∗(i, v) ϕv(i), for each i ∈ L. That is, ℓ∗(i, v) = ℓ∗(j, v) for all i, j ∈ L(v) because ϕv(i) > 0
when i ∈ L(v). This motivates the following definition and establishes our next result.

Definition 4.2. An ORB-tree T is called trace-balanced when, for all v ∈ I \ {◦} and all i, j ∈ L(v),
ℓ∗(i, v) = ℓ∗(j, v).

Corollary 4.3. The Haar-like basis of T diagonalizes its covariance matrix S if and only if T is trace-
balanced. In this case, the spectrum of S is

σ (S) =
⋃

v∈I

{
ℓ∗(v, i) for any i ∈ L(v)

}
,

and the multiplicity of ℓ∗(v, i) is |{u ∈ I : ℓ∗(v, i) = ℓ∗(u, j), for some j ∈ L(u)}|.

Our next corollary generalizes some of the results in [26], which investigated homogeneous
(i.e. equal branch lengths) perfect binary trees (definition 3.6) in the phylogenetic setting to predict
protein structure features.

 D
ow

nl
oa

de
d 

fro
m

 h
ttp

s:/
/ro

ya
lso

ci
et

yp
ub

lis
hi

ng
.o

rg
/ o

n 
15

 M
ar

ch
 2

02
4 



11

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A479:20220847

..........................................................

Corollary 4.4. If a perfect binary tree of height h has constant branch lengths at each level, and ℓj
denotes the common length of the edges that connect a node at depth j with another at depth (j + 1), then
the spectrum of the associated covariance matrix S is

σ (S) =

⎧
⎨

⎩

h−1∑

k=j

2h−1−kℓk, with j = 0, . . . , h− 1

⎫
⎬

⎭ .

Furthermore, the multiplicity of an eigenvalue λ is
∑

j∈Λ 2max{0,j−1}, where

Λ :=

⎧
⎨

⎩j ∈
{
0, . . . , h− 1

}
such that

h−1∑

k=j

2h−1−kℓk = λ

⎫
⎬

⎭ .

For example, if the tree in figure 3a satisfies that ℓα = ℓβ , whenever α and β are binary strings
of the same length and at most 2, then it is trace-balanced and the eigenvalues of its associated
ultrametric matrix are ℓ00, ℓ00, ℓ00 + 2ℓ0, ℓ00 + 2ℓ0 + 4ℓε , repeated according to their multiplicity.

We emphasize that corollary 4.4’s hypotheses are sufficient but not necessary for a perfect
binary tree to be trace-balanced (see appendix A). In fact, per corollary 4.7 ahead, far more varied
spectra are possible when considering covariance matrices of perfect binary trees.

Next, we consider the binary caterpillar tree (definition 3.7). In particular, its internal and leaf
set are I = {◦, 1, . . . , h− 1} and L = {1′, . . . , (h− 1)′, h}, respectively. Let ℓ0 denote the branch length
of {◦, 1}, ℓi the length of {i, i + 1} for i = 1, . . . , (h− 1), and ℓ′j the branch length of {j, j′} for j =
1, . . . , (h− 1). Due to corollary 4.3, we have the following result.

Corollary 4.5. A binary caterpillar tree of height h is trace-balanced if and only if ℓ′j =
∑h−1

k=j (h− k) · ℓk,
for j = 1, . . . , h− 1. In this case, the eigenvalues of its covariance matrix are ℓ′0 ≥ ℓ′1 ≥ · · ·≥ ℓ′h−1, repeated
according to their multiplicity, where ℓ′0 :=

∑h−1
k=0(h− k) · ℓk.

For instance, the tree in figure 3b is trace-balanced if and only if ℓ′2 = ℓ2 and ℓ′1 = ℓ2 + 2ℓ1.
In this case, the associated eigenvalues are ℓ′2, ℓ′1, and ℓ′0 := ℓ′1 + 3ℓ0, repeated according to their
multiplicity. Furthermore, when the branch lengths undergo slight perturbations—as quantified
by theorem 4.1—these quantities may be regarded as approximate eigenvalues.

(b) Symmetric non-negative inverse eigenvalue problem
The main result in this section characterizes all the possible spectrums of covariance matrices
of trace-balanced ORB-trees. Because its proof is constructive, it can be used to form ultrametric
matrices with the desired spectrum and multiplicities. In particular, it is of consequence for the
symmetric non-negative inverse eigenvalue problem (SNIEP), which aims to classify the possible
spectra of symmetric non-negative matrices [17–19].

Definition 4.6. In a tree T, a function f : I→ [0,∞) is called decreasing when, for all distinct
u, v ∈ I, if u is an ancestor of v then f (u)≥ f (v).

Corollary 4.7. In a trace-balanced ORB-tree T the function v −→ ℓ∗(v, i), with v ∈ I and any i ∈ L(v),
is decreasing. Conversely, given any ORB-tree topology T and decreasing function f : V→ [0,∞), there is
a branch length function ℓ : E→ [0,∞) such that σ (S) = f (I). Furthermore, the multiplicity of λ ∈ σ (S) is
|f−1({λ})|.

5. New insights into the microbial Tree of Life
In this section, we apply our results to a phylogenetic covariance matrix associated with
a standard reference phylogeny. Our main result, motivated by the spectral approximation
properties in §4, is the definition of a new wavelet-based metric to compare microbial
environments. In a broader context, the significant sparsification of phylogenetic covariance
matrices may find use in other phylogenetic comparative methods that require otherwise
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computationally impossible tasks related to such models, such as computing the full spectrum
or inverse of a covariance matrix.

Many methods in microbiology rely on a phylogenetic tree relating microorganisms. At the
microbial level, however, the notions of genus or species are ill-defined because microorganisms
do not interbreed. So microbes’ taxonomy and phylogeny are often based on the so-called 16S
ribosomal RNA (16S rRNA) gene. This gene is present in all known single-cell organisms and can
therefore be used as a phylogenetic marker. An operational taxonomic unit (OTU) is a cluster
of these markers defined by some least level of DNA sequence similarity among its (highly)
conserved regions.

Greengenes is a standarized database based on the 16S rRNA marker. It has been a standard
reference in microbial studies, particularly metagenomics, and is the default option in QIITA
[28]—a widely used open-source management platform for microbial analyses. Greengenes
phylogenetic trees are built using FastTree [29] and their associated taxonomies are assigned using
tax2tree [30]. Trees are typically stored in the newick format [31], which encodes their topology
and branch lengths, and visualized using software such as FigTree [32] or the ETE Toolkit [33].

Figure 4 displays the Greengenes tree when OTUs are thresholded at a 97% sequence
similarity—the average similarity of macro-organisms’ DNA in the same species. The tree
represents the inferred evolutionary history of modern-day microorganisms from common
ancestors. Its root is at the centre of the circular layout, and each OTU is associated with a
single leaf in the tree and vice versa. Branch lengths are a proxy of evolutionary time such as the
estimated expected number of mutations per nucleotide site [34], and interior nodes (called splits)
are inferred speciation events that have led to the present-day microorganisms in the database.

A fundamental problem in microbiology is to link environmental factors (such as acidity, light,
nutrients, salinity, temperature, etc.) with microbial composition. A valuable tool for this has been
the concept of β-diversity (i.e. a measure of differences between microbial composition across
different environments). Early approaches [35,36] ignored the evolutionary relationships between
microorganisms when comparing environments. Nonetheless, one would expect microbes with a
shared evolutionary history to similarly thrive or struggle in similar environments. Phylogenetic-
informed metrics were introduced precisely to convey this idea. These metrics require a
phylogenetic tree relating the microorganisms observed in samples from all the environments
under study. We emphasize that the construction and selection of these trees are outside the
scope of this paper; as is typical in many metagenomics studies, we work with a pre-computed
tree. Among other more recent phylogentic trees such as SILVA [37] and WoL [38], Greengenes
has been a common choice of representative phylogeny. So, we base our application on the
latter—though our methods could be applied to any reference phylogeny.

Double principal coordinate analysis (DPCoA) [27] is a phylogenetically informed β-diversity
metric between pairs of microbial environments, which provides similar insights [39] to other
more recent though more widely used distances such as unweighted and weighted UniFrac [40].

Let T be the ORB-tree associated with a phylogenetic tree (e.g. the 97% Greengenes tree after
adding an external root ◦ and connecting it to the original root with a branch of length 0), and S
its covariance matrix. Since all edges connected to a leaf have strictly positive length, S is strictly
ultrametric [9,10]; in particular, positive definite.

In the context of phylogenetic-informed metrics, environments are represented as probability
mass functions over the OTUs (i.e. leaves). We denote those functions with lower-case letters such
as a and b, and interpret them as probability models over L. In particular, a : L→ [0, +∞) satisfies
that

∑
x∈L a(x) = 1 and, for each e ∈ E, a(e) =

∑
x∈e a(x). With this convention, the DPCoA distance

between two environments a and b is defined as [27,39]

d(a, b) :=
{
∑

e∈E

ℓ(e)
(
a(e)− b(e)

)2
}1/2

=
√

(a− b)′S(a− b). (5.1)

Since S is positive definite, DPCoA corresponds to a Mahalanobis distance [41]; implying that
d(·, ·) is a metric—in the mathematical sense—in R|L|.
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Figure 4. Circular layout of the 97% Greengenes tree. The tree has 99 322 leaves, 198 642 edges and height (i.e. maximal leaf
depth) 107. The average branch length is 1.42× 10−2 units, with lengths varying between 1.5× 10−4 and 1.0.

The weighted and unweighted UniFrac distances are instead defined as follows [40]:

dw(a, b) :=
∑

e∈E

ℓ(e) |a(e)− b(e)|

and

du(a, b) :=
∑

e∈E ℓ(e)
∣∣[[a(e) > 0]]− [[b(e) > 0]]

∣∣
∑

e∈E ℓ(e)
.

Both versions of UniFrac are known to satisfy the triangular inequality [42, Supplementary
Methods]. DPCoA is also more robust to unbiased noise but more sensitive to outliers than
UniFrac [39].

Regardless of the metric of choice, the standard approach to linking environmental factors with
microbial composition goes roughly as follows [43]. First, environmental samples are collected,
and each environment is represented by its OTU composition on the leaves of the phylogeny of
reference. Then, the pairwise distance matrix between the environments is computed, and the
environments are embedded into a low-dimensional Euclidean space using standard techniques
such as multidimensional scaling (MDS) [44]. Despite the noisy and high-dimensional nature of
microbial datasets [45–47], this approach has been remarkably reliable for the ordination [48] of
microbial environments in as little as one to two dimensions, and for correlating environmental
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Figure 5. Heatmaps ofmatrices associatedwith the 97%Greengenes. Black (white) pixels denote non-zero (vanishing) entries.
(a) Phylogenetic covariance matrix S of the 97% Greengenes tree. S has dimensions approximately 105 × 105. (b) Sparsified
matrixΦ ′SΦ .

factors with microorganisms. However, this approach does not usually explain correlations,
which need to be justified by other means.

In what remains of this section, we apply our methods to the Greengenes phylogeny. First,
we demonstrate significant sparsification of the associated covariance matrix after applying the
Haar-like wavelet transform. Then, we motivate a new wavelet-based phylogenetic β-diversity
metric corresponding to a multi-scale analysis of the phylogenetic tree. Finally, we show that this
wavelet-based metric can give novel insights into the relationship between environmental factors
and OTU composition.

(a) Greengenes phylogenetic covariance matrix sparsification
The 97% Greengenes tree has about 100 000 leaves. Let T be the ORB-tree associated with it.

The identity in equation (1.2) implies that the covariance matrix S of T is a 2× 2 block diagonal
matrix, with each block corresponding to an ORB-subtree. Approximately 94% of the almost 10
billion entries in S are non-zero because one of the ORB-subtrees (corresponding to the Archaea
domain) is much smaller than the other—see figure 5a. This makes storing the covariance matrix
of T challenging. Further, basic computational tasks such as finding the spectrum and inverting S
for parameter estimation in phylogenetic comparative methods [49,50] is infeasible because this
large matrix is almost fully dense. We may use, however, the Haar-like matrix Φ associated with T
to sparsify S. From theorem 3.4, we can guarantee that ζ ≥ 0.9989, i.e. at least 99.89% of the entries
in the similar matrix Φ ′SΦ vanish. This significant compression of the matrix S can be appreciated
in figure 5b.

We implemented algorithm 1 using the sparse matrix packages from SciPy [51] to compute
Φ ′SΦ. As proof-of-principle, we used this compressed representation to compute the largest 500
eigenvalues of S to machine precision using SciPy’s implementation of the Lanczos algorithm. As
seen in figure 6, the eigenvalues of S decay rapidly. In fact, we found that λ1(S)∼ 1.27× 105,
λ2(S)∼ 4.75× 103 and trace(S)∼ 1.65× 105, so the top-two eigenvalues already account for
approximately 80% of the trace of S.

As seen in figure 6 also, the sorted diagonal entries in Φ ′SΦ (i.e. the quantities λv , with v ∈ I,
as defined in (4.1)) approximate with ample accuracy the spectrum of S. For instance, maxv∈I λv

underestimates λ1(S) with only about a 0.06% relative error. Anticipating this overall accuracy
from T alone remains an open problem as neither our mathematical results, particularly theorem
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Figure 6. Spectrum decay of 97% Greengenes tree covariance matrix and corresponding approximation using Haar-like
wavelets. Only the 500most dominant eigenvalues of S are plotted as a function of their rank. Logarithms are in base-10.

4.1, nor more general ones such as Gershgorin’s circle theorem, Sylvester’s determinant theorem,
and bounds found in [52–54], have been able to explain it.

(b) A wavelet-based phylogeneticβ-diversity metric
Let T be the ORB-tree associated with a phylogenetic tree. In this section, we assume that the
covariance matrix S of T is positive definite; in particular, λv > 0, for each v ∈ I.

Recall that ϕv , with v ∈ I, is supported on L(v), and together these functions form an
orthonormal base of R|L|. In particular, just as wavelets are traditionally used to localize signals at
different scales, we may use the Haar-like basis of T to localize environmental OTU distributions
on subsets of leaves defined by splits in the tree. This is particularly appealing from a biological
standpoint. Indeed, the opposite signs of ϕv on the leaves of the left and right subtrees dangling
from v may be interpreted as a speciation event that conferred more fitness to present-day
microorganisms descending from one of the subtrees than the other. We propose the following
definition to convey these features into a phylogenetic β-diversity metric.

Note that for a given environment a (i.e. OTU distribution over L), Φ ′a is the projection of a
onto the Haar-like basis of the reference tree.

Definition 5.1. The Haar-like distance between two environments a and b is the quantity

dh(a, b) :=
√∑

v∈I

λv .2
v , where . = (.v)v∈I := Φ ′(a− b).

The specifics of this distance can be motivated as follows. On one hand, the terms .2
v , with

v ∈ I, convey the idea that dh regards two environments similar (different) when their OTU
compositions project similarly (differently) onto the Haar-like basis of the reference tree. On the
other hand, the weights λv , with v ∈ I, are motivated by the success of DPCoA in various biological
investigations. To explain this, consider the matrices D := diag(λv : v ∈ I) and E := Φ ′SΦ −D.
Observe that dh(a, b) =

√
.′D.; in particular, dh is a metric in R|L| because D is positive definite,

and d(a, b) =
√

.′D. + .′E.. In large phylogenetic trees, however, we expect E to be mostly
filled with zeroes due to corollary 3.8—which suggests considering dh as an alternative metric
to DPCoA.
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We have mentioned before that while traditional phylogenetic metrics (in conjunction with
embedding techniques) have been remarkably successful at correlating microbial composition
with environmental factors, these correlations cannot usually be explained from the metrics
alone. The wavelet nature of the Haar-like distance has, however, the potential to explain said
correlations. Indeed, the biological interpretation of the Haar-like basis conveyed by their sign
flip suggests that if λv .2

v is comparatively large (small) for some v ∈ I, then the speciation event
associated with v has a significant (little) influence differentiating the OTU distributions between
two environments a and b. (There may be discrepancies between taxonomy and splits in a tree. In
particular, while the aforementioned correlations may be explained by a phylogeny, they are not
necessarily explained by a taxonomic classification.)

Previously, we mentioned the equivalence of the Haar-like basis and ILR basis. Accordingly,
compositional metrics with similar interpretations [55,56] can be defined by projecting log-ratios
of OTU counts onto the Haar-like basis (equivalently ILR basis). However, contrary to the Haar-
like distance, these metrics do not account for phylogenetic-induced covariance between OTUs.

(c) Haar-like distances of the Guerrero Negro microbial mat
A microbial mat is a bio-film of layered groups of microorganisms with coupled biochemistries.
Their rich biodiversity, combined with the environmental gradients of light, oxygen, etc. offer an
ideal setting to test phylogenetic β-diversity metrics.

The Guerrero Negro mat is hypersaline. It is located in Baja California Sur, Mexico. To
demonstrate the insights possibly gained from the Haar-like distance, we applied it to a 16S rRNA
dataset of 18 samples at different depths of the Guerrero Negro mat [28,57]. We used the 97%
Greengenes as the reference phylogeny.

Earlier work [57] based on unweighted UniFrac showed a gradient of microbial composition in
the mat with respect to depth—see figure 7a. (For a discussion regarding the ‘horseshoe’ shape in
the plot, see [57–59].) As seen on the bottom plot of the same figure, we can practically reproduce
this gradient using the Haar-like distance instead. Furthermore, as seen on the bottom two plots,
the DPCoA and Haar-like distance produce nearly indistinguishable embeddings.

While the three phylogenetic β-diversity metrics imply that mat depth drives a measurable
change in OTU composition, we can go a step further with the Haar-like distance and determine
which splits in the 97% Greengenes tree are responsible for this trend and quantify their
importance. We demonstrate this by comparing the two extremes in the dataset: let a and b be the
OTU compositions of the shallowest and deepest environment, respectively. Define . = Φ ′(b− a).
Following the logic described in §b, we computed v ∈ I−→ λv .2

v , indexing interior nodes
according to a postorder traversal of the 97% Greengenes tree. These values are shown in figure 8a.
For our analysis, we focus on the largest three values, all of which are statistically significant
(via the number of standard deviations they deviate from the mean). These are associated with
the Haar-like wavelets ϕ99311 (λv.

2
v-value ∼ 4.84× 10−2), ϕ6079 (λv.

2
v-value ∼ 4.84× 10−3) and

ϕ67317 (λv.
2
v-value ∼ 4.65× 10−3). These correspond to splits at depths 10, 18 and 34 of the 97%

Greengenes tree, respectively.
Notably, the split associated with ϕ99311 corresponds to the largest λv.

2
v-value. According to

the associated taxonomic classification, the (say) left descendants of this split correspond to the
phylum level classification of Cyanobacteria. This is consistent with the conclusion in [57], which
correlated Cyanobacteria abundance changes with mat depth and explained the correlation by
their ability to photosynthesize.

The other two wavelets provide novel insight into other important OTU composition
differences driving the observed mat depth gradient in the Guerrero Negro dataset. Indeed, the
split associated with ϕ6079 subdivides the Cyanobacteria phylum into further classes, including
Oscillatoriophycideae, which is the third most abundant class of the Guerrero Negro dataset.
The relevance of this split to differentiate shallow from deep samples may be explained by
Oscillatoriophycideae’s photoautotrophic capability [61].
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UniFrac embedding

DPCoA embedding

Haar-like distance embedding

0.2
(a)

(b)

(c)

0

–0.2
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0

–0.05

–0.20 –0.15 –0.10 –0.05 0 0.05

Figure 7. Two-dimensional MDS embeddings of samples from Guerrero Negro w.r.t. different metrics. The embeddings are
based on unweighted UniFrac (a), DPCoA (b) and the Haar-like distance (c). Depth varies from 0 to 0.034m.

Finally, while the descendants of the split associated with ϕ67317 do not exhaust a taxonomic
classification, all leaves under that split are classified as Anaerolineae. This differentiation
between the shallowest and deepest sample may be due to Anaerolineae’s role as an anaerobic
digester [62].

Our analysis of the Guerrero Negro mat shows that the Haar-like distance may be a valid
alternative to other more common phylogenetic β-diversity metrics, primarily because it provides
a systematic method for detecting statistically significant speciation events (and corresponding
levels of OTU classification) that can link OTU composition with environmental factor
gradients.

6. Conclusion
We have presented an approach to analyse and manipulate ultrametric matrices through their
ORB-tree representation. We demonstrated that the Haar-like wavelets associated with an ORB-
tree provide an orthonormal basis with respect to which their associated matrix can be sparsified.
Subsequently, we detailed a sparsification algorithm and showed that, with overwhelmingly
high probability, only an asymptotically negligible fraction of the off-diagonal entries in random
but large ultrametric matrices would remain non-zero after its application. The resulting sparse
representation may allow otherwise computationally infeasible and standard manipulations of
these matrices, such as inverting and factoring them and characterizing their spectrum and
eigenvectors. Noteworthily, our results generalize to the class of extended ultrametric covariance
matrices and hence may find application in the parameterization of covariance matrices of
Gaussian mixture models [16].

 D
ow

nl
oa

de
d 

fro
m

 h
ttp

s:/
/ro

ya
lso

ci
et

yp
ub

lis
hi

ng
.o

rg
/ o

n 
15

 M
ar

ch
 2

02
4 



18

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A479:20220847

..........................................................

(a)

(b)

comparing the shallowest and deepest mat samples via the Haar-like basis
0.05 ϕ99311 $ 4.84 × 10–2

ϕ6079 $ 4.84 × 10–3

ϕ67317 $ 4.65 × 10–3

0.04

0.03

λ v
% v

2
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0.01

0

0 20 000

Haar-like wavelet index

99 311

67 317
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ch
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cyanobacteria
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internal node index (postorder traversal)
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Figure 8. (a) Plot of λv .2
v , with v ∈ I, to measure the Haar-like distance between the shallowest and deepest sample in

the Guerrero Negro dataset. The three largest projections are shown in the legend and projections with a value of zero are
left unmarked. The average non-zero value of λv .2

v is approximately 2.09× 10−5. The standard deviation of these values
is approximately 7.55× 10−4. (b) The support of the three most significant projections visualized on the 97% Greengenes
phylogeny using iTOL [60]. Clades have been collapsed for visualization purposes and displayed leaves are labelled by the lowest
taxonomic label that applies to all of its (collapsed) children.
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Additionally, we provided some exact and approximate spectral results for ultrametric
matrices based on the trace branch length ‘balancedness’ of their ORB-tree. We also characterized
the possible spectrums of ultrametric matrices, giving further insight into the symmetric non-
negative inverse eigenvalue problem.

Conversely, the ultrametric matrix associated with an ORB-tree corresponds to the
phylogenetic covariance matrix of the tree. We applied our methods to the microbiologist’s Tree
of Life covariance matrix as proof of concept. This covariance model is a standard reference in
metagenomic studies, which rely on metrics such as UniFrac and DPCoA. Motivated by the fact
that the Tree of Life’s covariance matrix is significantly sparsified by the Haar-like wavelets, and
that the diagonal of the sparsified matrix approximates with striking accuracy its spectrum, we
introduced the Haar-like distance. Like the established metrics, this new metric measures the
distance between pairs of microbial environments taking into account the relative abundance
of microbes and their evolutionary relatedness. Unlike the established metrics, however, this
new distance may be used to identify statistically significant speciation events linking microbial
composition with environmental factors.
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Appendix A. Sparsification and trace-balanced example
Consider a perfect binary tree with four leaves labelled {1, 2, 3, 4}, and edges of length ℓ({1}) = a,
ℓ({2}) = b, ℓ({1, 2}) = c, ℓ({3}) = d, ℓ({4}) = e, ℓ({3, 4}) = f and ℓ({1, 2, 3, 4}) = g, all non-negative.

The phylogenetic covariance matrix of this tree is

S =

⎛

⎜⎜⎜⎝

a + c + g c + g g g
c + g b + c + g g g

g g d + f + g f + g
g g f + g e + f + g

⎞

⎟⎟⎟⎠
,

and the associated Haar-like matrix, when interior nodes are sorted in postorder traversal, is

Φ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
2

0
1
2

1
2

− 1√
2

0
1
2

1
2

0
1√
2
−1

2
1
2

0 − 1√
2
−1

2
1
2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

 D
ow

nl
oa

de
d 

fro
m

 h
ttp

s:/
/ro

ya
lso

ci
et

yp
ub

lis
hi

ng
.o

rg
/ o

n 
15

 M
ar

ch
 2

02
4 

https://github.com/edgor17/Sparsify_Ultrametric


20

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A479:20220847

..........................................................

As a result

Φ ′SΦ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a + b
2

0
a− b
2
√

2
a− b
2
√

2

0
d + e

2
e− d
2
√

2
d− e
2
√

2
a− b
2
√

2
e− d
2
√

2
(a + b + 4c) + (d + e + 4f )

4
(a + b + 4c)− (d + e + 4f )

4

a− b
2
√

2
d− e
2
√

2
(a + b + 4c)− (d + e + 4f )

4
(a + b + 4c) + (d + e + 4f ) + 16g

4

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

As expected from lemma 2.4, the entries associated with the first and second interior node in
postorder traversal in Φ ′SΦ must be 0. Also, this matrix is diagonal if and only if a = b, d = e, and
a + b + 4c = d + e + 4f . This is equivalent to having a = b, d = e and a + 2c = e + 2f , i.e. that the tree
is traced-balanced, in accordance with corollary 4.3.

Appendix B. Proof of technical results
(a) Orthonormality of Haar-like bases
The statement that the Haar-like basis {ϕv}v∈I associated with an ORB-tree is orthonormal is based
on the concept of multi-resolution analysis of Euclidean spaces in [15]. Here, we justify this fact
by first principles.

Let u, v ∈ I. If u = v then

⟨ϕu, ϕv⟩=
|L(u1)| + |L(u0)|

|L(u)|
= 1.

Instead, there are two possibilities when u ̸= v. If L(u) ∩ L(v) = ∅ then ⟨ϕv , ϕu⟩= 0 because ϕv and
ϕu have disjoint supports. Otherwise, if L(u) ∩ L(v) ̸= ∅ then lemma 2.4 lets us assume without any
loss of generality that u is an ancestor of v. In particular, L(v)⊂ L(u) but also ϕu remains constant
over L(v). Therefore, for any given x ∈ L(v)

⟨ϕu, ϕv⟩= ϕu(x) ·
∑

y∈L(v)

ϕv(y) = ϕu(x) ·
{√

|L(v1)| · |L(v0)|
|L(v)|

−

√
|L(v0)| · |L(v1)|

|L(v)|

}

= 0.

(b) Proof of theorem 2.3
Consider v ∈ I and j ∈ L. If j /∈ L(v) then (i ∧ j) = (v ∧ j), hence

(S ϕv)(j) =
∑

i∈L(v)

ℓ(i ∧ j, ◦) ϕv(i) = ℓ(v ∧ j, ◦)
∑

i∈L(v)

ϕv(i).

But, if v = ◦ then ℓ(v ∧ j, ◦) = 0. Instead, if v ̸= ◦ then
∑

i∈L(v) ϕv(i) = 0. In either case: (S ϕv)(j) =
0. This shows the lemma for j /∈ L(v) because the entry associated with j in diag(ℓ∗(L, v)) ϕv is
ℓ∗(v, j) · ϕv(j), and the support of ϕv is L(v).

Next, suppose that j ∈ L(v). Then

(S ϕv)(j) =
∑

i∈L(v)

∑

e∈[i∧j,o]

ℓ(e) ϕv(i)

=
∑

i∈L(v)

∑

e∈[i∧j,v]

ℓ(e) ϕv(i) +
∑

i∈L(v)

ϕv(i) ·
∑

e∈[v,o]

ℓ(e)

=
∑

i∈L(v)

ϕv(i)
∑

e∈[i∧j,v]

ℓ(e),

where for the last identity we have used that
∑

i∈L(v) ϕv(i) = 0 if v ̸= ◦, and
∑

e∈[v,o] ℓ(e) = 0 if v = ◦.
But note that if i ∈ L(v) is such that (i ∧ j) = v then

∑
e∈[i∧j,v] ℓ(e) = 0. Instead, if (i ∧ j) ̸= v then
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ϕv(i) = ϕv(j). As a result

(S ϕv)(j) = ϕv(j)
∑

i∈L(v): i∧j̸=v

∑

e∈[i∧j,v]

ℓ(e)

= ϕv(j)
∑

e∈[j,v]

∑

i∈L(v): e∈[i∧j,v]

ℓ(e)

= ϕv(j)
∑

e∈[j,v]

ℓ(e) |L(e)|

= ϕv(j) ℓ∗(j, v),

which shows the result.

(c) Proof of lemma 2.4
If u is an ancestor of v then L(v)⊂ L(u); in particular, L(u) ∩ L(v) = L(v) ̸= ∅. The same conclusion
applies if v is an ancestor of u. Conversely, suppose that L(u) ∩ L(v) ̸= ∅. Without loss of generality
assume that u ̸= v. From the hypothesis, there is w ∈ L that descends from both u and v. But, since
there is a unique path from w to ◦, u and v must be both in this path; in particular, either u is an
ancestor of v or vice versa.

(d) Proof of theorem 3.4
Recall that |I| = |L| and, for v ∈ I, the support of ϕv is L(v). Hence, from the identity in (2.2),
(Φ ′SΦ)(u, v) = 0 when u, v ∈ I and L(u) ∩ L(v) = ∅. As a result, using that L(i) ̸= ∅ when i ∈ I, and
lemma 2.4, we obtain that

|I|2ζ ≥ |I|2 − |{(u, v) ∈ I × I such that L(u) ∩ L(v) ̸= ∅}|

= |I|2 − |I|− 2|{(u, v) ∈ I × I such that v ̸= u descends from u and L(u) ∩ L(v) ̸= ∅}|

= |I|2 − |I|− 2
∑

u∈I

(
|
◦
T(u)|− 1

)

= |I|2 + |I|− 2
∑

u∈I

|
◦
T(u)|,

since |I| = |L| = |
◦
T| = |T|/2, |L|2ζ ≥ |L|2 + |L|− 2|

◦
T| · avg(

◦
T), which shows the inequality in the

theorem. The alternative lower-bound for ζ follows by applying the identity in equation (3.1)
to

◦
T, completing the proof of the theorem.

(e) Perfect binary trees
If T is a perfect binary tree of height (h + 1) (i.e. there are h levels of internal nodes, excluding the
root), then

◦
T is a perfect binary tree of height h; in particular, |

◦
T| = 2h. Further, at depth 1≤ k≤ h,

◦
T contains 2k−1 nodes, each of which is the root of a binary sub-tree of size (2h−k+1 − 1). Hence

avg(
◦
T) =

2h +
∑h

k=1 2k−1 · (2h−k+1 − 1)
2h = h + 2−h≪ |

◦
T|.

(f) Binary caterpillar trees
If T is a binary caterpillar tree of height h then

◦
T is a path graph such that |

◦
T| = h. Further, at depth

0≤ k≤ (h− 1),
◦
T contains a single node, which is the root of a path sub-graph of size (h− k). As a

result

avg(
◦
T) =

∑h−1
k=0(h− k)

h
= h + 1

2
∼ |

◦
T|
2

.
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(g) Proof of corollary 3.8
Let t > 0. Let µ and σ 2 denote the mean and variance of IPL(T), respectively. Due to Cantelli’s
inequality (a one-sided version of the well-known Chebyshev’s inequality)

P
(

IPL(T)≥µ + tσ
)
≤ 1

1 + t2 .

But, because of equations (3.2)–(3.3), there is a constant c > 0 such that for all n large enough and
all t > 1, (µ + tσ )≤ ctn3/2. In particular, since TPL(

◦
T) = IPL(T), we have that

P
(

TPL(
◦
T)

n2 <
ct√

n

)

≥ t2

1 + t2 .

So, if t→∞ so that t = o(
√

n) then ct/
√

n = o(1), and the corollary follows from the second lower-
bound for ζ in theorem 3.4.

(h) Proof of theorem 4.1
The proof is based on the following simple result, whose proof is omitted.

Lemma B.1. If A is a symmetric matrix of dimensions n× n then, for all λ ∈R

distance
(
λ, σ (A)

)
≤ min

x∈Rn: ||x||2=1
||(A− λ)x||2.

Fix v ∈ I. To make the λv more explicit, observe that if x : L→R is a function (or vector) then
∑

i∈L

ϕ2
v (i) · x(i) = ρv1 · avg

(
x; L(v0)

)
+ ρv0 · avg

(
x; L(v1)

)
. (B 1)

In particular, due to the definition in equation (4.1)

λv = ϕ′v Sϕv =
∑

i∈L(v)

ϕ2
v (i) · ℓ∗(v, i) = ρv1 · ℓ∗

(
L(v0), v

)
+ ρv0 · ℓ∗

(
L(v1), v

)
, (B 2)

which shows the first identity in the theorem.
On the other hand, lemma B.1 implies that

distance(λv , σ (S))≤ ||(S− λv)ϕv ||2.

But, from theorem 2.3, we also have for i ∈ L that (Sϕv − λvϕv)(i) = ϕv(i) · (ℓ∗(v, i)− λv). As a result

||(S− λv)ϕv ||22 =
∑

i∈L(v)

ϕ2
v (i) ·

(
ℓ∗(v, i)− λv

)2

= ρv1

|L(v0)|
∑

i∈L(v0)

(ℓ∗(i, v)− λv)2 + ρv0

|L(v1)|
∑

i∈L(v1)

(ℓ∗(i, v)− λv)2,

where for the last identity, we have used equation (B 1). But note that (ρv0 + ρv1) = 1. In particular,
from the identity in equation (B 2), we may rewrite

∑

i∈L(v0)

(ℓ∗(i, v)− λv)2 =
∑

i∈L(v0)

(ρv0

{
ℓ∗(L(v0),v)− ℓ∗(L(v1), v)

}
+ ℓ∗(i, v)− ℓ∗

(
L(v0), v

)
)2

= |L(v0)| ρ2
v0

{
ℓ∗(L(v0),v)− ℓ∗(L(v1), v)

}2
+

∑

i∈L(v0)

(ℓ∗(i, v)− ℓ∗
(
L(v0), v

)
)2.

Namely,

1
|L(v0)|

∑

i∈L(v0)

(ℓ∗(i, v)− λv)2 = ρ2
v0

{
ℓ∗(L(v0), v)− ℓ∗(L(v1), v)

}2
+ var

(
ℓ∗(L, v); L(v0)

)
.
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Similarly,

1
|L(v1)|

∑

i∈L(v1)

(ℓ∗(i, v)− λv)2 = ρ2
v1

{
ℓ∗(L(v1), v)− ℓ∗(L(v0), v)

}2
+ var

(
ℓ∗(L, v); L(v1)

)
.

The second identity in the theorem is now a direct consequence of (B 3) and the last two identities.
Finally, if λv = 0 then, due to equation (4.1), ℓ∗(i, v) = 0 for all i ∈ L(v). Hence, due to theorem

2.3 and since ϕv has L(v) as its support, (Sϕv)(i) = ℓ∗(i, v)ϕv(i) = 0 for all i ∈ L, i.e. Sϕv = 0. Instead,
if λv ̸= 0 then theorem 2.3 implies that

cos(Sϕv , λvϕv) = ϕ′vSϕv

||Sϕv ||2
= λv√

ϕ′v diag(ℓ∗(L, v))2ϕv

.

But, similarly as we argued before

ϕ′v diag(ℓ∗(L, v))2ϕv =
∑

i∈L

ϕ2
v (i) · ℓ∗(i, v)2

= λ2
v +

∑

i∈L

ϕ2
v (i) · (ℓ∗(i, v)− λv)2

= λ2
v + ||(S− λv)ϕv ||22,

from which the third identity in the theorem follows.

(i) Proof of corollary 4.7
From the definitions of trace-balanced and ORB-tree, it is immediate that the transformation f :
I→ [0, +∞) defined as f (v) := ℓ∗(v, i), for any i ∈ L(v), is well-defined. Also, f is decreasing because
if u is an ancestor of v then L(v)⊂ L(u), hence for any i ∈ L(v): f (u) = ℓ∗(u, i) = ℓ∗(u, v) + ℓ∗(v, i)≥
ℓ∗(v, i) = f (v). This shows the first statement in the corollary.

For the second statement consider an ORB-tree topology T = (V, E) and function f : I→ [0,∞)
that is decreasing. Due to corollary 4.3, it suffices to show that there is a branch length function
ℓ : E→ [0, +∞) such that f (u) = ℓ∗(u, i), for all u ∈ I and any i ∈ L(u). To do so, let e = {u, v} ∈ E be
so that depth(u) < depth(v); in particular, u ∈ I. Define

ℓ(e) :=

⎧
⎪⎨

⎪⎩

f (u), v ∈ L;

f (u)− f (v)
|L(e)|

, v ∈ I.
(B 3)

Observe that if v ∈ L then ℓ(e)≥ 0, and f (u) = ℓ(e) = ℓ∗(e) because |L(e)| = 1. Instead, if v ∈ I then
ℓ(e)≥ 0 because f is decreasing, and f (u) = f (v) + ℓ(e) · |L(e)| = f (v) + ℓ∗(e). In particular, if we
extend the domain of f to all of V defining f (v) := 0 for v ∈ L then, for all e = {u, v} ∈ E such that
depth(u) < depth(v): f (u) = f (v) + ℓ∗(e). From this, a simple inductive argument on the difference
d := depth(v)− depth(u) > 0 shows that f (u)− f (v) = ℓ∗(u, v); implying that f (u) = ℓ∗(u, i), for all
u ∈ I and any i ∈ L(u), as claimed.
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