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Highlights:

e Hybrid snow and deep learning models simulate snowmelt and streamflow of a mountainous

karst watershed

e Choice of meteorological forcing and downscaling led to different spatiotemporal patterns of

snowmelt

e The deep learning model learned streamflow responses that vary across meteorological

forcing sets

e Averaging streamflow simulated from all meteorological forcing yielded the highest accuracy
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Abstract

In the mountainous Western U.S., a considerable portion of water supply originates as snowmelt
passing through karst watersheds. Accurately simulating streamflow in snow-dominated, karst
basins is important for water resources management. However, this has been challenging due to
high spatiotemporal variability of meteorological and hydrogeological processes in these
watersheds and scarcity of climate stations. To overcome these challenges, a physically based
snow model is used to simulate snow processes at 100 m resolution, and the calculated snowmelt
and potential evapotranspiration rates are fed into a deep learning model to simulate streamflow.
The snow model was driven by meteorological variables from a regional scale Weather Research
and Forecasting (WRF) model or from the North American Land Data Assimilation System
(NLDAS-2). The two datasets were used both at the original resolution and downscaled to 100 m
resolution based on orographic adjustments, leading to four sets of forcings. Snow model
simulation results from the four sets of forcings showed large differences in simulated snow
water equivalent (SWE) and snowmelt rate and timing. However, the differences were damped
in simulated streamflow, as the deep learning model is partially immune to input bias and picked
up different streamflow responses to snowmelt and rainfall when trained using snow model
results. While the meteorological datasets considered yielded close streamflow simulation
accuracy, averaging simulated streamflow from the four sets of forcings consistently achieved
better performance, suggesting the value of including multiple meteorological datasets for

modeling streamflow in mountainous watersheds.
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1. Introduction

In many mountainous regions of the world, much of the water for residential and
agriculture use originates as snowpack (Adam et al., 2009). Some of these snow-dominated
watersheds include karst formations where carbonate rock has undergone dissolution resulting in
fissures and conduits. Water is able to flow through karst conduits much faster than in porous
matrices. Karst watersheds supply water to approximately one fourth of the world’s population
(Hartmann et al., 2014). Streamflow in karst, snow-dominated watersheds is controlled both by
snow processes and karst hydrogeology. Accurate quantification of snow accumulation (often
measured as snow water equivalence, SWE) and melt in these snow-dominated, karst regions are
essential for simulating streamflow and predicting water supply availability.

SWE levels and melt rates in mountainous regions have high spatial variability due to
topography (i.e., elevation, slope, aspect) and canopy coverage and their combined effects on
precipitation, temperature, and radiation (Shamir and Georgakakos, 2006; Clark et al., 2011;
Winstral et al., 2014). In mountainous karst watersheds, small scale (< 1 km) spatial variability
of snow processes may have a significant effect on the timing and magnitude of streamflow. Due
to hydrogeologic heterogeneity, portions of meltwater feed the karst aquifer by entering
sinkholes directly connected to karst conduits, diffusing through small fissures or fractures, or
infiltrating the soil matrix that slowly diffuses into karst conduits (Hartmann et al., 2014;
Spangler, 2011; White, 2002). Depending on where the snowmelt occurs, recharge can take a
wide range of travel times to reach the stream channel, varying from days to years (Spangler,
2011; Goldscheider and Drew, 2014). In addition, karst watersheds frequently display “piracy”,
where water in one watershed flows across topographic watershed boundaries into neighboring

watersheds (Hartmann et al., 2014; Spangler, 2011).
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At the mesoscale (100 — 1000 km?), the spatial variability in snow processes can be
resolved by high resolution snow modeling (Schlogl et al., 2016; Winstral et al., 2014). These
models require topography (e.g., elevation), land use (e.g., canopy coverage), and meteorological
forcing data at scales appropriate for the model grid size. Due to the scarcity of ground based
observations, especially in mountainous areas, distributed hydrologic models typically rely on
meteorological datasets derived by reanalysis, interpolation of ground stations, remote sensing
techniques, or the combination of two or three methods. Uncertainty in meteorological variables,
precipitation in particular, has been recognized as a key source of uncertainty in hydrologic
modeling (Hong et al., 2006; Salamon and Feyen, 2009; Strauch et al., 2012; Eum et al., 2014;
Fallah et al., 2020). In addition, meteorological data are generally provided at coarse resolutions
(e.g., 4 km, 0.125°) (Mizukami et al., 2016; Shamir and Georgakakos, 2006). Methods have
been developed for downscaling meteorological variables to the resolution of hydrologic models
(e.g., < 1 km) (Hungerford et al., 1989; Liston and Elder, 2006; Thornton et al, 2012; Fiddes and
Gruber, 2014; Sen Gupta and Tarboton, 2016; Mital et al., 2022) by using fine resolution
topography data and adjusting meteorological variables according to known topographical
effects on climate. Unfortunately, this downscaling process brings additional uncertainty to the
modeling process (Dibike et al., 2007; Behnke et al., 2016; Shuai et al., 2022).

While numerous studies have applied various hydrologic models to a range of
watersheds, due to the complexities of karst geology traditional hydrologic models fail to
adequately model flow in karst basins. Therefore, a hybrid modeling approach that combines a
spatially distributed, physically based snow model and a deep learning model has been
developed to overcome the lack of information about subsurface hydrologic connectivity that is

common in these watersheds (Xu et al., 2022). In this hybrid model, the snow model simulates
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snow accumulation and melt processes at 100 m resolution, which are fed into a deep learning
model that simulates streamflow response to snowmelt. The deep learning model is based on the
ConvLSTM architecture (Shi et al., 2015) capable of handling spatiotemporal dynamics such as
the precipitation-discharge processes in the mountainous karst watersheds. Unlike physically
based or conceptual karst models, machine learning and deep learning models do not require site
specific knowledge of subsurface hydrologic connectivity (Li et al., 2017). In addition, they
often do not impose mass balance and use scaled input data (e.g., precipitation or snowmelt).
While various studies have investigated the effects of meteorological forcing uncertainty on
hydrologic modeling using physically based models (Elsner et al., 2014; Eum et al., 2014; Maina
et al., 2020; Shuai et al., 2022; Rasouli et al., 2022), such understanding has been lacking for
deep learning models.

This study aims to understand how the choice of meteorological datasets and
downscaling techniques affect simulating snow accumulation, melt and streamflow focused on a
snow-dominated mountainous karst watershed on the Utah-Idaho border. We hypothesize that
physically based simulation of spatially varying variables such as SWE and snowmelt is more
sensitive to the uncertainties in meteorological forcing than deep learning-based simulation of
streamflow. To test this hypothesis, this study employs modeling experiments to: (1) quantify the
spatial and temporal patterns of SWE and snowmelt rate and how these patterns are affected by
the choice of meteorological inputs and downscaling methods, and (2) simulate streamflow
response to snowmelt, which is modeled from different meteorological datasets and downscaling

techniques, using a deep learning model and determine its accuracy.
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2. Study Site

Our study area is the canyon portion of the Logan River watershed located in
northeastern Utah and southeastern Idaho (Figure 1a). This portion of the Logan River watershed
has an area of 550 km? and an elevation range from 1366 m to 3037 m (Figure 1b). The study
area contains both coniferous and deciduous forested areas (Figure 1c). Average basin-average
precipitation is about 1080 mm, and more than 50% of the precipitation falls as snow, according
to the Weather Research & Forecasting (WRF)-derived meteorological dataset used in this study
(Section 3.1). The river flows primarily from the north and east to the south and west of the
watershed. However, developed karst conduits and sinkholes in the watershed add complexity to
subsurface water flow direction. The karst features in and around the topographically defined
watershed result in significant karst piracy, requiring the study area to include terrain outside the

topographic watershed, particularly in areas with known karst subsurface connections (Spangler,

2011).
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126  Figure 1. Maps showing (a) location, (b) elevation, and (c) canopy coverage (NLCD, 2019) of
127  the study area. In addition, topography boundary of Logan River watershed and locations of

128 SNOTEL sites and the USGS station are indicated.

129 Hydrometeorological data of the study area are available from seven SNOTEL stations.
130 Among them, four stations have data of three or more years and will be used in this study (Table
131 1). Discharge records of the Logan River are provided by USGS station 10109000 (Fig. 1)

132 located at the watershed outlet since 1954. Two diversions, via the Highline Canal and at the

133 Dewitt Spring, exist upstream of the USGS gage for agricultural and municipal water uses. Daily

134 diversion rates via the Highline Canal are obtained from USGS station 10108400. Monthly use
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of Dewitt Spring discharge was obtained from Logan City and assumed to occur evenly over
each month. Daily naturalized streamflow was determined by summing the observed streamflow
at the USGS gage and the two diversion rates. The combined rates from the three sites are

hereafter referred to as observed streamflow.

Table 1: SNOTEL stations in the study area with three or more years of records (USDA NRCS,

2022). Canopy coverage is calculated for the UEB grid where the station is located.

Site Name Year Data  Latitude Longitude Elevation Canopy
Begins (m) Coverage (%)
Franklin Basin 1979 42.05 -111.6 2481 29
Temple Fork 2001 41.79 -111.55 2257 38
Tony Grove Lake 1978 41.9 -111.63 2583 34
USU Doc Daniels 2007 41.86 -111.51 2521 43
3. Methods

In order to assess how uncertainty in meteorological forcing would affect the simulation
of snow processes and streamflow within the Logan River watershed, we performed modeling
experiments using various meteorological forcing and compare the simulation results (Fig. 2).
We used two forcing datasets, at their raw resolution and downscaled, respectively, leading to
four sets of meteorological forcing. A 100-m spatial resolution and 1 hour temporal resolution
Utah Energy Balance (UEB) model (Mahat and Tarboton, 2012; Tarboton and Luce, 1996) is

used to simulate snowmelt and rainfall. The simulated snowmelt and rainfall as well as potential



150  evapotranspiration were fed into the deep learning model to simulate streamflow (Xu et al.

151 2022).
EI Meteorological datasets
WRF NLDAS-2
:I Downscaling
Raw Orographic
| adjustments
UEB
Snowmelt+rainfall PET
ConvLSTM
| Streamflow |
152

153 Figure 2. Flowchart of the modeling experiments using meteorological forcing generated from
154  two meteorological datasets, with and without downscaling, to drive the Utah Energy Balance

155 (UEB) and Convolutional Long Short-term Memory (ConvLSTM) models.

156 3.1. Meteorological forcing and orographic adjustments

157 Meteorological variables required to run the UEB model were obtained from two sources
158  of meteorological data. The first is a dynamically downscaled dataset based on simulation results
159  of a Weather Research & Forecasting (WRF) model centered on the Wasatch Mountains, Utah
160  (Scalzitti et al., 2016). The WRF model used initial and boundary conditions derived from

161  Climate Forecast System Reanalysis. The dataset is available at 4 km resolution and hourly time
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steps from 1985 to 2010. The simulated precipitation was validated using SNOTEL and
Parameter-elevation Regressions on Independent Slopes Model (PRISM, Daly et al., 2008)
datasets. Because it is dynamically downscaled, the WRF dataset has an advantage of resolving
processes over complex topography at a scale much finer than the resolution of Global Climate
Models (~50 to hundreds of kilometers).

The second meteorological dataset is the NLDAS-2 (Xia et al., 2012) forcing, a national
dataset commonly used in hydrologic studies. The NLDAS forcing dataset has a 0.125° (~12 km)
spatial resolution and 1 hour temporal resolution from 1979 to the present. Non-precipitation
variables were derived primarily from the NCEP North American Regional Reanalysis (NARR,
Lin et al., 2001; Mesinger et al., 2006). The NARR meteorological variables at 32-km resolution
and 3-hourly time steps were spatially interpolated to 0.125° and temporally disaggregated to
hourly (Cosgrove et al., 2003). Precipitation was derived by temporally disaggregating the
Climate Prediction Center (CPC) PRISM-adjusted daily CONUS gauge data using hourly
Doppler Stage II radar (available since 1996, Lin and Mitchell, 2005). When the Stage II radar
was not available, half-hourly CMORPH (available since 2002, Joyce et al., 2004), CPC Hourly
Precipitation Dataset (Higgins et al., 1996), or NARR data were used in descending preference
(Ferguson and Mocko, 2017).

To run the UEB model, meteorological variables (2 m humidity, surface downward
shortwave surface radiation, surface downward longwave surface radiation, wind speed at 2
meters above the surface, temperature at 2 m above the surface, surface pressure, and
precipitation) were derived from the WRF and NLDAS datasets both as raw data and with
orographic adjustments. For raw data simulations, each UEB grid is assigned the value of

meteorological variables from the location of the UEB grid. For orographic adjustment runs, the

10



185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

raw meteorological variables were first bilinearly interpolated within the study area, and then
adjusted to account for elevation and other topographical features using methods developed in
Liston and Elder (2006) and Sen Gupta and Tarboton (2013), detailed in Text S1, Supplementary
Material. Temperature was adjusted using a lapse rate derived from SNOTEL stations in the
study area. Precipitation was adjusted based on a monthly factor and the elevation difference.
Specific humidity was downscaled using elevation adjusted temperature calculated previously
and the elevation difference and then converted to relative humidity for the UEB model.
Incoming longwave radiation was altered first according to the adjusted temperature and then by
calculating air emissivity for elevation. Shortwave radiation was altered according to
atmospheric pressure that had been altered according to the elevation difference and monthly
coefficients for the Bristow-Campbell parameterization of the shortwave radiation as a function
of air temperature diurnal range. Wind was adjusted based on wind direction and the slope,

aspect, and curvature of the grid cell and its neighboring cells.

3.2. Utah Energy Balance snow model

We simulated snow accumulation and melt at 100 m spatial resolution and 1 hour
temporal resolution for the study area using the UEB model (Mahat and Tarboton, 2012;
Tarboton and Luce, 1996). The UEB model is a physically based model utilizing mass and
energy balances of the snowpack (both on land and intercepted by canopy) and can be run using
a distributed (gridded) setup. We chose the 100 m resolution to capture the small scale variability
in snow accumulation and melt. Based on preliminary results, changing resolution from 200 m to
100 m could cause SWE differing by more than 20% at model grids having the largest
variabilities in slope and aspect due to the smoothing out of aspect and slope. However, changing
resolution from 100 m to 50 m altered SWE levels by less than 5% at these grids, suggesting 100

11
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m resolution adequately captured slope and aspect at reasonable computational cost. The UEB
snow model was run for all years the WRF dataset was available (Oct. 1985 — Jun. 2010). UEB
simulated hourly SWE and the combined snowmelt and rainfall were lumped to daily resolution
by taking SWE from the last hour of the day, and summing up snowmelt and rainfall for each
day.

Parameter values were set following recommendations in Tarboton and Luce (1996) and
Mahat and Tarboton (2012). A digital elevation model (DEM) with 1/3 arc second (about 9 m)
resolution (U.S. Geological Survey, 2017) was coarsened to the 100 m UEB grids and then used
to calculate slope and aspect. Canopy coverage data was obtained from the NLCD 2011 tree
canopy dataset (Coulston et al., 2012). Leaf area index and forest structure parameters were
derived from NLCD land use dataset (Yang et al., 2018) following recommendations in Sen
Gupta and Tarboton (2012). Canopy height data was obtained from NASA Landfire database
(Nelson et al., 2013).

UEB simulation results are compared with SWE observations at SNOTEL stations and
MODIS fractional snow-covered area (SCA) product at 500 m resolution (MOD10A1, Hall and
Riggs, 2016). SWE recorded at end of day is compared with simulated SWE at the UEB grid
containing the SNOTEL site. The MOD10A1 SCA product is derived based on Normalized
Difference Snow Index (NDSI). The product is known to have lower accuracy in forested areas
(Hall and Riggs, 2016; Yang et al., 2015). However, it is the only publicly available spatially
observed snow dataset with desired coverage and resolution. In this study, we use MOD10A1 as
a secondary validation that is independent from SNOTEL stations and provides spatial
information. To compare MOD10A1 SCA to UEB results, the percent of UEB grids in each

MOD10A1 grid with SWE above 10 mm was calculated to determine the UEB simulated SCA.

12
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Experiments showed that varying SWE threshold results in negligible difference in SCA during

December to June.

3.3. Deep learning karst model
A deep learning model using the Convolutional Long Short-Term Memory (ConvLSTM)
architecture is applied to simulate Logan River streamflow based on the UEB model outputs.
The implementation of the architecture used in this work is the same as in Xu et al. (2022) and
shown in Fig. 3. The ConvLSTM architecture (Shi et al., 2015) integrates convolutional
networks into LSTM (Kratzert et al., 2018):
ip = 0(Wy; % x¢ + Whi * he_q + by),
fe = o(Wys * x¢ + Wiy * ey + by),
0p = (Wyo * X¢ + Who * he—g + by),
¢ =1 © tanh(W}w *xp + Whg *he_q + bg) + fi O ceq,
h: = o; O tanh(c;),
where o represents the sigmoid function, tanh is the hyperbolic tangent function, * is
convolutional operation, and © is the element-wise multiplication. At each time step, new inputs
(x;) are combined with hidden state from the previous time step h;_; to determine the input gate
(i;), forget gate (f;), and output gate (0;). The cell memory c; contains historical information and
is analogous to the watershed storage. The input gate controls how new information is used to
update the cell memory, and the forget gate determines how much of the old cell memory ¢;_
will be forgotten. The output gate is used to calculate the hidden state (h;) from the cell memory.
The convolutional operation applies a filter that sweeps through the spatially distributed x, and

h¢_1 (Fig. 3). In this way, ConvLSTM calculates cell memory of a given grid using information
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of itself as well as its neighbor grids. We stack three layers of ConvLSTM, where the hidden
state calculated by each layer is used as input by the next layer. The hidden state of the third

layer at the last time step passes through a fully connected layer to output streamflow (Q¢41).

(3) (3)

"2} ConvISTM, | " ConvLSTM |+ p®

b2 [h?
b2, : @ | h @ \ Flatten
— | ConvLSTM,~] ConvLSTM, N

Thn Thv
e ey LS p—
—* ConvLSTM), ConvLSTM{" \

'- Q41

¢
—

h®

t—-1

- Convolution

Figure 3. The architecture of the ConvLSTM model with three stacked ConvLSTM layers. At
time step t, the ConvLSTM cell applies a convolutional operation and updates the hidden state of

each grid using input and past hidden state of this grid and its neighbors. The input x, is
processed by layer 1, and the resulting hgl) is fed into layer 2. Similarly, the hidden state of layer
2, hgz), is used by layer 3 to calculate hidden state h§3). Lastly, a fully-connected layer outputs

streamflow using flattened (vectorized) hEB).

UEB simulated hourly snowmelt and rainfall combined was lumped to daily to generate
inputs to the ConvLSTM model. The inputs also include daily potential evapotranspiration (PET)
rates calculated using the Hamon method (Hamon, 1960) from the raw and orographically
adjusted meteorological forcing, respectively. The 100 m resolution PET and snowmelt and

rainfall were aggregated to 1.6 km resolution grids before being used as inputs to the ConvLSTM

14
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model. Given that the UEB simulation uses meteorological datasets downscaled to 100 m
resolution, the process of scaling results back up seems counterintuitive. However, the high
resolution snow predictions are necessary to capture the spatially varying meteorological forcing
and snow accumulation and melt processes as controlled by topography in mountainous areas
(Schlogl et al., 2016; Winstral et al., 2014). To keep the deep learning computational costs
reasonable, the detailed snow predictions are coarsened, but the values representing the larger
grid size now accounts for the within grid variability (Xu et al., 2022).

Because the distribution of streamflow is heavy-tailed, we performed a nonlinear
transformation:

y=m(V7+1)

where ¥ is the original observed or simulated streamflow. Next, ¥ and the inputs (snowmelt and
rainfall, PET) were all normalized, i.e., linearly scaled to the range of [0, 1]. Data from water
years (WY) 1986-2002 and 2003-2010 were used as training and test datasets for the ConvLSTM
model. Dropout was implemented as described in Gal and Ghahramani (2016a, b) to mitigate
overfitting. Training was performed using Adam optimizer (Kingma and Ba, 2014) for 500
epochs. From the last 100 epochs, we save the models at randomly selected 10 epochs. During
the test period, we run each model for 20 times using random dropout masks (Gal and
Ghahramani, 2016b). This results in 200 time series of simulated streamflow for each of the four
meteorological forcing. The average of 200 realizations was calculated as the final simulated

streamflow.
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289 3.4. Evaluation of simulated streamflow

290 The simulated streamflow using two meteorological forcing datasets at their original
291  resolution and downscaled is evaluated using three different statistics: percent bias (PBIAS,
292 Gupta et al., 1999), Root Mean Square Error (RMSE), Nash-Sutcliff efficiency (NSE), and

293 Kling-Gupta efficiency (KGE, Gupta et al., 2009), as defined below:

294 PBIAS = % x 100% 4)
295 RMSE = /2(%“")2 (5)
— Z(Yo_ym)z
296 NSE = SARAT (6)
29 KGE=1- [(r—1)2 + (2 - )2+(7—— )2 7
7 - r oo 70 ( )
298 In Eqn. (4-7), Y, is the observed streamflow, Y, is streamflow simulated by the

299  ConvLSTM models, n is the number of data points, Y,, Y, are the average of the observed and
300  simulated streamflow values, respectively, 7 is the correlation coefficient between Y,, Y,,,, and
301  0,, 0y, are the standard deviation of Y,, Y,,,. A positive PBIAS suggests the simulations are

302 overall lower than the measurements, while a negative PBIAS shows the simulations are

303  generally higher than measurements. Lower RMSE and NSE and KGE closer to one indicate
304  better fit to measurements.

305 In addition to the four performance metrics, we calculated the time lag between UEB
306  simulated rainfall plus snowmelt and ConvLSTM simulated streamflow as a measure of the

307  timing of streamflow response to snowmelt and rainfall learned by the ConvLSTM model

308  (Yilmaz et al., 2008). This was done by calculating the correlation coefficient between simulated
309  streamflow and snowmelt plus rainfall with varying lags; the lag that maximizes the correlation
310  was selected as the time lag signature. Following the recommendation in Yilmaz et al. (2008),
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the calculation was performed using high flow with exceedance probability less than or equal to
0.2. The time lag was compared to lag calculated for observed streamflow using raw and

orographically adjusted WRF and NLDAS forcing.

4. Results
4.1. Comparing meteorological variables from different datasets and downscaling methods
Noticeable differences are found among raw and orographically adjusted WRF and
NLDAS meteorological forcing, especially in the amount of precipitation (Fig. 4). During the
study period (WY 1986-2010), WRF annual cumulative precipitation is 15.5% higher than
NLDAS on average and ranges from NLDAS being 35% higher than WRF precipitation in 1986
to WRF being 41% higher than NLDAS in 2006. Orographic adjustments increased annual
average precipitation by 3.4% for both WRF and NLDAS, less than the difference between the
two datasets and with little interannual variation. Besides precipitation, the WRF dataset has
overall lower temperature, significantly higher incoming shortwave radiation, lower incoming
longwave radiation, higher wind speeds, and higher relative humidity than NLDAS dataset.
Orographic adjustment increased spatial variability, suggested by flatter distributions,
particularly for NLDAS forcing (Fig. 4). For both datasets, orographic adjustment led to overall
lower temperature and slightly higher incoming shortwave radiation, while its effects on

incoming longwave radiation differ between the two datasets.
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Figure 4. Violin plots showing probability density of annual total precipitation, temperature,
incoming shortwave (SW) and longwave (LW) radiation, wind speed, and relative humidity from
raw and orographically adjusted WRF and NLDAS forcing, averaged during WY 1986-2010.
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4.2. SWE and snowmelt rates simulated using different datasets and downscaling
methods

The differences in the meteorological forcing propagated to UEB simulated SWE (Fig.
5). On average during 1986-2010, annual peak SWE simulated using the raw WRF dataset is
90% higher than raw NLDAS and can vary between 19% in 1998 to 170% in 2003. The
orographically adjusted WRF dataset resulted in SWE levels 9% higher than raw, ranging from
7% higher in 1989 to 15% higher in 2001, while orographic adjustment of NLDAS data results
in SWE levels increased by an average of 12%, ranging from 9% in 1986 to 19% in 2010. The
differences in SWE are higher than the differences in precipitation due to orographic adjustment
and especially the choice of meteorological dataset (Fig. S2). In addition, even in years when the
NLDAS dataset had higher precipitation (e.g., WY 1998), WREF still led to higher SWE. This
highlights that the other meteorological variables affected SWE levels. Comparison with
SNOTEL SWE measurements shows an underestimation of SWE using raw NLDAS forcing in
most years especially at the Tony Grove Lake station, while overestimation is observed when
using raw WRF (Fig. 5). Orographic adjustments increased SWE for both datasets, resulting in

higher RMSE for WRF while lower RMSE for NLDAS (Table S2).
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Figure 5. SWE measurements at SNOTEL stations (Fig. 1) and UEB simulated SWE in model
grids where the SNOTEL stations are located. UEB simulations are driven by raw and
orographically adjusted WRF and NLDAS meteorological datasets. SWE measurements are
available during the study period for Franklin Basin and Tony Grove Lake stations, since

WY2002 at Temple Fork, and since WY 2008 at Doc Daniels.

Simulation results from the four sets of meteorological forcing also differ in fractional
SCA compared to MODIS SCA (MOD10A1 product, Hall and Riggs, 2016) (Fig. 6). The WRF
dataset resulted in higher SCA than NLDAS; both datasets led to significantly higher SCA than

MODI0A1. MODI10A1 is known to have difficulty detecting snow with canopy presence,
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particularly in complex terrains (Hall and Riggs, 2016; Huang et al., 2011; Shamir and
Georgakakos, 2006). In the study area, we found that the MOD10A1 SCA tends to be
substantially lower than 100% (Fig. S3-S6), while we observed full snow coverage at higher
elevations during winter months. Because of the likely underestimation of MOD10A1 SCA, we
focus the comparison on the monthly change of SCA rather than the absolute values. The
NLDAS-forced runs led to similar melt period as the MOD10A1 SCA product, while the WRF
forcing yielded later melt by approximately one month. For both datasets, orographic adjustment

slightly delayed snow melt.

100
80 .
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< \
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Figure 6. Multi-year and spatially average monthly snow cover area (SCA) from the MOD10A1
product and UEB simulations using different combinations of meteorological datasets and

downscaling methods during WY 2001-2010.

Figure 7 further shows spatial distribution of multi-year average snowmelt and rainfall in
April, May, and June, according to UEB runs forced by the raw and orographically adjusted
WRF and NLDAS forcing. Results simulated with the raw data show discontinuity patterns due

to the coarse resolutions of raw data (4 km for WRF, and 12 km for NLDAS). Compared to
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NLDAS runs, the WRF dataset led to lower snowmelt occurring in April and higher snowmelt in
June. At higher elevations, because orographic adjustment led to higher SWE levels, it yielded

higher monthly snowmelt rates occurring at later times.

Raw WRF Orographic WRF Raw NLDAS Orographic NLDAS
(b) (c) (d)

1.2

April

(e) (f) (h) 0.8

May

Snowmelt + rainfall (m)

(k)

June

0.0
Figure 7. Monthly rainfall and snowmelt for April (top), May (middle), and June (bottom)
averaged from 1986 to 2010 arising from the raw and orographically adjusted WRF and NLDAS

meteorological datasets. Dots show the location of SNOTEL sites (Fig. 1).
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4.3. Effects of different melt rate and timing on streamflow simulation

Testing the performance of the deep learning models using UEB simulated snowmelt
driven by the WRF and NLDAS datasets with and without orographic adjustments illustrated
that the WRF dataset led to overestimation of streamflow (negative PBIAS), while the NLDAS
dataset led to underestimation (positive PBIAS). Other performance metrics (RMSE, NSE and
KGE) show similar test accuracy among the four deep learning models. The WRF-driven
simulations yielded lower RMSE, higher NSE, and higher KGE than simulations driven by
NLDAS, although the differences in the performance metrics are small. Orographic adjustment
improved streamflow accuracy at a slightly higher degree for NLDAS than WRF. This is likely
because orographically adjusting the WRF dataset worsened the overestimation of SWE, thus
deteriorating overestimation of streamflow. Because WRF and NLDAS forcing led to offsetting
PBIAS, we additionally calculated an ensemble mean, as the average of streamflow simulated
with raw and orographically adjusted WRF and NLDAS forcing. The ensemble mean yielded
overall the best performance, suggested by lowest RMSE, highest NSE, slightly higher KGE,
and the second lowest PBIAS (Table 2). The improvement in RMSE and NSE yielded by the
ensemble mean appears more significant than the differences caused by orographic adjustment
and the choice between WRF and NLDAS datasets.

The time lag that maximizes correlation between both simulated and observed
streamflow and UEB simulated snowmelt and rainfall shows an overall trend where the time lag
of simulated streamflow agrees with that of observed streamflow but tends to be slightly higher

(Table 3). Driving the UEB model using the WRF dataset led to much shorter lag (i.e., fast
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response) between streamflow and snowmelt than using the NLDAS dataset, and orographic

adjustment led to slightly shorter lags.

Table 2. NSE, MSE, PBIAS, and KGE during the test period of simulated streamflow based on

the WRF and NLDAS datasets at original resolution and downscaled.

Meteorological Downscaling PBIAS RMSE NSE KGE

Data Method (%) (mm/day)
Raw -6.37 0.400 0.827  0.876

WRF
Adjusted -7.22 0.385 0.840  0.887
Raw 4.61 0.434 0.797  0.864
NLDAS

Adjusted 1.14 0.402 0.826  0.884
Ensemble Mean -1.96 0.326 0.885  0.889

Table 3. Time lag in days corresponding to the maximum cross-correlation coefficient between
observed and simulated streamflow and spatially averaged snowmelt and rainfall time series

simulated using raw and orographically adjusted WRF and NLDAS forcing datasets.

Meteorological WRF, raw WRF, adjusted NLDAS, raw NLDAS, adjusted
forcing

Observed streamflow 2 1 28 27

Simulated streamflow 4 1 32 28

Observed and simulated streamflow typically exhibits multiple peaks in response to
several major snowmelt events (Fig. 8-10). Overall, WRF-driven simulations yielded higher
streamflow peaks in May and June than NLDAS-driven simulations, resulting in a better fit to

observed streamflow in WY 2006 and 2007 (Fig. 8, 9). However, WRF-driven simulations often
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overestimate streamflow during recession period (Table 2, Fig. S7), such as in WY 2009 (Fig.
10), while sometimes underestimate in April and May (Fig. 8a). Orographic adjustments
enhanced late-season peaks occurring in June and recession flow, but it also can dampen early-

season peaks (Fig. 9a, 10a).
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Figure 8. Observed (grey solid thick lines) and simulated streamflow in a wet year (WY 2006)
using the WRF (a) and NLDAS (b) meteorological datasets in the raw form (dashed lines),
orographically adjusted (dotted lines), and the ensemble mean (dark solid lines), respectively.
Also shown are spatially averaged UEB simulated snowmelt and rainfall rates shown as daily

sums.
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Figure 9. Observed (grey solid thick lines) and simulated streamflow in a dry year (WY 2007)

using the WRF (a) and NLDAS (b) meteorological datasets in the raw form (dashed lines),

orographically adjusted (dotted lines), and the ensemble mean (dark solid lines), respectively.

Also shown are spatially averaged UEB simulated snowmelt and rainfall rates shown as daily

sums.
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(a). Simulations driven by the WRF dataset, WY 2009
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(b). Simulations driven by the NLDAS dataset, WY 2009
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Figure 10. Observed (grey solid thick lines) and simulated streamflow in a normal year (WY

Streamflow [mm/day]

Streamflow [mm/day]

2009) using the WRF (a) and NLDAS (b) meteorological datasets in the raw form (dashed lines),

orographically adjusted (dotted lines), and the ensemble mean (dark solid lines), respectively.
Also shown are spatially averaged UEB simulated snowmelt and rainfall rates shown as daily

sums.

5. Discussion
5.1. Value of representing topographic control on meteorological variables and snow processes
The substantially higher precipitation and SWE resulting from the WRF dataset than

NLDAS forcing are consistent with findings in other studies (He et al., 2019; Wrzesien et al.,
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2019) that compared the convection-permitting regional climate model simulations with
statistically downscaled products. The differences in precipitation explain only a portion of the
gaps in simulated SWE resulting from meteorological dataset and downscaling methods (Fig.
S2) due to the effects of other meteorological variables, primarily air temperature. Higher air
temperatures would result in less precipitation falling as snow as well as accelerate snow melt,
leading to lower SWE. Similar underestimation of SWE and early snowmelt biases have been
found in the NLDAS forcing for other North American mountain areas (Wrzesien et al., 2019;
Shuai et al., 2022). Orographic adjustment increased watershed average precipitation and
lowered temperature, leading to higher simulated SWE. On the other hand, compared to NLDAS
the WRF dataset has higher incoming shortwave radiation and lower longwave radiation, which
have offsetting effects on SWE. Higher wind speed and lower RH would decrease SWE, but
these factors are likely to have a smaller effect than the other meteorological variables
(Mizukami et al. 2014).

While the 100 m resolution UEB simulation already accounts for terrain controls on snow
processes, when the coarse resolution (12 km) NLDAS meteorological forcing is used, the UEB
model did not capture the snowmelt derived from deep snowpack southwest and east of the
watershed (Fig. 7 ¢, g, k). Orographic adjustment overall improved the representation of SWE
and snowmelt spatial variability (Fig. 5, 7 d, h, 1, Table S2). On the other hand, as a dynamically
downscaled dataset, the 4-km WRF forcing captures the terrain effects on precipitation
reasonably well (Scalzitti et al., 2016; He et al., 2019), leading to more realistic spatial patterns
of snowmelt and rainfall simulated by the UEB model than the raw NLDAS dataset (Fig. 7 a, e,
1). However, orographic adjustment increased SWE RMSE at three of the four SNOTEL stations

for WRF (Table S2), suggesting that it may be unnecessary to further downscale the 4-km
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resolution WRF forcing. This supports previous finding in Rasmussen et al. (2011), while
appearing to differ from Maina et al. (2020). The latter study found that meteorological forcing
generated by WRF simulations at 0.5 km resolution yielded more accurate SWE than coarser
resolution forcing. The different findings indicate that dynamic downscaling (as opposed to
orographic adjustment) may be needed to adequately resolve spatial variabilities of forcing and
SWE within 4 km resolution.

Despite mixed results with respect to SWE simulation accuracy (Table S2),
orographically adjusted WRF and NLDAS driven UEB runs were able to capture snowmelt from
deep snowpacks in high elevations (Fig. 7). Representing the spatial variability realistically is
important for simulating streamflow, as a deep snowpack would sustain streamflow later into
summer than a shallow snowpack. An additional factor is that due to the karst geology, the
Logan River streamflow may be more sensitive to snowmelt at certain locations than others (Xu
et al., 2022). For example, in the high elevation areas west of the study area, sinkholes and faults
developed in outcropped carbonate units form pathways for fast recharge and conduit flow

(Spangler et al., 2001; 2011).

5.2. Effects of differences in simulated snowmelt on the inference of streamflow response to
snowmelt and rainfall

The overall trend of overestimating streamflow using the WRF dataset and
underestimating streamflow using the NLDAS dataset particularly during spring runoff reflects
the differences in simulated snowmelt (Figs. 5, 8-10, Table 2). Because WRF yields overall
deeper snowpack that melts later than NLDAS, the resulting simulated streamflow could
underestimate in early-season while overestimate in late-season. Similarly, orographic
adjustments led to slightly higher late-season streamflow (Fig. 8-10). Late-season streamflow
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peaks mostly result from snowmelt at higher elevations. This is where the snow melts last, and
usually has significant enough volume of snowmelt to create major streamflow peaks.
Orographic adjustment increases precipitation while lowering temperature at higher elevations
(Text S1), leading to higher SWE and snowmelt volume in June and July (Fig. 7), and therefore
larger streamflow peaks.

Despite the large difference in simulated snowmelt timing and rate, the ConvLSTM
models simulated streamflow with similar accuracy among the runs using raw and orographically
adjusted WRF and NLDAS datasets. This observation is consistent with findings in previous
studies that streamflow simulated by physically based hydrologic models is less sensitive to the
differences in meteorological forcing and resolution than spatially distributed variables such as
SWE (Elsner et al., 2014; Shuai et al., 2022; Rasouli et al., 2022). In this study, the differences in
snowmelt rate and timing were dampened as they propagated through the ConvLSTM models
primarily due to two reasons. First, the ConvLSTM models used linearly scaled inputs. By doing
so, they rely on the relative information as opposed to absolute values to infer streamflow
response to snowmelt and rainfall. In addition, the learnable weights of ConvLSTM can “absorb”
input biases when the model is trained and compensate for the bias during inference. In other
words, when trained using snowmelt simulated by different meteorological forcing, the
ConvLSTM models learned different streamflow response to snowmelt and rainfall. The
ConvLSTM models trained using WRF-driven UEB simulation results learned fast streamflow
response with 1~4 days of time lag, while the ConvLSTM models trained using NLDAS-driven
UEB learned a time lag of approximately one month (Table 3). This is consistent with the one-

month delay in snowmelt (Fig. 6).
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The results suggest that the ConvLSTM models are at least partially immune from input
bias when such bias is consistent during training and test periods. For coarse resolution
meteorological dataset such as NLDAS, downscaling to a finer resolution using orographic
adjustment overall improved SWE and streamflow simulation accuracy. Although orographically
adjusting WRF led to deleterious overestimation of SWE, it slightly improved streamflow
simulation accuracy (except for PBIAS) likely due to better representation of deep snowpack and
late melt at high elevations. It is also noteworthy that the ensemble mean streamflow as the
average of four simulations yielded the best performance during the test period (Table 2). This
observation supports the inclusion of multiple meteorological datasets for streamflow simulation
in mountainous watersheds (Wong et al., 2021). This is particularly important when utilizing

deep learning models for streamflow prediction under projected climate scenarios.

6. Conclusions

We investigated the effects of different meteorological datasets and downscaling methods
on snow and streamflow modeling in a snow-dominated mountainous karst watershed. Notable
differences were found in the meteorological variables, precipitation in particular, from two
meteorological datasets (NLDAS and WRF). Orographic adjustment effects are much smaller
than the differences between the two datasets. The raw and orographically adjusted NLDAS and
WREF datasets were used to drive the UEB model at 100 m resolution. The differences in
precipitation led to amplified differences in SWE and snowmelt, highlighting the effects of
temperature. Comparison with observed SWE at SNOTEL stations shows overestimation of
WREF results and underestimation of NLDAS results. Orographic adjustment decreased SWE
accuracy for WRF, while increasing SWE accuracy for NLDAS. The results suggest that
orographic adjustment is necessary when using coarse resolution meteorological forcing for a
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mesoscale watershed to capture the spatial distribution of snow processes, but may be
unnecessary when dynamically downscaled forcing is available at 4 km or a finer resolution.
Snowmelt simulated by the UEB model were fed into a deep learning model to simulate
streamflow response to spatiotemporally varied snowmelt. Despite large differences in SWE and
snowmelt, much smaller differences were observed in simulated streamflow, suggesting the deep
learning model is at least partially immune to systematic input bias due to input scaling and
model flexibility to compensate for biases. Among all experiments, streamflow simulated using
orographically adjusted WRF dataset resulted in overall higher accuracy, although the
improvement in performance metrics contributed by orographic adjustment is smaller for the
WREF dataset than for NLDAS. The improvement is likely due to a better representation of snow
accumulation and melt at high elevation areas that overlap with concentrated recharge locations.
Our results underline the value of dynamically downscaled meteorological datasets as well as
orographically adjusting coarse resolution datasets when the former is unavailable for modeling
streamflow in mountainous watersheds. In addition, ensemble analyses using multiple

meteorological datasets can potentially improve streamflow simulation accuracy.
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