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Graphon Signal Processing

Luana Ruiz"”, Luiz F. O. Chamon

Abstract—Graphons are infinite-dimensional objects that repre-
sent the limit of convergent sequences of graphs as their number of
nodes goes to infinity. This paper derives a theory of graphon signal
processing centered on the notions of graphon Fourier transform
and linear shift invariant graphon filters, the graphon counterparts
of the graph Fourier transform and graph filters. It is shown that
for convergent sequences of graphs and associated graph signals:
(i) the graph Fourier transform converges to the graphon Fourier
transform when the graphon signal is bandlimited; (ii) the spectral
and vertex responses of graph filters converge to the spectral and
vertex responses of graphon filters with the same coefficients. These
theorems imply that for graphs that belong to certain families, i.e.,
that are part of sequences that converge to a certain graphon, graph
Fourier analysis and graph filter design have well defined limits. In
turn, these facts extend applicability of graph signal processing
to graphs with large number of nodes — since signal processing
pipelines designed for limit graphons can be applied to finite graphs
— and to dynamic graphs — since we can relate the result of SP
pipelines designed for different graphs from the same convergent
graph sequence.

Index Terms—Graphons, convergent graph sequences, graph
filters, graph Fourier transform, graph signal processing.

1. INTRODUCTION

RAPH signal processing (GSP) provides an array of tools
G to process signals supported on graphs [1]-[3] but suffers
from limitations in the case of graphs with /arge number of
nodes or dynamic topologies. In these cases, just the acquisition
of the graph may be challenging, which hinders the use of
GSP tools such as filtering [4], [5] and graph neural network
design [6] because they take the graph structure as a given. Other
GSP tools like sampling [7]-[9] deal precisely with acquiring
compact representations of graph signals. However, the design
of sampling sets [ 10] requires not only access to the graph but the
computation of an eigendecomposition that can be very costly
for large matrices [11], [12, Chapter 1.1]. Challenges are most
acute when the graph is both large and dynamic. In such cases,
costly numerical computations must, in principle, be repeated as
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the graph changes, because the effect of graph perturbations is
understood only in the case of relabelings [13] or small perturba-
tions that induce small changes on the original eigenspace [14].

Yet, large graphs can often be identified as being similar to
each other in the sense that they share structural properties. For
instance, Figs. 1(b)—(c) show two instances of a random graph
with 20 nodes, and Fig. 1(d) a random graph with 50 nodes.
These graphs look similar and one can therefore foresee that
analyzing signals supported on either of them should yield sim-
ilar results. If this were the case, it would mitigate the challenge
of dynamic variation since we could then design a filter for the
graph in Fig. 1(b) and use it in the graph in Fig. 1(c). Similarly,
it would mitigate the challenge of large size because we could
design a filter for the graph in Fig. 1(b) and use it to process
signals supported on the graph in Fig. 1(d). This paper formalizes
this intuition ans shows that this graph interchangeability is
possible when the graphs belong to the same “family,” where
each family is identified by a different graphon; see Fig. 1(a).

Graphons can be thought of as the infinite-dimensional coun-
terparts of graphs, i.e., as graphs with an uncountable number
of nodes. Appearing in many disciplines, they have been used
to estimate random graph models in mathematics and statis-
tics [15]-[20]; stabilize large-scale networks of linear systems
in controls [21]; and perform graph partitioning [22], [23], node
centrality [24] and network game equilibria computations [25]
in very large networks. Graphons have two theoretical inter-
pretations. They can be seen as generative models for families
of graphs with weighted or stochastic edges [26, Chapter 10],
and as the limit objects of convergent sequences of graphs [26,
Chapter 7], [27]. In practice, these two interpretations suggest
that graphons identify families of networks that are similar in
the sense that the density of certain “motifs” is preserved. This
motivates the study of signal processing on graphons as a way to
enable the analysis of signals supported on large and/or dynamic
graphs.

In this work, we thus introduce graphon signal processing
(WSP), a framework to synthesize, analyze and process signals
on graphons. More specifically, we put forward three novel
technical contributions: (i) we define graphon signals and their
graphon Fourier transforms (Definition 4), which can be seen
as the continuous counterparts of graph signals and of their
graph Fourier transforms; (ii) we show, by building upon the
results of [28], that the graph Fourier transform converges to
the graphon Fourier transform (Theorem 1) when the graphon
signal is bandlimited (Definition 5); (iii) we define linear-shift-
invariant (LSI) graphon filters (Definition 3), and prove that LSI
graph filters converge to LSI graphon filters in both the spectral
(Theorem 2) and vertex domains (Theorems 3-4).
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(a) Graphon

(b) n = 20

Fig. 1.
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(©) n =20 (d)n =50

Erdos—Rényi (constant) graphon with probability p = 0.2 and three n-node graphs sampled from it, illustrating scenarios where WSP can be useful. We

can analyze signals and design systems on a graphon, to apply them on a graph sampled from it ((a) — (b)); on a graph, to apply on another graph of same size ((b)

— (¢)); and on a small graph, to apply on a larger graph ((c) — (d)).

Theorems 1-4 are especially important because they provide
theoretical justification for transferring signal analysis methods
and information processing architectures across graphs arising
from (or leading to) the same graphon. Indeed, the ability of GSP
systems to be transferred between graphs, also known as trans-
ferability, has been demonstrated empirically in network prob-
lems in wireless [29] and robotics [30]. We identify three trans-
ferability scenarios for which the results in this work provide a
theoretical foundation: (S1) graphon to graph (Figs. 1(a)—1(b));
(S2) graph to graph of same size (Figs. 1(b)—1(c)); and (S3)
graph to larger graph (Figs. 1(c)—1(d)).

Attesting to the practical value of the WSP framework, each
of these scenarios is illustrated in a numerical experiment in
Section V. For instance, to showcase (S1), we compare filter
responses on a graphon and on a graph sampled from this
graphon. The filter is a simple diffusion filter applied to a Gaus-
sian Markov random field (GMRF). Interestingly, this example
makes for a parallel with classical signal processing, where even
if the application is digital, it is sometimes convenient to design
and study filters in continuous time. For (S2), we perform signal
analysis in different graphs of same size drawn from a common
graphon. Two n-node air pollution sensor networks are consid-
ered. As n grows, we compare the Fourier transforms of the same
air pollution signal on top of them. This illustrates the behavior of
SP tools when applied to networks for which we only have access
to an approximated or perturbed version of the graph. Finally, we
illustrate (S3) by transferring filters designed on small graphs
to large graphs in a movie recommendation example. Using
real data from the MovieLens dataset, we calculate the optimal
coefficients of a rating prediction filter on networks containing
only a subset of all users, and then use it to predict movie ratings
on the full user network. The goal of this experiment is to show
that graph filters are transferable at scale, which significantly
simplifies signal processing on large graphs.

The rest of this paper is organized as follows. Preliminary defi-
nitions are recalled in Section II. Section III introduces the WSP
framework and convergence results are stated in Section IV.
Section V details the numerical experiments described above
(S1-S3). Proofs are deferred to the appendices. Unless otherwise
specified, || - || refers to the L? norm. When referring to the
operator norm induced by the L? norm (spectral norm), we use
the notation || - ||

II. GRAPHS AND GRAPHONS

Graphs are triplets G = (V,£,V) where V is a set of n
nodes, £ CV x Visasetofedgesand W : & — R is a weight

function assigning weights W(i, j) = w;; to edges (i,7) in &.
The graph G can be equivalently represented by a number of
matrix representations, which in the context of graph signal
processing (GSP) are generically termed graph shift operators
(GSOs). In this paper, we fix the GSO to be the adjacency matrix
S satisfying S;; = w;; if and only if (4, j) € £. We restrict our
attention to undirected graphs with edge weights in the [0,1]
interval, so that S = ST and S € [0, 1]"*™. We will also use the
notations G = (V, £, V) and G = (V, &, S) interchangeably.
A graphon is a bounded symmetric measurable function

W :[0,1)> = [0,1] (1)

which represents a graph with an uncountable number of
nodes [26, Chapter 7], [15]. By construction, graphons can also
be interpreted as generative models for the edges of weighted
or stochastic graphs. Namely, by associating sample points
u; € [0,1] tonodes i € {1,2,...,n}, we can construct n-node
graphs G,, where the edges are defined either by assigning
edge weight W (u;,u;) to (¢,7) or by connecting ¢ and j with
probability

Dij = W (u;,uj). (2

In the latter case, the G,, are unweighted. If, additionally, the
u; are sampled independently and uniformly at random, these
stochastic graphs are called W -random graphs. Three examples
of graphons and of W-random graphs sampled from them are
shown in Fig. 2. The one in Fig. 2(a) is a stochastic block model
(SBM) graphon with two balanced communities where the intra-
community edge probability is 0.8 and the inter-community edge
probability is 0.2. The one in Fig. 2(b) is also a SBM graphon
with the same inter- and intra-community probabilities, but with
unbalanced communities. The one in Fig. 2(c) is an exponential
graphon, which can be used to generate graphs where nodes are
connected if their labels u; and u; are close.

A. Convergent Sequences of Graphs

A second and perhaps more interesting interpretation of
graphons is as the limit objects of convergent graph sequences.
A sequence of graphs { G, } is said to converge if and only if the
density of homomorphisms between any finite, undirected and
unweighted graph F = (V) £’), which we call a morif, and the
G, converges [27]. Homomorphisms between a motif F and an
arbitrary graph G = (V, £, S) are adjacency preserving maps
from V' to V, i.e., amap 8: )V — V is a homomorphism if,
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(a) SBM with balanced communities

Fig. 2.

(b) SBM with imbalanced communities

(c) Exponential

Graphons and 12-node W-random graphs. (a) and (b) show SBM graphons and graphs with 2 communities and p¢;;, = 0.8, Pe;e; = 0.2.(c) shows an

exponential graphon W (u, v) = exp(—2.3(u — v)?) and the corresponding graph.

forevery (i,7) € £, (8(4),8(j)) € E. The graph F can thus be
interpreted as a graph pattern that we want to “identify” in G.

A motif F will typically occur in multiple locations of the
graph G. Thus, we can count the number of homomorphisms
between F and G, which we denote hom(F, G). Since there are
a total of [V|V'I possible maps between the vertices of F and
G but only a fraction of them are homomorphisms, we further
define the density of homomorphisms from F to G as

_ Zﬂ H(z ])65/[ ] B(#)B(5)
VP ‘

hom(F, G)

3)

This is easiest to understand when G is unweighted, in which
case t(F, G) is simply the fraction of the total number of ways
in which the motif F can be mapped into G.

The concept of homomorphism densities can also be gener-
alized to graphons. We define the density of homomorphisms
between the motif F' and the graphon W as

H W (u;, uj) Hdul “4)

(i,5)€&’ %

t(F, W)
[0,1]M1

This can be interpreted as the probability of sampling the motif F
from the graphon W. With these definitions in hand, a sequence
of undirected graphs {G,} is said to converge to the graphon
W if, for all finite simple graphs F,

lim ¢(F, G,) = {(F, W). )
In this case, we refer to W as the limit graphon of the se-
quence. This form of convergence is called “convergence in
the homomorphism density sense”. An example of convergent
graph sequence that is easy to visualize is that of a sequence of
‘W -random graphs. The sequence of graphs {G,, } generated by
sampling {u; }? ; uniformly at random as n — oo can be shown

to converge in the homomorphism density sense with probability
one [26, Example 11.6, Lemma 11.8].

To conclude, we point out that, while the two interpretations
of a graphon — as a generative model for graph families and
as the limit object of graph sequences — are theoretical, their
practical value lies in that they can be used to identify sets of
graphs with large number of nodes and similar structure. This
simplifies the study of the properties of large graphs.

B. Convergence in Cut Norm

Similarly to how graphs can be obtained by sampling or
evaluating a graphon, graphons can be defined, or induced, by
graphs. Every undirected graph G = (V,&,S) with |V| =n
and S € [0, 1]™*™ admits an induced graphon representation
We. This graphon is obtained in two steps. First, we con-
struct a regular partition /; U...U I, of [0,1], i.e., the par-
tition given by I; = [(j —1)/n,j/n) for 1 <j<mn—1 and
I, = [(n — 1)/n, 1]. Then, the induced graphon W ¢ is defined
as [26, Chapter 7.1],[24, Sec. 5]

j=1k=1

The concept of induced graphon is useful to define a second
mode of convergence for graph sequences — convergence in
cut norm. The cut norm of a graphon W is defined as [26, eq.
(8.13)]

[Wlo = sup

S,1¢[0,1]

W (u, v)dudv @)

SxT

i.e., it is equal to the size of its maximum cut. The following
lemma, adapted from [26, Theorem 11.57], states that if a
sequence of graphs { G, } converges to W in the homomorphism
density sense, then it also converges to W in the cut norm.
Lemma 1 (Cut norm convergence): If {G,} — W in the
homomorphism density sense, then there exists a sequence of
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permutations {7, } such that
W, (@) = Wlo =0 ®)

where W (. ) is the graphon induced by the graph 7, (G,).

Therefore, for every convergent sequence {G,, } there exists
a non-empty set of permutation sequences {7, } for which the
cut norm of the induced graphons W (g ,,) converges as in (8).
This is formalized in Definition 1.

Definition 1 (Set of admissible permutations): Given a se-
quence {G,,} converging to W in the homomorphism density
sense, the family of convergent permutation sequences P asso-

ciated with {G,, } is defined as

- {{m IWa i) — Wi — o}.

The set P will be especially important in the convergence
analyses of Sections III-IV. In particular, in the definition of
convergent sequences of graph signals (Definition 2), we will
use permutation sequences {7, } € P to “organize” the signals
on the graphs of a convergent sequence so that the labeling of the
signals matches the node labeling for which the graphs converge.

C. Graph Signal Processing

GSP deals with signals defined on top of a graph G. Formally,
a graph signal is a map from the vertex set V onto the real
numbers, which we write as the pair (G, x) and where the ith
component x; is the value of the signal at node ¢. The three
fundamental concepts of GSP are shift operations, LSI filters
and graph Fourier transforms (GFTs). We say that z is the result
of shifting x on the graph S if z = Sx. Shifts can be composed
to produce k-order shifted signals S¥x and, as in the case of
time signals, a weighted sum of shifted signals defines the LSI
filter H(S) as the linear map

K
y=H(S)x=> mSx ©)
k=0

In (9), the weights hy, are called graph filter taps [4]. The filter
H(S) is said to be shift-invariant because, if y = H(S)x and
we shift the input to x’ = Sx, the outputy’ = H(S)x' is simply
the shifted version of y, y’ = Sy. The LSI filter H(S) is also
sometimes referred to as a graph convolutional filter [31].

Since S is symmetric, it is diagonalizableas S = VAVH The
matrix A is the diagonal matrix of eigenvalues and the columns
of V are the graph eigenvectors. Herein, we assume that the
eigenvalues are ordered according to their sign and in decreasing
order of absolute value,i.e., \1(S) > X2(S) > ... >0> ... >
A_2(S) > A_1(S) (e.g., Fig. 3). The graph Fourier transform
(GFT) of the graph signal (G, x) is then defined as the projection
of x onto the eigenvector basis V, i.e.,

% = GFT{(G,x)} = V"x. (10)

In particular, [X]; = v;'x for each index j, where v, is the
eigenvector associated with A;. This operation has the effect of
decomposing (G, x) in the eigenbasis of the graph, which makes
sense if we interpret the eigenvalues as frequencies. Similarly,

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 69, 2021

dn
/ \
H —
1 1
-1 A Ao i —c 0 LR A3 Ag Al
Fig.3. Graphon eigenvalues. A graphon has an infinite number of eigenvalues

A; but for any fixed constant ¢ the number of eigenvalues |\;| > cis finite. Thus,
eigenvalues accumulate at O and this is the only accumulation point for graphon
eigenvalues. The quantity d,, is approximately equal to the minimum distance
between ¢ (or —c) and the eigenvalues in the set {\; | \; < c}.

the inverse graph Fourier transform (iGFT) is defined as
iGFT{x} = Vx = x.

Since VH'V =1, the iGFT is a proper inverse and can recover
x from x without loss of information.

The LSI filters defined in (9) also admit a spectral represen-
tation ﬂ(A) This spectral representation is given by

K
H(A) = > A", (11)
k=0

Therefore, if we consider the action of the filter H(S) in the
frequency domain, we see that y = I:I(A)fc i.e., graph filters
are pointwise operators in the GFT domain.

Another interesting observation regarding the spectral re-
sponse of graph filters is that, for any set of filter taps, we can
define the frequency response [32]

K
h(A) = hiAb. (12)
k=0

Comparing (11) and (12), we see that using the same set of
coefficients on different graphs induces different responses de-
pending on the eigenvalues of S. Indeed, if we let \; denote the
ith eigenvalue of S and Z; and y; the ith components of the GFTs
x and y, we have that §; = h(\;)Z;.

The goal of this paper is to generalize the definitions of
graph signals, GFTs, and convolutional graph filters to graphon
signals, graphon Fourier transforms, and convolutional graphon
filters (Section III). In introducing this graphon signal processing
framework, we intend to do for large-scale graph signal pro-
cessing what graphons do for very large and dynamic networks.
Namely, we leverage the fact that working with limits is easier
and focus on graph signal limits — graphon signals — to fa-
cilitate GSP on large-scale and dynamic networks. Importantly,
we also show that, for sequences of graphs that converge to a
graphon in the sense of (5), corresponding sequences of GFTs
and graph filters converge to the respective graphon Fourier
transforms and graphon filters (Section I'V).

Authorized licensed use limited to: University of Pennsylvania. Downloaded on March 15,2024 at 17:45:55 UTC from IEEE Xplore. Restrictions apply.
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III. GRAPHON SIGNAL PROCESSING

The central concept in graphon signal processing is the
graphon signal. Graphon signals are defined as pairs (W, X)
where the function X :[0,1] — R maps points of the unit
interval to the real numbers, i.e., the signal values. The graphon
signals that we consider have finite energy, i.e., X is a function
in L2(]0, 1]). As in the case of graphons, graphon signals can be
induced by graph signals. Given a n-node graph signal (G, x),
the induced graphon signal (Wq, X ) is defined as

n

Xa(v) =) [x|; xI(v eI

Jj=1

(13)

where W is the graphon induced by G [cf. (6)] and I; U
..U, is the regular partition of the unit interval, i.e., I; =
[(j—1)/n,j/n)forl<j<n-—land I, =[(n—1)/n,1].

A. Convergent Sequences of Graph Signals

We define convergent sequences of graph signals as follows.
Definition 2 (Convergent sequences of graph signals): A
sequence of graph signals {(G,,,x,)} is said to converge to
the graphon signal (W, X) if, for every graph motif F,
lim ¢(F, G,,) — t(F, W)
n—oo

and if there exists a sequence of permutations {r,, } € P such
that

7}141;1,010 ||X7Tn(Gn) - X” = 0

where P is the set of admissible permutations for the se-
quence {G,} [cf. Definition 1] and (W, (c,), Xx, (G.))
is the graphon signal induced by the permuted graph signal
(7TTL(G7L)a T (Xn)) [Cf (13)]

A sequence of graph signals is thus convergent if (i) the
underlying graphs converge and (ii) the graphon signals induced
by some permutation sequence {7, } € P of the graph signals
converge in L?. The role of the permutation sequence is to match
the labels of the signals x,, to those of the sequence of graphs
G, that converges in cut norm [cf. Lemma 1]. This is a similar
requirement to the isometric embeddings necessary to define
Gromov-Hausdorff convergence in metric spaces [33].

Importantly, the graph signal limit (W, X) is unique for each
{mn} € P.Indeed, suppose that it is not, i.e., that || X (q ) —
X|| =0 and | X+ (g,) — Y] =0 with |[X =Y >e>0.
Using the triangle inequality, we get

X =Y[=]X~- Xz, c, +Xn. (Yl
<X = Xz el + 1 Xr, @) =Y — 0,

which contradicts the hypothesis since there must then exist ng
such that [| X — X |l + | Xx,(c,) = Y| < eforn > ng.
See also Remark 1.

B. The Graphon Operator and Graphon Filters

Every graphon W induces an integral operator Tyy :
L?([0,1]) — L?([0,1]), which maps a signal (W, X) to the

4965

signal (W,Y") given by

Y () = (TwX)( (u)du.  (14)

/ W (u,v)
We refer to Tyy as the graphon shift operator (WSQO) because
it induces a diffusion of (W, X) on the graphon analogous to
the diffusion induced by the adjacency matrix S on a graph.
Building upon this parallel, LSI graphon filters are defined as
follows.

Definition 3 (LSI graphon filters): Let (W, X) be a graphon
signal. A LSI graphon filter Ty : L2([0, 1]) — L?([0, 1]) maps
(W, X) — (W,Y) with (W,Y) given by

-

Y (v) = (TaX)(

where (T%) X)(v / W (u, 0) (T8 D X) (w)du, k> 1

15)

and T( ) — = I, the identity operator. The hj are known as the
graphon filter taps.

Similarly to LSI graph filters, the graphon filters in Definition
3 are shift-invariant because, given an input graphon signal X
and denoting the graphon filter ouput Y = 733 X, applying T3 to
a shifted version of the input X' = T\w X yields Y/ = Tg X' =
TwY,ie., Y'is ashifted version of Y.

C. Graphon Spectra and the Graphon Fourier Transform

Because W is a bounded symmetric function, Tyy is a self-
adjoint Hilbert-Schmidt operator (see Lemma 5, Appendix C in
the supplementary material). As such, it can be decomposed in
the operator’s basis as

Y. Aipi(w)ei(v) (16)
1€Z\{0}
with eigenvalues \; € [—1, 1], and eigenfunctions ¢; : [0,1] —

R. As before, we separate positive and negative eigenvalues
by ordering them according to their sign and in decreasing
order of absolute value. Therefore, we have 1 > Ay > \y >

.>0>...> X 5> )1 > —1.Theeigenfunctions form an
orthonormal basis of L?([0, 1]). Note that the eigenvalues, and
hence the eigenfunctions, are countable. What is more, since
[W]|? <1 the trace of T3, Tw is bounded by one and so the
A; converge to 0 for |i] — oo as depicted in Fig. 3. Zero is the
only point of accumulation, which in turn implies that all \; # 0
have finite multiplicity [34].

(16) allows writing Txx as

= Y el /0 WX (wydu.  (17)

i€Z\{0}

(TwX) (v

The integral terms fol ©;(u) X (u)du are the L? inner products
(X, ¢;) between the signal X and the eigenfunctions ;. Since
the ; form a complete orthonormal basis of L2([0, 1]), the inner
products (X, ;) provide a complete representation of (W, X)
on the graphon basis. Although there is an infinite number of
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eigenfunctions, they are countable and so the change of basis
can always be defined. This change of basis operation is called
the graphon Fourier transform (WFT).

Definition 4 (Graphon Fourier Transform): Consider the
graphon signal (W, X), and let {\; };cz\ 0y and {¢; }iez\ 10} be
the eigenvalues and eigenfunctions of Ty . The graphon Fourier
transform (WFT) of (W, X)) is defined as

= X with

/X%

The inverse Graphon Fourier Transform (iWFT) of X is defined
as

WFT [(W, X)]

[(X]: = X(\

iWFT [X] = Y X(ei=X.

ieZ\{0}

Since the {©; } je7\ {0} are orthonormal, the iWFT is the proper
inverse transformation of the WFT. Definition 4 further allows
defining graphon signals that are bandlimited.

Definition 5 (Bandlimited graphon signals): A graphon
signal (W, X) is c-bandlimited with bandwith ¢ € [0,1] if
X (A;) = 0 for all i such that |\;| < c.

Because all nonzero eigenvalues have finite multiplicity, the
WEFT of a bandlimited graphon signal is finite-dimensional.
Bandlimited graphon signals have two noteworthy properties.
The first is that they extend the notion of graph bandlimited
signals, which are the most common type of graph signal in
practical GSP applications [35]. The second is that, since they
only depend on a finite number of graphon eigenfunctions, their
WFT can be computed analytically. Although countability of
the ¢; allows us to write the definition of the WFT (Definition
4) for any graphon signal, calculating all inner products (X, ¢;)
is infeasible because the graphon basis is infinite-dimensional.

D. Graphon Filter Frequency Response

The WFT also allows obtaining the frequency response of
graphon filters. Using the spectral decomposition of Ty (16),
we can rewrite the LSI graphon filter (15) as

= > th’“ @i(v).

i€Z\{0} k=0

Y(v) = (TaX)(v

Hence, the frequency response of T3 is given by

Ta(\) = h(\) = i hi A",
k=0

Equation (18) is the infinite counterpart of the frequency
response of a LSI graph filter (12). Note that, to understand
the behavior of this filter on a specific graphon W, we need to
evaluate h(\) at each graphon eigenvalue \;. But (18) is other-
wise independent of the graphon. In other words, the frequency
response of a graphon filter always has the same shape, irrespec-
tive of the graphon. A third important remark pertaining to (18) is
that LSI graphon filters can approximate any filter with analytic
frequency response h(A) arbitrarily well as K — oo. This is

(18)
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because the frequency response of a LSI graphon filter (18) is
a polynomial of the eigenvalues of the graphon. Put formally,
a graphon filter with frequency response T (\) = h()\) can be
written as a LST graphon filter (Definition 3) provided that ()
is analytic, i.e., that it is infinitely differentiable at {\; };cz\ {0}
and its Taylor series converges pointwise.

We conclude this section by stressing that the goal of Defs.
3 and 4, as well as of the definition of a graphon signal, is
to generalize GSP concepts to graphons. These concepts are
not realizable in the way that graph signals, graph filters, and
the GFT are because, unlike graphs, graphons are intangible
theoretical objects. Nonetheless, their value lies in that they
help understand the behavior of graph signals in the limit of
large-scale networks. This provides the theoretical foundations
to enable the practical scenarios (S1-S3) discussed in the intro-
duction (see also Section V). Indeed, as we show next, the WFT
and the LSI graphon filter are mathematical limits of the GFT
and of the LSI graph filter on convergent sequences of graph
signals.

Remark 1 (Uniqueness of limit graphon signal on W): A
sequence of graphs {G,, } converges to a graphon W if and only
if the homomorphism densities ¢(F, G,,) converge to ¢(F, W)
for every motif F. Naturally, there may be other graphons W'
with same homomorphism densities ¢(F, W’) = ¢(F, W) for
all graphs F and so the limit graphon W is not necessarily
unique, but in this paper we select one of these limits—the
graphon W— without loss of generality! and use its implicit
node labeling to define sequences of graph signals {(G,,, x,)}
that converge to graphon signals (W, X) [cf. Definition 2].
Since W is fixed, for each sequence { (G, x,,) } the limit signal
(W, X) is unique in L2

IV. GSP CONVERGES TO WSP

In this section, we leverage the properties of convergent graph
sequences to prove a series of convergence results which show
that GSP converges to WSP. Our first result describes the limit
behavior of the GFT on convergent sequences of graph signals
(Section IV-A). We show that, when the limit graphon signal is
bandlimited, the GFT converges to the WFT (Theorem 1). Our
second result shows that the spectral responses of graph filters
converges to the spectral response of a well-defined graphon
filter (Theorem 2, Section IV-B). Theorem 2 is further extended
to show that convergence of the graph signal and graph filter also
implies convergence of the filter response in the vertex domain.
This is our third convergence result. It is stated with increasing
levels of generality in Corollary 1, which follows directly from
convergence of the GFT and of the filter spectral responses;
and in Theorems 3 and 4, which do not require the graphon
signal to be bandlimited. These findings, particularly the more
general Theorem 4, are the main technical contributions of this

'Graphons W’ and W with same homomorphism densities t(F, W') =
t(F, W) for all F are called weakly isomorphic. We can select W without loss
of generality because two graphons W’ and W' are weakly isomorphic if and
only if §5(W, W) =0, i.e., if their cut distance is zero [26, Chapters 7.3,
8.2.2]. Therefore, the limit graphon is unique w.r.t. the metric induced by the
cut distance in the space of unlabeled graphons.
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TABLE I
TABLE SUMMARY OF GSP AND WSP

Graph Graphon Convergence result
Signal (G,x) (W, X) Def. 2
FT % (eq. (10)) X (Def. 4) Thm. 1
Filter H(S) (eq. 9)) T (Def. 3) Thm. 4

work. At the end of the section, a table summary of the GSP
and WSP definitions of a signal, of the Fourier Transform and
of linear shift-invariant filters can be found in Table I. This
table also highlights the relationships between these concepts
as established by Theorems 1-4.

A. Convergence of the GFT

When a sequence of graph signals converges to a bandlimited
graphon signal, we can show that the GFT converges to the WFT
as long as the limit graphon is non-derogatory (Definition 6).
This is the main result of this section, presented in Theorem 1.

Definition 6: A graphon W is non-derogatory if A; # A; for
alli # jandi,j € Z\ {0}

Theorem 1 (GFT — WFT for BL graphon signals): Let
{(Gn,xn)} be a sequence of graph signals and let {7, } € P
be a sequence of permutations such that {(G,,,x,,)} converges
to the c-bandlimited graphon signal (W, X) in the sense of
Definition 2, where W is non-derogatory. Then,

GFT [(7(Gn), 7 (x2))] — WFT [(W, X)] .

Conversely, if { (G, %,)} is a sequence of GFTs converging to
the WFT (W, X)), then there exists a sequence of permutations
{m,} € P such that

T <iGFT [xn]) s iWFT [X] .

Note that the GFT coefficients [%X]; and the WFT coefficients
[X ]; inherit the ordering of the eigenvalue sets of the graphon
‘W and of the graphs G,,, which are both ordered with indices
i € Z \ {0} according to their sign and in decreasing order of
absolute value.

Theorem 1 relates the GFT, a Fourier transform for “discrete”
graph signals, to the WFT, a Fourier transform for “continuous”
graphon signals. This comparison is only possible because,
like graphs, graphons have discrete spectra. This unveils an
interesting parallel with the relationship between the discrete
Fourier transform (DFT) — a discrete transform for discrete
signals — and the Fourier series —- a discrete transform for
continuous signals — in Euclidean domains. Another important
consequence of Theorem 1 is that it allows inferring the spectral
content of graph signals by analyzing the spectral content of
the graphon signals giving rise to them (and vice-versa). This
is useful, for instance, when these signals and/or the graphs
on which they are supported are corrupted or only partially
observable, in which case the WFT (or the GFT on another graph
of the same family) can be used as an approximation of the GFT
on the original graph. We also point out that the requirement
that the graphon be non-derogatory is not very restrictive: as
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stated in the following proposition, the space of non-derogatory
graphons is dense in the space of graphons.

Proposition 1 (Density of 20): Let 20 denote the space of all
bounded symmetric measurable functions W : [0, 1]2 — R,ie.,
the space of graphons. The space of non-derogatory graphons
is dense in 2.

Proof: Refer to Appendix D in the supplementary material.ll

Prop. 1 tells us that, even if a graphon is derogatory, there
exists a non-derogatory graphon arbitrarily close to it for which
the GFT convergence result from Theorem 1 holds.

In order to establish Theorem 1 and subsequent results, we
will work with the graphon signals induced by the graph signals
we consider. We have already described in (13) how their (vertex
domain) values are related. In the sequel, we will also need to
relate their spectral properties. This relationship is formalized in
Lemma 2. Note that, although the adjacencies S,, of the graphs
G, have a finite number of eigenvalues \;(S,, ), we still associate
the eigenvalue sign with its index and order the eigenvalues in
decreasing order of absolute value. The indices ¢ are now defined
on some finite set £ C Z \ {0}.

Lemma 2: Let (W g, Xg) be the graphon signal induced by
the graph signal (G, x) on n nodes. Then, for i € £ we have

Ai(Twe) =

0i(Twe)(u) = [vi]; x Vnl (w e I;), j=0,...,nand

where \; (S) are the eigenvalues of the adjacency matrix. For ¢ ¢
Lowelet\;(Twe) = [X’G]2 = 0and ¢;(Tw) = v such that
{pi(T\we )} U {1} forms an orthonormal basis of L*([0, 1]).

Proof: Refer to Appendix A.

Proof of Theorem 1: We now prove that, since the fi-
nite set £ converges to Z\ {0} as n goes to infinity,
WET{(W~, (c,), ™ (Xa,))} = WFT{(W, X)}. We leave
the dependence of the convergent signal sequence {(G,,,x,)}
on {m,} implicit and writte W, = W_ () and X, =
Xr.. (G, Next, we use the eigenvector convergence result from
the following lemma. Theorem 1 then follows from the fact that
inner products are continuous in the product topology that they
induce.

Lemma 3: LetC = {i € Z\ {0} | |[\i(Tw)| > ¢} be the set
of indices of the non-vanishing eigenvalues and denote S the
subspace spanned by the eigenfunctions {;(Tw ) }igc. Then,

(i) fori e C, p;(Tw,) — ¢i(Tw) in Lo, and

(i) fori ¢ C, p;(Tw, ) — U; € S weakly.

Proof: Refer to Appendix B. ]

Starting with the eigenvectors with indices in C, for any € > 0
it holds from Lemma 3 and from the convergence of X, in L2
that there exist nq and ns such that

lei(Tw,) — vi(Tw) forallm > ng

<=,
2/ X

and || X, — X|| < %, for all n > no.
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Recall that ||p;(Tw, )| <1 for all n and i € C because the
graphon spectral basis is orthonormal. Since the sequence
{X,} is convergent, it is bounded and || X|| < co. Let m =
max {n1, ns}. Then, it holds that

Xali — [Xi] = (X, 0i(Tw,)) — (X, 0:(Tw))]|
= [(Xn — X, pi(Tw,)) + (X, 0i(Tw,) — vi(Tw))]
< X0 = Xloi (Tw, )| + | X [ le: (Tw,,) — i(Tw) |l

€
Sles(Tw, )+ 1 X 55

IN

2||X|| < eforalln > m.

For i ¢ C, the eigenfunctions ¢;(Tw, ) may not converge
to ¢;(Tw), but they do converge to some function ¥; € S.
Given that the graphon signal (W, X) is c-bandlimited, we have
(X, i(Tw)) = 0fori ¢ C, so that X must be orthogonal to all
functions in S. Using the same argument as for ¢ € C yields
that the remaining GFT coefficients also converge to the WFT.
Formally,

(i(Tw,.), Xn) =

Convergence of the iGFT to the iWFT follows directly from
these results and from Lemma 3. Explicitly, use the triangle
inequality to write

(U3, X) =0 = (pi(Tw), X).

Z [X)ii(Tw) — Z [Xnuligi(Tw,)
ieZ)\{0} i€Z)\{0}
< Y XLl Tw) = [Xigi(Tw, )l
i€Z)\{0}
+ > NX)iei(Tw,) = [Xaliod(Tw,)l.
i€Z\{0}

Applying the Cauchy-Schwarz inequality and splitting the sums
betweeni € C and i ¢ C, we get

Y KliwTw) = Y Xaligi(Tw,)
icZ\{0} icZ\{0}
< X illei(Tw) = ¢i(Tw,) |
1eC
+) X nlilllei (Tw, )|l
ieC
+ ) 1 Xnlilllei (Tw,) | = 0. (19)
1¢C

The first term on the right hand side of (19) vanishes because
vi(Tw,) — @i(Tw) for i € C by Lemma 3; the second term,
because the GFT coefficients [X,,]; converge to [X], for i € C;
and the third term, because [X,]; — [X]; = 0 fori ¢ C. O

B. Convergence of Graph Filter Responses in the Spectral and
Vertex Domains

Our second convergence result involves the frequency re-
sponse of graph filters. As we have already noted, the frequency
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0 A 1

Fig. 4. Comparison of graphon eigenvalues (blue) and eigenvalues of a graph
G, taken from a convergent graph sequence (red). Only the positive eigenvalues
are depicted. For n — oo, the eigenvalues of G, converge to the eigenvalues of
‘W. However, the accumulation of graphon eigenvalues close to A = 0 means
that the GFT converges to the WFT only for graphon bandlimited signals.

responses of LSI graph filters (12) and of their graphon counter-
parts (18) have the same expression as long as the coefficients hy
(or, equivalently, the function h) are the same. In the following,
we show that these frequency responses actually converge to one
another as the number of nodes goes to infinity.

Theorem 2 (Convergence of graph filter frequency response):
On the graph sequence {G,}, let H,(S,,) be a sequence of
filters of the form H.,,(S,,) = V,h(A(S,,)/n)VH; and, on the
graphon W, define the filter

= > h(\

icZ\{0}

(TuX)(v X(i)ei(v).

If {G,} - Wandh : [0,1] — R is continuous, then

lim H,(Ai(Sn)/n) = Tra(A

n—0o0

i(Tw))

where H,, and T are the frequency responses of H,,
respectively.

Proof: This is a direct consequence of a result due to [36,
Theorem 6.7] and restated here as Lemma 4.

Lemma 4 (Eigenvalue convergence): Let{G,, } be asequence
of graphs with eigenvalues {);(S,)}icz\ {0} and W a graphon
with eigenvalues {\;(Tw) }icz\(oy- If {Gn} — W,

and Ty

lim Q lim \;(Twg, ) = Ai(Tw) foralli.  (20)
n—00 n n—00
Proof: Refer to Appendix B. |

Lemma 4 tells us that, in any convergent graph sequence,
the eigenvalues of the graph converge to the eigenvalues of
the limit graphon under a 1/n rescaling. This is illustrated
in Fig. 4 for A > 0. Using Lemma 4, we will show that the
transfer functions of arbitrary graph filters H,, (S,,) converge to
the transfer function of the graphon filter 731 with same filter
function h(\).

Consider the graphon signal (W, X). Applying Ty to
(W, X) as in (15), we get

> hADX ()

i€Z\{0}

@i(v) 21
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where we have omitted the dependence on Tyy by writing \; =
Xi(Tw ). The WFT of (W,Y) is given by

= [ Ypwa
= h(Az‘)(/Ol%(v)w(v)dv>X(>\i)

i€Z\{0}
= h(A)X(\;)
from which we conclude that T (\;) = h();).
We now determine the frequency response of H,,(S,,). Ap-
plying H,,(S,,) to the graph signal (G,,, x,,), we get

yn = H,(S,)x, = V,h(A(S,)/n)VHx,
=V, h(A(S,)/n)X,.
The GFT of (G,,,y,,) is given by
[Ynlj = ngvnh(A(Sn)/”)in = h(A;(Sn)/n)[Xn];

and therefore H,,(\;(S,)) = h()\;(S,)/n).

Since G,, — W, from Lemma 4 it holds that \;(S,)/n —
Aj. Because h is continuous, this implies h();(S,)/n) —
h(A;), which completes the proof. O

The spectral or frequency response of a graph filter thus
converges to that of the corresponding graphon filter provided
that the frequency response of the filter, h, is continuous. In
particular, this is the case for polynomials, so that the frequency
response induced by LSI graph filters (12) converges to that
of their corresponding graphon filters (18). To understand the
importance of this result, suppose that we design a filter with a
certain spectral behavior on the graphon; Theorem 2 tells us that
the same spectral behavior can be expected from the application
of this filter (or, more precisely, of the graph filter with same
coefficients) on graphs sampled from the graphon. By a simple
triangle inequality argument, it then follows that filters can be
transferred between graphs associated with the same graphon to
obtain a similar spectral behavior. This is the first evidence of
graph filter transferability.

Nevertheless, Theorem 2 has a limitation. It only gives ac-
count of the limit behavior of the graph filter response in the
frequency domain, while graph filters operate in the node do-
main. To analyze the vertex domain behavior of graph filters, we
start with the simple case of bandlimited signals. Putting together
Theorems 1 and 2, we can show that, when the limit of the graph
signals is bandlimited, the graph filter outputs converge in the
vertex domain.

Corollary 1 (Convergence of graph filter response for
bandlimited graphon signals): Let {G,} be a sequence
of graphs converging to the graphon W, where W is
non-derogatory. Let H,,(S,,) = V,,h(A(S,)/n)VH be a se-
quence of filters on the graphs {G, }, and let (TuX)(v) =
Yiez\ (0} R(Xi) X (A;)s(v) be a filter on the graphon W. Con-
sider the sequence of graph signals {(G,,x,,)} and let {7, } be
a sequence of permutations such that {(G,,,x,)} - (W, X)
in the sense of Definition 2. Then, y,, = H(m,(S,))mn (%)
converges to Y = Ty X.
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Fig. 5. Lipschitz continuous filter function h(\) with Lipschitz constant L.

Only the positive eigenvalue axis is depicted for simplicity. Lipschitz filters
eliminate the requirement that the graphon signal be bandlimited because they
bound the filter variation for signal components associated with eigenvalues
smaller than c.

Proof: Without loss of generality, assume that the permu-
tation sequence {m,} is a sequence of identity permutations,
i.e., the labeling of the signals x,, already matches the label-
ing for which the graphs converge in cut norm. Let the WFT
of (W,Y) be [Y]; = Tu(\)[X]; and the GFT of (G, y,)
be [yn]i = Hn(Ai(Sn)/n)[Xn)s. By Theorem 1, [%,,]; — [X],,
and, by Theorem 2, H,,(\;(S,,)/n) — Tu(\;). Since Ty is a
linear operator, and hence continuous, [§,,]; — [Y];. Applying
Theorem 1 once again for the iGFT, we conclude thaty,, — Y.l

Cor. 1 extends upon Theorem 2 by showing that, provided that
the sequence of input signals {(G,,,x,)} converges to a ban-
dlimited graphon signal, the output signals obtained by applying
the filters H,,(S) converge in the same sense as {(G,x,)}
in the vertex domain. The requirement that the graphon signal
be bandlimited arises from the difficulty of matching the GFT
and WFT coefficients associated with small eigenvalues, i.e.,
eigenvalues \; for which |i] is large. This is illustrated in Fig. 4.
Note that, as the eigenvalues approach 0, it becomes hard to tell
which graph eigenvalue converges to which graphon eigenvalue,
as the eigenvalue difference A; — \; 1 tends to zero as ¢ — co.

This requirement can be eliminated by considering Lipschitz
graph and graphon filters, i.e., filters with Lipschitz continuous
h(\). A function i : [0, 1] — R is L-Lipschitz continuous if, for
all A\, \' € [0,1],

[h(A) = h(X)| < LIA = X'. (22)
For h differentiable, this is equivalent to bounding dh/d\ by L
in absolute value. An example of Lipschitz continuous filter is
shown in Fig. 5. For filter functions % satisfying (22), we can
show that the graph filters converge in the vertex domain for any
graphon signal, not only bandlimited ones, because the variation
of Lipschitz filters can be bounded close to zero [cf. Fig. 5].

Theorem 3 (Convergence of filter response for Lips-
chitz continuous graph filters): Let {G,} be a sequence
of graphs converging to the graphon W, where W is
non-derogatory. Let H,,(S,,) = V,h(A(S,)/n)VH be a se-
quence of filters on the graphs {G,}, and let (TgX)(v) =
> iez)\ {0} h(X\s)X (\i)s(v) be a filter on the graphon W. Con-
sider a sequence of graph signals {(G,,, x,,)} and let {m,,} € P
be a sequence of permutations such that { (G, x,,) } = (W, X)
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in the sense of Definition 2. Then, y,, = H(m,(S,))mn(Xn)
converges to Y = Ty X.

Proof: To prove convergence of the (G, y,) to (W,Y), we
consider the graphon signals (W (a.,.), Xr, (G,)) induced by
the graph signals (7, (G,), 7, (X, )). The spectral properties of
these signals and of the corresponding graph signals are related
through Lemma 2. To simplify notation, we once again leave
the dependence on ,, (G, ) implicit and write W,, = W ()
and X, = X (q,)- Wealso denote the induced graphon eigen-
values A" = A\;(Tw, ). Recall that these are given by \!' =
Ai(S,)/n per Lemma 2. Without loss of generality, consider
the normalized filter function A()\) = h(N)/ supyepo,1) [R(A)]-
The signal (W, Y") obtained by applying T to (W, X) can be
written as

Y(w)= Y hA)X\)pi(v) (23)
ieZ\{0}
and (W,,,Y,,), which is induced by y,, = H(S,,)x,, as
> RONXa(ADei(Tw, ) (V). (24)

i€Z\{0}

The dependence of the eigenfunctions ¢; (Tw,, ) on Ty, is made
explicit to distinguish them from ¢;, the eigenvalues of Ty .

To show that the (W,,,Y},) converge to (W,Y"), we start by
writing their norm difference using (23) and (24),

Y =Y,
=1 > )X > DX ei(Tw,,)
ieZ\{0} 1€Z\{0}

(25)

Defining the set C={i | [\[>c} for c=
(1 — |ho|)/L(2|| Xt +1) with e¢>0 and hg = h(0),
these sums can be split up between ¢ € C and @ ¢ C to yield

S RA)X )i — Y ANXn(A)ei(Tw,,)
ieZ\{0} i€Z\{0}

STRONX )i — D AN XL ()i (Tw,)|| @

1eC 1eC

D hA)X N = Y RN Xn (A )i (Tw,,)|| ().

i¢C 1¢C

(26)

Note that (i) corresponds to the difference between two ban-
dlimited graphon signals. By Cor. 1, there exists ng such that,
for all n > ny,

> h()X

ieC

< €.

i— > O X

ieC

") (TW )

27
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For (ii), we use the filter’s Lipschitz property and Cauchy-
Schwarz to write

> ()X i = > AN X (A ei(Tw,)
i¢C i¢C
<D (ko + L)X (N)pi =y (ho — Le) X (A )pi(Tw,,)
i¢C 1¢C
< [hol | 3 [X )i = K X)i(Tw, )] ‘
igC
+ Lc ZX(A + Lc ZX Yoi(Tw,) (28)
1¢C 1¢C

where the last inequality follows from the triangle inequality.
Because {¢;} and {;(Tw, )} form complete bases of L2,

> ide X (\;)p; and >ige Xn(A])¢i(Tw, ) can be written as

S X(N\)gi =X =Y X(\)p; and (29)
i¢C icC

> Xn(AeilTw,) = X = Y X(\)ei(Tw,)  (30)
i¢C ieC

i.e., as the difference between the input signal and a bandlimited
signal. Using these identities and the triangle inequality, we
leverage the fact that X,, — X in L? and apply Theorem 1 to
show that there exists n; such that, for all n > nq,

ZX()\ )i — Xn(A)ei(Tw,,)
i¢C
<X = Xl +{D XA ei(Tw,) = XNo)ei|| <e.
icC
(€2Y)
As for || Zi¢c Xn()\?)%(TW) ’

in (29) and (30) together with the triangle inequality to write

DX (Tw,)|| < 11X = X[+ Y XA
igC idC
DX = D X (O ei( T, )H
ieC ieC

From Theorem 1 and the fact that X,, — X in L?,

> Xa(x Y X0

i#C 1¢C

Dei(Tw,)|| < e+ forn > nq.

(32)

Applying the Cauchy-Schwarz and triangle inequalities and
substituting (31) and (32) in (28), we arrive at a bound for (ii),

> hA)X(N)ps — Y h(A)X

1¢C 1¢C

<pz (TW" )
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< (Jho| + Le)e + 2Le || >~ X (A)e
igC

< (lho| + Le)e + 2Le|| X || = e.

(33)

Putting (27) and (33) together, we have thus proved that for all
n > max {ng,n1}, |[Y — Y,| < 2¢, i.e., the output of H(S,,)
converges to the output of 7 in the vertex domain. |

Theorem 3 broadens the scope of Cor. 1 by extending the
filter response convergence result to sequences of graph signals
converging to generic finite energy graphon signals that are
not necessarily bandlimited. The Lipschitz condition on the
filter i allows bounding the variability of the filter response
for signal components associated with eigenvalues smaller than
some threshold ¢ € [0, 1], which can be made arbitrarily small
[cf. Fig. 5].

Theorem 3 can be further generalized to any graphon as
opposed to only non-derogatory ones. The difference in the case
of derogatory graphons is that the WFT cannot be defined, so
Theorem 1 cannot be used in the proof of Theorem 4. The proof
argument needed in this case is therefore slightly different. How-
ever, this is extenuated by Prop. 2. As long as eigengaps between
adjacent graphon eigenspaces can be defined, this proposition
ensures convergence not only of the eigenvectors, but also of
the finite-dimensional eigenspaces associated with the repeated
eigenvalues of an arbitrary graphon.

Proposition 2 (Graphon subspace convergence): Let {G,,}
be a sequence of graphs with eigenvalues \;(S,,) converging to
the graphon W with eigenvalues \;. If a given A; has multiplicity
m; and A}, = \;, (S,)/n are the eigenvalues of Wg,, (i.e., of
the graphon induced by G,,) converging to A; [cf. Lemma 2],
then there exists a sequence of permutations {7, } € P such that

[[Brw, o, (053~ B (3)

H—>O

where P is the set of admissible permutation sequences for
the sequence {G,,} (Definition 1) and Er(A) is the projection
operator onto the subspace associated with the eigenvalues in
the set A of the operator 7.

Proof: Refer to Appendix E in the supplementary material. ll

With Prop. 2, we are now equipped to state our most general
result: vertex domain convergence of Lipschitz continuous graph
filters for graph sequences converging to arbitrary graphons.
This result is presented in Theorem 4. We defer the proof to the
appendices.

Theorem 4 (Convergence of filter response for Lipschitz con-
tinuous graph filters): Let {G,,} be a sequence of graphs con-
verging to the graphon W. Let H,,(S,,) = V,,h(A(S,,)/n)VH
be a sequence of filters on the graphs { G, }, and let (T X ) (v) =
> iez)\ (0} h(Xi) X (\;);(v) be a filter on the graphon W. Con-
sider a sequence of graph signals {(G,,,x,,)} and let {m,,} € P
be a sequence of permutations such that { (G, x,,) } = (W, X)
in the sense of Definition 2. Then, y,, = H(m,(S,))m,(xx)
converges to Y = T X.

Proof: Refer to Appendix F in the supplementary material. ll

The main takeaway from Theorems 3 and 4 is that, if the
limit graphon is known, we can trade the design of multiple
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filters in different graphs by the centralized design of a single
graphon filter from which graph filters can then be sampled. In
practice, a more relevant implication of these theorems is that
graph filters can be transferred across graphs associated with the
same graphon. The ability to transfer graph filters is especially
important when graphs are large or dynamic, as the operations
involved in designing filters for these graphs can come out costly.
This property is also inherited by graph neural networks (GNNs)
based on these graph filters [37]. Transferability of GNNs has
been demonstrated empirically in a number of applications [29],
[30], and is formally characterized in [31], where transferability
bounds are derived for both GNNs and graph filters. Transfer-
ability of graph filters will also be illustrated in the numerical
experiments of Section V.

Remark 2: Note that, while the results presented in Theorems
1-4 may appear intuitive, their proofs are not. For instance,
our Fourier convergence theorem (Theorem 1) requires that
the graph and graphon signals be bandlimited for the GFT to
converge to the WFT. This is in constrast to classical signal
processing, where for any convergent sequence of length-n
discrete time signals on [0,1] the discrete Fourier transform
(DFT) converges to the Fourier transform (FT) regardless of the
underlying spectral properties. This occurs because the regular
line graphs underlying these signals have spectra that are evenly
distributed on [—1,1] and therefore never accumulate around
zero. Unexpectedly, however, these conditions are not needed
to show convergence of graph filter outputs. Indeed, while one
would expect that graph filter outputs converge only for ban-
dlimited signals, this is not the case in Theorems 3—4. Instead,
these theorems require the filter to be Lipschitz for |\| < ¢ [cf.
Fig. 5]. This arises from the fact that, for small \, the graph
eigenspaces can become hard to match to the corresponding
graphon eigenspaces since the eigenvalues of the latter accumu-
late near zero. We can therefore replace bandlimitedness by a
filter regularity condition.

V. NUMERICAL EXPERIMENTS

In this section, we present three numerical experiments to
illustrate the results of Theorems 1 through 4. In the first, we
sample graph signals from a Gaussian Markov Random Field
(GMRF) on ER, SBM and random geometric sensor networks
and compare the output of a graph diffusion process as the num-
ber of sensors increases. In the second, we compare the WFT of
pollutant dispersion signals drawn from the same model on two
geometric graphs corresponding to pollution sensor networks in
different cities. Finally, in Section V-C a linear graph filter is
optimized to predict movie ratings on a small user network and
is then applied to a large one.

A. GMRF Diffusion (S1)

In this experiment, we simulate a GMRF measured and dif-
fused on different sensor networks to analyze convergence of
the filter H(S) = S in networks of growing size. A graph signal
(G,x) is a GMRF on G if x ~ N (py, Xx) and Xy is given

Authorized licensed use limited to: University of Pennsylvania. Downloaded on March 15,2024 at 17:45:55 UTC from IEEE Xplore. Restrictions apply.



4972

TABLE II
EXPRESSION OF W(ui, uj) FOR THE DIFFERENT GRAPHON MODELS IN
SECTION V-A

Model Expression of W (u;, u;)
ER = 0.4 for all u;,u;

0.8, if u,, Uj < 0.5 or u;, uj > 0.5
0.2, otherwise
= exp(—B(u; — u;)%). B =2.3

SBM

Geom.

by [40]

2y = lao|> (I — aS) (I — aS) 1"

where the covariance matrix is calculated after sampling G from
a random graph model for the sensor network, from which we
obtain S. Three graphons are considered. They are an Erdos-
Rényi (ER) [cf. Fig. 1(a)], a stochastic block model (SBM) [cf.
Fig. 2(a)], and a soft random geometric graph [cf. Fig. 2(c)].
Their expressions are presented in Table II.

To compare the diffusion outcomes of graph and graphon
signals, we first need to define a graphon signal equivalent of
the GMRF. We work with its approximation, which is obtained
by approximating the graphons as matrices Syy. These matrices
are calculated by evaluating W (u;, u;) on 10* x 10* regularly
spaced points of the unit square. Then, the graphon GMRF is ob-
tained by sampling xw € R from the zero-mean multivariate
Gaussian with covariance matrix given by (34) for S = S .

In order to observe convergence, we compare the outcome
of the diffusion of the graphon GMRF with the outcome of the
diffusion of a n-node graph signal sampled from it for increasing
n. This is done by uniformly sampling points {u; }!" ; from the
unit line and generating graphs G,, where the edges (i, j) are
Bernoulli random variables with success probability W (u;, u;),
i.e,[S,)ij = [Sn]ji ~ Bernoulli(W (u;, u;)). The graph signals
X, are obtained by interpolating xw at each u;.

We calculate the diffused graph signals y, = S, x, and
interpolate the approximation of the diffused graphon signal
yw = Swxw at {u;}"_;, then compare them by computing
their norm difference for increasing values of n. The average
normalized norm difference is shown in Fig. 6 for 100 realiza-
tions of the graphon GMRF xvw . We observe that, for all graphon
models, the norm differences decrease with n. This indicates that
the vertex response of H(S) = S converges as the graphs G,,
grow, as expected from Theorem 3.

(34)

B. Spectral Analysis of Air Pollution on Sensor Networks (S2)

The objective of this experiment is to compare the spectral
representations of air pollution signals collected at the nodes
of two distinct sensor networks of same size to illustrate GFT
convergence (Theorem 1). This problem can be interpreted as
comparing the spectra of graph pollution data in two cities, for
instance, New York and Philadelphia. The air pollution sensor
networks are modeled as soft random geometric graphs [38]
where, given nodes 4 and j and their coordinates (x;,y;) and
(x,y;), the probability of connecting ¢ and j is

p(i,7) uexp(—ﬁ\/(xi —xj)2+(yi—yj)2>. (35)
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Fig.6. Normdifference between GMRF graphon signals diffused on ER, SBM

and geometric graphons and the corresponding graph signals diffused on sample
graphs of increasing size. The diffusion outputs have been normalized by n.

Fixing the x coordinate at x; = z; = = and normalizing ¥ as
U = y/Ymax, W can rewrite p(i, j) to fit the expresswn of the
graphon W (u;, u;) = exp(—f+/(u; — u;)?

In the cross-wind direction and at fixed altltude, the simplest
model for air pollution dispersion is a Gaussian on the distance
to the source of pollution in the cross-wind direction. Having
fixed x, we assume the cross-wind direction to be y. The air
pollution dispersion model is then

s(y) x exp < _ (y B ysource)2 >’
202

where s(y) is the concentration of pollutants at the coordinate
y and the variance o2 represents the cross-wind mixing [39,
Chapter 9]. If we assume ysource = 0 and once again normalize
Y a8 U = Y/Ymax, this dispersion model can be interpreted as a
signal X (u) o< exp(—u?/20%) on the graphon associated with
the soft random geometric graph model of the sensor networks.

For multiple values of n and using coordinates {u( )} *, and

{uf )}i:1 sampled uniformly at random from the unit line, we
sample two distinct n-node graphs G and G from (35). Ineach
of these graphs, the graph signals are the pollutant concentrations

[s1]i = s(ugl)) and [s2]; = s(ul(?)). We then compute the GFTs
S1 and S,, and sort them to find the minimum norm difference
min ||§; — S| over different permutations of the labels of these
graphs. After repeating the experiment 50 times foreachninn =
5, 10,20, 50, 100, 200, 500, 1000, we graph the 68%, 95% and
99.7% quantile curves of the GFT norm difference (normalized
by ||$1]]) in Fig. 7. All confidence intervals shrink consistently
around the mean as n increases, indicating that the GFTs of the
air pollution signals in G and G+ indeed converge as expected
from Theorem 1.

C. Movie Rating Prediction Via User-Based Graph Filtering
(S3)

Given U users and M movies, movierating prediction consists
of completing a U x M incomplete rating matrix by predicting
the ratings users would give to movies that they have not yet
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Quantile
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Fig.7. Quantiles (68%, 95%, 99.7%) of the minimum normalized difference
between GFTs of air pollution signals on graphs drawn from the same geomet-
ric model (G and G2) for n = 5,10, 20, 50, 100, 200, 500, 1000, over 50
iterations for each n.

rated. We interpret this problem as a GSP problem by con-
sidering movie ratings (i.e., the columns of the rating matrix)
to be graph signals on a network connecting similar users. A
number of graph-based models for movie rating prediction have
been proposed in the literature [13], [41], [42]. We consider
one of the methods in [41], which completes the rating matrix
by first solving an optimization problem to obtain the optimal
coefficients of a linear graph filter, and then applying it to the
graph signals corresponding to each movie’s rating vector on
the user network. Our objective is to calculate this graph filter
in subnetworks corresponding to small cohorts of users, and
observe how well it generalizes when applied to the full user
network.

The dataset we use is the MovieLens 100 k dataset [43], which
contains 100,000 ratings by U = 943 to M = 1582 movies.
The user similarity network is built from the data by computing
pairwise correlations from ratings given by each pair of users
to movies that they both have rated and, then, keeping only
the top-40 nearest neighbors to each user. Although these are
networks built from real data, i.e, to which we cannot attribute
a common generative model or graphon, the goal of this section
is to illustrate how our results can be implicitly observed even in
graphs that are not related by a common probability model, but
that are “similar” in some other empirical or statistical sense.
This is illustrated in Fig. 8, where user networks with 100 and
400 users are depicted. Even if the user network on the right has
4 times more users than the one on the left, we can see that the
large-scale structure of these networks is similar.

The coefficients of filters with K = 1, 2 and 3 filter taps are
optimized on networks of size 50, 100, 200, 400, 600, 800 and
943 nodes. We then compare the RMSE obtained by predicting
ratings using the filters calculated on the smaller networks and
the filters calculated on the full user network. The relative
RMSE differences and the base RMSE (obtained from the filter
calculated on the full user network) are shown in Table III. For
a network with n users, the reported RMSE difference corre-
sponds to that of the average among filters trained on [943/n |
different networks. Users were picked at random. We observe
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Fig. 8.  User networks built from the ratings of 100 (left) ad 400 (right) users
in the MovieLens 100 k dataset. The signals on these graphs correspond to the
ratings given to the movie “Toy Story”. The darker the node, the higher the
rating, and the darker the edge, the higher the rating difference between the
endnodes.

TABLE III
RELATIVE RMSE DIFFERENCE FOR RATING PREDICTION BASED ON
K = 1,2, 3 FILTERS OBTAINED ON 50, 100, 200, 400, 600 AND 800-USER
NETWORKS, WITH RESPECT TO THE BASE RMSE OF THE SAME FILTERS
OBTAINED ON THE FULL 943-USER NETWORK

Number of users
K 50 100 200 400 600 800 Base
1 9.70% 4.70% 1.90% 0.45% 0.17% 0.04% 0.77
2 | 22.30% 20.47% @ 14.42%  5.48% 2.22% 0.37% 0.72
3 | 2817%  13.58% 3.47%  0.32%  0.41% —0.12% | 0.65

that, for all K, the RMSE difference gets steadily smaller as the
network size increases. In particular, for K’ = 1 and K = 3 the
relative RMSE difference is less than 1% for filters obtained on
networks with under half the number of total users in the dataset.

VI. CONCLUSION

We have proposed a novel graphon signal processing frame-
work which simplifies the analysis of signals and the design
of filters on very large and dynamic networks. This framework
introduces graphon signals, the graphon Fourier transform and
LSI graphon filters. We have shown that graphon filters and the
WFEFT are the limit objects of graph filters and of the GFT. These
results justify transferring signal analysis methods and informa-
tion processing systems from graphs to graphons or between
graphs associated with the same graphon. GFT and graph filter
convergence were demonstrated in two experiments involving
graphs drawn from the same graphon, and, in a third experiment,
we illustrate how graph filter behavior can be transferred even in
situations where graphs are built from model-free data and can
only empirically or statistically be said to belong to the same
“class”.

APPENDIX A
PROOF OF LEMMA 2

The proof follows by direct computation. For j € L,
1
(Twew) ) = | Wauo)ps(o)do

1
:\/’TLH (UGIk)A [S}M[Vj]k XH(UEI@)d’U
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n

— /l (u € L) Z[S]M[vj]k/ dv

(=1 L
_ [Sjla] x /il (u € I)
— @ [[VJ]k x /nll (u € Ik)} = Aj(Twe)pj(u).

If j ¢ L, then (pj,r) =0 for all k€ L. In this case, we
can trivially write (Twg;)(u) =0 = X\;(Twg)e;(u). Note
that since the vy, are orthonormal, so are the {¢x(Tw¢ )} and
therefore a basis completion {¢;} can always be obtained. To
conclude, compute for j € £

Xl = / 3(v) X (v)dv

_ \/ﬁ/ol[vj]g[x}f x 1 (v e I)dv

=yl [ =2 =B
Vi

If j ¢ L, recall that since the {v;} form a basis of R, we can
write X = ), ¢, V. Hence,

Xal; = [ ¢i0)Xa(o)ar
— /o [x]e x T (v e Ip) pj(v)dv

/ chvk[XH(’UGIg)cpj( )d

0 ker

IZCk/ ok ()p;(v)dv=0. O

kel

APPENDIX B
PROOF OF LEMMA 3 AND LEMMA 4

To prove Lemma 3, we first repeat Lemma 4 below.

Lemma 4 (Eigenvalue convergence): Let{G,, } be asequence
of graphs with eigenvalues {)\;(S,)} jez\(0}» and W a graphon
with eigenvalues {\; (Tw )} jez\ j0}- Assume that, in both cases,
the eigenvalues are ordered by decreasing order of absolute value
and indexed according to their sign. If {G,, } converges to W,
then, for all j

lim L (Sn)

n—00 n

lim \;j(Twg, ) =

n—00

A (Tw).- (36)

Proof: The proof is essentially the one for [36, Theorem 6.7],
but we reproduce it here using our notation. Recall that since
the sequence {G,, } converges to W, the density of homomor-
phisms for any motif also converges. The result then follows
by choosing a homomorphism connected to the eigenvalues of
their induced operators, namely the k-cycle Cy. Indeed, notice
that for any graphon W’ and k& > 2, we have, by definition, that
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t(Ck7 W/) - E]EZ\{O} )\J (TW/)k. Hence,
. k
lim > > N(Tw)F fork =2 (37)
jeZ\{0} j€Z\{0}

where Tw, = Tw,, - It now suffices to show that (37) implies
Ai(Tw,,) = A (Tw).

We start by bounding the eigenvalues of any graphon W' in
terms of its density of homomorphisms. In particular, for k = 4
we obtain that

Z)\ (Tw)* Z Ai( (Tw)* = t(Cy, W) =

o)

t(Cy, W4

)\m(TW’) < |:(4’VV):| and

m
Z A(Tw)* < Y A(Tw)* =t(Cy, W) =
j=-m ]eZ\{o}

; N 1/4
A_m(Tw»z—[(Cj;f‘”] .

Since t(C4, W,,) is a convergent sequence, it has a bound B
[36], which implies that

1/4
|\ (Tw )|_(|B|> Jforallj € Z\ {0}.  (38)

Note that for k > 5, we can take the limit in (37) term-
by-term since, as |\;(Tw,)*| < (B/|j])¥/* and the series
>=i(B/1)** is convergent for k > 4, 37 71 10y [N (Tw,, )"
also converges. Hence, from (37), we have

> nTw)”

lim > N (Tw,) = > =
J€Z\{0} 39

n—oo
JezZ\{0} JEZ\{0}
for k > 5, where ¢ = lim,, o A;(Tw,, )"

To conclude, we proceed by induction over an ordering of the
sequence of eigenvalues \; (T ), namely over j,, { = 1,2, ...,
such that |Aj, (Tw)| > [Aj,(Tw)| = -+ > [X;,(Tw)|. Sup-
pose that (;, = A, (Tw) for ¢ < ¢* and let A;,. (Tw) be of
multiplicity a and appear b times in the sequence {(;} and
—\j,. (Tw) be of multiplicity «’ and appear b’ times in {(;}.
The identity in (39) then reduces to

_1\ky Cje g
b+ bhg(wm)

. A, (Tw) \ "
- [aJr(fl)ka} Jrg;* (AN((TVVVV))) ,fork > 5,

where we divided both sides by A;,. (T )". Due to the ordering
of the )\JZ, for £k — oo through the even numbers we get b +
b = a + a' and through the odd numbers we get b — b = a —
a’. Immediately, we have that a« = o’ and b = ¥/, so that (;,. =
Aj,. - Although this argument assumes (j, < A;,. forall £ > £*,
applying the same procedure to an ordering of the sequence {(; }
yields the same conclusion. |
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We will also require the following well known result about
the perturbation of self-adjoint operators. For ¢ a subset of
the eigenvalues of a self-adjoint operator 7', define the spectral
projection E7 (o) as the projection onto the subspace spanned
by the eigenfunctions relative to the eigenvalues in o.

Proposition 3: Let T and T’ be two self-adjoint operators
on a separable Hilbert space { whose spectra are partitioned
as 0 UY and w U Q respectively, witho N X = andw N Q) =
(. If there exists d > 0 such that ming,c,. yeq |z — y| > d and
miNgey, yes | — y| > d, then

!
1B2(0) ~ Br (@) < THT=TI

Proof: See [44]. [ |

Lastly, we need two results related to the graphon norm. The
first is Lemma 1, which states that if a sequence of graphs
converges to a graphon in the homomorphism density sense,
it also converges in the cut norm (7). The second, here presented
as Prop. 4, is due to [26, Theorem 11.57] and bounds the
L2-induced norm of the graphon operator by is cut norm.

Proposition 4: Let Ty be the operator induced by the kernel
W. Then, [Wl|g < [|[Twl] < v/8[W|o.

Thisis a direct consequence of [45, Theorem 3.7(a)] and of the
fact that ¢(Cs, W) is the Hilbert-Schmidt norm of Tyy, which
dominates the L2-induced operator norm.

We can now proceed with the proof of our lemma:

Proof of Lemma 3: For je€C, let 0 =)\;(Tw), ¥=
{>\i (TW)}iy&j, w = /\j (Twn ), and Q) = {/\Z (Twn)}wg] in Prop.
3 to get

(40)

™ [ Tw,, — Twll|

£ — Ejnlll < 5 0

(41)

where E; and F; ,, are the spectral projections of Tw and Twy,,
with respect to their j-th eigenvalue and
djn = min ([A; = Xjp1 (Tw, )|, A = A1 (Tw,)
A = A (Tw, )l (A1 = A (Tw, )] »
where we omitted the dependence on W by writing A\; =
Ai(Tw).

Fix € > 0. From Lemma 4, we know we can find n; such that
|dj.n — 0] < 8;/2forall n > ny, where

)

05 = min (|A; = Ayl [Aj = Ajal) -

Since W is non-derogatory, J; > 0. Additionally, the cut norm
convergence of graphon sequences (Lemma 1) together with
Prop. 4 implies there exists ny such that ||Tw, — Twl|| <
€d;/m. Hence, for all n > max(n1, ny) it holds from (41) that

med;/m

11Ej = Ejnlll < =e
o 2 6;/2

(42)

Since ¢ is arbitrary, (42) proves that the projections onto the
eigenfunctions of the same eigenvalue converge. l.e., the eigen-
function sequence ¢, (Tw,, ) itself converges weakly. Because
the norms of the ¢, (Tw,, ) and ¢; (Tw ) are always equal to one,
in this case weak convergence also implies strong convergence.
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To see this, note that ||0;(Tw,, ) — ¢;(Tw)||* can be written as
i (Tw,) — o3 (Tw)|?
= (pi(Tw,,) — ¢;j(Tw), ¢;(Tw,,) — ¢;(Tw))
= (0i(Tw, ), ¢i(Tw,) — ¢;(Tw))
— (@i (Tw), ¢ (Tw,,) — ¢;(Tw))
= llo; (Tw,)II” = 2(p;(Tw,), 5 (Tw)) + 05 (Tw)||?
= llo; (Tw,)NI? = 2(p;(Tw), 05 (Tw)) + [l;(Tw)|I?
2 —llgj(Tw)|?=1-1=0

= llei(Tw,)
where the sixth line follows from weak convergence of the
¢;(Tw, ) to @;(Tw).

To proceed, let us apply Prop. 3 to the subspace spanned
by the remaining eigenfunctions with indices not in C. Let
o ={N(Tw)}ige. X ={Ni(Tw)}ice: w={Ni(Tw,)}igc
and Q = {\;(Tw,,) }iec in (40) to get

m [ Tw, — Twll|
2 dr, ’

where E' and E/, are the projections onto the subspaces given
by S = span({i7:(Tw)}ige) and S, = span({i(Tw,,)}igc)
respectively. From Prop. 3, the denominator d, must
satisfy dy, < minjge jec |Ni(Tw,) — A (Tw)| = dV
and d,, < min;ge jec |Ni(Tw) — Aj(Tw,)| = d®. For j € C,
wehave |\;(Tw)| > candsod™™ > minge ¢ — |\i(Tw,,)|. As
for d(), there exists ng such that d® > min;gc ¢ — |X\i(Tw)|
forn > ng because \;(Tw, ) — Aj(Tw ) forall j from Lemma
4. Thus, for n > ny Prop. 3 holds with d,, given by

IE — Bl < (43)

d,, < mi inc—[Ai(Tw, )|, minc— | (T
< min I%lglc IXi(Tw,)| I%ICHC IAi(Tw)]

which is satisfied by d,, = inf;gc ¢ —[A\i(Tw,)|. Since the
graphon W is non-derogatory, there exists an n; such that
d, >0 for all n > max(ng,n;) and we can use the same
argument as above to obtain that E/, — E’ in operator norm.
The quantity d,, is illustrated in Fig. 3.

To see how this implies that forall i ¢ C the function ¢, (Tw )
converges weakly to a function in the subspace S—which we
denote ¥,—, let ® € S+. Then,

(pi(Tw,,), ®)| = {E,»i(Tw,), ®)|
= (ELpi(Tw, ), ®) — (E'¢i(Tw,, ), )|

where the last equality holds because (E'¢;(Tw,, ), ®) = 0 due
to ® € S*. From the linearity of inner products, this can be
rewritten as

[(i(Tw,), )| = (EL0i(Tw,,) — E'¢i(Tw,, ), ®)|
= (B, — EN¢i(Tw,), ®)|
and, applying Cauchy-Schwarz,
(pi(Tw,,), )| < ||E, — E'|[[|@]].
Taking the limit on both sides of the inequality, we get
lim [(0i(Tw,), ®)| < [|@] lim [|E;, — E'|| = 0.
n—oo n—o0
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Hence, ;(Tw,,) converges weakly to a W, that is perpendicular

to elements of S*, i.e., ¥; € S. [ ]
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