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Abstract 21 

In the mountainous Western U.S., a considerable portion of water supply originates as snowmelt 22 

passing through karst watersheds. Accurately simulating streamflow in snow-dominated, karst 23 

basins is important for water resources management. However, this has been challenging due to 24 

high spatiotemporal variability of meteorological and hydrogeological processes in these 25 

watersheds and scarcity of climate stations. To overcome these challenges, a physically based 26 

snow model is used to simulate snow processes at 100 m resolution, and the calculated snowmelt 27 

and potential evapotranspiration rates are fed into a deep learning model to simulate streamflow. 28 

The snow model was driven by meteorological variables from a regional scale Weather Research 29 

and Forecasting (WRF) model or from the North American Land Data Assimilation System 30 

(NLDAS-2). The two datasets were used both at the original resolution and downscaled to 100 m 31 

resolution based on orographic adjustments, leading to four sets of forcings. Snow model 32 

simulation results from the four sets of forcings showed large differences in simulated snow 33 

water equivalent (SWE) and snowmelt rate and timing. However, the differences were damped 34 

in simulated streamflow, as the deep learning model is partially immune to input bias and picked 35 

up different streamflow responses to snowmelt and rainfall when trained using snow model 36 

results. While the meteorological datasets considered yielded close streamflow simulation 37 

accuracy, averaging simulated streamflow from the four sets of forcings consistently achieved 38 

better performance, suggesting the value of including multiple meteorological datasets for 39 

modeling streamflow in mountainous watersheds.  40 
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1. Introduction 44 

In many mountainous regions of the world, much of the water for residential and 45 

agriculture use originates as snowpack (Adam et al., 2009). Some of these snow-dominated 46 

watersheds include karst formations where carbonate rock has undergone dissolution resulting in 47 

fissures and conduits. Water is able to flow through karst conduits much faster than in porous 48 

matrices. Karst watersheds supply water to approximately one fourth of the world’s population 49 

(Hartmann et al., 2014). Streamflow in karst, snow-dominated watersheds is controlled both by 50 

snow processes and karst hydrogeology. Accurate quantification of snow accumulation (often 51 

measured as snow water equivalence, SWE) and melt in these snow-dominated, karst regions are 52 

essential for simulating streamflow and predicting water supply availability.  53 

SWE levels and melt rates in mountainous regions have high spatial variability due to 54 

topography (i.e., elevation, slope, aspect) and canopy coverage and their combined effects on 55 

precipitation, temperature, and radiation (Shamir and Georgakakos, 2006; Clark et al., 2011; 56 

Winstral et al., 2014). In mountainous karst watersheds, small scale (≤ 1 km) spatial variability 57 

of snow processes may have a significant effect on the timing and magnitude of streamflow. Due 58 

to hydrogeologic heterogeneity, portions of meltwater feed the karst aquifer by entering 59 

sinkholes directly connected to karst conduits, diffusing through small fissures or fractures, or 60 

infiltrating the soil matrix that slowly diffuses into karst conduits (Hartmann et al., 2014; 61 

Spangler, 2011; White, 2002). Depending on where the snowmelt occurs, recharge can take a 62 

wide range of travel times to reach the stream channel, varying from days to years (Spangler, 63 

2011; Goldscheider and Drew, 2014). In addition, karst watersheds frequently display “piracy”, 64 

where water in one watershed flows across topographic watershed boundaries into neighboring 65 

watersheds (Hartmann et al., 2014; Spangler, 2011).  66 
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At the mesoscale (100 − 1000 km2), the spatial variability in snow processes can be 67 

resolved by high resolution snow modeling (Schlögl et al., 2016; Winstral et al., 2014). These 68 

models require topography (e.g., elevation), land use (e.g., canopy coverage), and meteorological 69 

forcing data at scales appropriate for the model grid size. Due to the scarcity of ground based 70 

observations, especially in mountainous areas, distributed hydrologic models typically rely on 71 

meteorological datasets derived by reanalysis, interpolation of ground stations, remote sensing 72 

techniques, or the combination of two or three methods. Uncertainty in meteorological variables, 73 

precipitation in particular, has been recognized as a key source of uncertainty in hydrologic 74 

modeling (Hong et al., 2006; Salamon and Feyen, 2009; Strauch et al., 2012; Eum et al., 2014; 75 

Fallah et al., 2020). In addition, meteorological data are generally provided at coarse resolutions 76 

(e.g., 4 km, 0.125º)  (Mizukami et al., 2016; Shamir and Georgakakos, 2006). Methods have 77 

been developed for downscaling meteorological variables to the resolution of hydrologic models 78 

(e.g., ≤ 1 km) (Hungerford et al., 1989; Liston and Elder, 2006; Thornton et al, 2012; Fiddes and 79 

Gruber,  2014; Sen Gupta and Tarboton, 2016; Mital et al., 2022) by using fine resolution 80 

topography data and adjusting meteorological variables according to known topographical 81 

effects on climate. Unfortunately, this downscaling process brings additional uncertainty to the 82 

modeling process (Dibike et al., 2007; Behnke et al., 2016; Shuai et al., 2022).  83 

While numerous studies have applied various hydrologic models to a range of 84 

watersheds, due to the complexities of karst geology traditional hydrologic models fail to 85 

adequately model flow in karst basins. Therefore, a hybrid modeling approach that combines a 86 

spatially distributed, physically based snow model and a deep learning model has been 87 

developed to overcome the lack of information about subsurface hydrologic connectivity that is 88 

common in these watersheds (Xu et al., 2022). In this hybrid model, the snow model simulates 89 
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snow accumulation and melt processes at 100 m resolution, which are fed into a deep learning 90 

model that simulates streamflow response to snowmelt. The deep learning model is based on the 91 

ConvLSTM architecture (Shi et al., 2015) capable of handling spatiotemporal dynamics such as 92 

the precipitation-discharge processes in the mountainous karst watersheds. Unlike physically 93 

based or conceptual karst models, machine learning and deep learning models do not require site 94 

specific knowledge of subsurface hydrologic connectivity (Li et al., 2017). In addition, they 95 

often do not impose mass balance and use scaled input data (e.g., precipitation or snowmelt). 96 

While various studies have investigated the effects of meteorological forcing uncertainty on 97 

hydrologic modeling using physically based models (Elsner et al., 2014; Eum et al., 2014; Maina 98 

et al., 2020; Shuai et al., 2022; Rasouli et al., 2022), such understanding has been lacking for 99 

deep learning models.   100 

This study aims to understand how the choice of meteorological datasets and 101 

downscaling techniques affect simulating snow accumulation, melt and streamflow focused on a 102 

snow-dominated mountainous karst watershed on the Utah-Idaho border. We hypothesize that 103 

physically based simulation of spatially varying variables such as SWE and snowmelt is more 104 

sensitive to the uncertainties in meteorological forcing than deep learning-based simulation of 105 

streamflow. To test this hypothesis, this study employs modeling experiments to: (1) quantify the 106 

spatial and temporal patterns of SWE and snowmelt rate and how these patterns are affected by 107 

the choice of meteorological inputs and downscaling methods, and (2) simulate streamflow 108 

response to snowmelt, which is modeled from different meteorological datasets and downscaling 109 

techniques, using a deep learning model and determine its accuracy.  110 
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2. Study Site 111 

Our study area is the canyon portion of the Logan River watershed located in 112 

northeastern Utah and southeastern Idaho (Figure 1a). This portion of the Logan River watershed 113 

has an area of 550 km2 and an elevation range from 1366 m to 3037 m (Figure 1b). The study 114 

area contains both coniferous and deciduous forested areas (Figure 1c). Average basin-average 115 

precipitation is about 1080 mm, and more than 50% of the precipitation falls as snow, according 116 

to the Weather Research & Forecasting (WRF)-derived meteorological dataset used in this study 117 

(Section 3.1). The river flows primarily from the north and east to the south and west of the 118 

watershed. However, developed karst conduits and sinkholes in the watershed add complexity to 119 

subsurface water flow direction. The karst features in and around the topographically defined 120 

watershed result in significant karst piracy, requiring the study area to include terrain outside the 121 

topographic watershed, particularly in areas with known karst subsurface connections (Spangler, 122 

2011).  123 
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124 

  125 

Figure 1. Maps showing (a) location, (b) elevation, and (c) canopy coverage (NLCD, 2019) of 126 

the study area. In addition, topography boundary of Logan River watershed and locations of 127 

SNOTEL sites and the USGS station are indicated. 128 

Hydrometeorological data of the study area are available from seven SNOTEL stations. 129 

Among them, four stations have data of three or more years and will be used in this study (Table 130 

1). Discharge records of the Logan River are provided by USGS station 10109000 (Fig. 1) 131 

located at the watershed outlet since 1954. Two diversions, via the Highline Canal and at the 132 

Dewitt Spring, exist upstream of the USGS gage for agricultural and municipal water uses. Daily 133 

diversion rates via the Highline Canal are obtained from USGS station 10108400. Monthly use 134 
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of Dewitt Spring discharge was obtained from Logan City and assumed to occur evenly over 135 

each month. Daily naturalized streamflow was determined by summing the observed streamflow 136 

at the USGS gage and the two diversion rates. The combined rates from the three sites are 137 

hereafter referred to as observed streamflow. 138 

Table 1: SNOTEL stations in the study area with three or more years of records (USDA NRCS, 139 

2022). Canopy coverage is calculated for the UEB grid where the station is located.  140 

Site Name Year Data 

Begins 

Latitude Longitude Elevation 

(m) 

Canopy 

Coverage (%) 

Franklin Basin 1979 42.05 -111.6 2481 29 

Temple Fork 2001 41.79 -111.55 2257 38 

Tony Grove Lake 1978 41.9 -111.63 2583 34 

USU Doc Daniels 2007 41.86 -111.51 2521 43 

 141 

3. Methods 142 

In order to assess how uncertainty in meteorological forcing would affect the simulation 143 

of snow processes and streamflow within the Logan River watershed, we performed modeling 144 

experiments using various meteorological forcing and compare the simulation results (Fig. 2). 145 

We used two forcing datasets, at their raw resolution and downscaled, respectively, leading to 146 

four sets of meteorological forcing. A 100-m spatial resolution and 1 hour temporal resolution 147 

Utah Energy Balance (UEB) model (Mahat and Tarboton, 2012; Tarboton and Luce, 1996) is 148 

used to simulate snowmelt and rainfall. The simulated snowmelt and rainfall as well as potential 149 
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evapotranspiration were fed into the deep learning model to simulate streamflow (Xu et al. 150 

2022).  151 

 152 

Figure 2. Flowchart of the modeling experiments using meteorological forcing generated from 153 

two meteorological datasets, with and without downscaling, to drive the Utah Energy Balance 154 

(UEB) and Convolutional Long Short-term Memory (ConvLSTM) models.    155 

3.1. Meteorological forcing and orographic adjustments 156 

Meteorological variables required to run the UEB model were obtained from two sources 157 

of meteorological data. The first is a dynamically downscaled dataset based on simulation results 158 

of a Weather Research & Forecasting (WRF) model centered on the Wasatch Mountains, Utah 159 

(Scalzitti et al., 2016). The WRF model used initial and boundary conditions derived from 160 

Climate Forecast System Reanalysis. The dataset is available at 4 km resolution and hourly time 161 

UEB

ConvLSTM

WRF NLDAS-2

Orographic 

adjustments

Raw

Meteorological datasets

Downscaling

PETSnowmelt+rainfall

Streamflow
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steps from 1985 to 2010. The simulated precipitation was validated using SNOTEL and 162 

Parameter-elevation Regressions on Independent Slopes Model (PRISM, Daly et al., 2008) 163 

datasets. Because it is dynamically downscaled, the WRF dataset has an advantage of resolving 164 

processes over complex topography at a scale much finer than the resolution of Global Climate 165 

Models (~50 to hundreds of kilometers).  166 

 The second meteorological dataset is the NLDAS-2 (Xia et al., 2012) forcing, a national 167 

dataset commonly used in hydrologic studies. The NLDAS forcing dataset has a 0.125º (~12 km) 168 

spatial resolution and 1 hour temporal resolution from 1979 to the present. Non-precipitation 169 

variables were derived primarily from the NCEP North American Regional Reanalysis (NARR, 170 

Lin et al., 2001; Mesinger et al., 2006). The NARR meteorological variables at 32-km resolution 171 

and 3-hourly time steps were spatially interpolated to 0.125º and temporally disaggregated to 172 

hourly (Cosgrove et al., 2003). Precipitation was derived by temporally disaggregating the 173 

Climate Prediction Center (CPC) PRISM-adjusted daily CONUS gauge data using hourly 174 

Doppler Stage II radar (available since 1996, Lin and Mitchell, 2005). When the Stage II radar 175 

was not available, half-hourly CMORPH (available since 2002, Joyce et al., 2004), CPC Hourly 176 

Precipitation Dataset (Higgins et al., 1996), or NARR data were used in descending preference 177 

(Ferguson and Mocko, 2017).  178 

To run the UEB model, meteorological variables (2 m humidity, surface downward 179 

shortwave surface radiation, surface downward longwave surface radiation, wind speed at 2 180 

meters above the surface, temperature at 2 m above the surface, surface pressure, and 181 

precipitation) were derived from the WRF and NLDAS datasets both as raw data and with 182 

orographic adjustments. For raw data simulations, each UEB grid is assigned the value of 183 

meteorological variables from the location of the UEB grid. For orographic adjustment runs, the 184 
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raw meteorological variables were first bilinearly interpolated within the study area, and then 185 

adjusted to account for elevation and other topographical features using methods developed in 186 

Liston and Elder (2006) and Sen Gupta and Tarboton (2013), detailed in Text S1, Supplementary 187 

Material. Temperature was adjusted using a lapse rate derived from SNOTEL stations in the 188 

study area.  Precipitation was adjusted based on a monthly factor and the elevation difference. 189 

Specific humidity was downscaled using elevation adjusted temperature calculated previously 190 

and the elevation difference and then converted to relative humidity for the UEB model. 191 

Incoming longwave radiation was altered first according to the adjusted temperature and then by 192 

calculating air emissivity for elevation. Shortwave radiation was altered according to 193 

atmospheric pressure that had been altered according to the elevation difference and monthly 194 

coefficients for the Bristow-Campbell parameterization of the shortwave radiation as a function 195 

of air temperature diurnal range. Wind was adjusted based on wind direction and the slope, 196 

aspect, and curvature of the grid cell and its neighboring cells.  197 

3.2. Utah Energy Balance snow model 198 

We simulated snow accumulation and melt at 100 m spatial resolution and 1 hour 199 

temporal resolution for the study area using the UEB model (Mahat and Tarboton, 2012; 200 

Tarboton and Luce, 1996). The UEB model is a physically based model utilizing mass and 201 

energy balances of the snowpack (both on land and intercepted by canopy) and can be run using 202 

a distributed (gridded) setup. We chose the 100 m resolution to capture the small scale variability 203 

in snow accumulation and melt. Based on preliminary results, changing resolution from 200 m to 204 

100 m could cause SWE differing by more than 20% at model grids having the largest 205 

variabilities in slope and aspect due to the smoothing out of aspect and slope. However, changing 206 

resolution from 100 m to 50 m altered SWE levels by less than 5% at these grids, suggesting 100 207 
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m resolution adequately captured slope and aspect at reasonable computational cost. The UEB 208 

snow model was run for all years the WRF dataset was available (Oct. 1985 – Jun. 2010). UEB 209 

simulated hourly SWE and the combined snowmelt and rainfall were lumped to daily resolution 210 

by taking SWE from the last hour of the day, and summing up snowmelt and rainfall for each 211 

day. 212 

Parameter values were set following recommendations in Tarboton and Luce (1996) and 213 

Mahat and Tarboton (2012). A digital elevation model (DEM) with 1/3 arc second (about 9 m) 214 

resolution (U.S. Geological Survey, 2017) was coarsened to the 100 m UEB grids and then used 215 

to calculate slope and aspect. Canopy coverage data was obtained from the NLCD 2011 tree 216 

canopy dataset (Coulston et al., 2012). Leaf area index and forest structure parameters were 217 

derived from NLCD land use dataset (Yang et al., 2018) following recommendations in Sen 218 

Gupta and Tarboton (2012). Canopy height data was obtained from NASA Landfire database 219 

(Nelson et al., 2013).  220 

UEB simulation results are compared with SWE observations at SNOTEL stations and 221 

MODIS fractional snow-covered area (SCA) product at 500 m resolution (MOD10A1, Hall and 222 

Riggs, 2016). SWE recorded at end of day is compared with simulated SWE at the UEB grid 223 

containing the SNOTEL site. The MOD10A1 SCA product is derived based on Normalized 224 

Difference Snow Index (NDSI). The product is known to have lower accuracy in forested areas 225 

(Hall and Riggs, 2016; Yang et al., 2015). However, it is the only publicly available spatially 226 

observed snow dataset with desired coverage and resolution. In this study, we use MOD10A1 as 227 

a secondary validation that is independent from SNOTEL stations and provides spatial 228 

information. To compare MOD10A1 SCA to UEB results, the percent of UEB grids in each 229 

MOD10A1 grid with SWE above 10 mm was calculated to determine the UEB simulated SCA. 230 
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Experiments showed that varying SWE threshold results in negligible difference in SCA during 231 

December to June. 232 

3.3. Deep learning karst model 233 

A deep learning model using the Convolutional Long Short-Term Memory (ConvLSTM) 234 

architecture is applied to simulate Logan River streamflow based on the UEB model outputs. 235 

The implementation of the architecture used in this work is the same as in Xu et al. (2022) and 236 

shown in Fig. 3. The ConvLSTM architecture (Shi et al., 2015) integrates convolutional 237 

networks into LSTM (Kratzert et al., 2018):  238 

𝑖𝑡 = 𝜎(𝑊𝑥𝑖 ∗ 𝑥𝑡 + 𝑊ℎ𝑖 ∗ ℎ𝑡−1 + 𝑏𝑖), 239 

𝑓𝑡 = 𝜎(𝑊𝑥𝑓 ∗ 𝑥𝑡 + 𝑊ℎ𝑓 ∗ ℎ𝑡−1 + 𝑏𝑓), 240 

𝑜𝑡 = (𝑊𝑥𝑜 ∗ 𝑥𝑡 + 𝑊ℎ𝑜 ∗ ℎ𝑡−1 + 𝑏𝑜), 241 

𝑐𝑡 = 𝑖𝑡 ⊙ tanh(𝑊𝑥𝑔 ∗ 𝑥𝑡 + 𝑊ℎ𝑔 ∗ ℎ𝑡−1 + 𝑏𝑔) + 𝑓𝑡 ⊙ 𝑐𝑡−1, 242 

ℎ𝑡 = 𝑜𝑡 ⊙ tanh(𝑐𝑡), 243 

where 𝜎 represents the sigmoid function, tanh is the hyperbolic tangent function, * is 244 

convolutional operation, and ⊙ is the element-wise multiplication. At each time step, new inputs 245 

(𝑥𝑡) are combined with hidden state from the previous time step ℎ𝑡−1 to determine the input gate 246 

(𝑖𝑡), forget gate (𝑓𝑡), and output gate (𝑜𝑡). The cell memory 𝑐𝑡 contains historical information and 247 

is analogous to the watershed storage. The input gate controls how new information is used to 248 

update the cell memory, and the forget gate determines how much of the old cell memory 𝑐𝑡−1 249 

will be forgotten. The output gate is used to calculate the hidden state (ℎ𝑡) from the cell memory. 250 

The convolutional operation applies a filter that sweeps through the spatially distributed 𝑥𝑡 and 251 

ℎ𝑡−1 (Fig. 3). In this way, ConvLSTM calculates cell memory of a given grid using information 252 
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of itself as well as its neighbor grids. We stack three layers of ConvLSTM, where the hidden 253 

state calculated by each layer is used as input by the next layer. The hidden state of the third 254 

layer at the last time step passes through a fully connected layer to output streamflow (𝑄𝑡+1).  255 

  256 

 257 

Figure 3. The architecture of the ConvLSTM model with three stacked ConvLSTM layers. At 258 

time step 𝑡, the ConvLSTM cell applies a convolutional operation and updates the hidden state of 259 

each grid using input and past hidden state of this grid and its neighbors. The input 𝑥𝑡 is 260 

processed by layer 1, and the resulting ℎ𝑡
(1)

 is fed into layer 2. Similarly, the hidden state of layer 261 

2, ℎ𝑡
(2)

, is used by layer 3 to calculate hidden state ℎ𝑡
(3)

. Lastly, a fully-connected layer outputs 262 

streamflow using flattened (vectorized) ℎ𝑡
(3)

.  263 

UEB simulated hourly snowmelt and rainfall combined was lumped to daily to generate 264 

inputs to the ConvLSTM model. The inputs also include daily potential evapotranspiration (PET) 265 

rates calculated using the Hamon method (Hamon, 1960) from the raw and orographically 266 

adjusted meteorological forcing, respectively. The 100 m resolution PET and snowmelt and 267 

rainfall were aggregated to 1.6 km resolution grids before being used as inputs to the ConvLSTM 268 
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model. Given that the UEB simulation uses meteorological datasets downscaled to 100 m 269 

resolution, the process of scaling results back up seems counterintuitive. However, the high 270 

resolution snow predictions are necessary to capture the spatially varying meteorological forcing 271 

and snow accumulation and melt processes as controlled by topography in mountainous areas 272 

(Schlögl et al., 2016; Winstral et al., 2014). To keep the deep learning computational costs 273 

reasonable, the detailed snow predictions are coarsened, but the values representing the larger 274 

grid size now accounts for the within grid variability (Xu et al., 2022).  275 

Because the distribution of streamflow is heavy-tailed, we performed a nonlinear 276 

transformation: 277 

𝑌 = ln (√𝑌̃ + 1), 278 

where 𝑌̃ is the original observed or simulated streamflow. Next, 𝑌̃ and the inputs (snowmelt and 279 

rainfall, PET) were all normalized, i.e., linearly scaled to the range of [0, 1]. Data from water 280 

years (WY) 1986-2002 and 2003-2010 were used as training and test datasets for the ConvLSTM 281 

model. Dropout was implemented as described in Gal and Ghahramani (2016a, b) to mitigate 282 

overfitting. Training was performed using Adam optimizer (Kingma and Ba, 2014) for 500 283 

epochs. From the last 100 epochs, we save the models at randomly selected 10 epochs. During 284 

the test period, we run each model for 20 times using random dropout masks (Gal and 285 

Ghahramani, 2016b). This results in 200 time series of simulated streamflow for each of the four 286 

meteorological forcing. The average of 200 realizations was calculated as the final simulated 287 

streamflow. 288 



16 

 

3.4. Evaluation of simulated streamflow 289 

The simulated streamflow using two meteorological forcing datasets at their original 290 

resolution and downscaled is evaluated using three different statistics: percent bias (PBIAS, 291 

Gupta et al., 1999), Root Mean Square Error (RMSE), Nash-Sutcliff efficiency (NSE), and 292 

Kling-Gupta efficiency (KGE, Gupta et al., 2009), as defined below:  293 

𝑃𝐵𝐼𝐴𝑆 =  
∑(𝑌𝑜−𝑌𝑚)

∑𝑌𝑜
× 100%        (4) 294 

𝑅𝑀𝑆𝐸 =  √
∑(𝑌𝑜−𝑌𝑚)2

𝑛
           (5) 295 

𝑁𝑆𝐸 =  
∑(𝑌𝑜−𝑌𝑚)2

∑(𝑌𝑜−𝑌̅𝑜)2             (6) 296 

𝐾𝐺𝐸 =  1 − √(𝑟 − 1)2 + (
𝜎𝑚

𝜎𝑜
− 1)

2

+ (
𝑌̅𝑚

𝑌̅𝑜
− 1)

2

       (7) 297 

In Eqn. (4-7), Yo is the observed streamflow, Ym is streamflow simulated by the 298 

ConvLSTM models, 𝑛 is the number of data points, 𝑌̅𝑜, 𝑌̅𝑚 are the average of the observed and 299 

simulated streamflow values, respectively, 𝑟 is the correlation coefficient between 𝑌𝑜 , 𝑌𝑚, and 300 

𝜎𝑜 , 𝜎𝑚 are the standard deviation of 𝑌𝑜 , 𝑌𝑚. A positive PBIAS suggests the simulations are 301 

overall lower than the measurements, while a negative PBIAS shows the simulations are 302 

generally higher than measurements. Lower RMSE and NSE and KGE closer to one indicate 303 

better fit to measurements.  304 

In addition to the four performance metrics, we calculated the time lag between UEB 305 

simulated rainfall plus snowmelt and ConvLSTM simulated streamflow as a measure of the 306 

timing of streamflow response to snowmelt and rainfall learned by the ConvLSTM model 307 

(Yilmaz et al., 2008). This was done by calculating the correlation coefficient between simulated 308 

streamflow and snowmelt plus rainfall with varying lags; the lag that maximizes the correlation 309 

was selected as the time lag signature. Following the recommendation in Yilmaz et al. (2008), 310 
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the calculation was performed using high flow with exceedance probability less than or equal to 311 

0.2. The time lag was compared to lag calculated for observed streamflow using raw and 312 

orographically adjusted WRF and NLDAS forcing. 313 

4. Results 314 

4.1. Comparing meteorological variables from different datasets and downscaling methods 315 

Noticeable differences are found among raw and orographically adjusted WRF and 316 

NLDAS meteorological forcing, especially in the amount of precipitation (Fig. 4). During the 317 

study period (WY 1986-2010), WRF annual cumulative precipitation is 15.5% higher than 318 

NLDAS on average and ranges from NLDAS being 35% higher than WRF precipitation in 1986 319 

to WRF being 41% higher than NLDAS in 2006. Orographic adjustments increased annual 320 

average precipitation by 3.4% for both WRF and NLDAS, less than the difference between the 321 

two datasets and with little interannual variation. Besides precipitation, the WRF dataset has 322 

overall lower temperature, significantly higher incoming shortwave radiation, lower incoming 323 

longwave radiation, higher wind speeds, and higher relative humidity than NLDAS dataset. 324 

Orographic adjustment increased spatial variability, suggested by flatter distributions, 325 

particularly for NLDAS forcing (Fig. 4). For both datasets, orographic adjustment led to overall 326 

lower temperature and slightly higher incoming shortwave radiation, while its effects on 327 

incoming longwave radiation differ between the two datasets. 328 
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 329 

Figure 4. Violin plots showing probability density of annual total precipitation, temperature, 330 

incoming shortwave (SW) and longwave (LW) radiation, wind speed, and relative humidity from 331 

raw and orographically adjusted WRF and NLDAS forcing, averaged during WY 1986-2010. 332 

Colored shades, dark boxes, whiskers, and white dots show density, 1st and 3rd quantiles, inner 333 

fences, and median values.   334 
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4.2. SWE and snowmelt rates simulated using different datasets and downscaling 335 

methods 336 

The differences in the meteorological forcing propagated to UEB simulated SWE (Fig. 337 

5). On average during 1986-2010, annual peak SWE simulated using the raw WRF dataset is 338 

90% higher than raw NLDAS and can vary between 19% in 1998 to 170% in 2003. The 339 

orographically adjusted WRF dataset resulted in SWE levels 9% higher than raw, ranging from 340 

7% higher in 1989 to 15% higher in 2001, while orographic adjustment of NLDAS data results 341 

in SWE levels increased by an average of 12%, ranging from 9% in 1986 to 19% in 2010. The 342 

differences in SWE are higher than the differences in precipitation due to orographic adjustment 343 

and especially the choice of meteorological dataset (Fig. S2). In addition, even in years when the 344 

NLDAS dataset had higher precipitation (e.g., WY 1998), WRF still led to higher SWE. This 345 

highlights that the other meteorological variables affected SWE levels. Comparison with 346 

SNOTEL SWE measurements shows an underestimation of SWE using raw NLDAS forcing in 347 

most years especially at the Tony Grove Lake station, while overestimation is observed when 348 

using raw WRF (Fig. 5). Orographic adjustments increased SWE for both datasets, resulting in 349 

higher RMSE for WRF while lower RMSE for NLDAS (Table S2).  350 

 351 



20 

 

 352 

Figure 5. SWE measurements at SNOTEL stations (Fig. 1) and UEB simulated SWE in model 353 

grids where the SNOTEL stations are located. UEB simulations are driven by raw and 354 

orographically adjusted WRF and NLDAS meteorological datasets. SWE measurements are 355 

available during the study period for Franklin Basin and Tony Grove Lake stations, since 356 

WY2002 at Temple Fork, and since WY 2008 at Doc Daniels. 357 

Simulation results from the four sets of meteorological forcing also differ in fractional 358 

SCA compared to MODIS SCA (MOD10A1 product, Hall and Riggs, 2016) (Fig. 6).  The WRF 359 

dataset resulted in higher SCA than NLDAS; both datasets led to significantly higher SCA than 360 

MOD10A1. MOD10A1 is known to have difficulty detecting snow with canopy presence, 361 
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particularly in complex terrains (Hall and Riggs, 2016; Huang et al., 2011; Shamir and 362 

Georgakakos, 2006). In the study area, we found that the MOD10A1 SCA tends to be 363 

substantially lower than 100% (Fig. S3-S6), while we observed full snow coverage at higher 364 

elevations during winter months. Because of the likely underestimation of MOD10A1 SCA, we 365 

focus the comparison on the monthly change of SCA rather than the absolute values. The 366 

NLDAS-forced runs led to similar melt period as the MOD10A1 SCA product, while the WRF 367 

forcing yielded later melt by approximately one month. For both datasets, orographic adjustment 368 

slightly delayed snow melt.  369 

 370 

 371 

Figure 6. Multi-year and spatially average monthly snow cover area (SCA) from the MOD10A1 372 

product and UEB simulations using different combinations of meteorological datasets and 373 

downscaling methods during WY 2001-2010. 374 

Figure 7 further shows spatial distribution of multi-year average snowmelt and rainfall in 375 

April, May, and June, according to UEB runs forced by the raw and orographically adjusted 376 

WRF and NLDAS forcing. Results simulated with the raw data show discontinuity patterns due 377 

to the coarse resolutions of raw data (4 km for WRF, and 12 km for NLDAS). Compared to 378 
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NLDAS runs, the WRF dataset led to lower snowmelt occurring in April and higher snowmelt in 379 

June. At higher elevations, because orographic adjustment led to higher SWE levels, it yielded 380 

higher monthly snowmelt rates occurring at later times.  381 

 382 

 383 

Figure 7. Monthly rainfall and snowmelt for April (top), May (middle), and June (bottom) 384 

averaged from 1986 to 2010 arising from the raw and orographically adjusted WRF and NLDAS 385 

meteorological datasets. Dots show the location of SNOTEL sites (Fig. 1). 386 
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 387 

4.3. Effects of different melt rate and timing on streamflow simulation 388 

Testing the performance of the deep learning models using UEB simulated snowmelt 389 

driven by the WRF and NLDAS datasets with and without orographic adjustments illustrated 390 

that the WRF dataset led to overestimation of streamflow (negative PBIAS), while the NLDAS 391 

dataset led to underestimation (positive PBIAS). Other performance metrics (RMSE, NSE and 392 

KGE) show similar test accuracy among the four deep learning models. The WRF-driven 393 

simulations yielded lower RMSE, higher NSE, and higher KGE than simulations driven by 394 

NLDAS, although the differences in the performance metrics are small. Orographic adjustment 395 

improved streamflow accuracy at a slightly higher degree for NLDAS than WRF. This is likely 396 

because orographically adjusting the WRF dataset worsened the overestimation of SWE, thus 397 

deteriorating overestimation of streamflow. Because WRF and NLDAS forcing led to offsetting 398 

PBIAS, we additionally calculated an ensemble mean, as the average of streamflow simulated 399 

with raw and orographically adjusted WRF and NLDAS forcing. The ensemble mean yielded 400 

overall the best performance, suggested by lowest RMSE, highest NSE, slightly higher KGE, 401 

and the second lowest PBIAS (Table 2). The improvement in RMSE and NSE yielded by the 402 

ensemble mean appears more significant than the differences caused by orographic adjustment 403 

and the choice between WRF and NLDAS datasets.  404 

The time lag that maximizes correlation between both simulated and observed 405 

streamflow and UEB simulated snowmelt and rainfall shows an overall trend where the time lag 406 

of simulated streamflow agrees with that of observed streamflow but tends to be slightly higher 407 

(Table 3). Driving the UEB model using the WRF dataset led to much shorter lag (i.e., fast 408 
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response) between streamflow and snowmelt than using the NLDAS dataset, and orographic 409 

adjustment led to slightly shorter lags.  410 

Table 2. NSE, MSE, PBIAS, and KGE during the test period of simulated streamflow based on 411 

the WRF and NLDAS datasets at original resolution and downscaled.  412 

Meteorological 

Data 

Downscaling 

Method 

PBIAS 

(%) 

RMSE 

(mm/day) 

NSE KGE 

WRF 

Raw -6.37 0.400 0.827 0.876 

Adjusted -7.22 0.385 0.840 0.887 

NLDAS 

Raw 4.61 0.434 0.797 0.864 

Adjusted 1.14 0.402 0.826 0.884 

Ensemble Mean -1.96 0.326 0.885 0.889 

 413 

Table 3. Time lag in days corresponding to the maximum cross-correlation coefficient between 414 

observed and simulated streamflow and spatially averaged snowmelt and rainfall time series 415 

simulated using raw and orographically adjusted WRF and NLDAS forcing datasets. 416 

Meteorological 

forcing 

WRF, raw WRF, adjusted NLDAS, raw NLDAS, adjusted 

Observed streamflow 2 1 28 27 

Simulated streamflow 4 1 32 28 

Observed and simulated streamflow typically exhibits multiple peaks in response to 417 

several major snowmelt events (Fig. 8-10). Overall, WRF-driven simulations yielded higher 418 

streamflow peaks in May and June than NLDAS-driven simulations, resulting in a better fit to 419 

observed streamflow in WY 2006 and 2007 (Fig. 8, 9). However, WRF-driven simulations often 420 
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overestimate streamflow during recession period (Table 2, Fig. S7), such as in WY 2009 (Fig. 421 

10), while sometimes underestimate in April and May (Fig. 8a). Orographic adjustments 422 

enhanced late-season peaks occurring in June and recession flow, but it also can dampen early-423 

season peaks (Fig. 9a, 10a).    424 

 425 

Figure 8. Observed (grey solid thick lines) and simulated streamflow in a wet year (WY 2006) 426 

using the WRF (a) and NLDAS (b) meteorological datasets in the raw form (dashed lines), 427 

orographically adjusted (dotted lines), and the ensemble mean (dark solid lines), respectively. 428 

Also shown are spatially averaged UEB simulated snowmelt and rainfall rates shown as daily 429 

sums. 430 
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 431 

Figure 9. Observed (grey solid thick lines) and simulated streamflow in a dry year (WY 2007) 432 

using the WRF (a) and NLDAS (b) meteorological datasets in the raw form (dashed lines), 433 

orographically adjusted (dotted lines), and the ensemble mean (dark solid lines), respectively. 434 

Also shown are spatially averaged UEB simulated snowmelt and rainfall rates shown as daily 435 

sums. 436 
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 437 

Figure 10. Observed (grey solid thick lines) and simulated streamflow in a normal year (WY 438 

2009) using the WRF (a) and NLDAS (b) meteorological datasets in the raw form (dashed lines), 439 

orographically adjusted (dotted lines), and the ensemble mean (dark solid lines), respectively. 440 

Also shown are spatially averaged UEB simulated snowmelt and rainfall rates shown as daily 441 

sums. 442 

5. Discussion 443 

5.1. Value of representing topographic control on meteorological variables and snow processes 444 

The substantially higher precipitation and SWE resulting from the WRF dataset than 445 

NLDAS forcing are consistent with findings in other studies (He et al., 2019; Wrzesien et al., 446 
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2019) that compared the convection-permitting regional climate model simulations with 447 

statistically downscaled products. The differences in precipitation explain only a portion of the 448 

gaps in simulated SWE resulting from meteorological dataset and downscaling methods (Fig. 449 

S2) due to the effects of other meteorological variables, primarily air temperature. Higher air 450 

temperatures would result in less precipitation falling as snow as well as accelerate snow melt, 451 

leading to lower SWE. Similar underestimation of SWE and early snowmelt biases have been 452 

found in the NLDAS forcing for other North American mountain areas (Wrzesien et al., 2019; 453 

Shuai et al., 2022). Orographic adjustment increased watershed average precipitation and 454 

lowered temperature, leading to higher simulated SWE. On the other hand, compared to NLDAS 455 

the WRF dataset has higher incoming shortwave radiation and lower longwave radiation, which 456 

have offsetting effects on SWE. Higher wind speed and lower RH would decrease SWE, but 457 

these factors are likely to have a smaller effect than the other meteorological variables 458 

(Mizukami et al. 2014).  459 

While the 100 m resolution UEB simulation already accounts for terrain controls on snow 460 

processes, when the coarse resolution (12 km) NLDAS meteorological forcing is used, the UEB 461 

model did not capture the snowmelt derived from deep snowpack southwest and east of the 462 

watershed (Fig. 7 c, g, k). Orographic adjustment overall improved the representation of SWE 463 

and snowmelt spatial variability (Fig. 5, 7 d, h, l, Table S2). On the other hand, as a dynamically 464 

downscaled dataset, the 4-km WRF forcing captures the terrain effects on precipitation 465 

reasonably well (Scalzitti et al., 2016; He et al., 2019), leading to more realistic spatial patterns 466 

of snowmelt and rainfall simulated by the UEB model than the raw NLDAS dataset (Fig. 7 a, e, 467 

i). However, orographic adjustment increased SWE RMSE at three of the four SNOTEL stations 468 

for WRF (Table S2), suggesting that it may be unnecessary to further downscale the 4-km 469 
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resolution WRF forcing. This supports previous finding in Rasmussen et al. (2011), while 470 

appearing to differ from Maina et al. (2020). The latter study found that meteorological forcing 471 

generated by WRF simulations at 0.5 km resolution yielded more accurate SWE than coarser 472 

resolution forcing. The different findings indicate that dynamic downscaling (as opposed to 473 

orographic adjustment) may be needed to adequately resolve spatial variabilities of forcing and 474 

SWE within 4 km resolution.  475 

Despite mixed results with respect to SWE simulation accuracy (Table S2), 476 

orographically adjusted WRF and NLDAS driven UEB runs were able to capture snowmelt from 477 

deep snowpacks in high elevations (Fig. 7). Representing the spatial variability realistically is 478 

important for simulating streamflow, as a deep snowpack would sustain streamflow later into 479 

summer than a shallow snowpack. An additional factor is that due to the karst geology, the 480 

Logan River streamflow may be more sensitive to snowmelt at certain locations than others (Xu 481 

et al., 2022). For example, in the high elevation areas west of the study area, sinkholes and faults 482 

developed in outcropped carbonate units form pathways for fast recharge and conduit flow 483 

(Spangler et al., 2001; 2011).  484 

5.2. Effects of differences in simulated snowmelt on the inference of streamflow response to 485 

snowmelt and rainfall 486 

The overall trend of overestimating streamflow using the WRF dataset and 487 

underestimating streamflow using the NLDAS dataset particularly during spring runoff reflects 488 

the differences in simulated snowmelt (Figs. 5, 8-10, Table 2). Because WRF yields overall 489 

deeper snowpack that melts later than NLDAS, the resulting simulated streamflow could 490 

underestimate in early-season while overestimate in late-season. Similarly, orographic 491 

adjustments led to slightly higher late-season streamflow (Fig. 8-10). Late-season streamflow 492 
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peaks mostly result from snowmelt at higher elevations. This is where the snow melts last, and 493 

usually has significant enough volume of snowmelt to create major streamflow peaks. 494 

Orographic adjustment increases precipitation while lowering temperature at higher elevations 495 

(Text S1), leading to higher SWE and snowmelt volume in June and July (Fig. 7), and therefore 496 

larger streamflow peaks.  497 

Despite the large difference in simulated snowmelt timing and rate, the ConvLSTM 498 

models simulated streamflow with similar accuracy among the runs using raw and orographically 499 

adjusted WRF and NLDAS datasets. This observation is consistent with findings in previous 500 

studies that streamflow simulated by physically based hydrologic models is less sensitive to the 501 

differences in meteorological forcing and resolution than spatially distributed variables such as 502 

SWE (Elsner et al., 2014; Shuai et al., 2022; Rasouli et al., 2022). In this study, the differences in 503 

snowmelt rate and timing were dampened as they propagated through the ConvLSTM models 504 

primarily due to two reasons. First, the ConvLSTM models used linearly scaled inputs. By doing 505 

so, they rely on the relative information as opposed to absolute values to infer streamflow 506 

response to snowmelt and rainfall. In addition, the learnable weights of ConvLSTM can “absorb” 507 

input biases when the model is trained and compensate for the bias during inference. In other 508 

words, when trained using snowmelt simulated by different meteorological forcing, the 509 

ConvLSTM models learned different streamflow response to snowmelt and rainfall. The 510 

ConvLSTM models trained using WRF-driven UEB simulation results learned fast streamflow 511 

response with 1~4 days of time lag, while the ConvLSTM models trained using NLDAS-driven 512 

UEB learned a time lag of approximately one month (Table 3). This is consistent with the one-513 

month delay in snowmelt (Fig. 6).  514 
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The results suggest that the ConvLSTM models are at least partially immune from input 515 

bias when such bias is consistent during training and test periods. For coarse resolution 516 

meteorological dataset such as NLDAS, downscaling to a finer resolution using orographic 517 

adjustment overall improved SWE and streamflow simulation accuracy. Although orographically 518 

adjusting WRF led to deleterious overestimation of SWE, it slightly improved streamflow 519 

simulation accuracy (except for PBIAS) likely due to better representation of deep snowpack and 520 

late melt at high elevations. It is also noteworthy that the ensemble mean streamflow as the 521 

average of four simulations yielded the best performance during the test period (Table 2). This 522 

observation supports the inclusion of multiple meteorological datasets for streamflow simulation 523 

in mountainous watersheds (Wong et al., 2021). This is particularly important when utilizing 524 

deep learning models for streamflow prediction under projected climate scenarios.  525 

6. Conclusions 526 

We investigated the effects of different meteorological datasets and downscaling methods 527 

on snow and streamflow modeling in a snow-dominated mountainous karst watershed. Notable 528 

differences were found in the meteorological variables, precipitation in particular, from two 529 

meteorological datasets (NLDAS and WRF). Orographic adjustment effects are much smaller 530 

than the differences between the two datasets. The raw and orographically adjusted NLDAS and 531 

WRF datasets were used to drive the UEB model at 100 m resolution. The differences in 532 

precipitation led to amplified differences in SWE and snowmelt, highlighting the effects of 533 

temperature. Comparison with observed SWE at SNOTEL stations shows overestimation of 534 

WRF results and underestimation of NLDAS results. Orographic adjustment decreased SWE 535 

accuracy for WRF, while increasing SWE accuracy for NLDAS. The results suggest that 536 

orographic adjustment is necessary when using coarse resolution meteorological forcing for a 537 
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mesoscale watershed to capture the spatial distribution of snow processes, but may be 538 

unnecessary when dynamically downscaled forcing is available at 4 km or a finer resolution.  539 

Snowmelt simulated by the UEB model were fed into a deep learning model to simulate 540 

streamflow response to spatiotemporally varied snowmelt. Despite large differences in SWE and 541 

snowmelt, much smaller differences were observed in simulated streamflow, suggesting the deep 542 

learning model is at least partially immune to systematic input bias due to input scaling and 543 

model flexibility to compensate for biases. Among all experiments, streamflow simulated using 544 

orographically adjusted WRF dataset resulted in overall higher accuracy, although the 545 

improvement in performance metrics contributed by orographic adjustment is smaller for the 546 

WRF dataset than for NLDAS. The improvement is likely due to a better representation of snow 547 

accumulation and melt at high elevation areas that overlap with concentrated recharge locations. 548 

Our results underline the value of dynamically downscaled meteorological datasets as well as 549 

orographically adjusting coarse resolution datasets when the former is unavailable for modeling 550 

streamflow in mountainous watersheds. In addition, ensemble analyses using multiple 551 

meteorological datasets can potentially improve streamflow simulation accuracy. 552 
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