
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 69, 2021 4961

Graphon Signal Processing
Luana Ruiz , Luiz F. O. Chamon , and Alejandro Ribeiro , Member, IEEE

Abstract—Graphons are infinite-dimensional objects that repre-
sent the limit of convergent sequences of graphs as their number of
nodes goes to infinity. This paper derives a theory of graphon signal
processing centered on the notions of graphon Fourier transform
and linear shift invariant graphon filters, the graphon counterparts
of the graph Fourier transform and graph filters. It is shown that
for convergent sequences of graphs and associated graph signals:
(i) the graph Fourier transform converges to the graphon Fourier
transform when the graphon signal is bandlimited; (ii) the spectral
and vertex responses of graph filters converge to the spectral and
vertex responses of graphon filters with the same coefficients. These
theorems imply that for graphs that belong to certain families, i.e.,
that are part of sequences that converge to a certain graphon, graph
Fourier analysis and graph filter design have well defined limits. In
turn, these facts extend applicability of graph signal processing
to graphs with large number of nodes — since signal processing
pipelines designed for limit graphons can be applied to finite graphs
— and to dynamic graphs — since we can relate the result of SP
pipelines designed for different graphs from the same convergent
graph sequence.

Index Terms—Graphons, convergent graph sequences, graph
filters, graph Fourier transform, graph signal processing.

I. INTRODUCTION

G
RAPH signal processing (GSP) provides an array of tools

to process signals supported on graphs [1]–[3] but suffers

from limitations in the case of graphs with large number of

nodes or dynamic topologies. In these cases, just the acquisition

of the graph may be challenging, which hinders the use of

GSP tools such as filtering [4], [5] and graph neural network

design [6] because they take the graph structure as a given. Other

GSP tools like sampling [7]–[9] deal precisely with acquiring

compact representations of graph signals. However, the design

of sampling sets [10] requires not only access to the graph but the

computation of an eigendecomposition that can be very costly

for large matrices [11], [12, Chapter 1.1]. Challenges are most

acute when the graph is both large and dynamic. In such cases,

costly numerical computations must, in principle, be repeated as
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the graph changes, because the effect of graph perturbations is

understood only in the case of relabelings [13] or small perturba-

tions that induce small changes on the original eigenspace [14].

Yet, large graphs can often be identified as being similar to

each other in the sense that they share structural properties. For

instance, Figs. 1(b)–(c) show two instances of a random graph

with 20 nodes, and Fig. 1(d) a random graph with 50 nodes.

These graphs look similar and one can therefore foresee that

analyzing signals supported on either of them should yield sim-

ilar results. If this were the case, it would mitigate the challenge

of dynamic variation since we could then design a filter for the

graph in Fig. 1(b) and use it in the graph in Fig. 1(c). Similarly,

it would mitigate the challenge of large size because we could

design a filter for the graph in Fig. 1(b) and use it to process

signals supported on the graph in Fig. 1(d). This paper formalizes

this intuition ans shows that this graph interchangeability is

possible when the graphs belong to the same “family,” where

each family is identified by a different graphon; see Fig. 1(a).

Graphons can be thought of as the infinite-dimensional coun-

terparts of graphs, i.e., as graphs with an uncountable number

of nodes. Appearing in many disciplines, they have been used

to estimate random graph models in mathematics and statis-

tics [15]–[20]; stabilize large-scale networks of linear systems

in controls [21]; and perform graph partitioning [22], [23], node

centrality [24] and network game equilibria computations [25]

in very large networks. Graphons have two theoretical inter-

pretations. They can be seen as generative models for families

of graphs with weighted or stochastic edges [26, Chapter 10],

and as the limit objects of convergent sequences of graphs [26,

Chapter 7], [27]. In practice, these two interpretations suggest

that graphons identify families of networks that are similar in

the sense that the density of certain “motifs” is preserved. This

motivates the study of signal processing on graphons as a way to

enable the analysis of signals supported on large and/or dynamic

graphs.

In this work, we thus introduce graphon signal processing

(WSP), a framework to synthesize, analyze and process signals

on graphons. More specifically, we put forward three novel

technical contributions: (i) we define graphon signals and their

graphon Fourier transforms (Definition 4), which can be seen

as the continuous counterparts of graph signals and of their

graph Fourier transforms; (ii) we show, by building upon the

results of [28], that the graph Fourier transform converges to

the graphon Fourier transform (Theorem 1) when the graphon

signal is bandlimited (Definition 5); (iii) we define linear-shift-

invariant (LSI) graphon filters (Definition 3), and prove that LSI

graph filters converge to LSI graphon filters in both the spectral

(Theorem 2) and vertex domains (Theorems 3–4).
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Fig. 1. Erdös–Rényi (constant) graphon with probability p = 0.2 and three n-node graphs sampled from it, illustrating scenarios where WSP can be useful. We
can analyze signals and design systems on a graphon, to apply them on a graph sampled from it ((a) → (b)); on a graph, to apply on another graph of same size ((b)
→ (c)); and on a small graph, to apply on a larger graph ((c) → (d)).

Theorems 1–4 are especially important because they provide

theoretical justification for transferring signal analysis methods

and information processing architectures across graphs arising

from (or leading to) the same graphon. Indeed, the ability of GSP

systems to be transferred between graphs, also known as trans-

ferability, has been demonstrated empirically in network prob-

lems in wireless [29] and robotics [30]. We identify three trans-

ferability scenarios for which the results in this work provide a

theoretical foundation: (S1) graphon to graph (Figs. 1(a)→1(b));

(S2) graph to graph of same size (Figs. 1(b)→1(c)); and (S3)

graph to larger graph (Figs. 1(c)→1(d)).

Attesting to the practical value of the WSP framework, each

of these scenarios is illustrated in a numerical experiment in

Section V. For instance, to showcase (S1), we compare filter

responses on a graphon and on a graph sampled from this

graphon. The filter is a simple diffusion filter applied to a Gaus-

sian Markov random field (GMRF). Interestingly, this example

makes for a parallel with classical signal processing, where even

if the application is digital, it is sometimes convenient to design

and study filters in continuous time. For (S2), we perform signal

analysis in different graphs of same size drawn from a common

graphon. Two n-node air pollution sensor networks are consid-

ered. Asn grows, we compare the Fourier transforms of the same

air pollution signal on top of them. This illustrates the behavior of

SP tools when applied to networks for which we only have access

to an approximated or perturbed version of the graph. Finally, we

illustrate (S3) by transferring filters designed on small graphs

to large graphs in a movie recommendation example. Using

real data from the MovieLens dataset, we calculate the optimal

coefficients of a rating prediction filter on networks containing

only a subset of all users, and then use it to predict movie ratings

on the full user network. The goal of this experiment is to show

that graph filters are transferable at scale, which significantly

simplifies signal processing on large graphs.

The rest of this paper is organized as follows. Preliminary defi-

nitions are recalled in Section II. Section III introduces the WSP

framework and convergence results are stated in Section IV.

Section V details the numerical experiments described above

(S1–S3). Proofs are deferred to the appendices. Unless otherwise

specified, ‖ · ‖ refers to the L2 norm. When referring to the

operator norm induced by the L2 norm (spectral norm), we use

the notation ||| · |||.
II. GRAPHS AND GRAPHONS

Graphs are triplets G = (V, E ,W) where V is a set of n
nodes, E ⊆ V × V is a set of edges and W : E → R is a weight

function assigning weights W(i, j) = wij to edges (i, j) in E .

The graph G can be equivalently represented by a number of

matrix representations, which in the context of graph signal

processing (GSP) are generically termed graph shift operators

(GSOs). In this paper, we fix the GSO to be the adjacency matrix

S satisfying Sij = wij if and only if (i, j) ∈ E . We restrict our

attention to undirected graphs with edge weights in the [0,1]

interval, so that S = ST and S ∈ [0, 1]n×n. We will also use the

notations G = (V, E ,W) and G = (V, E ,S) interchangeably.

A graphon is a bounded symmetric measurable function

W : [0, 1]2 → [0, 1] (1)

which represents a graph with an uncountable number of

nodes [26, Chapter 7], [15]. By construction, graphons can also

be interpreted as generative models for the edges of weighted

or stochastic graphs. Namely, by associating sample points

ui ∈ [0, 1] to nodes i ∈ {1, 2, . . . , n}, we can construct n-node

graphs Gn where the edges are defined either by assigning

edge weight W(ui, uj) to (i, j) or by connecting i and j with

probability

pij = W(ui, uj). (2)

In the latter case, the Gn are unweighted. If, additionally, the

ui are sampled independently and uniformly at random, these

stochastic graphs are calledW-random graphs. Three examples

of graphons and of W-random graphs sampled from them are

shown in Fig. 2. The one in Fig. 2(a) is a stochastic block model

(SBM) graphon with two balanced communities where the intra-

community edge probability is 0.8 and the inter-community edge

probability is 0.2. The one in Fig. 2(b) is also a SBM graphon

with the same inter- and intra-community probabilities, but with

unbalanced communities. The one in Fig. 2(c) is an exponential

graphon, which can be used to generate graphs where nodes are

connected if their labels ui and uj are close.

A. Convergent Sequences of Graphs

A second and perhaps more interesting interpretation of

graphons is as the limit objects of convergent graph sequences.

A sequence of graphs {Gn} is said to converge if and only if the

density of homomorphisms between any finite, undirected and

unweighted graph F = (V,′ E ′), which we call a motif, and the

Gn converges [27]. Homomorphisms between a motif F and an

arbitrary graph G = (V, E ,S) are adjacency preserving maps

from V ′ to V , i.e., a map β : V ′ → V is a homomorphism if,
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Fig. 2. Graphons and 12-node W-random graphs. (a) and (b) show SBM graphons and graphs with 2 communities and pcici = 0.8, pcicj = 0.2. (c) shows an

exponential graphon W(u, v) = exp(−2.3(u− v)2) and the corresponding graph.

for every (i, j) ∈ E ′, (β(i), β(j)) ∈ E . The graph F can thus be

interpreted as a graph pattern that we want to “identify” in G.

A motif F will typically occur in multiple locations of the

graph G. Thus, we can count the number of homomorphisms

between F and G, which we denote hom(F,G). Since there are

a total of |V||V ′| possible maps between the vertices of F and

G but only a fraction of them are homomorphisms, we further

define the density of homomorphisms from F to G as

t(F,G) =
hom(F,G)

|V||V ′| =

∑

β

∏

(i,j)∈E ′ [S]β(i)β(j)

|V||V ′| . (3)

This is easiest to understand when G is unweighted, in which

case t(F,G) is simply the fraction of the total number of ways

in which the motif F can be mapped into G.

The concept of homomorphism densities can also be gener-

alized to graphons. We define the density of homomorphisms

between the motif F and the graphon W as

t(F,W) =

∫

[0,1]|V′ |

∏

(i,j)∈E ′

W(ui, uj)
∏

i∈V ′

dui. (4)

This can be interpreted as the probability of sampling the motifF

from the graphon W. With these definitions in hand, a sequence

of undirected graphs {Gn} is said to converge to the graphon

W if, for all finite simple graphs F,

lim
n→∞

t(F,Gn) = t(F,W). (5)

In this case, we refer to W as the limit graphon of the se-

quence. This form of convergence is called “convergence in

the homomorphism density sense”. An example of convergent

graph sequence that is easy to visualize is that of a sequence of

W-random graphs. The sequence of graphs {Gn} generated by

sampling {ui}ni=1 uniformly at random asn → ∞ can be shown

to converge in the homomorphism density sense with probability

one [26, Example 11.6, Lemma 11.8].

To conclude, we point out that, while the two interpretations

of a graphon — as a generative model for graph families and

as the limit object of graph sequences — are theoretical, their

practical value lies in that they can be used to identify sets of

graphs with large number of nodes and similar structure. This

simplifies the study of the properties of large graphs.

B. Convergence in Cut Norm

Similarly to how graphs can be obtained by sampling or

evaluating a graphon, graphons can be defined, or induced, by

graphs. Every undirected graph G = (V, E ,S) with |V| = n
and S ∈ [0, 1]n×n admits an induced graphon representation

WG. This graphon is obtained in two steps. First, we con-

struct a regular partition I1 ∪ . . . ∪ In of [0,1], i.e., the par-

tition given by Ij = [(j − 1)/n, j/n) for 1 ≤ j ≤ n− 1 and

In = [(n− 1)/n, 1]. Then, the induced graphon WG is defined

as [26, Chapter 7.1],[24, Sec. 5]

WG(u, v) =

n
∑

j=1

n
∑

k=1

[S]jk × I(u ∈ Ij)I(v ∈ Ik). (6)

The concept of induced graphon is useful to define a second

mode of convergence for graph sequences — convergence in

cut norm. The cut norm of a graphon W is defined as [26, eq.

(8.13)]

‖W‖� = sup
S,T⊆[0,1]

∣

∣

∣

∣

∫

S×T

W(u, v)dudv

∣

∣

∣

∣

(7)

i.e., it is equal to the size of its maximum cut. The following

lemma, adapted from [26, Theorem 11.57], states that if a

sequence of graphs{Gn} converges toW in the homomorphism

density sense, then it also converges to W in the cut norm.

Lemma 1 (Cut norm convergence): If {Gn} → W in the

homomorphism density sense, then there exists a sequence of
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permutations {πn} such that

‖Wπn(Gn) −W‖� → 0 (8)

where Wπn(Gn) is the graphon induced by the graph πn(Gn).
Therefore, for every convergent sequence {Gn} there exists

a non-empty set of permutation sequences {πn} for which the

cut norm of the induced graphons Wπn(Gn) converges as in (8).

This is formalized in Definition 1.

Definition 1 (Set of admissible permutations): Given a se-

quence {Gn} converging to W in the homomorphism density

sense, the family of convergent permutation sequences P asso-

ciated with {Gn} is defined as

P =

{

{πn} | ‖Wπn(Gn) −W‖� → 0

}

.

The set P will be especially important in the convergence

analyses of Sections III–IV. In particular, in the definition of

convergent sequences of graph signals (Definition 2), we will

use permutation sequences {πn} ∈ P to “organize” the signals

on the graphs of a convergent sequence so that the labeling of the

signals matches the node labeling for which the graphs converge.

C. Graph Signal Processing

GSP deals with signals defined on top of a graphG. Formally,

a graph signal is a map from the vertex set V onto the real

numbers, which we write as the pair (G,x) and where the ith
component xi is the value of the signal at node i. The three

fundamental concepts of GSP are shift operations, LSI filters

and graph Fourier transforms (GFTs). We say that z is the result

of shifting x on the graph S if z = Sx. Shifts can be composed

to produce k-order shifted signals Skx and, as in the case of

time signals, a weighted sum of shifted signals defines the LSI

filter H(S) as the linear map

y = H(S)x =

K
∑

k=0

hkS
kx. (9)

In (9), the weights hk are called graph filter taps [4]. The filter

H(S) is said to be shift-invariant because, if y = H(S)x and

we shift the input to x′ = Sx, the output y′ = H(S)x′ is simply

the shifted version of y, y′ = Sy. The LSI filter H(S) is also

sometimes referred to as a graph convolutional filter [31].

SinceS is symmetric, it is diagonalizable asS = VΛVH. The

matrix Λ is the diagonal matrix of eigenvalues and the columns

of V are the graph eigenvectors. Herein, we assume that the

eigenvalues are ordered according to their sign and in decreasing

order of absolute value, i.e., λ1(S) ≥ λ2(S) ≥ . . . ≥ 0 ≥ . . . ≥
λ−2(S) ≥ λ−1(S) (e.g., Fig. 3). The graph Fourier transform

(GFT) of the graph signal (G,x) is then defined as the projection

of x onto the eigenvector basis V, i.e.,

x̂ = GFT{(G,x)} = VHx. (10)

In particular, [x̂]j = vH
j x for each index j, where vj is the

eigenvector associated with λj . This operation has the effect of

decomposing (G,x) in the eigenbasis of the graph, which makes

sense if we interpret the eigenvalues as frequencies. Similarly,

Fig. 3. Graphon eigenvalues. A graphon has an infinite number of eigenvalues
λi but for any fixed constant c the number of eigenvalues |λi| ≥ c is finite. Thus,
eigenvalues accumulate at 0 and this is the only accumulation point for graphon
eigenvalues. The quantity dn is approximately equal to the minimum distance
between c (or −c) and the eigenvalues in the set {λi | λi < c}.

the inverse graph Fourier transform (iGFT) is defined as

iGFT{x̂} = Vx̂ = x.

Since VHV = I, the iGFT is a proper inverse and can recover

x from x̂ without loss of information.

The LSI filters defined in (9) also admit a spectral represen-

tation Ĥ(Λ). This spectral representation is given by

Ĥ(Λ) =
K
∑

k=0

hkΛ
k. (11)

Therefore, if we consider the action of the filter H(S) in the

frequency domain, we see that ŷ = Ĥ(Λ)x̂, i.e., graph filters

are pointwise operators in the GFT domain.

Another interesting observation regarding the spectral re-

sponse of graph filters is that, for any set of filter taps, we can

define the frequency response [32]

h(λ) =

K
∑

k=0

hkλ
k. (12)

Comparing (11) and (12), we see that using the same set of

coefficients on different graphs induces different responses de-

pending on the eigenvalues of S. Indeed, if we let λi denote the

ith eigenvalue ofS and x̂i and ŷi the ith components of the GFTs

x̂ and ŷ, we have that ŷi = h(λi)x̂i.

The goal of this paper is to generalize the definitions of

graph signals, GFTs, and convolutional graph filters to graphon

signals, graphon Fourier transforms, and convolutional graphon

filters (Section III). In introducing this graphon signal processing

framework, we intend to do for large-scale graph signal pro-

cessing what graphons do for very large and dynamic networks.

Namely, we leverage the fact that working with limits is easier

and focus on graph signal limits — graphon signals — to fa-

cilitate GSP on large-scale and dynamic networks. Importantly,

we also show that, for sequences of graphs that converge to a

graphon in the sense of (5), corresponding sequences of GFTs

and graph filters converge to the respective graphon Fourier

transforms and graphon filters (Section IV).
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III. GRAPHON SIGNAL PROCESSING

The central concept in graphon signal processing is the

graphon signal. Graphon signals are defined as pairs (W, X)
where the function X : [0, 1] → R maps points of the unit

interval to the real numbers, i.e., the signal values. The graphon

signals that we consider have finite energy, i.e., X is a function

in L2([0, 1]). As in the case of graphons, graphon signals can be

induced by graph signals. Given a n-node graph signal (G,x),
the induced graphon signal (WG, XG) is defined as

XG(v) =

n
∑

j=1

[x]j × I(v ∈ Ij) (13)

where WG is the graphon induced by G [cf. (6)] and I1 ∪
. . . ∪ In is the regular partition of the unit interval, i.e., Ij =
[(j − 1)/n, j/n) for 1 ≤ j ≤ n− 1 and In = [(n− 1)/n, 1].

A. Convergent Sequences of Graph Signals

We define convergent sequences of graph signals as follows.

Definition 2 (Convergent sequences of graph signals): A

sequence of graph signals {(Gn,xn)} is said to converge to

the graphon signal (W, X) if, for every graph motif F,

lim
n→∞

t(F,Gn) → t(F,W)

and if there exists a sequence of permutations {πn} ∈ P such

that

lim
n→∞

‖Xπn(Gn) −X‖ = 0

where P is the set of admissible permutations for the se-

quence {Gn} [cf. Definition 1] and (Wπn(Gn), Xπn(Gn))
is the graphon signal induced by the permuted graph signal

(πn(Gn), πn(xn)) [cf. (13)].

A sequence of graph signals is thus convergent if (i) the

underlying graphs converge and (ii) the graphon signals induced

by some permutation sequence {πn} ∈ P of the graph signals

converge inL2. The role of the permutation sequence is to match

the labels of the signals xn to those of the sequence of graphs

Gn that converges in cut norm [cf. Lemma 1]. This is a similar

requirement to the isometric embeddings necessary to define

Gromov-Hausdorff convergence in metric spaces [33].

Importantly, the graph signal limit (W, X) is unique for each

{πn} ∈ P . Indeed, suppose that it is not, i.e., that ‖Xπn(Gn) −
X‖ → 0 and ‖Xπn(Gn) − Y ‖ → 0 with ‖X − Y ‖ ≥ ε > 0.

Using the triangle inequality, we get

‖X − Y ‖ = ‖X −Xπn(Gn) +Xπn(Gn) − Y ‖
≤ ‖X −Xπn(Gn)‖+ ‖Xπn(Gn) − Y ‖ → 0,

which contradicts the hypothesis since there must then exist n0

such that ‖X −Xπn(Gn)‖+ ‖Xπn(Gn) − Y ‖ < ε for n > n0.

See also Remark 1.

B. The Graphon Operator and Graphon Filters

Every graphon W induces an integral operator TW :
L2([0, 1]) → L2([0, 1]), which maps a signal (W, X) to the

signal (W, Y ) given by

Y (v) = (TWX)(v) =

∫ 1

0

W(u, v)X(u)du. (14)

We refer to TW as the graphon shift operator (WSO) because

it induces a diffusion of (W, X) on the graphon analogous to

the diffusion induced by the adjacency matrix S on a graph.

Building upon this parallel, LSI graphon filters are defined as

follows.

Definition 3 (LSI graphon filters): Let (W, X) be a graphon

signal. A LSI graphon filter TH : L2([0, 1]) → L2([0, 1]) maps

(W, X) �→ (W, Y ) with (W, Y ) given by

Y (v) = (THX)(v) =

K
∑

k=0

hk(T
(k)
W

X)(v)

where (T
(k)
W

X)(v) =

∫ 1

0

W(u, v)(T
(k−1)
W

X)(u)du, k ≥ 1

(15)

and T
(0)
W

= I, the identity operator. The hk are known as the

graphon filter taps.

Similarly to LSI graph filters, the graphon filters in Definition

3 are shift-invariant because, given an input graphon signal X
and denoting the graphon filter ouputY = THX , applyingTH to

a shifted version of the input X ′ = TWX yields Y ′ = THX ′ =
TWY , i.e., Y ′ is a shifted version of Y .

C. Graphon Spectra and the Graphon Fourier Transform

Because W is a bounded symmetric function, TW is a self-

adjoint Hilbert-Schmidt operator (see Lemma 5, Appendix C in

the supplementary material). As such, it can be decomposed in

the operator’s basis as

W(u, v) =
∑

i∈Z\{0}
λiϕi(u)ϕi(v) (16)

with eigenvalues λi ∈ [−1, 1], and eigenfunctions ϕi : [0, 1] →
R. As before, we separate positive and negative eigenvalues

by ordering them according to their sign and in decreasing

order of absolute value. Therefore, we have 1 ≥ λ1 ≥ λ2 ≥
. . . ≥ 0 ≥ . . . ≥ λ−2 ≥ λ−1 ≥ −1. The eigenfunctions form an

orthonormal basis of L2([0, 1]). Note that the eigenvalues, and

hence the eigenfunctions, are countable. What is more, since

‖W‖2 ≤ 1 the trace of T ∗
W
TW is bounded by one and so the

λi converge to 0 for |i| → ∞ as depicted in Fig. 3. Zero is the

only point of accumulation, which in turn implies that all λi 
= 0
have finite multiplicity [34].

(16) allows writing TW as

(TWX)(v) =
∑

i∈Z\{0}
λiϕi(v)

∫ 1

0

ϕi(u)X(u)du. (17)

The integral terms
∫ 1

0 ϕi(u)X(u)du are the L2 inner products

〈X,ϕi〉 between the signal X and the eigenfunctions ϕi. Since

theϕi form a complete orthonormal basis ofL2([0, 1]), the inner

products 〈X,ϕi〉 provide a complete representation of (W, X)
on the graphon basis. Although there is an infinite number of
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eigenfunctions, they are countable and so the change of basis

can always be defined. This change of basis operation is called

the graphon Fourier transform (WFT).

Definition 4 (Graphon Fourier Transform): Consider the

graphon signal (W, X), and let {λi}i∈Z\{0} and {ϕi}i∈Z\{0} be

the eigenvalues and eigenfunctions of TW. The graphon Fourier

transform (WFT) of (W, X) is defined as

WFT [(W, X)] = X̂ with

[X̂]i = X̂(λi) =

∫ 1

0

X(u)ϕi(u)du.

The inverse Graphon Fourier Transform (iWFT) of X̂ is defined

as

iWFT
[

X̂
]

=
∑

i∈Z\{0}
X̂(λi)ϕi = X.

Since the{ϕi}j∈Z\{0} are orthonormal, the iWFT is the proper

inverse transformation of the WFT. Definition 4 further allows

defining graphon signals that are bandlimited.

Definition 5 (Bandlimited graphon signals): A graphon

signal (W, X) is c-bandlimited with bandwith c ∈ [0, 1] if

X̂(λi) = 0 for all i such that |λi| < c.
Because all nonzero eigenvalues have finite multiplicity, the

WFT of a bandlimited graphon signal is finite-dimensional.

Bandlimited graphon signals have two noteworthy properties.

The first is that they extend the notion of graph bandlimited

signals, which are the most common type of graph signal in

practical GSP applications [35]. The second is that, since they

only depend on a finite number of graphon eigenfunctions, their

WFT can be computed analytically. Although countability of

the ϕi allows us to write the definition of the WFT (Definition

4) for any graphon signal, calculating all inner products 〈X,ϕi〉
is infeasible because the graphon basis is infinite-dimensional.

D. Graphon Filter Frequency Response

The WFT also allows obtaining the frequency response of

graphon filters. Using the spectral decomposition of TW (16),

we can rewrite the LSI graphon filter (15) as

Y (v) = (THX)(v) =
∑

i∈Z\{0}

K
∑

k=0

hkλ
k
i X̂(λi)ϕi(v).

Hence, the frequency response of TH is given by

T̂H(λ) = h(λ) =

K
∑

k=0

hkλ
k. (18)

Equation (18) is the infinite counterpart of the frequency

response of a LSI graph filter (12). Note that, to understand

the behavior of this filter on a specific graphon W, we need to

evaluate h(λ) at each graphon eigenvalue λi. But (18) is other-

wise independent of the graphon. In other words, the frequency

response of a graphon filter always has the same shape, irrespec-

tive of the graphon. A third important remark pertaining to (18) is

that LSI graphon filters can approximate any filter with analytic

frequency response h(λ) arbitrarily well as K → ∞. This is

because the frequency response of a LSI graphon filter (18) is

a polynomial of the eigenvalues of the graphon. Put formally,

a graphon filter with frequency response T̂H(λ) = h(λ) can be

written as a LSI graphon filter (Definition 3) provided that h(λ)
is analytic, i.e., that it is infinitely differentiable at {λi}i∈Z\{0}
and its Taylor series converges pointwise.

We conclude this section by stressing that the goal of Defs.

3 and 4, as well as of the definition of a graphon signal, is

to generalize GSP concepts to graphons. These concepts are

not realizable in the way that graph signals, graph filters, and

the GFT are because, unlike graphs, graphons are intangible

theoretical objects. Nonetheless, their value lies in that they

help understand the behavior of graph signals in the limit of

large-scale networks. This provides the theoretical foundations

to enable the practical scenarios (S1–S3) discussed in the intro-

duction (see also Section V). Indeed, as we show next, the WFT

and the LSI graphon filter are mathematical limits of the GFT

and of the LSI graph filter on convergent sequences of graph

signals.

Remark 1 (Uniqueness of limit graphon signal on W): A

sequence of graphs {Gn} converges to a graphon W if and only

if the homomorphism densities t(F,Gn) converge to t(F,W)
for every motif F. Naturally, there may be other graphons W′

with same homomorphism densities t(F,W′) = t(F,W) for

all graphs F and so the limit graphon W is not necessarily

unique, but in this paper we select one of these limits—the

graphon W— without loss of generality1 and use its implicit

node labeling to define sequences of graph signals {(Gn,xn)}
that converge to graphon signals (W, X) [cf. Definition 2].

Since W is fixed, for each sequence {(Gn,xn)} the limit signal

(W, X) is unique in L2.

IV. GSP CONVERGES TO WSP

In this section, we leverage the properties of convergent graph

sequences to prove a series of convergence results which show

that GSP converges to WSP. Our first result describes the limit

behavior of the GFT on convergent sequences of graph signals

(Section IV-A). We show that, when the limit graphon signal is

bandlimited, the GFT converges to the WFT (Theorem 1). Our

second result shows that the spectral responses of graph filters

converges to the spectral response of a well-defined graphon

filter (Theorem 2, Section IV-B). Theorem 2 is further extended

to show that convergence of the graph signal and graph filter also

implies convergence of the filter response in the vertex domain.

This is our third convergence result. It is stated with increasing

levels of generality in Corollary 1, which follows directly from

convergence of the GFT and of the filter spectral responses;

and in Theorems 3 and 4, which do not require the graphon

signal to be bandlimited. These findings, particularly the more

general Theorem 4, are the main technical contributions of this

1Graphons W
′ and W with same homomorphism densities t(F,W′) =

t(F,W) for all F are called weakly isomorphic. We can select W without loss
of generality because two graphons W′ and W are weakly isomorphic if and
only if δ�(W,′ W) = 0, i.e., if their cut distance is zero [26, Chapters 7.3,
8.2.2]. Therefore, the limit graphon is unique w.r.t. the metric induced by the
cut distance in the space of unlabeled graphons.
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TABLE I
TABLE SUMMARY OF GSP AND WSP

work. At the end of the section, a table summary of the GSP

and WSP definitions of a signal, of the Fourier Transform and

of linear shift-invariant filters can be found in Table I. This

table also highlights the relationships between these concepts

as established by Theorems 1–4.

A. Convergence of the GFT

When a sequence of graph signals converges to a bandlimited

graphon signal, we can show that the GFT converges to the WFT

as long as the limit graphon is non-derogatory (Definition 6).

This is the main result of this section, presented in Theorem 1.

Definition 6: A graphon W is non-derogatory if λi 
= λj for

all i 
= j and i, j ∈ Z \ {0}.

Theorem 1 (GFT → WFT for BL graphon signals): Let

{(Gn,xn)} be a sequence of graph signals and let {πn} ∈ P
be a sequence of permutations such that {(Gn,xn)} converges

to the c-bandlimited graphon signal (W, X) in the sense of

Definition 2, where W is non-derogatory. Then,

GFT [(πn(Gn), πn(xn))] → WFT [(W, X)] .

Conversely, if {(Gn, x̂n)} is a sequence of GFTs converging to

the WFT (W, X̂), then there exists a sequence of permutations

{πn} ∈ P such that

πn

(

iGFT [xn]

)

→ iWFT
[

X̂
]

.

Note that the GFT coefficients [x̂]i and the WFT coefficients

[X̂]i inherit the ordering of the eigenvalue sets of the graphon

W and of the graphs Gn, which are both ordered with indices

i ∈ Z \ {0} according to their sign and in decreasing order of

absolute value.

Theorem 1 relates the GFT, a Fourier transform for “discrete”

graph signals, to the WFT, a Fourier transform for “continuous”

graphon signals. This comparison is only possible because,

like graphs, graphons have discrete spectra. This unveils an

interesting parallel with the relationship between the discrete

Fourier transform (DFT) — a discrete transform for discrete

signals — and the Fourier series —- a discrete transform for

continuous signals — in Euclidean domains. Another important

consequence of Theorem 1 is that it allows inferring the spectral

content of graph signals by analyzing the spectral content of

the graphon signals giving rise to them (and vice-versa). This

is useful, for instance, when these signals and/or the graphs

on which they are supported are corrupted or only partially

observable, in which case the WFT (or the GFT on another graph

of the same family) can be used as an approximation of the GFT

on the original graph. We also point out that the requirement

that the graphon be non-derogatory is not very restrictive: as

stated in the following proposition, the space of non-derogatory

graphons is dense in the space of graphons.

Proposition 1 (Density of W): Let W denote the space of all

bounded symmetric measurable functionsW : [0, 1]2 → R, i.e.,

the space of graphons. The space of non-derogatory graphons

is dense in W.

Proof: Refer to Appendix D in the supplementary material.�

Prop. 1 tells us that, even if a graphon is derogatory, there

exists a non-derogatory graphon arbitrarily close to it for which

the GFT convergence result from Theorem 1 holds.

In order to establish Theorem 1 and subsequent results, we

will work with the graphon signals induced by the graph signals

we consider. We have already described in (13) how their (vertex

domain) values are related. In the sequel, we will also need to

relate their spectral properties. This relationship is formalized in

Lemma 2. Note that, although the adjacencies Sn of the graphs

Gn have a finite number of eigenvaluesλi(Sn), we still associate

the eigenvalue sign with its index and order the eigenvalues in

decreasing order of absolute value. The indices i are now defined

on some finite set L ⊆ Z \ {0}.

Lemma 2: Let (WG, XG) be the graphon signal induced by

the graph signal (G,x) on n nodes. Then, for i ∈ L we have

λi(TWG
) =

λi(S)

n

ϕi(TWG
)(u) = [vi]j ×

√
nI (u ∈ Ij) , j = 0, . . . , n and

[X̂G]i =
[x̂]i√
n

where λi(S) are the eigenvalues of the adjacency matrix. For i /∈
L, we let λi(TWG

) = [X̂G]i = 0 and ϕi(TWG
) = ψi such that

{ϕi(TWG
)} ∪ {ψi} forms an orthonormal basis of L2([0, 1]).

Proof: Refer to Appendix A.

Proof of Theorem 1: We now prove that, since the fi-

nite set L converges to Z \ {0} as n goes to infinity,

WFT{(Wπn(Gn), πn(XGn
))} → WFT{(W, X)}. We leave

the dependence of the convergent signal sequence {(Gn,xn)}
on {πn} implicit and write Wn = Wπn(Gn) and Xn =
Xπn(Gn). Next, we use the eigenvector convergence result from

the following lemma. Theorem 1 then follows from the fact that

inner products are continuous in the product topology that they

induce.

Lemma 3: Let C = {i ∈ Z \ {0} | |λi(TW)| ≥ c} be the set

of indices of the non-vanishing eigenvalues and denote S the

subspace spanned by the eigenfunctions {ϕi(TW)}i/∈C . Then,

(i) for i ∈ C, ϕi(TWn
) → ϕi(TW) in L2, and

(ii) for i /∈ C, ϕi(TWn
) → Ψi ∈ S weakly.

Proof: Refer to Appendix B. �

Starting with the eigenvectors with indices in C, for any ε > 0
it holds from Lemma 3 and from the convergence of Xn in L2

that there exist n1 and n2 such that

‖ϕi(TWn
)− ϕi(TW)‖ ≤ ε

2‖X‖ , for all n > n1

and ‖Xn −X‖ ≤ ε

2
, for all n > n2.
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Recall that ‖ϕi(TWn
)‖ ≤ 1 for all n and i ∈ C because the

graphon spectral basis is orthonormal. Since the sequence

{Xn} is convergent, it is bounded and ‖X‖ < ∞. Let m =
max {n1, n2}. Then, it holds that

|[X̂n]i − [X̂]i| = |〈Xn, ϕi(TWn
)〉 − 〈X,ϕi(TW)〉|

= |〈Xn −X,ϕi(TWn
)〉+ 〈X,ϕi(TWn

)− ϕi(TW)〉|
≤ ‖Xn −X‖‖ϕi(TWn

)‖+ ‖X‖‖ϕi(TWn
)− ϕi(TW)‖

≤ ε

2
‖ϕi(TWn

)‖+ ‖X‖ ε

2‖X‖ ≤ ε for all n > m.

For i /∈ C, the eigenfunctions ϕi(TWn
) may not converge

to ϕi(TW), but they do converge to some function Ψi ∈ S .

Given that the graphon signal (W, X) is c-bandlimited, we have

〈X,ϕi(TW)〉 = 0 for i /∈ C, so that X must be orthogonal to all

functions in S . Using the same argument as for i ∈ C yields

that the remaining GFT coefficients also converge to the WFT.

Formally,

〈ϕi(TWn
), Xn〉 → 〈Ψi, X〉 = 0 = 〈ϕi(TW), X〉.

Convergence of the iGFT to the iWFT follows directly from

these results and from Lemma 3. Explicitly, use the triangle

inequality to write
∥

∥

∥

∥

∥

∥

∑

i∈Z\{0}
[X̂]iϕi(TW)−

∑

i∈Z\{0}
[X̂n]iϕi(TWn

)

∥

∥

∥

∥

∥

∥

≤
∑

i∈Z\{0}
‖[X̂]iϕi(TW)− [X̂]iϕi(TWn

)‖

+
∑

i∈Z\{0}
‖[X̂]iϕi(TWn

)− [X̂n]iϕi(TWn
)‖.

Applying the Cauchy-Schwarz inequality and splitting the sums

between i ∈ C and i /∈ C, we get
∥

∥

∥

∥

∥

∥

∑

i∈Z\{0}
[X̂]iϕi(TW)−

∑

i∈Z\{0}
[X̂n]iϕi(TWn

)

∥

∥

∥

∥

∥

∥

≤
∑

i∈C
|[X̂]i|‖ϕi(TW)− ϕi(TWn

)‖

+
∑

i∈C
|[X̂]i − [X̂n]i|‖ϕi(TWn

)‖

+
∑

i/∈C
|[X̂n]i|‖ϕi(TWn

)‖ → 0. (19)

The first term on the right hand side of (19) vanishes because

ϕi(TWn
) → ϕi(TW) for i ∈ C by Lemma 3; the second term,

because the GFT coefficients [X̂n]i converge to [X̂]i for i ∈ C;

and the third term, because [X̂n]i → [X̂]i = 0 for i /∈ C. �

B. Convergence of Graph Filter Responses in the Spectral and

Vertex Domains

Our second convergence result involves the frequency re-

sponse of graph filters. As we have already noted, the frequency

Fig. 4. Comparison of graphon eigenvalues (blue) and eigenvalues of a graph
Gn taken from a convergent graph sequence (red). Only the positive eigenvalues
are depicted. For n → ∞, the eigenvalues of Gn converge to the eigenvalues of
W. However, the accumulation of graphon eigenvalues close to λ = 0 means
that the GFT converges to the WFT only for graphon bandlimited signals.

responses of LSI graph filters (12) and of their graphon counter-

parts (18) have the same expression as long as the coefficients hk

(or, equivalently, the function h) are the same. In the following,

we show that these frequency responses actually converge to one

another as the number of nodes goes to infinity.

Theorem 2 (Convergence of graph filter frequency response):

On the graph sequence {Gn}, let Hn(Sn) be a sequence of

filters of the form Hn(Sn) = Vnh(Λ(Sn)/n)V
H
n; and, on the

graphon W, define the filter

(THX)(v) =
∑

i∈Z\{0}
h(λi(TW))X̂(λi)ϕi(v).

If {Gn} → W and h : [0, 1] → R is continuous, then

lim
n→∞

Ĥn(λi(Sn)/n) = T̂H(λi(TW))

where Ĥn and T̂H are the frequency responses of Hn and TH

respectively.

Proof: This is a direct consequence of a result due to [36,

Theorem 6.7] and restated here as Lemma 4.

Lemma 4 (Eigenvalue convergence): Let {Gn} be a sequence

of graphs with eigenvalues {λi(Sn)}i∈Z\{0}, and W a graphon

with eigenvalues {λi(TW)}i∈Z\{0}. If {Gn} → W,

lim
n→∞

λi(Sn)

n
= lim

n→∞
λi(TWGn

) = λi(TW) for all i. (20)

Proof: Refer to Appendix B. �

Lemma 4 tells us that, in any convergent graph sequence,

the eigenvalues of the graph converge to the eigenvalues of

the limit graphon under a 1/n rescaling. This is illustrated

in Fig. 4 for λ > 0. Using Lemma 4, we will show that the

transfer functions of arbitrary graph filters Hn(Sn) converge to

the transfer function of the graphon filter TH with same filter

function h(λ).
Consider the graphon signal (W, X). Applying TH to

(W, X) as in (15), we get

Y (v) =
∑

i∈Z\{0}
h(λi)X̂(λi)ϕi(v) (21)
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where we have omitted the dependence on TW by writing λi =
λi(TW). The WFT of (W, Y ) is given by

[Ŷ ]j =

∫ 1

0

Y (v)ϕj(v)dv

=
∑

i∈Z\{0}
h(λi)

(
∫ 1

0

ϕi(v)ϕj(v)dv

)

X̂(λi)

= h(λj)X̂(λj)

from which we conclude that T̂H(λj) = h(λj).
We now determine the frequency response of Hn(Sn). Ap-

plying Hn(Sn) to the graph signal (Gn,xn), we get

yn = Hn(Sn)xn = Vnh(Λ(Sn)/n)V
H

nxn

= Vnh(Λ(Sn)/n)x̂n.

The GFT of (Gn,yn) is given by

[ŷn]j = vH

njVnh(Λ(Sn)/n)x̂n = h(λj(Sn)/n)[x̂n]j

and therefore Ĥn(λj(Sn)) = h(λj(Sn)/n).
Since Gn → W, from Lemma 4 it holds that λj(Sn)/n →

λj . Because h is continuous, this implies h(λj(Sn)/n) →
h(λj), which completes the proof. �

The spectral or frequency response of a graph filter thus

converges to that of the corresponding graphon filter provided

that the frequency response of the filter, h, is continuous. In

particular, this is the case for polynomials, so that the frequency

response induced by LSI graph filters (12) converges to that

of their corresponding graphon filters (18). To understand the

importance of this result, suppose that we design a filter with a

certain spectral behavior on the graphon; Theorem 2 tells us that

the same spectral behavior can be expected from the application

of this filter (or, more precisely, of the graph filter with same

coefficients) on graphs sampled from the graphon. By a simple

triangle inequality argument, it then follows that filters can be

transferred between graphs associated with the same graphon to

obtain a similar spectral behavior. This is the first evidence of

graph filter transferability.

Nevertheless, Theorem 2 has a limitation. It only gives ac-

count of the limit behavior of the graph filter response in the

frequency domain, while graph filters operate in the node do-

main. To analyze the vertex domain behavior of graph filters, we

start with the simple case of bandlimited signals. Putting together

Theorems 1 and 2, we can show that, when the limit of the graph

signals is bandlimited, the graph filter outputs converge in the

vertex domain.

Corollary 1 (Convergence of graph filter response for

bandlimited graphon signals): Let {Gn} be a sequence

of graphs converging to the graphon W, where W is

non-derogatory. Let Hn(Sn) = Vnh(Λ(Sn)/n)V
H
n be a se-

quence of filters on the graphs {Gn}, and let (THX)(v) =
∑

i∈Z\{0} h(λi)X̂(λi)ϕi(v) be a filter on the graphon W. Con-

sider the sequence of graph signals {(Gn,xn)} and let {πn} be

a sequence of permutations such that {(Gn,xn)} → (W, X)
in the sense of Definition 2. Then, yn = H(πn(Sn))πn(xn)
converges to Y = THX .

Fig. 5. Lipschitz continuous filter function h(λ) with Lipschitz constant L.
Only the positive eigenvalue axis is depicted for simplicity. Lipschitz filters
eliminate the requirement that the graphon signal be bandlimited because they
bound the filter variation for signal components associated with eigenvalues
smaller than c.

Proof: Without loss of generality, assume that the permu-

tation sequence {πn} is a sequence of identity permutations,

i.e., the labeling of the signals xn already matches the label-

ing for which the graphs converge in cut norm. Let the WFT

of (W, Y ) be [Ŷ ]i = T̂H(λi)[X̂]i and the GFT of (Gn,yn)

be [ŷn]i = Ĥn(λi(Sn)/n)[x̂n]i. By Theorem 1, [x̂n]i → [X̂]i,

and, by Theorem 2, Ĥn(λi(Sn)/n) → T̂H(λi). Since T̂H is a

linear operator, and hence continuous, [ŷn]i → [Ŷ ]i. Applying

Theorem 1 once again for the iGFT, we conclude thatyn → Y .�

Cor. 1 extends upon Theorem 2 by showing that, provided that

the sequence of input signals {(Gn,xn)} converges to a ban-

dlimited graphon signal, the output signals obtained by applying

the filters Hn(S) converge in the same sense as {(Gn,xn)}
in the vertex domain. The requirement that the graphon signal

be bandlimited arises from the difficulty of matching the GFT

and WFT coefficients associated with small eigenvalues, i.e.,

eigenvalues λi for which |i| is large. This is illustrated in Fig. 4.

Note that, as the eigenvalues approach 0, it becomes hard to tell

which graph eigenvalue converges to which graphon eigenvalue,

as the eigenvalue difference λi − λi+1 tends to zero as i → ∞.

This requirement can be eliminated by considering Lipschitz

graph and graphon filters, i.e., filters with Lipschitz continuous

h(λ). A function h : [0, 1] → R isL-Lipschitz continuous if, for

all λ, λ′ ∈ [0, 1],

|h(λ)− h(λ′)| ≤ L|λ− λ′|. (22)

For h differentiable, this is equivalent to bounding dh/dλ by L
in absolute value. An example of Lipschitz continuous filter is

shown in Fig. 5. For filter functions h satisfying (22), we can

show that the graph filters converge in the vertex domain for any

graphon signal, not only bandlimited ones, because the variation

of Lipschitz filters can be bounded close to zero [cf. Fig. 5].

Theorem 3 (Convergence of filter response for Lips-

chitz continuous graph filters): Let {Gn} be a sequence

of graphs converging to the graphon W, where W is

non-derogatory. Let Hn(Sn) = Vnh(Λ(Sn)/n)V
H
n be a se-

quence of filters on the graphs {Gn}, and let (THX)(v) =
∑

i∈Z\{0} h(λi)X̂(λi)ϕi(v) be a filter on the graphon W. Con-

sider a sequence of graph signals {(Gn,xn)} and let {πn} ∈ P
be a sequence of permutations such that {(Gn,xn)} → (W, X)
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in the sense of Definition 2. Then, yn = H(πn(Sn))πn(xn)
converges to Y = THX .

Proof: To prove convergence of the (Gn,yn) to (W, Y ), we

consider the graphon signals (Wπn(Gn), Xπn(Gn)) induced by

the graph signals (πn(Gn), πn(xn)). The spectral properties of

these signals and of the corresponding graph signals are related

through Lemma 2. To simplify notation, we once again leave

the dependence on πn(Gn) implicit and writeWn = Wπn(Gn)

andXn = Xπn(Gn). We also denote the induced graphon eigen-

values λn
i = λi(TWn

). Recall that these are given by λn
i =

λi(Sn)/n per Lemma 2. Without loss of generality, consider

the normalized filter function h̄(λ) = h(λ)/ supλ∈[0,1] |h(λ)|.
The signal (W, Y ) obtained by applying TH̄ to (W, X) can be

written as

Y (v) =
∑

i∈Z\{0}
h̄(λi)X̂(λi)ϕi(v) (23)

and (Wn, Yn), which is induced by yn = H̄(Sn)xn, as

Yn(v) =
∑

i∈Z\{0}
h̄(λn

i )X̂n(λ
n
i )ϕi(TWn

)(v). (24)

The dependence of the eigenfunctionsϕi(TWn
)onTWn

is made

explicit to distinguish them from ϕi, the eigenvalues of TW.

To show that the (Wn, Yn) converge to (W, Y ), we start by

writing their norm difference using (23) and (24),

‖Y − Yn‖

=

∥

∥

∥

∥

∥

∥

∑

i∈Z\{0}
h̄(λi)X̂(λi)ϕi −

∑

i∈Z\{0}
h̄(λn

i )X̂n(λ
n
i )ϕi(TWn

)

∥

∥

∥

∥

∥

∥

.

(25)

Defining the set C = {i | |λi| ≥ c} for c =
(1− |h̄0|)/L(2‖X‖ε−1 + 1) with ε > 0 and h̄0 = h̄(0),
these sums can be split up between i ∈ C and i /∈ C to yield

∥

∥

∥

∥

∥

∥

∑

i∈Z\{0}
h̄(λi)X̂(λi)ϕi −

∑

i∈Z\{0}
h̄(λn

i )X̂n(λ
n
i )ϕi(TWn

)

∥

∥

∥

∥

∥

∥

≤
∥

∥

∥

∥

∥

∑

i∈C
h̄(λi)X̂(λi)ϕi −

∑

i∈C
h̄(λn

i )X̂n(λ
n
i )ϕi(TWn

)

∥

∥

∥

∥

∥

(i)

+

∥

∥

∥

∥

∥

∑

i/∈C
h̄(λi)X̂(λi)ϕi −

∑

i/∈C
h̄(λn

i )X̂n(λ
n
i )ϕi(TWn

)

∥

∥

∥

∥

∥

(ii).

(26)

Note that (i) corresponds to the difference between two ban-

dlimited graphon signals. By Cor. 1, there exists n0 such that,

for all n > n0,

∥

∥

∥

∥

∥

∑

i∈C
h̄(λi)X̂(λi)ϕi −

∑

i∈C
h̄(λn

i )X̂n(λ
n
i )ϕi(TWn

)

∥

∥

∥

∥

∥

< ε.

(27)

For (ii), we use the filter’s Lipschitz property and Cauchy-

Schwarz to write
∥

∥

∥

∥

∥

∑

i/∈C
h̄(λi)X̂(λi)ϕi −

∑

i/∈C
h̄(λn

i )X̂n(λ
n
i )ϕi(TWn

)

∥

∥

∥

∥

∥

≤
∥

∥

∥

∥

∥

∑

i/∈C
(h̄0 + Lc)X̂(λi)ϕi −

∑

i/∈C
(h̄0 − Lc)X̂n(λ

n
i )ϕi(TWn

)

∥

∥

∥

∥

∥

≤ |h̄0|
∥

∥

∥

∥

∥

∑

i/∈C

[

X̂(λi)ϕi − X̂n(λ
n
i )ϕi(TWn

)
]

∥

∥

∥

∥

∥

+ Lc

∥

∥

∥

∥

∥

∑

i/∈C
X̂(λi)ϕi

∥

∥

∥

∥

∥

+ Lc

∥

∥

∥

∥

∥

∑

i/∈C
X̂n(λ

n
i )ϕi(TWn

)

∥

∥

∥

∥

∥

(28)

where the last inequality follows from the triangle inequality.

Because {ϕi} and {ϕi(TWn
)} form complete bases of L2,

∑

i/∈C X̂(λi)ϕi and
∑

i/∈C X̂n(λ
n
i )ϕi(TWn

) can be written as

∑

i/∈C
X̂(λi)ϕi = X −

∑

i∈C
X̂(λi)ϕi and (29)

∑

i/∈C
X̂n(λ

n
i )ϕi(TWn

) = Xn −
∑

i∈C
X̂(λn

i )ϕi(TWn
) (30)

i.e., as the difference between the input signal and a bandlimited

signal. Using these identities and the triangle inequality, we

leverage the fact that Xn → X in L2 and apply Theorem 1 to

show that there exists n1 such that, for all n > n1,
∥

∥

∥

∥

∥

∑

i/∈C
X̂(λi)ϕi − X̂n(λ

n
i )ϕi(TWn

)

∥

∥

∥

∥

∥

≤ ‖X −Xn‖+
∥

∥

∥

∥

∥

∑

i∈C
X̂n(λ

n
i )ϕi(TWn

)− X̂(λi)ϕi

∥

∥

∥

∥

∥

< ε.

(31)

As for ‖∑i/∈C X̂n(λ
n
i )ϕi(TWn

)‖, we can use the identities

in (29) and (30) together with the triangle inequality to write

∥

∥

∥

∥

∥

∑

i/∈C
X̂n(λ

n
i )ϕi(TWn

)

∥

∥

∥

∥

∥

≤ ‖Xn −X‖+
∥

∥

∥

∥

∥

∑

i/∈C
X̂(λi)ϕi

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

∑

i∈C
X̂(λi)ϕi −

∑

i∈C
X̂n(λ

n
i )ϕi(TWn

)

∥

∥

∥

∥

∥

.

From Theorem 1 and the fact that Xn → X in L2,
∥

∥

∥

∥

∥

∑

i/∈C
X̂n(λ

n
i )ϕi(TWn

)

∥

∥

∥

∥

∥

≤ ε+

∥

∥

∥

∥

∥

∑

i/∈C
X̂(λi)ϕi

∥

∥

∥

∥

∥

for n > n1.

(32)

Applying the Cauchy-Schwarz and triangle inequalities and

substituting (31) and (32) in (28), we arrive at a bound for (ii),

∥

∥

∥

∥

∥

∑

i/∈C
h̄(λi)X̂(λi)ϕi −

∑

i/∈C
h̄(λn

i )X̂n(λ
n
i )ϕi(TWn

)

∥

∥

∥

∥

∥
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≤ (|h̄0|+ Lc)ε+ 2Lc

∥

∥

∥

∥

∥

∑

i/∈C
X̂(λi)ϕi

∥

∥

∥

∥

∥

≤ (|h̄0|+ Lc)ε+ 2Lc‖X‖ = ε. (33)

Putting (27) and (33) together, we have thus proved that for all

n > max {n0, n1}, ‖Y − Yn‖ < 2ε, i.e., the output of H̄(Sn)
converges to the output of TH̄ in the vertex domain. �

Theorem 3 broadens the scope of Cor. 1 by extending the

filter response convergence result to sequences of graph signals

converging to generic finite energy graphon signals that are

not necessarily bandlimited. The Lipschitz condition on the

filter h allows bounding the variability of the filter response

for signal components associated with eigenvalues smaller than

some threshold c ∈ [0, 1], which can be made arbitrarily small

[cf. Fig. 5].

Theorem 3 can be further generalized to any graphon as

opposed to only non-derogatory ones. The difference in the case

of derogatory graphons is that the WFT cannot be defined, so

Theorem 1 cannot be used in the proof of Theorem 4. The proof

argument needed in this case is therefore slightly different. How-

ever, this is extenuated by Prop. 2. As long as eigengaps between

adjacent graphon eigenspaces can be defined, this proposition

ensures convergence not only of the eigenvectors, but also of

the finite-dimensional eigenspaces associated with the repeated

eigenvalues of an arbitrary graphon.

Proposition 2 (Graphon subspace convergence): Let {Gn}
be a sequence of graphs with eigenvalues λi(Sn) converging to

the graphonWwith eigenvaluesλi. If a givenλi has multiplicity

mi and λn
ik

= λik(Sn)/n are the eigenvalues of WGn
(i.e., of

the graphon induced by Gn) converging to λi [cf. Lemma 2],

then there exists a sequence of permutations {πn} ∈ P such that

∣

∣

∣

∣

∣

∣

∣

∣

∣
ETWπn(Gn)

({λn
ik
})− ETW

(λi)
∣

∣

∣

∣

∣

∣

∣

∣

∣
→ 0

where P is the set of admissible permutation sequences for

the sequence {Gn} (Definition 1) and ET (Λ) is the projection

operator onto the subspace associated with the eigenvalues in

the set Λ of the operator T .

Proof: Refer to Appendix E in the supplementary material.�

With Prop. 2, we are now equipped to state our most general

result: vertex domain convergence of Lipschitz continuous graph

filters for graph sequences converging to arbitrary graphons.

This result is presented in Theorem 4. We defer the proof to the

appendices.

Theorem 4 (Convergence of filter response for Lipschitz con-

tinuous graph filters): Let {Gn} be a sequence of graphs con-

verging to the graphon W. Let Hn(Sn) = Vnh(Λ(Sn)/n)V
H
n

be a sequence of filters on the graphs{Gn}, and let (THX)(v) =
∑

i∈Z\{0} h(λi)X̂(λi)ϕi(v) be a filter on the graphon W. Con-

sider a sequence of graph signals {(Gn,xn)} and let {πn} ∈ P
be a sequence of permutations such that {(Gn,xn)} → (W, X)
in the sense of Definition 2. Then, yn = H(πn(Sn))πn(xn)
converges to Y = THX .

Proof: Refer to Appendix F in the supplementary material.�

The main takeaway from Theorems 3 and 4 is that, if the

limit graphon is known, we can trade the design of multiple

filters in different graphs by the centralized design of a single

graphon filter from which graph filters can then be sampled. In

practice, a more relevant implication of these theorems is that

graph filters can be transferred across graphs associated with the

same graphon. The ability to transfer graph filters is especially

important when graphs are large or dynamic, as the operations

involved in designing filters for these graphs can come out costly.

This property is also inherited by graph neural networks (GNNs)

based on these graph filters [37]. Transferability of GNNs has

been demonstrated empirically in a number of applications [29],

[30], and is formally characterized in [31], where transferability

bounds are derived for both GNNs and graph filters. Transfer-

ability of graph filters will also be illustrated in the numerical

experiments of Section V.

Remark 2: Note that, while the results presented in Theorems

1–4 may appear intuitive, their proofs are not. For instance,

our Fourier convergence theorem (Theorem 1) requires that

the graph and graphon signals be bandlimited for the GFT to

converge to the WFT. This is in constrast to classical signal

processing, where for any convergent sequence of length-n
discrete time signals on [0,1] the discrete Fourier transform

(DFT) converges to the Fourier transform (FT) regardless of the

underlying spectral properties. This occurs because the regular

line graphs underlying these signals have spectra that are evenly

distributed on [−1, 1] and therefore never accumulate around

zero. Unexpectedly, however, these conditions are not needed

to show convergence of graph filter outputs. Indeed, while one

would expect that graph filter outputs converge only for ban-

dlimited signals, this is not the case in Theorems 3–4. Instead,

these theorems require the filter to be Lipschitz for |λ| < c [cf.

Fig. 5]. This arises from the fact that, for small λ, the graph

eigenspaces can become hard to match to the corresponding

graphon eigenspaces since the eigenvalues of the latter accumu-

late near zero. We can therefore replace bandlimitedness by a

filter regularity condition.

V. NUMERICAL EXPERIMENTS

In this section, we present three numerical experiments to

illustrate the results of Theorems 1 through 4. In the first, we

sample graph signals from a Gaussian Markov Random Field

(GMRF) on ER, SBM and random geometric sensor networks

and compare the output of a graph diffusion process as the num-

ber of sensors increases. In the second, we compare the WFT of

pollutant dispersion signals drawn from the same model on two

geometric graphs corresponding to pollution sensor networks in

different cities. Finally, in Section V-C a linear graph filter is

optimized to predict movie ratings on a small user network and

is then applied to a large one.

A. GMRF Diffusion (S1)

In this experiment, we simulate a GMRF measured and dif-

fused on different sensor networks to analyze convergence of

the filter H(S) = S in networks of growing size. A graph signal

(G,x) is a GMRF on G if x ∼ N (µx,Σx) and Σx is given
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TABLE II
EXPRESSION OF W(ui, uj) FOR THE DIFFERENT GRAPHON MODELS IN

SECTION V-A

by [40]

Σx = |a0|2(I− aS)−1[(I− aS)−1]H (34)

where the covariance matrix is calculated after samplingG from

a random graph model for the sensor network, from which we

obtain S. Three graphons are considered. They are an Erdös-

Rényi (ER) [cf. Fig. 1(a)], a stochastic block model (SBM) [cf.

Fig. 2(a)], and a soft random geometric graph [cf. Fig. 2(c)].

Their expressions are presented in Table II.

To compare the diffusion outcomes of graph and graphon

signals, we first need to define a graphon signal equivalent of

the GMRF. We work with its approximation, which is obtained

by approximating the graphons as matrices SW. These matrices

are calculated by evaluating W(ui, uj) on 104 × 104 regularly

spaced points of the unit square. Then, the graphon GMRF is ob-

tained by samplingxW ∈ R
104 from the zero-mean multivariate

Gaussian with covariance matrix given by (34) for S = SW.

In order to observe convergence, we compare the outcome

of the diffusion of the graphon GMRF with the outcome of the

diffusion of an-node graph signal sampled from it for increasing

n. This is done by uniformly sampling points {ui}ni=1 from the

unit line and generating graphs Gn where the edges (i, j) are

Bernoulli random variables with success probabilityW(ui, uj),
i.e, [Sn]ij = [Sn]ji ∼ Bernoulli(W(ui, uj)). The graph signals

xn are obtained by interpolating xW at each ui.

We calculate the diffused graph signals yn = Snxn and

interpolate the approximation of the diffused graphon signal

yW = SWxW at {ui}ni=1, then compare them by computing

their norm difference for increasing values of n. The average

normalized norm difference is shown in Fig. 6 for 100 realiza-

tions of the graphon GMRFxW. We observe that, for all graphon

models, the norm differences decrease withn. This indicates that

the vertex response of H(S) = S converges as the graphs Gn

grow, as expected from Theorem 3.

B. Spectral Analysis of Air Pollution on Sensor Networks (S2)

The objective of this experiment is to compare the spectral

representations of air pollution signals collected at the nodes

of two distinct sensor networks of same size to illustrate GFT

convergence (Theorem 1). This problem can be interpreted as

comparing the spectra of graph pollution data in two cities, for

instance, New York and Philadelphia. The air pollution sensor

networks are modeled as soft random geometric graphs [38]

where, given nodes i and j and their coordinates (xi, yi) and

(xj , yj), the probability of connecting i and j is

p(i, j) ∝ exp

(

− β
√

(xi − xj)2 + (yi − yj)2
)

. (35)

Fig. 6. Norm difference between GMRF graphon signals diffused on ER, SBM
and geometric graphons and the corresponding graph signals diffused on sample
graphs of increasing size. The diffusion outputs have been normalized by n.

Fixing the x coordinate at xi = xj = x and normalizing y as

u = y/ymax, we can rewrite p(i, j) to fit the expression of the

graphon W(ui, uj) = exp(−β
√

(ui − uj)2).
In the cross-wind direction and at fixed altitude, the simplest

model for air pollution dispersion is a Gaussian on the distance

to the source of pollution in the cross-wind direction. Having

fixed x, we assume the cross-wind direction to be y. The air

pollution dispersion model is then

s(y) ∝ exp

(

− (y − ysource)
2

2σ2

)

,

where s(y) is the concentration of pollutants at the coordinate

y and the variance σ2 represents the cross-wind mixing [39,

Chapter 9]. If we assume ysource = 0 and once again normalize

y as u = y/ymax, this dispersion model can be interpreted as a

signal X(u) ∝ exp(−u2/2σ2) on the graphon associated with

the soft random geometric graph model of the sensor networks.

For multiple values of n and using coordinates {u(1)
i }ni=1 and

{u(2)
i }ni=1 sampled uniformly at random from the unit line, we

sample two distinctn-node graphsG1 andG2 from (35). In each

of these graphs, the graph signals are the pollutant concentrations

[s1]i = s(u
(1)
i ) and [s2]i = s(u

(2)
i ). We then compute the GFTs

ŝ1 and ŝ2, and sort them to find the minimum norm difference

min ‖ŝ1 − ŝ2‖ over different permutations of the labels of these

graphs. After repeating the experiment 50 times for eachn inn =
5, 10, 20, 50, 100, 200, 500, 1000, we graph the 68%, 95% and

99.7% quantile curves of the GFT norm difference (normalized

by ‖ŝ1‖) in Fig. 7. All confidence intervals shrink consistently

around the mean as n increases, indicating that the GFTs of the

air pollution signals in G1 and G2 indeed converge as expected

from Theorem 1.

C. Movie Rating Prediction Via User-Based Graph Filtering

(S3)

GivenU users andM movies, movie rating prediction consists

of completing a U ×M incomplete rating matrix by predicting

the ratings users would give to movies that they have not yet
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Fig. 7. Quantiles (68%, 95%, 99.7%) of the minimum normalized difference
between GFTs of air pollution signals on graphs drawn from the same geomet-
ric model (G1 and G2) for n = 5, 10, 20, 50, 100, 200, 500, 1000, over 50
iterations for each n.

rated. We interpret this problem as a GSP problem by con-

sidering movie ratings (i.e., the columns of the rating matrix)

to be graph signals on a network connecting similar users. A

number of graph-based models for movie rating prediction have

been proposed in the literature [13], [41], [42]. We consider

one of the methods in [41], which completes the rating matrix

by first solving an optimization problem to obtain the optimal

coefficients of a linear graph filter, and then applying it to the

graph signals corresponding to each movie’s rating vector on

the user network. Our objective is to calculate this graph filter

in subnetworks corresponding to small cohorts of users, and

observe how well it generalizes when applied to the full user

network.

The dataset we use is the MovieLens 100 k dataset [43], which

contains 100,000 ratings by U = 943 to M = 1582 movies.

The user similarity network is built from the data by computing

pairwise correlations from ratings given by each pair of users

to movies that they both have rated and, then, keeping only

the top-40 nearest neighbors to each user. Although these are

networks built from real data, i.e, to which we cannot attribute

a common generative model or graphon, the goal of this section

is to illustrate how our results can be implicitly observed even in

graphs that are not related by a common probability model, but

that are “similar” in some other empirical or statistical sense.

This is illustrated in Fig. 8, where user networks with 100 and

400 users are depicted. Even if the user network on the right has

4 times more users than the one on the left, we can see that the

large-scale structure of these networks is similar.

The coefficients of filters with K = 1, 2 and 3 filter taps are

optimized on networks of size 50, 100, 200, 400, 600, 800 and

943 nodes. We then compare the RMSE obtained by predicting

ratings using the filters calculated on the smaller networks and

the filters calculated on the full user network. The relative

RMSE differences and the base RMSE (obtained from the filter

calculated on the full user network) are shown in Table III. For

a network with n users, the reported RMSE difference corre-

sponds to that of the average among filters trained on �943/n�
different networks. Users were picked at random. We observe

Fig. 8. User networks built from the ratings of 100 (left) ad 400 (right) users
in the MovieLens 100 k dataset. The signals on these graphs correspond to the
ratings given to the movie “Toy Story”. The darker the node, the higher the
rating, and the darker the edge, the higher the rating difference between the
endnodes.

TABLE III
RELATIVE RMSE DIFFERENCE FOR RATING PREDICTION BASED ON

K = 1, 2, 3 FILTERS OBTAINED ON 50, 100, 200, 400, 600 AND 800-USER

NETWORKS, WITH RESPECT TO THE BASE RMSE OF THE SAME FILTERS

OBTAINED ON THE FULL 943-USER NETWORK

that, for all K, the RMSE difference gets steadily smaller as the

network size increases. In particular, for K = 1 and K = 3 the

relative RMSE difference is less than 1% for filters obtained on

networks with under half the number of total users in the dataset.

VI. CONCLUSION

We have proposed a novel graphon signal processing frame-

work which simplifies the analysis of signals and the design

of filters on very large and dynamic networks. This framework

introduces graphon signals, the graphon Fourier transform and

LSI graphon filters. We have shown that graphon filters and the

WFT are the limit objects of graph filters and of the GFT. These

results justify transferring signal analysis methods and informa-

tion processing systems from graphs to graphons or between

graphs associated with the same graphon. GFT and graph filter

convergence were demonstrated in two experiments involving

graphs drawn from the same graphon, and, in a third experiment,

we illustrate how graph filter behavior can be transferred even in

situations where graphs are built from model-free data and can

only empirically or statistically be said to belong to the same

“class”.

APPENDIX A

PROOF OF LEMMA 2

The proof follows by direct computation. For j ∈ L,

(TWG
ϕj)(u) =

∫ 1

0

WG(u, v)ϕj(v)dv

=
√
nI (u ∈ Ik)

∫ 1

0

[S]k�[vj ]k × I (v ∈ I�) dv
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=
√
nI (u ∈ Ik)

n
∑

�=1

[S]k�[vj ]k

∫

I�

dv

=
[Svj ]k

n
×√

nI (u ∈ Ik)

=
λj(S)

n

[

[vj ]k ×√
nI (u ∈ Ik)

]

= λj(TWG
)ϕj(u).

If j /∈ L, then 〈ϕj , ϕk〉 = 0 for all k ∈ L. In this case, we

can trivially write (TWG
ϕj)(u) = 0 = λj(TWG

)ϕj(u). Note

that since the vk are orthonormal, so are the {ϕk(TWG
)} and

therefore a basis completion {ϕj} can always be obtained. To

conclude, compute for j ∈ L

[X̂G]j =

∫ 1

0

ϕj(v)XG(v)dv

=
√
n

∫ 1

0

[vj ]�[x]� × I (v ∈ I�) dv

=
√
n

n
∑

�=1

[vj ]�[x]�

∫

I�

dv =
vT
jx√
n

=
[x̂]j√
n

.

If j /∈ L, recall that since the {vj} form a basis of R
n, we can

write x =
∑

k∈L ckvk. Hence,

[X̂G]j =

∫ 1

0

ϕj(v)XG(v)dv

=

∫ 1

0

[x]� × I (v ∈ I�)ϕj(v)dv

=

∫ 1

0

∑

k∈L
ck[vk]� × I (v ∈ I�)ϕj(v)dv

=
1√
n

∑

k∈L
ck

∫ 1

0

ϕk(v)ϕj(v)dv = 0. �

APPENDIX B

PROOF OF LEMMA 3 AND LEMMA 4

To prove Lemma 3, we first repeat Lemma 4 below.

Lemma 4 (Eigenvalue convergence): Let {Gn} be a sequence

of graphs with eigenvalues {λj(Sn)}j∈Z\{0}, and W a graphon

with eigenvalues {λj(TW)}j∈Z\{0}. Assume that, in both cases,

the eigenvalues are ordered by decreasing order of absolute value

and indexed according to their sign. If {Gn} converges to W,

then, for all j

lim
n→∞

λj(Sn)

n
= lim

n→∞
λj(TWGn

) = λj(TW). (36)

Proof: The proof is essentially the one for [36, Theorem 6.7],

but we reproduce it here using our notation. Recall that since

the sequence {Gn} converges to W, the density of homomor-

phisms for any motif also converges. The result then follows

by choosing a homomorphism connected to the eigenvalues of

their induced operators, namely the k-cycle Ck. Indeed, notice

that for any graphon W′ and k ≥ 2, we have, by definition, that

t(Ck,W
′) =

∑

j∈Z\{0} λj(TW′)k. Hence,

lim
n→∞

∑

j∈Z\{0}
λj(TWn

)k =
∑

j∈Z\{0}
λj(TW)k, for k ≥ 2 (37)

where TWn
= TWGn

. It now suffices to show that (37) implies

λj(TWn
) → λj(TW).

We start by bounding the eigenvalues of any graphon W′ in

terms of its density of homomorphisms. In particular, for k = 4
we obtain that

m
∑

j=1

λj(TW′)4 ≤
∑

j∈Z\{0}
λj(TW′)4 = t(C4,W

′) ⇒

λm(TW′) ≤
[

t(C4,W
′)

m

]1/4

and

−1
∑

j=−m

λj(TW′)4 ≤
∑

j∈Z\{0}
λj(TW′)4 = t(C4,W

′) ⇒

λ−m(TW′) ≥ −
[

t(C4,W
′)

m

]1/4

.

Since t(C4,Wn) is a convergent sequence, it has a bound B
[36], which implies that

|λj(TWn
)| ≤

(

B

|j|

)1/4

, for all j ∈ Z \ {0}. (38)

Note that for k ≥ 5, we can take the limit in (37) term-

by-term since, as |λj(TWn
)k| ≤ (B/|j|)k/4 and the series

∑

i(B/|j|)k/4 is convergent for k > 4,
∑

j∈Z\{0} |λj(TWn
)k|

also converges. Hence, from (37), we have

lim
n→∞

∑

j∈Z\{0}
λj(TWn

)k =
∑

j∈Z\{0}
ζkj =

∑

j∈Z\{0}
λj(TW)k

(39)

for k ≥ 5, where ζkj = limn→∞ λj(TWn
)k.

To conclude, we proceed by induction over an ordering of the

sequence of eigenvalues λj(TW), namely over j�, 
 = 1, 2, . . . ,

such that |λj1(TW)| ≥ |λj2(TW)| ≥ · · · ≥ |λj�(TW)|. Sup-

pose that ζj� = λj�(TW) for 
 < 
∗ and let λj�∗ (TW) be of

multiplicity a and appear b times in the sequence {ζj} and

−λj�∗ (TW) be of multiplicity a′ and appear b′ times in {ζj}.

The identity in (39) then reduces to

[

b+ (−1)kb′
]

+
∑

�>�∗

(

ζj�
λj�∗ (TW)

)k

=
[

a+ (−1)ka′
]

+
∑

�>�∗

(

λj�(TW)

λj�∗ (TW)

)k

, for k ≥ 5,

where we divided both sides by λj�∗ (TW)k. Due to the ordering

of the λj� , for k → ∞ through the even numbers we get b+
b′ = a+ a′ and through the odd numbers we get b− b′ = a−
a′. Immediately, we have that a = a′ and b = b′, so that ζj�∗ =
λj�∗ . Although this argument assumes ζj� < λj�∗ for all 
 > 
∗,

applying the same procedure to an ordering of the sequence {ζj}
yields the same conclusion. �
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We will also require the following well known result about

the perturbation of self-adjoint operators. For σ a subset of

the eigenvalues of a self-adjoint operator T , define the spectral

projection ET (σ) as the projection onto the subspace spanned

by the eigenfunctions relative to the eigenvalues in σ.

Proposition 3: Let T and T ′ be two self-adjoint operators

on a separable Hilbert space H whose spectra are partitioned

as σ ∪ Σ and ω ∪ Ω respectively, with σ ∩ Σ = ∅ and ω ∩ Ω =
∅. If there exists d > 0 such that minx∈σ, y∈Ω |x− y| ≥ d and

minx∈ω,y∈Σ |x− y| ≥ d, then

|||ET (σ)− ET ′(ω)||| ≤ π

2

|||T − T ′|||
d

(40)

Proof: See [44]. �

Lastly, we need two results related to the graphon norm. The

first is Lemma 1, which states that if a sequence of graphs

converges to a graphon in the homomorphism density sense,

it also converges in the cut norm (7). The second, here presented

as Prop. 4, is due to [26, Theorem 11.57] and bounds the

L2-induced norm of the graphon operator by is cut norm.

Proposition 4: Let TW be the operator induced by the kernel

W. Then, ‖W‖� ≤ |||TW||| ≤
√

8‖W‖�.

This is a direct consequence of [45, Theorem 3.7(a)] and of the

fact that t(C2,W) is the Hilbert-Schmidt norm of TW, which

dominates the L2-induced operator norm.

We can now proceed with the proof of our lemma:

Proof of Lemma 3: For j ∈ C, let σ = λj(TW), Σ =
{λi(TW)}i 
=j ,ω = λj(TWn

), andΩ = {λi(TWn
)}i 
=j in Prop.

3 to get

|||Ej − Ej,n||| ≤
π

2

|||TWn
− TW|||

dj,n
(41)

where Ej and Ej,n are the spectral projections of TW and TWn

with respect to their j-th eigenvalue and

dj,n = min (|λj − λj+1(TWn
)|, |λj − λj−1(TWn

)|,
|λj+1 − λj(TWn

)|, |λj−1 − λj(TWn
)|) ,

where we omitted the dependence on W by writing λj =
λj(TW).

Fix ε > 0. From Lemma 4, we know we can find n1 such that

|dj,n − δj | ≤ δj/2 for all n > n1, where

δj = min (|λj − λj+1|, |λj − λj−1|) .

Since W is non-derogatory, δj > 0. Additionally, the cut norm

convergence of graphon sequences (Lemma 1) together with

Prop. 4 implies there exists n2 such that |||TWn
− TW||| ≤

εδj/π. Hence, for all n > max(n1, n2) it holds from (41) that

|||Ej − Ej,n||| ≤
π

2

εδj/π

δj/2
= ε. (42)

Since ε is arbitrary, (42) proves that the projections onto the

eigenfunctions of the same eigenvalue converge. I.e., the eigen-

function sequence ϕj(TWn
) itself converges weakly. Because

the norms of theϕj(TWn
) andϕj(TW) are always equal to one,

in this case weak convergence also implies strong convergence.

To see this, note that ‖ϕj(TWn
)− ϕj(TW)‖2 can be written as

‖ϕj(TWn
)− ϕj(TW)‖2

= 〈ϕj(TWn
)− ϕj(TW), ϕj(TWn

)− ϕj(TW)〉
= 〈ϕj(TWn

), ϕj(TWn
)− ϕj(TW)〉

− 〈ϕj(TW), ϕj(TWn
)− ϕj(TW)〉

= ‖ϕj(TWn
)‖2 − 2〈ϕj(TWn

), ϕj(TW)〉+ ‖ϕj(TW)‖2

→ ‖ϕj(TWn
)‖2 − 2〈ϕj(TW), ϕj(TW)〉+ ‖ϕj(TW)‖2

= ‖ϕj(TWn
)‖2 − ‖ϕj(TW)‖2 = 1− 1 = 0

where the sixth line follows from weak convergence of the

ϕj(TWn
) to ϕj(TW).

To proceed, let us apply Prop. 3 to the subspace spanned

by the remaining eigenfunctions with indices not in C. Let

σ = {λi(TW)}i/∈C , Σ = {λi(TW)}i∈C , ω = {λi(TWn
)}i/∈C ,

and Ω = {λi(TWn
)}i∈C in (40) to get

|||E ′ − E ′
n||| ≤

π

2

|||TWn
− TW|||
dn

, (43)

where E′ and E ′
n are the projections onto the subspaces given

by S = span({ϕi(TW)}i/∈C) and Sn = span({ϕi(TWn
)}i/∈C)

respectively. From Prop. 3, the denominator dn must

satisfy dn ≤ mini/∈C,j∈C |λi(TWn
)− λj(TW)| = d(1)

and dn ≤ mini/∈C,j∈C |λi(TW)− λj(TWn
)| = d(2). For j ∈ C,

we have |λj(TW)| ≥ c and sod(1) ≥ mini/∈C c− |λi(TWn
)|. As

for d(2), there exists n0 such that d(2) ≥ mini/∈C c− |λi(TW)|
for n > n0 because λj(TWn

) → λj(TW) for all j from Lemma

4. Thus, for n > n0 Prop. 3 holds with dn given by

dn ≤ min

[

min
i/∈C

c− |λi(TWn
)|, min

i/∈C
c− |λi(TW)|

]

which is satisfied by dn = infi/∈C c− |λi(TWn
)|. Since the

graphon W is non-derogatory, there exists an n1 such that

dn > 0 for all n > max(n0, n1) and we can use the same

argument as above to obtain that E′
n → E ′ in operator norm.

The quantity dn is illustrated in Fig. 3.

To see how this implies that for all i /∈ C the functionϕi(TWn
)

converges weakly to a function in the subspace S—which we

denote Ψi—, let Φ ∈ S⊥. Then,

|〈ϕi(TWn
),Φ〉| = |〈E ′

nϕi(TWn
),Φ〉|

= |〈E ′
nϕi(TWn

),Φ〉 − 〈E ′ϕi(TWn
),Φ〉|

where the last equality holds because 〈E′ϕi(TWn
),Φ〉 = 0 due

to Φ ∈ S⊥. From the linearity of inner products, this can be

rewritten as

|〈ϕi(TWn
),Φ〉| = |〈E ′

nϕi(TWn
)− E ′ϕi(TWn

),Φ〉|
= |〈(E′

n − E ′)ϕi(TWn
),Φ〉|

and, applying Cauchy-Schwarz,

|〈ϕi(TWn
),Φ〉| ≤ ‖E′

n − E ′‖‖Φ‖.
Taking the limit on both sides of the inequality, we get

lim
n→∞

|〈ϕi(TWn
),Φ〉| ≤ ‖Φ‖ lim

n→∞
‖E ′

n − E ′‖ = 0.
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Hence, ϕi(TWn) converges weakly to a Ψi that is perpendicular

to elements of S⊥, i.e., Ψi ∈ S . �
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