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Delay-Aware Robust Control for Safe

Autonomous Driving and Racing

Dvij Kalaria , Qin Lin , Member, IEEE, and John M. Dolan , Senior Member, IEEE

AbstractÐ Delays endanger the safety of autonomous systems
functioning in the rapidly changing environments of autonomous
driving and high-speed racing. Unfortunately, the considera-
tion of delays is often overlooked during controller design or
learning-enabled controller training phases prior to deployment
in the physical world. This paper systematically and compre-
hensively addresses both the computation delay arising from
nonlinear optimization for control and other inevitable delays
caused by actuators. First, we propose a new filtering approach to
adaptively estimate the time-variant computation delay. Second,
we model actuation dynamics for steering delay. Third, all the
constrained optimization is realized in a robust tube model
predictive controller. In terms of application merits, our approach
is a novel design for a standalone delay-aware controller; in
addition, our approach can also serve as a delay compensator for
an existing controller. Video (https://youtu.be/nURl_HTW_Mo)
and code (https://github.com/dvij542/Delay-aware-Robust-Tube-
MPC) are available.

Index TermsÐ Autonomous driving, autonomous racing, delay
compensation, robust control, safe control.

I. INTRODUCTION

A
UTONOMOUS vehicles operate in highly complex

environments that demand extensive computational

resources. Despite efforts to enhance algorithm efficiency, the

unavoidable requirement for computation time remains. Given

the risks associated with even minor delays in rapidly changing

conditions such as highways and autonomous racing, it is

incorrect to assume that the optimal control is instantaneously

generated by an optimization program and executed on the

vehicle.

Fig. 1 illustrates the motivation of our work in a collision

avoidance scenario. The sequential movements in orange color

result from a traditional controller without considering any

delay, which could be hazardous in a highly dynamic environ-

ment (e.g., high-speed scenario). However, our delay-aware

controller takes a safe action earlier (e.g., earlier steering

for an evasive maneuver with the blue color). Our approach

deals with three types of delay in a unified manner: 1) actu-

ator dynamics delay; 2) control action processing delay; and
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Fig. 1. Comparison between a conventional control and ours. The conven-
tional method (case A) uses the current state to compute the control. Due
to delay, the computed action will not be instantaneously executed (see the
shifted steering wheel symbols from black to blue). Our controller is aware
of the delay, thus at the earliest time (see the leftmost calculated command in
case B), a steering command has been calculated. The movements in case A
(orange) are from the late steering command sequence in the first row of blue
steering wheel symbols. Clearly, the movements in case B (blue) are safer.

3) computation time delay. First, we augment the commonly

used vehicle dynamic modeling by including steering action

delay. Second, we propose a novel adaptive Kalman filter

variant: INFLUENCE (adaptIve kalmaN FiLter with Unknown

process modEl and Noise CovariancE) to probabilistically and

safely estimate the control action processing delay and compu-

tation time delay caused by online optimization. INFLUENCE

simultaneously identifies an unknown process model and noise

covariances. Third, we extend robust tube model predictive

control (MPC) theory by adding a new delay-aware feature.

This study introduces two control plans, Plan A (Fig. 2a)

and Plan B (Fig. 2b). Both plans address the compensation

of computation and actuator processing delays by adjusting

the initial system state. The key distinction between the two

plans lies in the presence or absence of an existing primary

controller in the system. In Plan A, we develop a standalone

controller based on robust tube MPC, incorporating actuator

steering as an extended state. Plan B, on the other hand,

is motivated by scenarios where a primary controller, such as

a legacy system or a neural network controller in a learning-

enabled system, cannot be modified internally. As depicted in

Fig. 2b, the original control, which disregards delay, is refined

and regulated through an external optimization process that

considers actuator dynamic delay. Plan B aligns with the

theme of safe artificial intelligence (AI). It is common to

make naive delay-free assumptions during the training of the
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Fig. 2. Overview of two control plans. Plan A incorporates the actuator’s dynamics in the MPC. In Plan B, since we cannot change the black-box controller,
we consider its output as the nominal control. An external optimization considers the nominal control as a reference and refines it based on the actuator’s
dynamics. In both plans, the type II and type III delays are estimated to determine the shifting time of the initial state. Control barrier functions are used in
the two plans as safety constraints.

learning-enabled control policy in a simulation environment.

However, this simulation-to-real gap poses challenges for the

reliable deployment of safety-critical autonomous systems,

such as self-driving cars. We validate our framework in

on-road autonomous driving and autonomous racing scenarios.

We make the following contributions:

1) We extend the conventional robust tube MPC with the

capacity to deal with various types of practical delays.

2) Unlike many existing filters, INFLUENCE does not

require prior knowledge of model dynamics and noise

distribution. In addition, its probabilistic and adaptive

estimation mitigates overconservatism.

3) We propose a safety guard component to compensate

for delays of a learning-enabled (LE) controller that does

not consider delays. In addition, in our control optimiza-

tion framework, the delay compensator is combined with

barrier functions (CBFs) for collision avoidance.

We have the following two substantial improvements over

the preliminary version [1] of this research: 1) We use

a dynamic vehicle model rather than a kinematic model.

2) Collision avoidance was not considered in the compensation

control of the LE controller in [1], which has been extended

in this study. 3) We have validated our approach on a real

1/10-scale race car.

The rest of this paper is organized into the following

sections. A review of some relevant related works is presented

in Section II. The methodology is described in Section III. The

experiments and results are presented in Section IV. Section V

contains the conclusions.

II. RELATED WORK

Delay Compensation Control: [2] considers a discrete con-

trol problem: it proposes to shift one discrete step ahead for the

initial state in MPC, for a simple one-step delay problem. [3]

uses a cache mechanism for buffering previously computed

control actions. However, their approaches only work for

static scenarios with fixed horizon length, which leads to a

less responsive controller. The first significant improvement

in our work is that our filtering approach actively estimates a

time-variant local upper bound of the computation delay.

Actuation Delay Compensation Control: To deal with delays

in actuator dynamics, [4] proposes to augment the original

state space model with an extra first-order ordinary differential

equation (ODE) for the delay behavior. For control action

processing delay, which is usually time-invariant, [5] proposes

to compensate for such a delay by transitioning the initial state

in a preview controller. Reference [6] further extends the idea

and considers actuator saturation. The major disadvantage of

the preview controller is that it is not flexible enough to simul-

taneously consider multiple constraints such as dynamics,

state, and control limits. Note that our work deals with delays

and all constraints of state and control in a unified robust MPC

optimization. Reference [7] considers a fixed communication

delay in their connected cruise control problem with other

vehicles driven by humans. This communication delay can be

handled in a similar way to actuation delay compensation in

our design.

Safe Control: [8] proposes an approach for designing

safety-critical controllers involving CBFs for nonlinear sys-

tems with time-varying input delay. It combines a state

predictor that compensates for the time-varying input delay

with a CBF-based feedback law for the nominal system,

which is delay-free. Our work combines CBF with MPC to

account for delays and uncertainties in the system and the

environment. Several works consider robustness against uncer-

tainty using uncertainty-aware MPC [9], [10], [11], [12]. The

robust MPC in [13] provides probabilistic safety guarantees.

Reference [14] proposes using CBFs as constraints, which

would make the MPC more potentially feasible and allow

smooth obstacle avoidance. We extend the design in our

proposed controller to include delay compensation and robust-

ness to uncertainties. There are also some works combining

machine learning techniques with safe control, such as iterative

learning control [15] and reinforcement learning [12], [16].

Our work proposes a controller design that is robust to both

the system and environment uncertainties/noises as well as

the system delays. A disturbance observer can be used to

estimate the uncertainties for a robust MPC [17]. It would

be interesting to extend our approach with this feature, but

currently, we assume the disturbance has a known bound.

III. METHODOLOGY

A. Notation

A polytope is the convex hull of finite vertices in R
d .

The Minkowski sum of two polytopes, A and B, is another

polytope in d-dimensional space defined as A ⊕ B := {a +

b|a ∈ A, b ∈ B}. The Pontryagin difference between two
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polytopes, A and B, is another polytope in d-dimensional

space defined as A ⊖ B := {x |x + b ∈ A,∀b ∈ B}.

B. Optimal Racing Line

The racing line is essentially a minimum-time path

or a minimum-curvature path. They are similar but the

minimum-curvature path additionally allows the highest

cornering speeds given the maximum legitimate lateral accel-

eration [18]. There are many proposed solutions to finding

the optimal racing line, including nonlinear optimization

[18], [19], genetic algorithm-based search [20] and Bayesian

optimization [21]. However, for our work, we calculate the

minimum-curvature optimal line, which is close to the optimal

racing line as proposed by [18]. The race track information is

input by a sequence of tuples (xi ,yi ,wi ), i ∈ {0, . . . , N − 1},

where (xi ,yi ) denotes the coordinate of the center location and

wi denotes the lane width at the i th point, vehicle width wveh .

The output trajectory consists of a tuple of seven variables:

coordinates x and y, curvilinear longitudinal displacement s,

longitudinal velocity vx , acceleration ax , heading angle ψ ,

and curvature κ . The trajectory is obtained by minimizing the

following cost:

min
α1...αN

N−1
∑

n=0

κ2
i (n)

s.t. αi ∈
[

−wi +
wveh

2
, wi −

wveh

2

]

(1)

where αi is the lateral displacement at the i th position.

To generate a velocity profile, the vehicle’s velocity-dependent

longitudinal and lateral acceleration limits are required [18].

Using the optimal racing line as a reference, we use a

sampling-based motion planner in the Frenet frame [22].

The obstacle’s future positions are predicted by assuming

constant longitudinal and lateral velocities. However, this can

be replaced by more sophisticated predictors [23], [24], [25].

C. System Dynamics

A dynamic bicycle model [26] is used in our work.
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ë2

v̇x

ṡ
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where u =
[

δ p
]T

, x =
[

e1 ė1 e2 ė2 vx s δa

]T
. C f , Cr

are the stiffness coefficients of the front and the rear tires,

l f and lr are the front and the rear tire distances from the

center of mass (COM), Iz , m are the moment of inertia and

mass of the vehicles, and c is the inverse of the radius of

curvature of the reference line at the perpendicular point from

the vehicle’s position. The control variables are steering angle

(δ) and pedal (p). The state variables taken include the lateral

position error (e1), heading angle error (e2) with respect to

the optimal racing line, their first-order derivatives ė1 and ė2,

longitudinal velocity (vx ), and longitudinal displacement (s).

In many existing motion planning and control works, control

actions are assumed to be applied instantaneously in an ideal

case. Due to this, a delay is caused due to the mismatch

between the calculated and the actual steering angle state.

To solve this problem, we include the steering angle as a

separate state and model the steering actuator dynamics as

follows by a first-order ODE (see [4]): δ̇a = Kδ(δ − δa),

where δ is the desired steering angle, δa is the actual steering

angle, and Kδ is calculated as the inverse of the time constant.

Thus, we control only δ to tell the actuator which state to

achieve and use δa instead of δ for the dynamics calculation.

For acceleration, the delays in pedal dynamics are neglected

for simplicity. K p is used for the mapping between pedal and

acceleration. However, its delay can also be modeled in the

same way as the steering.

D. Control Barrier Functions

We define a continuous and differentiable safety function

h(x) : X −→ R. The superlevel set C ∈ R
n can be named as a

safe set. Let the set C obey C = {x ∈ X : h(x) ≥ 0

The safety function h(x) is called a CBF of a control affine

system ẋ = f (x)+ g(x)u, if there exists a γ > 0 such that

sup
u∈U

[

L f h(x)+ Lgh(x)u + γ (h(x))
]

≥ 0 (3)

for all x ∈ X . L f h(x) and Lgh(x) are Lie derivatives. γ (h(x))

is particularly chosen as a special class K function γ h(x). The

solution u assures that the set C is a forward invariant, i.e.,

if the solutions starting at any x(0) ∈ C satisfy x(t) ∈ C for

∀t ≥ 0. Recently, CBFs have been used in conjunction with

MPC [14], [27]. Having a barrier function-based constraint in

MPC not only ensures strict satisfaction of safety constraints

but also facilitates a smooth trajectory.

E. Robust Tube MPC

The dynamic model is described in a discrete-time manner

as xn+1 = f (xn, un,wn). The original non-linear model is

linearized around the current state xn at every time step into a

linear system. However, in the MPC’s prediction horizon of n,

we assume time-invariant dynamics with Jacobian matrices

An and Bn , i.e., inside the prediction horizon, the model is

xk+1,n = An xk,n + Bnuk,n + wk,n . To simplify the notation,

henceforth we omit n unless it is necessary to be mentioned

explicitly. We assume the matrix pair (A, B) to be controllable,

therefore, there exists a stabilizing linear feedback gain K with

appropriate dimension such that AK = A + BK is Hurwitz.

This assumption holds empirically true for our experiments

and is also common in literature [10]. The disturbance wk is
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assumed to be bounded as wk ∈ W . W is assumed to be a

convex polyhedron with the origin as an interior point. Also,

it must be noted that we can include the linearization error

by adding an extra disturbance [10]. In our work, we assume

that the extra disturbance has been enclosed by a sufficiently

large disturbance set. The objective is to stabilize this uncertain

system while satisfying the state and control constraints as

xk ∈ X and uk ∈ U . For this system, we can define a

disturbance invariant set, Z , such that AKZ ⊕ W ⊆ Z .

A typical MPC controller is defined as a finite horizon

optimization problem, P over the future input control sequence

and states. We define P on an equivalent nominal system

assuming no disturbance to optimize nominal state sequence

X̄ = {x̄0, x̄1 . . . , x̄N } and nominal control sequence Ū =

{ū0, ū1 . . . , ūN−1} as follows (note again the optimization is

for the current step n, which is omitted for notation simplicity),

min
U

N−1
∑

k=0

(x̄k − xre f,k)
T Q(x̄k − xre f,k)+ ū

T
k Rūk

+ (x̄N − xre f,N )
T QN (x̄N − xre f,N )

s.t. x̄k+1 = Ax̄k + B ūk

x0 ∈ x̄0 ⊕ Z

ū ∈ U ⊖ KZ

x̄ ∈ X ⊖ Z (4)

where Xre f = {xre f,0, xre f,1 . . . , xre f,N } is the reference state

sequence, R, Q and QN are the control, state and terminal

state cost matrices, respectively and all of them are positive

semi-definite. We solve the following problem using CasADi’s

QP solver [28]. Now, for this uncertain system, we design a

controller u = ū + K (x − x̄). For such a controller, we can

guarantee that x
+ ∈ x̄

+ ⊕Z for any bounded w ∈ W , which

implies that all states xk will be robustly contained inside X .

F. Delay-Aware Robust Tube MPC

So far, we assume that the optimization of the command

as well as the execution of the optimized command to the

vehicle is instantaneous. However, this is not the case in a

practical vehicle system, where we have computation delay tc
and control action processing delay ta . Therefore, the control

influences the car at td = tc + ta after the time when the

observed state is used for optimization. This could lead to

instability, as the robust tube assumptions no longer hold

true. This is especially dangerous when td is large. To deal

with this time delay in the system, [3] proposes a bi-level

control scheme where the high-level controller plans robust

commands using tube MPC and the low-level unit runs a

feedback controller on these reference commands. A buffer

is used for communication between the two units. The brief

idea is that assuming the input sequence for time frame t to

t+th is known at time t where th is the horizon length, we pass

the predicted th time-ahead state obtained via simulation to the

optimization problem (4) starting at time t so as to complete

before t + th time and apply the optimal input sequence to

the system with feedback between times t + th to t + 2th .

The above procedure repeats in every cycle with the latest

Fig. 3. Our delay-aware robust MPC with dual cycles.

state prediction. In this strategy we need to wait for th − tc
time for each cycle where tc is the computation time taken for

optimization.

However, such a common approach in the literature is

inappropriate in a fast-changing environment such as driving

at high speeds on highways, where immediate action might

have to be taken in an emergency case. Fig. 3 illustrates our

solution: we estimate an upper bound on the computation time,

t̂c, calculated locally after each cycle with a high probabilistic

guarantee. Instead of updating the buffer from t + th to t +2th ,

we update if from t+t̂c to t+t̂c+th . This significantly improves

the high-level MPC controller frequency, which would be

required for fast-changing scenarios where the path to be

followed continually updates. We use an adaptive Kalman filter

to calculate t̂c. Section III-G describes this in detail. Also,

we have an additional constant time delay ta due to control

action processing, hence the total upper bound on delay time is

t̂d = t̂c +ta . Based on this, we shift the initial state and use the

shifted estimated state x t̂d |t at time t̂d . We estimate this state at

time t̂d using the nominal commands from the buffer assuming

no extra disturbance from the environment. We fill the buffer B

from time t+t̂c to t+t̂c+th with the calculated controls (Ū ) and

nominal states (X̄ ). As we calculate the commands in discrete

steps of 1t , the buffer is updated in the following fashion:

ū[t+t̂c+k1t,t+t̂c+(k+1)1t] = ūk for k ∈ {0, 1, 2, · · · , N − 1},

as demonstrated in Fig. 3. The commands are calculated in

the following manner as described in (5). The pre-compensator

acts as a low-level unit that simply executes commands in the

buffer at the required times and runs in parallel. It has a higher

frequency than the high-level MPC.

min
U

N−1
∑

k=0

(x̄k − xre f,k)
T Q(x̄k − xre f,k)+ ū

T
k Rūk

+ (x̄N − xre f,N )
T QN (x̄N − xre f,N )

s.t. x̄k+1 = Ax̄k + B ūk

xtd+t ∈ x̄0 ⊕ Z H⇒ xtd |t ∈ x̄0 ⊕ Z ⊖ (⊕s−1
j=0 A

j
KW)

s =

⌈

td

1t

⌉

ū ∈ U ⊖ KZ

x̄ ∈ X ⊖ Z (5)

1) Control Limits (U): For control constraints, we limit

throttle amount and steering with their actuation limits.
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2) State CBF Constraints (X ): In (2), the longitudinal and

lateral errors of the vehicle are s and e1. As the free space

along the Frenet frame is non-convex in general, we cannot

directly set the constraints. This is because it becomes com-

putationally expensive for the optimization problem to set the

constraints in the non-convex form. To solve this, we propose

the use of the IRIS algorithm to derive a set of convex

constraints for the optimization problem to make it efficiently

solvable while also ensuring safety for the vehicle [25]. IRIS

works by finding a largest possible ellipsoid that fits the non-

convex space, which is later converted to a set of convex

constraints. The lane boundaries are also fed as constraints

to the non-convex free space by sampling points around the

vehicle’s location. The convex space X can be expressed as

a set of linear state constraints where each bounding line can

be expressed by ai , bi , and ci , see (6). Further, we formulate

each of these constraints with a CBF as given in (6), where L

is the number of sides of the bounding polygon for the convex

space X .

hi (Xk) = ai sk + bi e1,k + ci ,∀i = 0, 1 . . . L − 1 (6)

3) Disturbance-Invariant Set (Z): We over-approximate Z

at the n-th time step as: Zn = 6N
i=0 Ai

K ,nW [29], where

AK ,n = An + Bn Kn , Kn is the control gain. However, AK ,n

is state-dependent and time-variant. To ensure robustness, Zn

must be covered by Zn+1. For detailed calculation and proof,

readers are referred to our code repository, which includes

notation rectification of our previous work [1]. The basic idea

is to have a union operation of sets given the range of states.

4) Stability: Using tube-MPC ensures the system stays

within a certain tube for bounded disturbance as discussed in

Section III-E. The tube is obtained based on the calculation of

the disturbance invariant set. The calculation and the stability

proof can be found in our previous work [1] and [9].

5) Feasibility: A reachable set Rk is defined as the set of

nominal states at the end of k time steps, i.e., at time t + t̂c +

k1t as follows:

Rk = {x̄k : ∀i = 0, 1..k − 1, x̄i+1 = Ax̄i + B ūi

ūi ∈ U ⊖ KZ} (7)

where R0 is defined according to the constraint of x̄0 in (5).

Let us define the set of all states satisfying the CBF constraints

as follows:

Xcbf = {x ∈ X : ḣ(x)+ γ (h(x)) ≥ 0} (8)

Since the robust tube MPC guarantees that the actual system

state, x ∈ x̄ + Z where x̄ is the nominal state obtained from

optimization and Z is the disturbance invariant set defined in

Section III-F.3, we can define set Xcbf,robust = Xcbf ⊖Z . If the

nominal state obtained by optimization is present in Xcbf,robust,

we can guarantee that the system state will lie within Xcbf, i.e.,

it will satisfy the CBF constraint.

The feasibility of the system depends on whether the

intersection between Rk and the super-level set Xcbf,robust

is non-empty. If h is a valid CBF, then Xcbf is non-empty.

When we reduce the decay rate γ of the CBF, the set Xcbf

becomes smaller, resulting in a more conservative or safer

system. However, there is a tradeoff between feasibility and

safety, as described in [14]. The intersection between Rk

and Scbf might become infeasible. Choosing an appropriate

γ that ensures a non-empty intersection between the two sets

remains an open challenge, and automatically determining the

optimal γ for a given scenario is still an open problem. In our

previous work [30], we addressed this issue by introducing

an additional optimization over γ to ensure pointwise feasi-

bility at each step. However, formulating a persistent feasible

solution remains an open problem, which we acknowledge as

a limitation and a potential area for future research. In this

study, we assume that γ is well-tuned without introducing

infeasibility problems. Furthermore, during our experiments,

we carefully tuned γ and did not encounter any infeasible

corner cases.

G. INFLUENCE for Computation Time Delay

INFLUENCE is proposed as a variant of the adaptive

Kalman filter for the estimation of an upper bound on com-

putation time. The conventional Kalman filter is unsuitable

for cases in which the process model and the noise covariance

are unknown. These are compensated by using adaptive filters.

However, state-of-the-art adaptive filters rely either on known

dynamics while assuming unknown noise covariances [31],

[32] or on known covariances while assuming unknown model

parameters [33]. To compensate for this deficiency, INFLU-

ENCE assumes that measurement noise variance r , process

noise variance q , and η

in the process model are all unknown. We assume a linear

unknown process model with parameters η. We assume both

process and observation noise distributions to be mutually

uncorrelated, independent and Gaussian. INFLUENCE works

as described in Algorithm 1, where tc,n is the observed compu-

tation time, and xn|n−1, pn|n−1 are the predicted computation

time mean and variance estimates for the n-th time step. The

computation complexity taken by each cycle is O(1), i.e.,

independent of Nr and Nq and thus very low. As observed

from Fig. 6, the average computation time taken in each cycle

is less than 5 ms, so the algorithm is capable of real-time

deployment.

The algorithm starts with initialization of all variables. The

key idea is that we use the model information η in the current

step to estimate the noise information q and r , followed by

the update of η itself [31], [32]. In the third box, w and e

are measurement and prediction errors. They are updated in

an incremental manner. Nq and Nr are tunable parameters for

update rates. In the last box, λ and F can be considered as a

forgetting factor and a learning rate, respectively.

It is important to note here that for the sake of simplicity, the

notation x is used for the computation time to be estimated

and is not to be confused with the state notation we used

earlier. We use the predicted mean xn|n−1 and variance pn|n−1

estimates for the n-th time step to get an upper-bound estimate

on computation time: t̂c,n = xn|n−1 + βpn|n−1. Assuming a

Gaussian distribution, the parameter β dictates the level of

confidence in estimating t̂c,n as an upper bound (higher value

of β implies higher confidence). For the experiments in this

paper, we use β = 2.
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Algorithm 1 INFLUENCE Algorithm

Initialize:

x0|0 = tc,0, p0|0 = 0, q0 = ϵ, r0 = ϵ, e0 =

0, w0 = 0, F0 = I2, η = [1 0]T

for n = 1 to T do

xn|n−1 = ηT
n−1[xn−1|n−1] // Estimate new state using the

current estimated value of η

pn|n−1 = η2
n−1,0 pn−1|n−1 + qn−1

en = Nr −1
Nr

en−1 + 1
Nr
(tc,n − xn|n−1)

1rn =
((tc,n−xn|n−1)−en)

2

Nr −1
−

pn|n−1

Nr

rn =

∣

∣

∣

Nr −1
Nr

rn−1 +1rn

∣

∣

∣
// Update r estimate

Kn =
pn|n−1

pn|n−1+rn

xn|n = xn|n−1 + Kn(tc,n − xn|n−1)

pn|n = (1 − Kn)pn|n−1

wn =
Nq−1

Nq
wn−1 + 1

Nq
(xn|n − xn|n−1)

1qn =
pn|n−η2

n−1,0 pn−1|n−1

Nq
+

((xn|n−xn|n−1)−wn)
2

Nq−1

qn =

∣

∣

∣

Nq−1

Nq
qn−1 +1qn

∣

∣

∣
// Update q estimate

Let φ be [xn−1|n−1 1]T

Fn = 1
λ

(

Fn−1 −
Fn−1φφ

T Fn−1

λ+φT Fn−1φ

)

ηn = ηn−1 + Fnφ(xn|n − xn|n−1) // Update η estimate

end for

Fig. 4. Controller Plan A for delay-aware robust tube MPC.

H. Controller Plan A

Putting everything together, we propose the first controller

design as illustrated in Fig. 4. The steering dynamic delay is

compensated by adding the actual steering state as a new state

and by using a first-order ODE to model steering dynamics

(see section III-C). The computation and actuator dynamic

delays are handled by initial state shifting (see III-F and III-G).

After the optimization, the calculated commands from robust

tube MPC are used to update the buffer from t + t̂c to t + t̂c +th
filled with the nominal states and the commands. Observed

computation time is used to update the new local upper bound

for the next cycle by using our filter. The pre-compensator unit

runs in parallel with high frequency as a feedback controller

using the nominal states and commands from the buffer.

I. Controller Plan B

We also propose a new controller plan aimed towards

safeguarding blackbox controllers whose internal mechanism

Fig. 5. Controller Plan B, delay compensation for an LE controller.

is not known, like an LE controller which has been trained

in a simplistic simulation environment where practical delays

are not considered. We call the LE controller the nominal

controller (see Fig. 5). To compensate for the computation

time and control action processing delay, we use a similar

design to that of plan A through initial state shift. However,

for compensating actuator dynamic delay, we propose the use

of a separate process that uses QP to output control commands

that closely track the desired nominal commands inputted to it

while also avoiding collision and respecting lane constraints.

First, we estimate the computation and control action pro-

cessing delay and use it to shift the initial state, which

is inputted to the LE controller. Rollouts are conducted to

obtain sequential commands as output from the LE controller

expressed as Û = {û1, û2, · · · , ûN }. After solving the QP

problem in (12), we get the refined commands as output

expressed as U = {u1, u2, · · · , uN }. Here, ustart is the

observed steering angle at the start before optimization and rk

is obtained by taking output at time k1t in response to a unit

step input to the steering actuator at time 0. Qac and Rac are

positive semidefinite weight matrices for tracking controller

commands Û and minimizing controller effort, respectively.

Along with actuator dynamic delay compensation, we also add

CBFs to offer safety constraints to the blackbox controller.

1) Lane Constraints: We assume variable left and right

lane width as a function of the longitudinal displacement s

along the racing line. Let the approximate linear functions

Ll(s) and Lr (s) govern the left and right lane width functions,

respectively. We have

hle f t,k(x) = Ll(s0)− e1,k

hright,k(x) = e1,k + Lr (s0)

− Lr (s0) ≤
1

λ2
(ë1,k + λė1,k + λ2e1,k) ≤ Ll(s0)

(9)

2) Collision Avoidance Constraints: For collision avoidance

with each vehicle, we set the following second-order CBF

since the dynamic model has a relative degree of two. The

detailed justification and expansion can be found in our code

repository.

hveh,k(x, xopp) =

(

s − sopp

ds

)2

+

(

e1 − eopp

de

)2

− 1 (10)

where sopp and eopp are the longitudinal and lateral error of

the opponent vehicle, and ds and de are the longitudinal and
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lateral safe distances from the target opponent vehicle. xopp

is the opponent vehicle’s state. The safety constraint of this

second-order CBF is:

hveh,k(x, xopp)+ 2λḣveh,k(x, xopp)+ λ2ḧveh,k ≥ 0 (11)

min
U

N
∑

k=1

∥

∥

∥

∥

∥

δ̂k − (δ0 +

i=k
∑

i=1

(δi − δi−1)rk−i+1)

∥

∥

∥

∥

∥

Q

+ ∥δk∥R

s.t. u0 = ustart

xk+1 = Ak xk + Bk uk

h(x̄k, xopp)+ λḣ(x̄k, xopp)+ λ2h(x̄k, xopp) ≥ 0

(12)

where ri = (1 − e−K i1t ).

IV. EXPERIMENTAL RESULTS

The Gazebo simulator [34] is used to test normal

autonomous driving scenarios (which we refer to as non-racing

in the rest of the paper). The racing scenarios are tested using

the CARLA simulator [35]. Validation of controller plan A and

controller plan B is divided into two subsections. The parame-

ters we have used m = 1600 kg, C f = 16000 kg·m·s-2·rad-1,

Cr = 16000 kg·m·s-2·rad-1, Iz = 1800 kg·m2, K p =

5 m·s-2, K f = −0.134 s-1, L = 3 m, wveh = 1 m, Q =

diag[1 0 10 0 1 0 0], R = diag[10 10], W := w||w|∞ < 0.1,

1t = 0.05s, N = 8, Kδ = 11 s-1, Nr = 30, Nq = 30,

β = 2. For all the experiments with dynamic obstacle vehicles,

their future trajectories are considered by assuming constant

velocities.

A. Controller Plan A

1) Static Obstacle Avoidance (Non-Racing): We conduct a

static obstacle avoidance experiment to test controller plan

A. The trajectories can be found in our previous work [1].

As shown in Fig. 6, INFLUENCE can safely bound the

computation delay in this experiment. Also, the overhead due

to the addition of delay estimation using INFLUENCE is

significantly smaller than the computation time taken by the

optimization solver.

2) Racing Scenario: We set up a racing scenario in CARLA

to validate the controller plan A. A part of the track from the

Town06 map is used for the experiments. It is a closed track

suitable for setting up a racing scenario. The optimal racing

line for the track is given in Fig. 7. In the case when no delay

compensation is considered (see Fig. 7), the vehicle crashes

once during the lap at a sharp turn. The reason for this is

that as the vehicle operates at its friction limit at the turn,

tracking error accumulates due to computation, and actuator

delays lead the vehicle to hit the boundary (see the ªwithout

delay compensationº trajectory in the zoomed-in plot), thus

leading to high lap time. On the other hand, with the delay

compensation plan included (see Fig. 7), the vehicle safely

and closely tracks the racing line, leading to faster lap time.

We further compare race times and the number of crashes

with the lane boundary (see Tab. I). As can be observed, with

delay compensation, the vehicle takes less time to complete

Fig. 6. Experiment IV-A.1, blue: predicted computation time
using INFLUENCE without variance; green: predicted computation time using
INFLUENCE with variance; orange: actual computation time includ-
ing INFLUENCE’s computation cost; red: actual computation time without
INFLUENCE’s computation cost. ROS time at the x axis is the timestamp in
the ROS operation system.

Fig. 7. Performance comparison: red boxes (without delay compensation)
show that the vehicle ran outside the road boundary while the vehicle
controlled with delay compensation (blue boxes) always stays inside the
boundary. The vehicle moves counterclockwise.

TABLE I

COMPARISON IN LAP TIMES WITH AND AND WITHOUT

DELAY COMPENSATION INCLUDED

the race, while without delay compensation due to crash, the

vehicle takes more time to complete the race.

Also, to evaluate the robustness of our algorithm, we per-

form different runs by manually adding extra computation

time. Fig. 8a and Fig. 8b show the trajectories followed with

and without delay compensation. As shown in the figures, our

delay compensation is able to handle high computation time up

to 0.2 s; while without delay compensation, the vehicle loses

control with only 0.06 s additional computation time. Also, the

vehicle remains very stable with delay compensation, as shown

in the lap time and steering variance in Fig. 8c and Fig. 8d),

respectively.
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Fig. 8. Robustness test with additional computation time from 0.02 s
to 0.15 s.

3) Sudden Change Scenario (racing): We also test con-

troller plan A against a sudden change racing scenario. For

this scenario, an opponent vehicle ahead of the ego vehicle

suddenly loses control, and thus applies sudden braking at

t = 2s, forcing the ego vehicle to respond suddenly to

avoid collision. If delay compensation is not considered for

this scenario (see Fig. 9b), the vehicle collides with the

opponent vehicle. On the other hand, with delay compensation

considered, the vehicle makes a more informed decision to

make a sudden turn with braking (see Fig. 9a) to avoid

collision with the opponent vehicle.

4) Overtaking in a Turn Scenario (racing): Finally, we test

the controller plan A in a scenario where the vehicle has to

overtake at a turn, forcing it to leave the optimal racing line

at the turn. Such a scenario requires highly precise controls,

as the vehicle operates at its friction limits. As the vehicle

deviates from the optimal racing line to overtake and avoid

collision, the vehicle has to apply braking to avoid moving

outside the track. However, without the delay compensation

(see Fig. 10b), the vehicle applies braking late, leading to

Fig. 9. Comparison in Experiment IV-A.3. The opponent vehicle starts
braking at point A. The ego vehicle crashes into the opponent vehicle at
point B without delay compensation.

TABLE II

COMPARISON IN LAP TIMES AND SAFETY

the vehicle CBF constraint being unable to retain the vehicle

within the lane boundaries. With delay compensation con-

sidered, the vehicle makes more effective control decisions

taking the delay into account and thus is able to perform the

overtaking maneuver safely at turns (see Fig. 10a).

B. Controller Plan B

We test the controller plan B in two scenarios described

below. Imitation learning is used in our work for train-

ing a blackbox LE controller, which has a demonstrator (a

model predictive controller) to obtain state-to-control mapping

data [36]. We use a fully connected feed-forward neural

network (FNN) as an LE controller.

1) Path Following in Racing Scenario: We test controller

plan B in the path following racing scenario without obstacles.

As discussed, as the track requires highly precise controls at

turns to stay within the track, the safety controller in the form

of lane constraints has to come into play to compensate for

errors in current state measurements and delays. As shown in

Fig. 11, when delay compensation is not considered the vehicle

moves out of the track boundary as the safety constraints

are not able to safeguard the vehicle due to inconsistency

in vehicle state caused by delay errors. However, with delay

compensation (see Fig. 11), the vehicle is able to safely stay

within the lane constraints.

2) Overtaking at Turn in Racing Scenario: Finally, to val-

idate the controller plan A, we design a scenario where the
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Fig. 10. Comparison in Experiment IV-A.4. The ego vehicle crashes at point
A in the case without delay compensation.

Fig. 11. Performance comparison: red boxes (w/o delay compensation) show
that the vehicle ran outside the road while the vehicle controlled with delay
compensation (blue) always stays inside the boundary. The vehicle moves
counterclockwise.

vehicle has to overtake at a turn, forcing it to leave the optimal

racing line at the turn. As the vehicle deviates from the optimal

racing line to overtake and avoid collision, the vehicle has to

apply braking to avoid moving outside the track. However,

without the delay compensation (see Fig. 12b), the vehicle

applies braking late, leading to the vehicle CBF constraint

being unable to retain the vehicle within the lane boundaries.

With delay compensation considered, the vehicle makes more

effective control decisions taking the delay into account and

Fig. 12. Comparison in Experiment IV-B.2. The ego vehicle crashes at
point A without any delay compensation.

Fig. 13. RC car setup.

thus is able to perform the overtaking maneuver safely at the

turn (see Fig. 12a).

C. Hardware Experiments in an RC Car

We have tested the control plan A on a real 1/10-scale

RC car (see Fig. 13a) that is equipped with a Lidar, a depth

dual camera, an IMU and wheel encoders. The onboard

computation platform is an NVIDIA Jetson TX2 with 8GB

of RAM and 256 core NVIDIA Pascal GPU. We perform the

experiment on a track as shown in Fig. 13b. The lane width

is about 0.8 m. We use hector SLAM [37] for pre-mapping

and Monte Carlo localization (MCL) for localization [38].

The uncertainty estimate obtained from MCL is used in

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Cleveland State University. Downloaded on March 15,2024 at 16:31:49 UTC from IEEE Xplore.  Restrictions apply. 



10 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Fig. 14. Performance comparison for 5 runs each: red lines (without delay
compensation) show that the vehicle ran outside the road boundary while the
vehicle controlled with delay compensation (blue lines) always stays inside
the boundary. The vehicle moves from bottom to top.

Fig. 15. Experiment IV-C, predicted computation time (blue): predicted value
using INFLUENCE without adding variance; computation time taken (green):
predicted value using INFLUENCE with variance; actual computation time
(orange): ground truth delay.

our framework assuming Gaussian distribution of the state

estimate from MCL.

Due to the inherent non-determinism caused by various

factors such as slight unavoidable changes in starting position,

the uncertainty of Lidar sensor observations, etc., we conduct

5 runs with and without using our dynamic delay compensa-

tion. The trajectory results are shown in Fig. 14. As can be

observed, without considering delay compensation, the vehicle

moves out of the lane at point A most times while with the

compensation included, the vehicle is able to stay safely within

the lane limits. The delay-estimates for one of the runs is

plotted in Fig 15. The video recording of the runs made with

RC car is also included in the video demonstration.

V. CONCLUSION

We propose a delay-aware robust controller design for safe

autonomous driving and racing. We also compensate for delays

of an LE controller and employ it in the closed-loop system

as a primary controller. The simulation results in high-fidelity

simulators and on a real racing car show the efficacy of our

designs. Our future work includes investigating the persistent

feasibility guarantee of the optimization.
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