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Abstract— Delays endanger the safety of autonomous systems
functioning in the rapidly changing environments of autonomous
driving and high-speed racing. Unfortunately, the considera-
tion of delays is often overlooked during controller design or
learning-enabled controller training phases prior to deployment
in the physical world. This paper systematically and compre-
hensively addresses both the computation delay arising from
nonlinear optimization for control and other inevitable delays
caused by actuators. First, we propose a new filtering approach to
adaptively estimate the time-variant computation delay. Second,
we model actuation dynamics for steering delay. Third, all the
constrained optimization is realized in a robust tube model
predictive controller. In terms of application merits, our approach
is a novel design for a standalone delay-aware controller; in
addition, our approach can also serve as a delay compensator for
an existing controller. Video (https://youtu.be/nURI_HTW_Mo)
and code (https://github.com/dvij542/Delay-aware-Robust-Tube-
MPC) are available.

Index Terms— Autonomous driving, autonomous racing, delay
compensation, robust control, safe control.

I. INTRODUCTION

UTONOMOUS vehicles operate in highly complex

environments that demand extensive computational
resources. Despite efforts to enhance algorithm efficiency, the
unavoidable requirement for computation time remains. Given
the risks associated with even minor delays in rapidly changing
conditions such as highways and autonomous racing, it is
incorrect to assume that the optimal control is instantaneously
generated by an optimization program and executed on the
vehicle.

Fig. 1 illustrates the motivation of our work in a collision
avoidance scenario. The sequential movements in orange color
result from a traditional controller without considering any
delay, which could be hazardous in a highly dynamic environ-
ment (e.g., high-speed scenario). However, our delay-aware
controller takes a safe action earlier (e.g., earlier steering
for an evasive maneuver with the blue color). Our approach
deals with three types of delay in a unified manner: 1) actu-
ator dynamics delay; 2) control action processing delay; and
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Fig. 1. Comparison between a conventional control and ours. The conven-
tional method (case A) uses the current state to compute the control. Due
to delay, the computed action will not be instantaneously executed (see the
shifted steering wheel symbols from black to blue). Our controller is aware
of the delay, thus at the earliest time (see the leftmost calculated command in
case B), a steering command has been calculated. The movements in case A
(orange) are from the late steering command sequence in the first row of blue
steering wheel symbols. Clearly, the movements in case B (blue) are safer.

3) computation time delay. First, we augment the commonly
used vehicle dynamic modeling by including steering action
delay. Second, we propose a novel adaptive Kalman filter
variant: INFLUENCE (adaptlve kalmaN FiLter with Unknown
process modEl and Noise CovariancE) to probabilistically and
safely estimate the control action processing delay and compu-
tation time delay caused by online optimization. INFLUENCE
simultaneously identifies an unknown process model and noise
covariances. Third, we extend robust tube model predictive
control (MPC) theory by adding a new delay-aware feature.
This study introduces two control plans, Plan A (Fig. 2a)
and Plan B (Fig. 2b). Both plans address the compensation
of computation and actuator processing delays by adjusting
the initial system state. The key distinction between the two
plans lies in the presence or absence of an existing primary
controller in the system. In Plan A, we develop a standalone
controller based on robust tube MPC, incorporating actuator
steering as an extended state. Plan B, on the other hand,
is motivated by scenarios where a primary controller, such as
a legacy system or a neural network controller in a learning-
enabled system, cannot be modified internally. As depicted in
Fig. 2b, the original control, which disregards delay, is refined
and regulated through an external optimization process that
considers actuator dynamic delay. Plan B aligns with the
theme of safe artificial intelligence (AI). It is common to
make naive delay-free assumptions during the training of the

1558-0016 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Cleveland State University. Downloaded on March 15,2024 at 16:31:49 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Computation delay =20
Actuator processing delay 21
Computation delay S

CBF
safety constraints

MPC
(actuator dynamic
as extended state)

Reference Control

trajectory

Motion
planning

Type I delay
Estimation using
filter

(a) Plan A

Initial state
shifted due to
delay

Type II delay

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

CBF
safety constraints

Nominal O
control cons¥

Refined control
-

Reference

Motion trajectory
planning

wato
dynamics

Black Box
Controller

Type I delay

Initial state
shifted due to
delay

Estimation using
filter

(b) Plan B

Type II delay

Fig. 2. Overview of two control plans. Plan A incorporates the actuator’s dynamics in the MPC. In Plan B, since we cannot change the black-box controller,
we consider its output as the nominal control. An external optimization considers the nominal control as a reference and refines it based on the actuator’s
dynamics. In both plans, the type II and type III delays are estimated to determine the shifting time of the initial state. Control barrier functions are used in

the two plans as safety constraints.

learning-enabled control policy in a simulation environment.
However, this simulation-to-real gap poses challenges for the
reliable deployment of safety-critical autonomous systems,
such as self-driving cars. We validate our framework in
on-road autonomous driving and autonomous racing scenarios.

We make the following contributions:

1) We extend the conventional robust tube MPC with the

capacity to deal with various types of practical delays.
Unlike many existing filters, INFLUENCE does not
require prior knowledge of model dynamics and noise
distribution. In addition, its probabilistic and adaptive
estimation mitigates overconservatism.
We propose a safety guard component to compensate
for delays of a learning-enabled (LE) controller that does
not consider delays. In addition, in our control optimiza-
tion framework, the delay compensator is combined with
barrier functions (CBFs) for collision avoidance.

2)

3)

We have the following two substantial improvements over
the preliminary version [1] of this research: 1) We use
a dynamic vehicle model rather than a kinematic model.
2) Collision avoidance was not considered in the compensation
control of the LE controller in [1], which has been extended
in this study. 3) We have validated our approach on a real
1/10-scale race car.

The rest of this paper is organized into the following
sections. A review of some relevant related works is presented
in Section II. The methodology is described in Section III. The
experiments and results are presented in Section I'V. Section V
contains the conclusions.

II. RELATED WORK

Delay Compensation Control: [2] considers a discrete con-
trol problem: it proposes to shift one discrete step ahead for the
initial state in MPC, for a simple one-step delay problem. [3]
uses a cache mechanism for buffering previously computed
control actions. However, their approaches only work for
static scenarios with fixed horizon length, which leads to a
less responsive controller. The first significant improvement
in our work is that our filtering approach actively estimates a
time-variant local upper bound of the computation delay.

Actuation Delay Compensation Control: To deal with delays
in actuator dynamics, [4] proposes to augment the original
state space model with an extra first-order ordinary differential
equation (ODE) for the delay behavior. For control action

processing delay, which is usually time-invariant, [5] proposes
to compensate for such a delay by transitioning the initial state
in a preview controller. Reference [6] further extends the idea
and considers actuator saturation. The major disadvantage of
the preview controller is that it is not flexible enough to simul-
taneously consider multiple constraints such as dynamics,
state, and control limits. Note that our work deals with delays
and all constraints of state and control in a unified robust MPC
optimization. Reference [7] considers a fixed communication
delay in their connected cruise control problem with other
vehicles driven by humans. This communication delay can be
handled in a similar way to actuation delay compensation in
our design.

Safe Control: [8] proposes an approach for designing
safety-critical controllers involving CBFs for nonlinear sys-
tems with time-varying input delay. It combines a state
predictor that compensates for the time-varying input delay
with a CBF-based feedback law for the nominal system,
which is delay-free. Our work combines CBF with MPC to
account for delays and uncertainties in the system and the
environment. Several works consider robustness against uncer-
tainty using uncertainty-aware MPC [9], [10], [11], [12]. The
robust MPC in [13] provides probabilistic safety guarantees.
Reference [14] proposes using CBFs as constraints, which
would make the MPC more potentially feasible and allow
smooth obstacle avoidance. We extend the design in our
proposed controller to include delay compensation and robust-
ness to uncertainties. There are also some works combining
machine learning techniques with safe control, such as iterative
learning control [15] and reinforcement learning [12], [16].
Our work proposes a controller design that is robust to both
the system and environment uncertainties/noises as well as
the system delays. A disturbance observer can be used to
estimate the uncertainties for a robust MPC [17]. It would
be interesting to extend our approach with this feature, but
currently, we assume the disturbance has a known bound.

III. METHODOLOGY
A. Notation

A polytope is the convex hull of finite vertices in RY.
The Minkowski sum of two polytopes, A and B, is another
polytope in d-dimensional space defined as A @ B := {a +
bla € A,b € B}. The Pontryagin difference between two
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polytopes, A and B, is another polytope in d-dimensional
space defined as A© B :={x|x +b € A,Vb € B}.

B. Optimal Racing Line

The racing line is essentially a minimum-time path
or a minimum-curvature path. They are similar but the
minimum-curvature path additionally allows the highest
cornering speeds given the maximum legitimate lateral accel-
eration [18]. There are many proposed solutions to finding
the optimal racing line, including nonlinear optimization
[18], [19], genetic algorithm-based search [20] and Bayesian
optimization [21]. However, for our work, we calculate the
minimum-curvature optimal line, which is close to the optimal
racing line as proposed by [18]. The race track information is
input by a sequence of tuples (x;,y;,w;), i € {0,..., N — 1},
where (x;,y;) denotes the coordinate of the center location and
w; denotes the lane width at the i’ k point, vehicle width wye,.
The output trajectory consists of a tuple of seven variables:
coordinates x and y, curvilinear longitudinal displacement s,
longitudinal velocity vy, acceleration a,, heading angle ¥,
and curvature k. The trajectory is obtained by minimizing the
following cost:

min
ay..an

N-1
A
n=0

Wveh Wyeh
s.t. «a; € [—wi + > w; — > ] €))]
where «; is the lateral displacement at the i’ position.

To generate a velocity profile, the vehicle’s velocity-dependent
longitudinal and lateral acceleration limits are required [18].
Using the optimal racing line as a reference, we use a
sampling-based motion planner in the Frenet frame [22].
The obstacle’s future positions are predicted by assuming
constant longitudinal and lateral velocities. However, this can
be replaced by more sophisticated predictors [23], [24], [25].

C. System Dynamics

A dynamic bicycle model [26] is used in our work.
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where u = [8 p]", x = [e1é1e2é2 v 584 . Cy, Cr
are the stiffness coefficients of the front and the rear tires,

Iy and I, are the front and the rear tire distances from the
center of mass (COM), I, m are the moment of inertia and
mass of the vehicles, and ¢ is the inverse of the radius of
curvature of the reference line at the perpendicular point from
the vehicle’s position. The control variables are steering angle
(8) and pedal (p). The state variables taken include the lateral
position error (eq), heading angle error (ep) with respect to
the optimal racing line, their first-order derivatives é; and é7,
longitudinal velocity (vy), and longitudinal displacement (s).
In many existing motion planning and control works, control
actions are assumed to be applied instantaneously in an ideal
case. Due to this, a delay is caused due to the mismatch
between the calculated and the actual steering angle state.
To solve this problem, we include the steering angle as a
separate state and model the steering actuator dynamics as
follows by a first-order ODE (see [4]): 3',4 = K56 — 8,),
where § is the desired steering angle, §, is the actual steering
angle, and K is calculated as the inverse of the time constant.
Thus, we control only § to tell the actuator which state to
achieve and use §, instead of § for the dynamics calculation.
For acceleration, the delays in pedal dynamics are neglected
for simplicity. K, is used for the mapping between pedal and
acceleration. However, its delay can also be modeled in the
same way as the steering.

D. Control Barrier Functions

We define a continuous and differentiable safety function
h(x) : X — R. The superlevel set C € R" can be named as a
safe set. Let the set C obey C = {x € X : h(x) >0

The safety function A (x) is called a CBF of a control affine
system X = f(X) + g(x)u, if there exists a y > 0 such that

sup [L sh(x) + Lgh(x)u + y (h(x))] = 0 3)

ueld
forall x € X. L fh(x) and Lyh(x) are Lie derivatives. y (h(x))
is particularly chosen as a special class K function y h(x). The
solution u assures that the set C is a forward invariant, i.e.,
if the solutions starting at any x(0) € C satisfy x(t) € C for
Vvt > 0. Recently, CBFs have been used in conjunction with
MPC [14], [27]. Having a barrier function-based constraint in
MPC not only ensures strict satisfaction of safety constraints
but also facilitates a smooth trajectory.

E. Robust Tube MPC

The dynamic model is described in a discrete-time manner
as x,41 = f(x,,u,, wy,). The original non-linear model is
linearized around the current state x,, at every time step into a
linear system. However, in the MPC’s prediction horizon of n,
we assume time-invariant dynamics with Jacobian matrices
A, and B,, i.e., inside the prediction horizon, the model is
Xk+1,n = AnXk.n + Bpttg n + wi . To simplify the notation,
henceforth we omit n unless it is necessary to be mentioned
explicitly. We assume the matrix pair (A, B) to be controllable,
therefore, there exists a stabilizing linear feedback gain K with
appropriate dimension such that Ax = A + BK is Hurwitz.
This assumption holds empirically true for our experiments
and is also common in literature [10]. The disturbance wy is
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assumed to be bounded as w; € W. W is assumed to be a
convex polyhedron with the origin as an interior point. Also,
it must be noted that we can include the linearization error
by adding an extra disturbance [10]. In our work, we assume
that the extra disturbance has been enclosed by a sufficiently
large disturbance set. The objective is to stabilize this uncertain
system while satisfying the state and control constraints as
x; € X and up € U. For this system, we can define a
disturbance invariant set, Z, such that AxZ & W C Z.
A typical MPC controller is defined as a finite horizon
optimization problem, P over the future input control sequence
and states. We define P on an equivalent nominal system
assuming no disturbance to optimize nominal state sequence
X = {x¥0,x1...,xy} and nominal control sequence U =
{ug,uy...,un_1} as follows (note again the optimization is
for the current step n, which is omitted for notation simplicity),

N-1
min % Xk — Xrefk)" Q(Ek — Xpepi) + tf Rity
+ @EN = Xref ) ONGEN — XrepN)
s.t. Xi41 = AXy + Buy
X0EXODZ
uclUe Kz
xeXoz 4)
where X, o = {Xref,0, Xref,1 - ., Xrep,N} is the reference state

sequence, R, Q and Qp are the control, state and terminal
state cost matrices, respectively and all of them are positive
semi-definite. We solve the following problem using CasADi’s
QP solver [28]. Now, for this uncertain system, we design a
controller u = u + K(x — x). For such a controller, we can
guarantee that x* € ¥ @ Z for any bounded w € W, which
implies that all states x; will be robustly contained inside X'.

F. Delay-Aware Robust Tube MPC

So far, we assume that the optimization of the command
as well as the execution of the optimized command to the
vehicle is instantaneous. However, this is not the case in a
practical vehicle system, where we have computation delay 7.
and control action processing delay ¢#,. Therefore, the control
influences the car at t; = t. + t, after the time when the
observed state is used for optimization. This could lead to
instability, as the robust tube assumptions no longer hold
true. This is especially dangerous when #; is large. To deal
with this time delay in the system, [3] proposes a bi-level
control scheme where the high-level controller plans robust
commands using tube MPC and the low-level unit runs a
feedback controller on these reference commands. A buffer
is used for communication between the two units. The brief
idea is that assuming the input sequence for time frame ¢ to
t+tp, is known at time ¢ where #;, is the horizon length, we pass
the predicted 7, time-ahead state obtained via simulation to the
optimization problem (4) starting at time ¢ so as to complete
before ¢ + 1, time and apply the optimal input sequence to
the system with feedback between times ¢ + #; to ¢ + 2t;,.
The above procedure repeats in every cycle with the latest
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Fig. 3. Our delay-aware robust MPC with dual cycles.

state prediction. In this strategy we need to wait for #;, — ¢,
time for each cycle where . is the computation time taken for
optimization.

However, such a common approach in the literature is
inappropriate in a fast-changing environment such as driving
at high speeds on highways, where immediate action might
have to be taken in an emergency case. Fig. 3 illustrates our
solution: we estimate an upper bound on the computation time,
f., calculated locally after each cycle with a high probabilistic
guarantee. Instead of updating the buffer from ¢+, to t + 21,
we update if from #+7, to #+7.+t;. This significantly improves
the high-level MPC controller frequency, which would be
required for fast-changing scenarios where the path to be
followed continually updates. We use an adaptive Kalman filter
to calculate 7.. Section III-G describes this in detail. Also,
we have an additional constant time delay 7, due to control
action processing, hence the total upper bound on delay time is
fy = f.+1,. Based on this, we shift the initial state and use the
shifted estimated state x; |, at time f4. We estimate this state at
time 7 using the nominal commands from the buffer assuming
no extra disturbance from the environment. We fill the buffer B
from time 747, to r+i.+t;, with the calculated controls (U) and
nominal states (X). As we calculate the commands in discrete
steps of At, the buffer is updated in the following fashion:
Ulrii kAt itiot(k+)ar] = Wk for k € {0,1,2,--- N — 1},
as demonstrated in Fig. 3. The commands are calculated in
the following manner as described in (5). The pre-compensator
acts as a low-level unit that simply executes commands in the
buffer at the required times and runs in parallel. It has a higher
frequency than the high-level MPC.

N-1
QP» 2:@k—xmﬁUTQ@k—xwﬁU+J$Rﬁk
k=0
+ (EN = XrefN)T ONEN — XrefiN)
s.t. Xg+1 = AXy + Buy

xtd+t S i() @ Z — xtd|t € .X-,'O @ Z e (@Y_%)A;(W)

j:
1q
s=|—
At

uclUoKz
reXez o)

1) Control Limits (U): For control constraints, we limit
throttle amount and steering with their actuation limits.
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2) State CBF Constraints (X'): In (2), the longitudinal and
lateral errors of the vehicle are s and e;. As the free space
along the Frenet frame is non-convex in general, we cannot
directly set the constraints. This is because it becomes com-
putationally expensive for the optimization problem to set the
constraints in the non-convex form. To solve this, we propose
the use of the IRIS algorithm to derive a set of convex
constraints for the optimization problem to make it efficiently
solvable while also ensuring safety for the vehicle [25]. IRIS
works by finding a largest possible ellipsoid that fits the non-
convex space, which is later converted to a set of convex
constraints. The lane boundaries are also fed as constraints
to the non-convex free space by sampling points around the
vehicle’s location. The convex space X can be expressed as
a set of linear state constraints where each bounding line can
be expressed by a;, b;, and ¢;, see (6). Further, we formulate
each of these constraints with a CBF as given in (6), where L
is the number of sides of the bounding polygon for the convex
space X.

hi(Xx) = aisk +bier+c¢;,Vi=0,1...L —1 (6)

3) Disturbance-Invariant Set (Z): We over-approximate Z
at the n-th time step as: 2, = E{ioAiK’”W [29], where
Agn = A, + ByK,, K, is the control gain. However, Ak ,
is state-dependent and time-variant. To ensure robustness, 2,
must be covered by Z,41. For detailed calculation and proof,
readers are referred to our code repository, which includes
notation rectification of our previous work [1]. The basic idea
is to have a union operation of sets given the range of states.

4) Stability: Using tube-MPC ensures the system stays
within a certain tube for bounded disturbance as discussed in
Section III-E. The tube is obtained based on the calculation of
the disturbance invariant set. The calculation and the stability
proof can be found in our previous work [1] and [9].

5) Feasibility: A reachable set Ry is defined as the set of
nominal states at the end of k time steps, i.e., at time ¢ + i+
kAt as follows:

Ri={xr:Vi=0,1..k —1,x;11 = AX; + Bu;
€U KZ} (7

where Ry is defined according to the constraint of X in (5).
Let us define the set of all states satisfying the CBF constraints
as follows:

Xeot = {x € X 1 h(x) + y (h(x)) > 0} (8)

Since the robust tube MPC guarantees that the actual system
state, x € X + Z where X is the nominal state obtained from
optimization and Z is the disturbance invariant set defined in
Section III-F.3, we can define set Xcbtrobust = Xebr © 2. If the
nominal state obtained by optimization is present in Xcbf robusts
we can guarantee that the system state will lie within Xy, i.e.,
it will satisfy the CBF constraint.

The feasibility of the system depends on whether the
intersection between Ry and the super-level set Aibfrobust
is non-empty. If A is a valid CBF, then Aps is non-empty.
When we reduce the decay rate y of the CBF, the set Aipe
becomes smaller, resulting in a more conservative or safer

system. However, there is a tradeoff between feasibility and
safety, as described in [14]. The intersection between Ry
and Scpr might become infeasible. Choosing an appropriate
y that ensures a non-empty intersection between the two sets
remains an open challenge, and automatically determining the
optimal y for a given scenario is still an open problem. In our
previous work [30], we addressed this issue by introducing
an additional optimization over y to ensure pointwise feasi-
bility at each step. However, formulating a persistent feasible
solution remains an open problem, which we acknowledge as
a limitation and a potential area for future research. In this
study, we assume that y is well-tuned without introducing
infeasibility problems. Furthermore, during our experiments,
we carefully tuned y and did not encounter any infeasible
corner cases.

G. INFLUENCE for Computation Time Delay

INFLUENCE is proposed as a variant of the adaptive
Kalman filter for the estimation of an upper bound on com-
putation time. The conventional Kalman filter is unsuitable
for cases in which the process model and the noise covariance
are unknown. These are compensated by using adaptive filters.
However, state-of-the-art adaptive filters rely either on known
dynamics while assuming unknown noise covariances [31],
[32] or on known covariances while assuming unknown model
parameters [33]. To compensate for this deficiency, INFLU-
ENCE assumes that measurement noise variance r, process
noise variance ¢, and 7,

in the process model are all unknown. We assume a linear
unknown process model with parameters n. We assume both
process and observation noise distributions to be mutually
uncorrelated, independent and Gaussian. INFLUENCE works
as described in Algorithm 1, where ¢, ,, is the observed compu-
tation time, and X,j,—1, Pnjn—1 are the predicted computation
time mean and variance estimates for the n-th time step. The
computation complexity taken by each cycle is O(1), ie.,
independent of N, and N, and thus very low. As observed
from Fig. 6, the average computation time taken in each cycle
is less than 5 ms, so the algorithm is capable of real-time
deployment.

The algorithm starts with initialization of all variables. The
key idea is that we use the model information 7 in the current
step to estimate the noise information g and r, followed by
the update of n itself [31], [32]. In the third box, w and e
are measurement and prediction errors. They are updated in
an incremental manner. N, and N, are tunable parameters for
update rates. In the last box, A and F can be considered as a
forgetting factor and a learning rate, respectively.

It is important to note here that for the sake of simplicity, the
notation x is used for the computation time to be estimated
and is not to be confused with the state notation we used
earlier. We use the predicted mean x,,—1 and variance pyj,—1
estimates for the n-th time step to get an upper-bound estimate
on computation time: 7., = Xpjn—1 + BPnn—1. Assuming a
Gaussian distribution, the parameter B dictates the level of
confidence in estimating 7., as an upper bound (higher value
of B implies higher confidence). For the experiments in this
paper, we use 8 = 2.
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Algorithm 1 INFLUENCE Algorithm

Initialize:
X010 = t,0, pojo =0,q0 =€, 10 =€, ¢9 =

0,wg=0, Fp=D,n=[1 0]
forn=1to T do

Xpjn—1 = ’7an1 [Xn—1jn—11// Estimate new state using the
current estimated value of n

Pnln—1 = 7)5_1’0 Pn—1ln—1 + qn—1

€p = Nlr\]:len—l + NLr(tc,n _xnln—l)

_ ((’c,n*xn\nfl)*en)z Pnln—1
Ary = N—1 N,
_ | N—1

rp = ) N -1+ Ary| /I Update r estimate

— Pnjn—1
Kn - DPnin—1+Tn

Xnln = Xnjn—1 + Ky(ten — xn\n—l)
Pnln = (11— Kn)pn|n—1

— 1
w, = ;’Vq wy—1 + N, (Xnn — Xnpn—1)
_n? 2
Pnln=N,_1,0 Pn—1n—1 ((pjn—Xpjn—1)—wp)
Aqn = L N + L A/;(\In_l -

/I Update q estimate

q
Ny—1
qn = ‘7\]_an—1 + Aqn
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NMn = Nn—1 + Fnd (Xpjn — Xpjn—1) // Update 1 estimate
end for
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Fig. 4. Controller Plan A for delay-aware robust tube MPC.

H. Controller Plan A

Putting everything together, we propose the first controller
design as illustrated in Fig. 4. The steering dynamic delay is
compensated by adding the actual steering state as a new state
and by using a first-order ODE to model steering dynamics
(see section III-C). The computation and actuator dynamic
delays are handled by initial state shifting (see III-F and III-G).
After the optimization, the calculated commands from robust
tube MPC are used to update the buffer from {41, to t+i 41,
filled with the nominal states and the commands. Observed
computation time is used to update the new local upper bound
for the next cycle by using our filter. The pre-compensator unit
runs in parallel with high frequency as a feedback controller
using the nominal states and commands from the buffer.

1. Controller Plan B

We also propose a new controller plan aimed towards
safeguarding blackbox controllers whose internal mechanism
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Fig. 5. Controller Plan B, delay compensation for an LE controller.

is not known, like an LE controller which has been trained
in a simplistic simulation environment where practical delays
are not considered. We call the LE controller the nominal
controller (see Fig. 5). To compensate for the computation
time and control action processing delay, we use a similar
design to that of plan A through initial state shift. However,
for compensating actuator dynamic delay, we propose the use
of a separate process that uses QP to output control commands
that closely track the desired nominal commands inputted to it
while also avoiding collision and respecting lane constraints.

First, we estimate the computation and control action pro-
cessing delay and use it to shift the initial state, which
is inputted to the LE controller. Rollouts are conducted to
obtain sequential commands as output from the LE controller
expressed as U = {it;, 2, ,0iy). After solving the QP
problem in (12), we get the refined commands as output
expressed as U = {uj,un,---,uy}. Here, ugyqrs is the
observed steering angle at the start before optimization and r
is obtained by taking output at time kAt in response to a unit
step input to the steering actuator at time 0. Q4. and R, are
positive semidefinite weight matrices for tracking controller
commands U and minimizing controller effort, respectively.
Along with actuator dynamic delay compensation, we also add
CBFs to offer safety constraints to the blackbox controller.

1) Lane Constraints: We assume variable left and right
lane width as a function of the longitudinal displacement s
along the racing line. Let the approximate linear functions
L;(s) and L, (s) govern the left and right lane width functions,
respectively. We have

hiefr k(x) = Li(s0) — e1k
hright k(X) = e1x + Ly (s0)

1. )
— L, (s9) < ﬁ(el,k + ré1x + A2erx) < Li(so)
)

2) Collision Avoidance Constraints: For collision avoidance
with each vehicle, we set the following second-order CBF
since the dynamic model has a relative degree of two. The
detailed justification and expansion can be found in our code
repository.

2 2
s—S e —e
Ryen k (x, xopp) = (—d opp) + (—d opp) —1 (10)
s e

where s,p, and e, are the longitudinal and lateral error of
the opponent vehicle, and d; and d, are the longitudinal and
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lateral safe distances from the target opponent vehicle. x,,p
is the opponent vehicle’s state. The safety constraint of this
second-order CBF is:

Ryenk (x, xopp) + 2)\]’.lveh,k(l‘f’ xopp) + )\ziiveh,k >0 1D
N i=k

min ; 8k — (8o + 2(61- = Si—0r—iD)| 4 18elg
= i= 0

S.t. U = Ugstart
X1 = Arxg + Brug
h(Xg, xopp) + )J"l(.i'k, xopp) + )\zh(-i:k» xopp) >0
(12)

where r; = (1 — e~ KiAl),

IV. EXPERIMENTAL RESULTS

The Gazebo simulator [34] is used to test normal
autonomous driving scenarios (which we refer to as non-racing
in the rest of the paper). The racing scenarios are tested using
the CARLA simulator [35]. Validation of controller plan A and
controller plan B is divided into two subsections. The parame-
ters we have used m = 1600 kg, Cy = 16000 kg-m-s‘z-rad'l,
C, = 16000 kg-m-s?rad!, I, = 1800 kgm?, K, =
Sms? Ky =—-0134 s, L =3m wyep, =1m, Q =
diag[1 0 10 0 1 0 0], R = diag[10 10], W := w||w|x < 0.1,
At = 0.055, N = 8, Ks = 11 sI, N, = 30, N, = 30,
B = 2. For all the experiments with dynamic obstacle vehicles,
their future trajectories are considered by assuming constant
velocities.

A. Controller Plan A

1) Static Obstacle Avoidance (Non-Racing): We conduct a
static obstacle avoidance experiment to test controller plan
A. The trajectories can be found in our previous work [1].
As shown in Fig. 6, INFLUENCE can safely bound the
computation delay in this experiment. Also, the overhead due
to the addition of delay estimation using INFLUENCE is
significantly smaller than the computation time taken by the
optimization solver.

2) Racing Scenario: We set up a racing scenario in CARLA
to validate the controller plan A. A part of the track from the
Town06 map is used for the experiments. It is a closed track
suitable for setting up a racing scenario. The optimal racing
line for the track is given in Fig. 7. In the case when no delay
compensation is considered (see Fig. 7), the vehicle crashes
once during the lap at a sharp turn. The reason for this is
that as the vehicle operates at its friction limit at the turn,
tracking error accumulates due to computation, and actuator
delays lead the vehicle to hit the boundary (see the “without
delay compensation” trajectory in the zoomed-in plot), thus
leading to high lap time. On the other hand, with the delay
compensation plan included (see Fig. 7), the vehicle safely
and closely tracks the racing line, leading to faster lap time.
We further compare race times and the number of crashes
with the lane boundary (see Tab. I). As can be observed, with
delay compensation, the vehicle takes less time to complete

100 Predicted vs actual computation time

—— Predicted computation time (With delay compensation)
Actual computation time (With delay compensation)
—— Calculated upper bound (With delay compensation)

&0, —— Actual computation time (Without delay compensation)

60

40 1

Computation time (in ms)

201

ROS time

Fig. 6. Experiment IV-A.l1, blue: predicted computation time
using INFLUENCE without variance; green: predicted computation time using
INFLUENCE with variance; orange: actual computation time includ-
ing INFLUENCE’s computation cost; red: actual computation time without
INFLUENCE’s computation cost. ROS time at the x axis is the timestamp in
the ROS operation system.

tart line

250

150

100

50

-350 -300 -250 -200 -150 -100 -50 0
X

Fig. 7. Performance comparison: red boxes (without delay compensation)
show that the vehicle ran outside the road boundary while the vehicle
controlled with delay compensation (blue boxes) always stays inside the
boundary. The vehicle moves counterclockwise.

TABLE I

COMPARISON IN LAP TIMES WITH AND AND WITHOUT
DELAY COMPENSATION INCLUDED

Run Lap time (in s) # boundary violations
W/o delay compensation ~ 35.46 1
W/ delay compensation 35.34 0

the race, while without delay compensation due to crash, the
vehicle takes more time to complete the race.

Also, to evaluate the robustness of our algorithm, we per-
form different runs by manually adding extra computation
time. Fig. 8a and Fig. 8b show the trajectories followed with
and without delay compensation. As shown in the figures, our
delay compensation is able to handle high computation time up
to 0.2 s; while without delay compensation, the vehicle loses
control with only 0.06 s additional computation time. Also, the
vehicle remains very stable with delay compensation, as shown
in the lap time and steering variance in Fig. 8c and Fig. 8d),
respectively.
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Fig. 8.  Robustness test with additional computation time from 0.02 s
to 0.15 s.

3) Sudden Change Scenario (racing): We also test con-
troller plan A against a sudden change racing scenario. For
this scenario, an opponent vehicle ahead of the ego vehicle
suddenly loses control, and thus applies sudden braking at
t = 2s, forcing the ego vehicle to respond suddenly to
avoid collision. If delay compensation is not considered for
this scenario (see Fig. 9b), the vehicle collides with the
opponent vehicle. On the other hand, with delay compensation
considered, the vehicle makes a more informed decision to
make a sudden turn with braking (see Fig. 9a) to avoid
collision with the opponent vehicle.

4) Overtaking in a Turn Scenario (racing): Finally, we test
the controller plan A in a scenario where the vehicle has to
overtake at a turn, forcing it to leave the optimal racing line
at the turn. Such a scenario requires highly precise controls,
as the vehicle operates at its friction limits. As the vehicle
deviates from the optimal racing line to overtake and avoid
collision, the vehicle has to apply braking to avoid moving
outside the track. However, without the delay compensation
(see Fig. 10b), the vehicle applies braking late, leading to
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Fig. 9. Comparison in Experiment IV-A.3. The opponent vehicle starts
braking at point A. The ego vehicle crashes into the opponent vehicle at
point B without delay compensation.

TABLE 11
COMPARISON IN LAP TIMES AND SAFETY

Run Lap time (in s) # boundary violations
W/o delay compensation ~ 38.04 2
W/ delay compensation  36.51 0

the vehicle CBF constraint being unable to retain the vehicle
within the lane boundaries. With delay compensation con-
sidered, the vehicle makes more effective control decisions
taking the delay into account and thus is able to perform the
overtaking maneuver safely at turns (see Fig. 10a).

B. Controller Plan B

We test the controller plan B in two scenarios described
below. Imitation learning is used in our work for train-
ing a blackbox LE controller, which has a demonstrator (a
model predictive controller) to obtain state-to-control mapping
data [36]. We use a fully connected feed-forward neural
network (FNN) as an LE controller.

1) Path Following in Racing Scenario: We test controller
plan B in the path following racing scenario without obstacles.
As discussed, as the track requires highly precise controls at
turns to stay within the track, the safety controller in the form
of lane constraints has to come into play to compensate for
errors in current state measurements and delays. As shown in
Fig. 11, when delay compensation is not considered the vehicle
moves out of the track boundary as the safety constraints
are not able to safeguard the vehicle due to inconsistency
in vehicle state caused by delay errors. However, with delay
compensation (see Fig. 11), the vehicle is able to safely stay
within the lane constraints.

2) Overtaking at Turn in Racing Scenario: Finally, to val-
idate the controller plan A, we design a scenario where the
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Fig. 10. Comparison in Experiment IV-A.4. The ego vehicle crashes at point
A in the case without delay compensation.
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X

Fig. 11. Performance comparison: red boxes (w/o delay compensation) show
that the vehicle ran outside the road while the vehicle controlled with delay
compensation (blue) always stays inside the boundary. The vehicle moves
counterclockwise.

vehicle has to overtake at a turn, forcing it to leave the optimal
racing line at the turn. As the vehicle deviates from the optimal
racing line to overtake and avoid collision, the vehicle has to
apply braking to avoid moving outside the track. However,
without the delay compensation (see Fig. 12b), the vehicle
applies braking late, leading to the vehicle CBF constraint
being unable to retain the vehicle within the lane boundaries.
With delay compensation considered, the vehicle makes more
effective control decisions taking the delay into account and

-~ optimal racing line
=~ Track right boundary
=~ Track left boundary
— Ego

—— Opponent

-50 -40 -30 -20 -10 0

~-- Optimal racing line

-~ Track right boundary
~=- Track left boundary
— Ego

—— Opponent

(b) Without delay compensation.

Fig. 12.  Comparison in Experiment IV-B.2. The ego vehicle crashes at
point A without any delay compensation.

(a) Hardware

(b) Track

Fig. 13. RC car setup.

thus is able to perform the overtaking maneuver safely at the
turn (see Fig. 12a).

C. Hardware Experiments in an RC Car

We have tested the control plan A on a real 1/10-scale
RC car (see Fig. 13a) that is equipped with a Lidar, a depth
dual camera, an IMU and wheel encoders. The onboard
computation platform is an NVIDIA Jetson TX2 with 8GB
of RAM and 256 core NVIDIA Pascal GPU. We perform the
experiment on a track as shown in Fig. 13b. The lane width
is about 0.8 m. We use hector SLAM [37] for pre-mapping
and Monte Carlo localization (MCL) for localization [38].
The uncertainty estimate obtained from MCL is used in
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Fig. 14. Performance comparison for 5 runs each: red lines (without delay
compensation) show that the vehicle ran outside the road boundary while the
vehicle controlled with delay compensation (blue lines) always stays inside
the boundary. The vehicle moves from bottom to top.
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Fig. 15. Experiment IV-C, predicted computation time (blue): predicted value
using INFLUENCE without adding variance; computation time taken (green):
predicted value using INFLUENCE with variance; actual computation time
(orange): ground truth delay.

our framework assuming Gaussian distribution of the state
estimate from MCL.

Due to the inherent non-determinism caused by various
factors such as slight unavoidable changes in starting position,
the uncertainty of Lidar sensor observations, etc., we conduct
5 runs with and without using our dynamic delay compensa-
tion. The trajectory results are shown in Fig. 14. As can be
observed, without considering delay compensation, the vehicle
moves out of the lane at point A most times while with the
compensation included, the vehicle is able to stay safely within
the lane limits. The delay-estimates for one of the runs is
plotted in Fig 15. The video recording of the runs made with
RC car is also included in the video demonstration.

V. CONCLUSION

We propose a delay-aware robust controller design for safe
autonomous driving and racing. We also compensate for delays
of an LE controller and employ it in the closed-loop system
as a primary controller. The simulation results in high-fidelity
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simulators and on a real racing car show the efficacy of our
designs. Our future work includes investigating the persistent
feasibility guarantee of the optimization.
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