
Graph Neural Networks:
Architectures, Stability, and
Transferability
This article deals with graph neural networks (GNNs) that operate on data supported
on graphs.

By LUANA RUIZ , FERNANDO GAMA , Member IEEE, AND ALEJANDRO RIBEIRO , Member IEEE

ABSTRACT | Graph neural networks (GNNs) are information

processing architectures for signals supported on graphs. They

are presented here as generalizations of convolutional neural

networks (CNNs) in which individual layers contain banks of

graph convolutional filters instead of banks of classical convo-

lutional filters. Otherwise, GNNs operate as CNNs. Filters are

composed of pointwise nonlinearities and stacked in layers.

It is shown that GNN architectures exhibit equivariance to

permutation and stability to graph deformations. These prop-

erties help explain the good performance of GNNs that can be

observed empirically. It is also shown that if graphs converge

to a limit object, a graphon, GNNs converge to a corresponding

limit object, a graphon neural network. This convergence justi-

fies the transferability of GNNs across networks with different

numbers of nodes. Concepts are illustrated by the application

of GNNs to recommendation systems, decentralized collabora-

tive control, and wireless communication networks.

KEYWORDS | Equivariance; graph filters; graph neural net-

works (GNNs); graph signal processing (GSP); graphon neural

networks; graphons; stability; transferability.

I. I N T R O D U C T I O N
Graphs can represent lexical relationships in text analysis
[1]–[3], product or customer similarities in recommen-
dation systems [4]–[6], or agent interactions in multia-
gent robotics [7]–[9]. Although otherwise unrelated, these
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applications share the presence of signals associated with
nodes—words, ratings, or perception—out of which we
want to extract some information—text categories, ratings
of other products, or control actions. If data are available,
we can formulate empirical risk minimization (ERM) prob-
lems to learn these data-to-information maps. However,
it is a form of ERM in which the graph plays a central
role in describing relationships between signal components
and, therefore, one in which it should be leveraged. Graph
neural networks (GNNs) are parameterizations of learning
problems, in general, and ERM problems, in particular, that
achieve this goal.

In an ERM problem, we are given input–output pairs
in a training set, and we want to find a function that
best approximates the input–output map according to a
given risk (see Section II). This function is later used to
estimate the outputs associated with inputs that were not
part of the training set. We say that the function has been
trained and that we have learned to estimate outputs. This
simple statement hides the fact that the ERM problems do
not make sense unless we make assumptions on how the
function generalizes from the training set to unobserved
samples (see Section II-A). We can, for instance, assume
that the map is linear, or to be in tune with the times that
the map is a deep neural network [10].

A characteristic shared by arbitrary linear and fully
connected neural network (FCNN) parameterizations is
that they do not scale well with the dimensionality of the
input signals. This is best known in the case of signals in
Euclidean space—time and images—where many success-
ful examples of scalable linear processing are based on
convolutional filters and of scalable nonlinear processing
on convolutional neural networks (CNNs). In this article,
we describe graph filters [11], [12] and graph neural
networks [3], [13]–[16] as analogous of convolutional
filters and CNNs, but adapted to process signals sup-
ported on graphs (see Section III). A graph filter is a
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polynomial in a matrix representation of the graph. Out
of this definition, we build a graph perceptron with the
addition of a pointwise nonlinear function to process the
output of a graph filter (see Section III-A). Graph per-
ceptrons can be layered to build a multilayer GNN (see
Section III-B), and individual layers are augmented from
single filters to filter banks to build multiple-feature GNNs
(see Section III-C).

At this juncture, an important question is whether graph
filters and GNNs do for signals supported on graphs what
convolutional filters and CNNs do for Euclidean data.
In other words, do they enable scalable processing of
signals supported on graphs? A growing body of empirical
work shows that this is true to some extent although results
are not as impressive as in the case of voice and image
processing. As an example that we can use to illustrate the
advantages of graph filters and GNNs, consider a recom-
mendation system (see Section II-B) in which we want to
use past ratings that customers have given to products to
predict future ratings [17]. Collaborative filtering solutions
build a graph of product similarities and interpret customer
ratings as signals supported on the product similarity
graph [4]. We then use past ratings to construct a training
set and learn to fill in the ratings that a given customer
would give to products not yet rated. Empirical results do
show that graph filters and GNNs work in recommendation
systems with a large number of products in which linear
maps and FCNNs do not [4]–[6]. In fact, this example leads
to three empirical observations that motivate this article
(see Section III-D).

(O1): Graph filters produce better rating estimates than
arbitrary linear parameterizations, and GNNs pro-
duce better estimates than arbitrary (fully con-
nected) neural networks, provided that sufficient
training data is available.

(O2): GNNs predict ratings better than graph filters.
(O3): A GNN that is trained on a graph with a certain

number of nodes can be executed in a graph with
a larger number of nodes and still produces good
rating estimates.

Observations (O1)–(O3) support advocacy for the use of
GNNs, at least in recommendation systems. However, they
also spark three interesting questions: (Q1) why do graph
filters and GNNs outperform linear transformations and
FCNNs? (Q2) why do GNNs outperform graph filters? and
(Q3) why do GNNs transfer to networks with a different
number of nodes? In this article, we present three theoret-
ical analyses that help answer these questions.

1) Equivariance: Graph filters and GNNs are equivariant
to permutations of the graph (see Section III).

2) Stability: GNNs provide a better tradeoff between
discriminability and stability to graph perturbations
(see Section IV).

3) Transferability: As graphs converge to a limit object,
a graphon, GNN outputs converge to outputs of a
corresponding limit object, a graphon neural network
(see Section V).

These properties show that GNNs have strong generaliza-
tion potential. Equivariance to permutations implies that
nodes with analogous neighbor sets making analogous
observations perform the same operations. Thus, we can
learn to, say, fill in the ratings of a product from the ratings
of another product in another part of the network if the
local structures of the graph are the same (see Fig. 2).
This helps explain why graph filters outperform linear
transforms and GNNs outperform FCNNs [see observation
(O1)]. Stability to graph deformations affords a stronger
version of this statement. We can learn to generalize
across different products if the local neighborhood struc-
tures are similar, not necessarily identical (see Fig. 3).
GNNs possess better stability than graph filters for the
same level of discriminability, which helps explain why
GNNs outperform graph filters [see observation (O2)]. The
convergence of GNNs toward graphon neural networks
delineated under the transferability heading explains why
GNNs can be trained and executed in graphs of dif-
ferent sizes [see observation (O3)]. It is important to
note that analogous to these properties hold for CNNs.
They are equivariant to translations and stable to the
Euclidean space deformations [18] and have well-defined
continuous-time limits.

We focus on a tutorial introduction to GNNs and on
describing some of their fundamental properties. This
focus renders several relevant questions out of scope. Most
notably, we do not discuss training [19], [20]. The role
of proper optimization techniques, the selection of proper
optimization objectives, and the realization of graph filters
are critical in ensuring that the potential for generalization
implied by equivariance, stability, and transferability is
actually realized. References for the interested reader are
provided in Section I-A.

A. Context and Further Reading

The field of graph signal processing (GSP) has been
developed over the last decade [11], [21], [22]. Central to
developments in GSP is the notion of graph convolutional
filters [11], [12], [21], [23], [24]. GNNs arose as nonlin-
ear extensions of graph filters, obtained by the addition
of pointwise nonlinearities to the processing pipeline [3],
[13]–[15], [25]. Several implementations of GNNs have
been proposed. These include graph convolutional filters
implemented in the spectral domain [13], implementa-
tions of graph filters with Chebyshev polynomials [3], and
ordinary polynomials [14], [26]. One can also encounter
GNNs described in terms of local aggregation functions
[15], [27]. These can be seen as particular cases of GNNs
that use graph filters of order 1 because local aggregation
operations can be described as matrix multiplications with
some matrix representation of the graph. This results in
a parameterization with lower representation power than
those in [3], [13], and [14].

It is important to point out that the GNNs in [3],
[13], [14] are equivalent in the sense that they span
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the exact same set of maps. Thus, although we use the
polynomial description of [14], the results that we present
apply irrespective of implementation. The architectures
in [15] and [27], being restricted to filters of order 1,
span a subset of the maps that can be represented by the
more generic GNNs in [3], [13], and [14]. Hence, results
also apply to [15] and [27], except for discriminability
discussions that require the use of higher order graph
filters. Equivalence notwithstanding, these architectures
may differ in their ease of training, leading to a different
performance in practice.

GNNs using linear transforms other than graph filters
have also been proposed [16], [28]–[30]. Extension of
nonlinearities to encompass neighborhood information
is proposed in [29], and architectures with residual
connections are proposed in [31] and [32]. Edge-varying
filters [33] can be used to design edge-varying GNNs [16]
and graph attention networks [28], [34]. Multihop
attention-based GNNs are introduced in [35]. Architec-
tures considering multirelational data, that is, data with
support on multiple graphs or graphs with multidimen-
sional edge features, have been proposed in [31] and [36],
and architectures that leverage time dependencies are
available in the form of graph recurrent neural networks
[30], [37], [38]. We point out that these architectures are
different from the GNNs based on graph filters that are
described in this article. To stress this point, GNNs that
rely on graph convolutional filters are sometimes called
graph convolutional neural networks (GCNNs).

Results on permutation equivariance and stability that
we present here are drawn from [39] and results on
transferability are drawn from [40]. Other important
works on the stability of GNNs appear in the context
of graph scattering transforms [41], [42]. Permutation
equivariance is simple to prove but has, nevertheless,
drawn considerable attention because of its practical
importance [27], [41]–[44]. Our transferability analysis
builds upon the concept of graphons and convergent graph
sequences [45], [46] that have proved insightful when
processing graph data [47]–[49]. In particular, GSP in
the limit has given rise to the topic of graphon signal
processing [40], [50], [51]. An alternative transferabil-
ity analysis relying on generic topological spaces, such
as manifolds, where graph Laplacians are sampled from
Laplace–Beltrami operators, is also possible [52].

Throughout this article, we use recommendation sys-
tems as a running example to illustrate ideas [4]–[6] and,
in Sections VI–VII, present numerical results that illustrate
GNN stability in decentralized robot control and GNN
transferability in wireless resource allocation. The first two
are examples of supervised learning problems, whereas
the latter is an example of unsupervised learning. These
are only some of the problems to which GNNs have been
applied successfully; others include identifying brain dis-
orders [53], learning molecule fingerprints [54], web page
ranking [55], text categorization [3], [14], and clustering
of citation networks [15], [28], [56]. Of particular interest

to the electrical engineering community are applications to
cyber–physical systems, such as power grids [57], decen-
tralized collaborative control of multiagent robotic systems
[7], [9], and wireless communication networks [58].

II. M A C H I N E L E A R N I N G O N G R A P H S
Consider a graph G composed of vertices V = {1, . . . , n},
edges E defined as ordered pairs (i, j), and weights wij

associated with the edges. Our interest in this article is
on machine learning problems defined over this graph.
Namely, we are given pairs (x, y) composed of an input
graph signal x ∈ �

n and a target output graph signal
y ∈ �

n. That x and y are graph signals means that the
components xi and yi are associated with the ith node
of the graph. The pair (x, y) is jointly drawn from a
probability distribution p(x, y), and our goal is to find a
function Φ : �n → �

n such that Φ(x) approximates y over
the probability distribution p(x, y). To do so, we introduce
the nonnegative loss function �(Φ(x), y) ≥ 0 such that
�(Φ(x), y) = 0 when Φ(x) = y in order to measure the dis-
similarity between the output Φ(x) and the target output y.
We can now define the function Φ† that best approximates
y as the one that minimizes the loss �(Φ(x), y) averaged
over the probability distribution p(x, y)

Φ† = argmin
Φ

�[�(Φ(x), y)] = argmin
Φ

�
�(Φ(x), y) dp(x, y).

(1)

The expectation �[�(Φ(x), y)] is said to be a statistical loss,
and (1) is termed a statistical loss minimization problem.

A critical condition to solve (1) is availability of the prob-
ability distribution p(x, y). If this is known, the solution
to (1) is to compute a posterior distribution that depends
on the form of the loss function �(Φ(x), y). The whole
idea of machine learning, though, is that p(x, y) is not
known. Instead, we have access to a collection of Q data
samples (xq , yq) drawn from the distribution p(x, y) which
we group in the training set T := {(xq, yq)}

Q
q=1. Assuming

that these samples are acquired independently and that the
number of samples Q is large, a good approximation to
the statistical loss in (1) is the empirical average �̄(Φ) :=

(1/Q)
�Q

q=1 �(Φ(xq), yq). Therefore, it is sensible to change
our objective to search for a function Φ∗ that minimizes the
empirical average �̄(Φ)

Φ∗ = argmin
Φ

1

Q

Q�
q=1

�(Φ(xq), yq). (2)

We say that (2) is an ERM problem. The function Φ∗ is
the optimal empirical function associated with the training
set T .

A. Learning Parameterizations

Observe that the solution to (2) is elementary. Since
�(Φ(x), y) = 0 when Φ(x) = y and nonnegative otherwise,
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Fig. 1. Graph convolutional filter is a polynomial on a matrix representation of the graph S. We think of them as operations that propagate

information through adjacent nodes. As the order of the filter grows, we aggregate information from nodes that are farther apart. However,

the integration of this information is always mediated by the neighborhood structure of the graph.

it suffices to make Φ(xq) = yq for all the observed sam-
ples xq—or some sort of average if the same input xq is
observed several times. However, (2) only makes sense as
a problem formulation if we have access to all possible
samples xq. However, the interest in practice is to infer,
or to learn, the value of y for samples x that have not been
observed before.

This motivates the introduction of a learning parame-
terization H that restricts the family of functions Φ that
are admissible in (2). Thus, instead of searching over
all Φ(x)’s, we search over functions Φ(x;H) so that the
ERM problem in (2) is replaced by the alternative ERM
formulation

H∗ = argmin
H

1

Q

Q�
q=1

�(Φ(xq;H), yq). (3)

A particular choice of parameterization is the set of linear
functions of the form Φ(x; H) = Hx, in which case (2)
becomes

H∗ = argmin
H

1

Q

Q�
q=1

�(Hxq , yq). (4)

Alternatively, one could choose Φ(x;H) to be a neural
network, or as we will advocate in Section III, a graph filter
or a GNN. The important point to highlight here is that the
design of a machine learning system is tantamount to the
selection of the proper learning parameterization. This is
because in (3), the only choice left for a system designer is
the class of functions Φ(x;H) spanned by different choices
of H. However, more importantly, this is also because the
choice of parameterization determines how the function
Φ(x;H) generalizes from (observed) samples in the train-
ing set (xq , yq) ∈ T to unobserved signals x.

B. Recommendation Systems

An example of an ERM problem involving graph signals
is a collaborative filtering approach to recommendation

systems [4]. In a recommendation system, we want to
predict the ratings that customers would give to a certain
product using rating histories. Collaborative filtering solu-
tions build a graph of product similarities using past ratings
and look at the ratings of each customer as a graph signal
supported on the nodes of the product graph.

1) Product Similarity Graph: Denote by xci the rating
that customer c gives to product i. Typically, product i has
been rated by a subset of customers that we denote Ci.
We consider the sets of users Cij = Ci ∩ Cj that have rated
products i and j and compute correlations

σij =
1

|Cij |
�

c∈Cij

(xci − μij)(xcj − μji) (5)

where we use the average ratings μij = (1/|Cij |)�
c∈Cij

xci and μji = (1/|Cij |)
�

c∈Cij
xcj . The product

graph used in collaborative filtering is the one with nor-
malized weights

wij = σij

Æ√
σiiσjj . (6)

A cartoon illustration of the product graph is shown
in Fig. 2(a). Nodes represent different products, edges
stand in for product similarity, and signal components are
the product ratings of a given customer. As is typical in
practice, a small number of products have been rated.

2) Training Set: To build a training set for this problem,
define the vector xc = [xc1; . . . ; xcn], where xci is the
rating that user c gave to product i if available or xci = 0

otherwise. Further denote as Ic the set of items rated by
customer c. Let i ∈ Ic be a product rated by customer
c and define the sparse vector yci whose unique nonzero
entry is [yci]i = xci. With these definitions, we construct
the training set

T =
�

c,i∈Ic

{(xci, yci) : xci = xc − yci}. (7)
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Fig. 2. Graph represents product similarity in a recommendation system. If we are given samples (a) for training, any reasonable

parameterization learns to complete the rating of node 3 when observing the signal in (b). The linear parameterization in (4) also learns to

fill the rating of node 3 when observing (c)—node saturation is proportional to the signal value. The graph filter parameterization in (13)

generalizes to (c), but it also generalizes to predicting the rating of node 6 in (d). This is true because of the permutation equivariance result

in Proposition 1. GNNs [see (21)–(23)] inherit this generalization property (see Proposition 2).

The process of building an input–output pair of the training
set is illustrated in Fig. 2(b). In this particular example,
we isolate the rating that this customer gave to product
i = 3. This rating is recorded into a graph signal with a
single nonzero entry [yc3]3 = xc3. The remaining nonzero
entries define the rating input xc3 = xc − yc3. This process
is repeated for all the products in the set i ∈ Ic of rated
items of costumer c and for all customers c.

3) Loss Function: Our goal is to learn a map that will
produce outputs yci when presented with inputs xci. For
example, in the case of Fig. 2, we want to present Fig. 2(b)
as an input and fill in a rating of product i = 3 equal to the
rating of product i = 3 in Fig. 2(a). To do that, we define
the loss function

�(Φ(xci;H), yci) =
1

2

�
eT

i Φ(xci;H) − eT
i yci

�2
(8)

where the vector ei is the ith entry of the canonical
basis of �

n. Since multiplying with eT
i extracts the ith

component of a vector, the loss in (8) compares the pre-
dicted rating eT

i Φ(xci;H) = [Φ(xci;H)]i with the observed
rating eT

i yci = [yci]i = xci. At execution time, this map
can be used to predict ratings of unrated products from
the ratings of rated products. If we encounter the signal
in Fig. 2(b), we know the prediction will be accurate
because we encountered this signal during training. If we
are given the signals in Fig. 2(c) or (d), successful rating
predictions depend on the choice of parameterization.

III. G R A P H N E U R A L N E T W O R K S
As we explained in Section II-A, the choice of parame-
terization determines the manner in which the function
Φ(x;H) generalizes from elements of the training set to
unobserved samples. A parameterization that is convenient
for processing graph signals is a graph convolutional filter
[11], [12], [21], [23]. To define this operation, let S ∈
�

n×n denote a matrix representation of the graph and
introduce a filter-order K along with filter coefficients hk

that we group in the vector h = [h0; . . . ; hK ]. A graph
convolutional filter applied to the graph signal x is a
polynomial on this matrix representation

u =

K�
k=0

hkSk x = Φ(x; h, S) (9)

where we have defined Φ(x; h, S) in the second equality to
represent the output of a graph filter with coefficients h run
on the matrix representation S and applied to the graph
signal x. The output u = Φ(x; h, S) is also a graph signal.
In the context of (9), the representation S is termed a graph
shift operator. If we need to fix ideas, we will interpret S
as the adjacency matrix of the graph with entries Sij =

wij , but nothing really changes if instead we work with
the Laplacian or normalized versions of the adjacency or
Laplacian [22].

One advantage of graph filters is their locality. Indeed,
we can define the diffusion sequence as the collection
of graph signals zk = Skx to rewrite the filter in (9)
as u =

�K
k=0 hkzk. It is ready to see that the diffusion

sequence is given by the recursion zk = Szk−1 with z0 = x.
Further observing that Sij �= 0 only when the pair (i, j)

is an edge of the graph, we see that the entries of the
diffusion sequence satisfy

zk,i =
�

j:(i,j)∈E
Sijzk−1,j . (10)

We can, therefore, interpret the graph filter in (9) as an
operation that propagates information through adjacent
nodes, as we illustrate in Fig. 1. This is a property that
graph convolutional filters share with regular convolu-
tional filters in time and offers motivation for their use in
the processing of graph signals.

In the context of machine learning on graphs, a more
important property of graph filters is their equivariance
to permutation. Use P to denote a permutation matrix—
entries Pij are binary with exactly one nonzero entry
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in each row and column. The vector x̂ = Px is just a
reordering of the entries of x that we can interpret as a
graph signal supported on the graph Ŝ = PSPT , which
is just a reordering of the graph S. When processing of
x̂ on the graph Ŝ with the graph filter h, the following
proposition from [39], originally proved in [11], holds.

Proposition 1: Graph filters are permutation equivariant

Φ(x̂; h, Ŝ) = Φ(Px; h, PSPT ) = PΦ(x; h, S). (11)

Proof: Use the definitions of the graph filter in (9) and
the permutations x̂ = Px and Ŝ = PSPT to write

Φ(x̂; h, Ŝ) =
K�

k=0

hkŜ
k
x̂ =

K�
k=0

hk(PSPT )kPx. (12)

Since PT P = I for any permutation matrix, (11) follows.
We include the proof of Proposition 1 to highlight that

this is an elementary result. Its immediate relevance is
that it shows that processing a graph signal with a graph
filter is independent of node labeling. This is something
we know must hold in several applications—it certainly
must hold for the recommendation problem described
in Section II-B—but that is not true of, say, the linear
parameterization in (4). There is, however, further value
in permutation equivariance. To explain this, return to the
ERM problem in (3) and utilize the graph filter in (9)
as a learning parameterization. This yields the learning
problem

h∗ = argmin
h

1

Q

Q�
q=1

�

�
K�

k=0

hkSkxq, yq

�
. (13)

An important observation is that we know that (4) must
yield a function Φ(x; H∗) whose average loss is smaller
than the average loss attained by the function Φ(x; h∗, S)

obtained from solving (13). This is because both are lin-
ear transformations, and while Φ(x; H) = Hx is generic,
the graph filter Φ(x; h, S) =

�K
k=0 hkSkx belongs to a

particular linear class. This is certainly true on the train-
ing set T , but, when operating on unobserved samples
x, the graph filter can and will do better (see results
in Section III-D) because its permutation equivariance
induces better generalization.

An illustration of this phenomenon is shown in Fig. 2.
The graph represents a user similarity network in a rec-
ommendation system for which the ratings, as shown in
Fig. 2(a), are available at the time of training. Out of these
ratings, we can create the graph signal in Fig. 2(b) to
add to the training set, and we assume that both para-
meterizations, the arbitrary linear transformation Φ(x; H∗)
in (4) and the graph filter Φ(x; h∗, S) in (13), learn to
estimate the rating of user 3 successfully. If this hap-
pens, the functions Φ(x; H∗) and Φ(x; h∗, S) also learn

Fig. 3. Perfect symmetry as in Fig. 2 is unlikely in practice, but

near permutation symmetries can and do appear. We still expect

some level of generalization from graph filters [see (13)] and GNNs

[see (21)–(23)]. (a) Graph and signal observed at training time.

(b) Graph and signal observed at test time.

to estimate the rating of user 3 when given the signal
in Fig. 2(c)—where we interpret colors as proportional to
signal values. Notice that this happens even if signals of
this form are not observed during training. We say that
Φ(x; H∗) and Φ(x; h∗, S) generalize to this example.

If we now consider the signal in Fig. 2(d), the linear
parameterization Φ(x; H∗) may or may not generalize to
this example. In principle, it would not. The graph filter
Φ(x; h∗, S), however, does generalize. This can be seen
intuitively from the definition of the diffusion sequence
in (10). Whatever operations are done to estimate the
rating of user 3 from its adjacent nodes 2, 4, and 9 are the
same as those done to estimate the rating of user 6 from its
adjacent nodes 1, 5, and 12. More formally, when graphs
present symmetries in the sense that they are invariant to
some permutation, that is, S = PSPT , Proposition 1 tells
us that Φ(Px; h, S) = PΦ(x; h, S), that is, these operations
are equivariant so that the rating prediction is consistent
with this relabeling. This is the case of the graph in Fig. 2,
which can be permuted onto itself to map the signal
in Fig. 2(d) onto the signal in Fig. 2(a). Thus, the graph
filter generalizes from the example in Fig. 2(a) to fill the
rating in Fig. 2(d).

This illustration highlights the generalization properties
of graph filters vis-à-vis those of linear transforms. In real-
ity, we are unlikely to encounter the perfect permutation
symmetry of Fig. 2. Near permutation symmetry as in Fig. 3
is more expected. In this case, the ability to generalize from
Fig. 3(a) to (b) is not as much as the ability to generalize
from Fig. 2(a) to (d), but the continuity of (9) dictates that
some amount of predictive power extends from observing
samples Fig. 3(a) toward the estimation of the rating of
user 6 when given the signal in Fig. 3(b).

A. Graph Perceptrons

GNNs extend graph filters by using pointwise nonlinear-
ities that are nonlinear functions that are applied inde-
pendently to each component of a vector. For a formal
definition, begin by introducing a single variable function
σ : � → � that we extend to the vector function σ : �n →
�

n by independent application to each component. Thus,
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Fig. 4. Graph perceptron composes a graph convolutional filter

with a pointwise nonlinearity. It is a minor variation of a graph filter

that, among other shared properties, retains permutation

equivariance.

if we have u = [u1; . . . ; un] ∈ �
n, the output vector σ(u) is

such that
σ( u ) : [ σ( u ) ]i = σ(ui ). (14)

That is, the output vector is of the form σ(u) =

[σ(u1), . . . , σ(un)]. Observe that we are using σ to denote
both the scalar function and the pointwise vector function.

In a single-layer GNN, the graph signal u is passed
through a pointwise nonlinear function satisfying (14) to
yield

z = σ(u) = σ

�
K�

k=0

hkSkx

�
. (15)

We say that the transform in (15) is a graph percep-
tron (see Fig. 4). Different from the graph filter in (9),
the graph perceptron is a nonlinear function of the input.
It is, however, a very simple form of nonlinear processing
because the nonlinearity does not mix signal components.
Signal components are mixed by the graph filter but are
then processed element-wise through σ. In particular, (15)
retains the locality properties of graph convolutional filters
(see Fig. 1) and their permutation equivariance (see Fig. 2
and Proposition 1).

B. Multiple-Layer Networks

Graph perceptrons can be stacked in layers to create
multilayer GNNs (see Fig. 5). This stacking is mathemat-
ically written as a function composition where the outputs
of a layer become inputs to the next layer. For a formal
definition, let l = 1, . . . , L be a layer index and hl =

{hlk}K
k=0 be collections of K + 1 graph filter coefficients

associated with each layer. Each of these sets of coefficients
defines a respective graph filter Φ(x; hl, S) =

�K
k=0 hlkSkx.

At layer l, we take as input the output xl−1 of layer l − 1

that we process with the filter Φ(x; hl, S) to produce the
intermediate feature

ul = Hl(S) xl−1 =

K�
k=0

hlkSk xl−1 (16)

where, by convention, we say that x0 = x so that the
given graph signal x is the GNN input. As for the graph

perceptron, this feature is passed through a pointwise
nonlinear function (which is the same in all layers) to
produce the lth layer output

xl = σ(ul) = σ

�
K�

k=0

hlkSk xl−1

�
. (17)

After recursive repetition of (16) and (17) for l = 1, . . . , L,
we reach xL, which is not further processed and is declared
the GNN output z = xL. To represent the GNN output,
we define the filter matrix H := {hl}L

l=1 grouping the L sets
of filter coefficients at each layer and define the operator
Φ( · ; H, S) as

Φ(x; H, S) = xL. (18)

We stress that, in (18), the GNN output Φ(x; H, S) = xL

follows from recursive application of (16) and (17) for l =

1, . . . , L with x0 = x. This operator notation emphasizes
that the output of a GNN depends on the filter H and the
graph shift operator S. A block diagram for a GNN with
L = 3 layers is shown in Fig. 5.

The sets of filter coefficients H that define the GNN
operator in (18) are chosen to minimize a training loss,
as in (3)

H∗ = argmin
H

1

Q

Q�
q=1

�(Φ(xq; H, S), yq). (19)

Fig. 5. GNNs are compositions of layers each of which composes

graph filters Φ(x�hl,S) �
�K

k�0 hlkS
k with pointwise nonlinearities σ

[see (16) and (17)]. The output Φ(x�H,S) � xL � x3 follows at the end

of a cascade of three layers recursively applied to the input x.

Layers are defined by sets of coefficients grouped in the matrix

H �� {h1 ,h2,h3}, which is chosen to minimize a training loss for a

given shift S [see (3) and (19)].
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Fig. 6. We expand the representation power of GNNs with the

addition of multiple features per layer [see (20)]. The graph filters in

each layer are MIMO graph filters [see (21)]. They take Fl−1 graph

signals as inputs and produce Fl graph signals as outputs. The

structure is otherwise identical to the single-feature GNN in Fig. 5.

We emphasize that, similar to the case of the graph filters
in (13), the optimization is over the filter matrix H with
the shift operator S given. We also note that, since each
perceptron is permutation equivariant, the whole GNN also
inherits the permutation equivariance of graph filters.

C. Multiple-Feature Networks

To further increase the representation power of GNNs,
we incorporate multiple features per layer that are the
result of processing multiple input features with a bank
of graph filters (see Fig. 6). For a formal definition, let Fl

be the number of features at layer l and define the feature
matrix as

Xl =
	
x1

l , x2
l , . . . , xFl

l



. (20)

We have that Xl ∈ �
n×Fl and interpret each column of Xl

as a graph signal. The outputs of Layer l − 1 are inputs to
Layer l where the set of Fl−1 features in Xl−1 are processed
by a filterbank made up of Fl−1 × Fl filters. For a compact
representation of this bank, consider coefficient matrices
Hlk ∈ �

Fl−1×Fl to build the intermediate feature matrix

Ul =
K�

k=0

SkXl Hlk. (21)

Each of the Fl columns of the matrix Ul ∈ �
n×Fl is

a separate graph signal. We say that (21) represents a
multiple-input–multiple-output (MIMO) graph filter since
it takes Fl−1 graph signals as inputs and yields Fl graph
signals at its output. As in the case of the single-feature
GNN of Section III-B—and the graph perceptron in (15)—
the intermediate feature Ul is passed through a pointwise

nonlinearity to produce the lth layer output

Xl = σ(Ul) = σ

�
K�

k=0

Sk Xl−1 Hlk

�
. (22)

When l = 0, we convene that X0 = X is the input to the
GNN, which is made of F0 graph signals. The output XL of
layer L is also the output of the GNN, which is made up
of FL graph signals. To define a GNN operator, we group
filter coefficients Hlk in the tensor H = {Hlk}l,k and define
the GNN operator

Φ(X; H, S) = XL. (23)

If the input is a single graph signal, as in (15) and (18),
we have F0 = 1 and X0 = x ∈ �

n. If the output is
also a single graph signal—as is also the case in (15) and
(18)—we have FL = 1 and XL = xL ∈ �

n.
The sets of filter coefficients H that define the

multiple-feature GNN operator in (23) are chosen to mini-
mize a training loss

H∗ = argmin
H

1

Q

Q�
q=1

�(Φ(Xq; H, S), Yq) (24)

which differs from (19) in that inputs, outputs, and inter-
mediate layers may be composed of multiple features.
Each layer of the GNN is made up of filter banks that are
permutation equivariant. Since pointwise nonlinearities
do not mix signal components, each individual layer is
permutation equivariant. It follows that the GNN, being a
composition of permutation equivariant operators, is also
permutation equivariant. This is a sufficiently important
fact that deserves to be highlighted as a proposition that
we take from [39].

Proposition 2: GNNs are permutation equivariant

Φ(x̂; H, Ŝ) = Φ(Px; H, PSPT ) = PΦ(x; H, S). (25)

Proposition 2 entails the same comments that follow
Proposition 1. In particular, GNNs are expected to gen-
eralize from observing the signal in Fig. 2(a) to suc-
cessfully fill in ratings when presented with the signal
in Fig. 2(d), even if this signal is never observed dur-
ing training. This is an attribute that is not expected of
FCNNs and that we verify experimentally in Section III-
D. Likewise, we expect generalization to also hold in the
case of Fig. 3. As we will see in Section IV, the fun-
damental difference between GNNs and graph filters is
the ability of the former to provide better generalization
when signals are close to permutation equivariant but not
exactly so.

Remark 1: As is the case of the single-feature filter
in (9), we can write the MIMO graph filter in (21) in terms
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of a diffusion sequence. To do that, we define Zlk := SkXl

and observe that we can rewrite the matrices Zlk in the
recursive form

Zlk = SZl,k−1, with Zl0 = Xl. (26)

With this definition, the graph filter in (21) is rewritten as

Ul =
K�

k=0

SkXl Hlk, =
K�

k=0

Zlk Hlk. (27)

The use of the diffusion sequence in (27) highlights
that the MIMO graph filter accepts a local implemen-
tation [see (10)]. This is important in, for example,
the use of GNNs in decentralized collaborative systems
(see Section VI).

Remark 2: To keep the representation dimension under
control, many architectures implement pooling as an
intermediate step between the convolutional filter banks
and the nonlinearity. Pooling is a summarizing operation
that reduces dimensionality by first computing local sum-
maries of the signal and then subsampling it. Permutation
equivariance is preserved if the subsampling operation is
based on topological features of the graph, such as the
node degrees [14]. Pooling strategies for GNNs have been
discussed in [3], [13], [14], and [59].

D. Recommendation System Experiments

To illustrate the problem of recommendation systems
with a specific numerical example, we consider the
MovieLens-100k data set [17] that consists of 100 000 rat-
ings given by 943 users to 1682 movies. These ratings are
integers between 1 and 5, and nonexisting ratings are set
to 0. The movie similarity network is built by computing
similarity scores between pairs of movies, as described in
Section II-B. On this network, each user’s rating vector xc

can be represented as a graph signal.

1) Different Parameterizations: In the first experiment,
the goal is to predict the ratings to the six movies with
most ratings in the data set by solving the ERM problem
in (3) with different parameterizations of Φ. In order to
do this, we follow the methodology in Section II-B to
obtain 3044 input–output pairs corresponding to users
who have rated these movies. These data are then split
into two: 90% for training (of which 10% are used for
validation) and 10% for testing.

Seven different parameterizations were considered:
a simple linear parameterization, a graph filter (9),
an FCNN, a graph perceptron (15), a multilayer
GNN (17), and a single-layer and a multilayer multi-
feature GNNs (22). Their hyperparameters are presented
in Table 1. Note that the graph filter and GNNs have a
readout layer mapping FL features per node to a single
output feature per node, adding FL extra parameters. All
architectures were trained simultaneously by optimizing

Table 1 Hyperparameters and Total Number of Parameters of Seven

Parameterizations of Φ in (3). The Number of Features, Filter Taps,

and Hidden Units Are Denoted F, K, and N, Respectively. For Multilayer

Models, Fl/Nl Indicates the Value of These Hyperparameters at Layer l

the L1 loss on the training set, using ADAM with a learning
rate of 5 × 10−3 and decay factors of 0.9 and 0.999.
The number of epochs and batch size was 40 and 5,
respectively.

In Table 2, we report the average root mean square
error (RMSE) achieved by each parameterization for ten
data splits. We observe that the graph filter achieves a
much smaller error than the generic linear parameteriza-
tion while having significantly fewer parameters, which
is empirical evidence of its superior ability to exploit the
structure of graph signals through permutation equivari-
ance, as discussed in Section III. The fact that the aver-
age RMSE of the FCNN, which also has in the order of
105 parameters, is worse than those of the GNNs, graph
perceptrons, and graph filter can be explained by the same
reason, even if the FCNN improves upon the linear trans-
formation due to the nonlinearities. The graph perceptron
and the multilayer GNN are not better than the graph filter
and showcase similar RMSEs. On the other hand, the addi-
tion of multiple features in the single-layer and multilayer
GNNs provides sensible improvements, with the two-layer
GNN performing better than all other architectures. It turns
out that nonlinearities also play an important role in GNN
performance, which we examine in the stability discussion
of Section IV.

2) GNN Transferability: In the second experiment,
we aim to analyze whether a GNN trained on a small
network generalizes well to a large network. We con-
sider the same parameterization of the two-layer GNN
in Table 1 and use the same training parameters of the
first experiment. The GNN is trained to predict the ratings
of the movie “Star Wars” on similarity networks with
n = 118, 203, 338, 603, and 1682 nodes, where one of
the nodes is always “Star Wars” and others are picked at

Table 2 Average RMSE Over Ten Random Data Splits for the Six Movies

With Most Ratings in the Data Set
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Table 3 Average RMSE Achieved on the Graph Where the GNN Is Trained

(n Nodes) and on the Full Movie Graph for the Movie “Star Wars.” Average

Relative RMSE Difference

random. After training, each GNN is then tested on the full
movie network.

Table 3 shows the average RMSEs obtained on both the
graphs where the GNN was trained and the full movie
graph for ten random data splits. It also shows the average
relative difference between the RMSE on these graphs.
We observe that the prediction error on the full movie
network approaches the error realized on the trained
network as n increases. These results suggest that GNNs
are transferable, a property that we discuss, in more detail,
in Section V.

IV. S TA B I L I T Y P R O P E R T I E S O F G N N s
Permutation equivariance is a fundamental property
of graph filters (see Proposition 1) and GNNs
(see Proposition 2) since it allows them to exploit
the graph structure and, thus, generalize better to unseen
samples coming from the same graph [39], [41]. However,
graphs rarely exhibit perfect symmetries, as illustrated
in Fig. 2, but rather show near permutation symmetries,
as shown in Fig. 3.

Stability to graph support perturbations quantifies how
much the output of the graph filter changes in relation to
the size of the perturbation. That is, if the graph support
has changed slightly (with respect to a permutation of
itself), then the output of a trained graph filter or GNN
will also change slightly [39]. This property is particularly
important in graph data where the structure of the graph,
described by S, is generally given in the problem and might
not be known precisely [60]. For example, in the problem
of movie recommendation (see Section II-B), the edges of
the graph are built based on the rating similarity between
the items [see (5)]. Estimating this value depends on
the training set, and thus, there is an error incurred in
obtaining it. Therefore, we usually train over an inferred
graph that is not exactly the true graph over which the
data are actually defined. The stability property guarantees
that the trained parameterization (either a graph filter or
a GNN) will yield the expected performance as long as the
estimation of the support is good enough [39].

In this section, we present the stability property of
graph filters and GNNs for a relative perturbation model
(see Section IV-A). Stability is, thus, another fundamen-
tal property that complements permutation equivariance,
establishing the mechanisms by which graph filters and
GNNs adequately exploit the graph structure to offer better
generalization capabilities.

Both permutation equivariance and stability are prop-
erties shared by graph filters and GNNs, and thus, they
explain their superior performance with respect to arbi-
trary linear transforms or FCNNs, as observed in the rec-
ommendation problem (see Section III-D). In this example,
we further observe that GNNs perform better than graph
filters. Herein, we leverage the stability theorems and
the effect of nonlinearities to explain why GNNs perform
better than graph filters. We show that nonlinearities
have a demodulating effect on the frequency domain that
allows GNNs to be simultaneously stable and discrimi-
native, a feat that cannot be achieved by graph filters
(see Section IV-B).

In what follows, we focus on undirected graphs and
parameterizations given either by graph convolutional fil-
ters with F input features and G output features [see (21)]
or by GNNs [see (23)]. We consider GNNs that satisfy the
following assumptions.

Assumption 1 (GNN Architecture): Let Φ be a GNN para-
meterization (23) with the following architecture.

1) It consists of L > 0 layers.
2) It obtains Fl features at the output of each layer.
3) The graph filters [see (21)] are described by the ten-

sor of coefficients H = {Hlk}l,k, with Hlk ∈ �
Fl−1×Fl .

4) The output of the filtering stage of each layer l satis-
fies �Ul� ≤ B�Xl−1� [see (21)] for some B > 0.

5) The chosen nonlinearity σ is normalized Lipschitz
continuous, |σ(a) − σ(b)| ≤ |a − b| for a, b ∈ �, and
satisfies σ(0) = 0.

We note that Assumption 1 is made on the resulting
trained GNN. Assumptions 1)–3) are determined by the
hyperparameters of the architecture and, as such, are a
design choice. Assumption 4) needs to be satisfied only
on some finite interval [λmin, λmax] and is always the case,
in theory, for graph convolutional filters (21) with finite
coefficients. In practical terms, some choices of S may
lead to numerical instabilities when computing Sk. There
are several ways to address this, as discussed in [15].
Assumption 5) is satisfied by most of the commonly chosen
nonlinearities (tanh, ReLU, and sigmoid).

A. Relative Perturbations

Permutations are a very particular case of a modification
or perturbation to which the graph support S can be
subjected (see Fig. 2). We are interested, however, in more
general perturbations Ŝ (see Fig. 3) and in analyzing how
the parameterization Φ changes under these perturbations
of the graph support. To measure the change in the para-
meterization, and in light of the permutation equivariance
property of Propositions 1 and 2, we define the operator
distance modulo permutations.

Definition 1 (Operator Distance Modulo Permutations):
Let S be the support matrix of a graph G, and let Ŝ be the
support matrix of a perturbed graph Ĝ. Let H be the tensor
of filter coefficients that describe the parameterization Φ

[see (21) or (23)]. Then, the operator distance modulo
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permutation is defined as

�Φ(·; H, S) − Φ(·; H, Ŝ)�P
= min

P∈P
max

X:�X�=1
�Φ(X; H, S) − Φ(X; H, PT ŜP)� (28)

where, for any U ∈ �
n×G, we define �U� =

�G
g=1 �ug�2.

We note that P denotes the set of all possible permuta-
tions

P = {P ∈ {0, 1}n×n : P1 = 1, PT 1 = 1}. (29)

The operator distance modulo permutations measures how
much the output of the parameterization Φ changes for a
unit-norm signal X that makes the difference maximum
and for a permutation that makes the difference min-
imum. Note that, in terms of the operator distance in
Definition 1, the permutation equivariance property
(see Propositions 1 and 2) implies that

�Φ(·; H, S) − Φ(·; H, PT SP)�P = 0 (30)

for both graph filters and GNN parameterizations of Φ.
To better analyze how the output of the parameteriza-

tion Φ changes when the underlying graph is perturbed,
we proceed in the graph frequency domain, as is customary
in signal processing. To do this, we consider the eigende-
composition of the support matrix S = VΛVT to be given
by an orthonormal set of eigenvectors collected in the
columns of V. We define the graph Fourier transform (GFT)
of a graph signal X as a projection of the signal onto the
eigenvectors of the support matrix S [11], [21], [61], [62]

X̃ = VT X. (31)

Note that, since V is an orthonormal matrix, then the
inverse GFT is immediately defined as X = VX̃.

With this definition in place, we can compute the GFT of
the graph filter output U =

�∞
k=0 SkXHk [see (21)] as [12]

Ũ = VT U =
∞�

k=0

ΛkX̃Hk (32)

where, due to the diagonal nature of Λ, we can obtain
the GFT as a pointwise multiplication in the graph
frequency domain, akin to the convolution theorem
[63, Section 2.9.6], [22], [61]. To see this more clearly,
consider the ith frequency component of U for the gth
feature, that is, the element (i, g) of Ũ that we denote as
[Ũ]ig = ũg

i . Then, we note that

ũg
i =

F�
f=1

hfg(λi)x̃
f
i (33)

for x̃f
i the ith frequency component of the f th feature of

the input, where hfg(λi) is the frequency response of the
(f, g) graph convolutional filter in (21), evaluated at λi.
We formally define the frequency response of a graph filter
[see (21)].

Definition 2 (Graph Filter Frequency Response): Given a
graph filter [see (21)] with a tensor of filter coefficients
H = {Hk}k, Hk ∈ �

F×G, the frequency response of the
graph filter is the set of F ×G polynomial functions hfg(λ),
with

hfg(λ) =
K�

k=0

hfg
k λk (34)

for a continuous variable λ, and where hfg
k = [Hk]fg is

the (f, g)th element of Hk, corresponding to the kth filter
coefficient of the (f, g) graph convolutional filter in the
corresponding filterbank.

Per Definition 2, the frequency response of a filter is a
collection of polynomial functions characterized solely by
the filter coefficients and so it is independent of the graph.
The effect of the specific support matrix S on a graph filter
is observed by instantiating the frequency response on the
specific eigenvalues [see (33)]. However, the shape of the
frequency response is actually independent of the graph
and determined by the filter coefficients.

It is evident from (33) that the GFT of the output of a
graph filter is a pointwise multiplication of the GFT of the
input and the frequency response of the filter. An important
distinction with traditional signal processing, however,
is that the GFT of a signal depends on the eigenvectors
of the support matrix S, and the GFT of a filter depends
on the eigenvalues of S [61], while, in traditional SP,
the FT of both the signal and the filter only depends on
the eigenvalues e−j2πn/N .

We are particularly interested in filters that satisfy the
integral Lipschitz condition. While traditional Lipschitz
filters are those whose frequency response is Lipschitz
continuous [39, Definition 2], integral Lipschitz filters are
those that are Lipschitz continuous, but with a constant
that depends on the midpoint of the values considered.
See Fig. 7 for an illustrative comparison between Lipschitz
filters and integral Lipschitz filters. We formally define
integral Lipschitz filters as follows.

Definition 3 (Integral Lipschitz Graph Filters): Given a
filter [see (21)] with a tensor of filter coefficients H =

{Hk}k with Hk ∈ �
F×G, we say that it is an integral

Lipschitz graph filter if its frequency response [see Defin-
ition 2] satisfies

|hfg(λ1) − hfg(λ2)| ≤
C

|λ1 + λ2|/2
|λ1 − λ2| (35)

for some C > 0, and for all λ1, λ2 ∈ �, λ1 �= λ2 and all
f = 1, . . . , F and g = 1, . . . , G.

Integral Lipschitz filters (see Definition 3) are those
filters whose frequency response (see Definition 2) is Lip-
schitz continuous on continuous variable λ with a Lipschitz
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Fig. 7. Frequency response (see Definition 2) of bank of graph filters [see (21)]. (a) Lipschitz filter with F � 1 input feature and G � 5

output features. The frequency response of a Lipschitz filter has five functions of the form (34) and all satisfy Lipschitz continuity

|hfg(λ1)− hfg(λ2)| ≤ C|λ1 − λ2|. In this illustrative plot, this condition is met exactly. The minimum width of the functions (34) is determined

by C since this value limits the maximum value of the derivative. The minimum width is the same throughout the spectrum. (b) Integral

Lipschitz filter (see Definition 3) with F� 1 input feature and G� 5 output features. The frequency response of an integral Lipschitz filter

has five functions of the form (34) and all satisfy (35). In this plot, this condition is met exactly. The minimum width of the functions (34)

depends on their location in the spectrum since the maximum value of the derivative is bounded by 2C/|λ1 � λ2|. Therefore, filters located in

smaller eigenvalues (i.e., λ1) can be narrower than filters located in larger eigenvalues (i.e., λ5).

constant that is inversely proportional to the midpoint of
the interval. For example, if λ1 or λ2 is large, the resulting
Lipschitz constant 2C/(λ1 + λ2) is small. This implies that
these filters need to be flat for large values of λ (i.e., they
do not change) but can be arbitrarily thin for values of λ

near zero (i.e., they can change arbitrarily). See Fig. 7(b)
for an example of an illustration of the frequency response
of a graph filter that satisfies the integral Lipschitz condi-
tion. Note that (35) implies |λ(hfg(λ))�| ≤ C for (hfg(λ))�

being the derivative of hfg(λ). This condition is reminis-
cent of the scale invariance of wavelet filter banks [64],
and there are several graph wavelet banks that satisfy it
(see [65] and [66]).

To measure the distance between a graph S and its
corresponding perturbation Ŝ, we adopt a relative pertur-
bation model, which ties the changes of the graph to the
underlying structure.

Definition 4 (Relative Perturbations): Given a support
matrix S and a perturbed support Ŝ, define the relative
error set as

E(S, Ŝ) =

�
E ∈ �

n×n : PT ŜP = S +
1

2
(SE + ES),

P ∈ P , E = ET

�
. (36)

The size of the relative perturbation is

d(S, Ŝ) = min
E∈E(S,Ŝ)

�E�. (37)

The relative error set (36) is defined as the set of all
symmetric error matrices E such that, when multiplied by
the shift operator and added back to it, it yields a permuta-
tion of the perturbed support Ŝ. The relative perturbation
size (37) is given by the minimum norm of all such relative
error matrices and, thus, measures how close S and Ŝ are

to being permutations of each other, as determined by the
multiplicative factor E.

The relative perturbation model takes into consideration
the structure of the graph when measuring the change in
the support by tying the changes in the edge weights of the
graph to its local structure. To see this, note that the differ-
ence between the edge weight [S]ij of the original graph S
and the corresponding edge [PT

0 ŜP0]ij of the perturbed
graph Ŝ is given by the corresponding entry [ES + SE]ij
of the perturbation factor ES + SE. It is ready to see that
this quantity is proportional to the sum of the degrees of
nodes i and j scaled by the entries of E. As the norm of
E grows, the entries of the graphs S and PT

0 ŜP0 become
more dissimilar. However, parts of the graph that are
characterized by weaker connectivity change by amounts
that are proportionally smaller to the changes that are
observed in parts of the graph characterized by stronger
links. This is in contrast to absolute perturbations where
edge weights change by the same amount irrespective of
the local topology of the graph.

Relative perturbations arise in many practical problems,
and as a matter of fact, the diffeomorphism used in the
seminal work by Mallat [18] can be modeled as a relative
perturbation since each point in the Euclidean space is per-
turbed depending on the position of the point (i.e., it takes
into account the original structure of the space). Most
notable, though, is the case of covariance-based graphs,
where the edge weights are a function of the correlation
between the nodes. We typically estimate this correlation
from a given data set, and this estimation incurs an error
that is proportional to the true value of the correlation
[67], [68]. Thus, the relationship between the estimate
Ŝ and the true graph S follows the relative perturbation
model. We note that this is precisely the case in the prob-
lem of movie recommendation (see Section II-B), where
perturbations arising from the imperfect estimation of the
rating similarities (5) fall under the relative perturbation
model.
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Integral Lipschitz filters (see Definition 3) are stable to
relative perturbations (see Definition 4) per the following
theorem [39, Theorem 2].

Theorem 1 (Graph Filter Stability to Relative Perturba-
tions): Let S and Ŝ be the support matrices of a graph G
and its perturbation Ĝ, respectively. Let Φ be a graph
filter [see (21)] with a tensor of filter coefficients H =

{Hk}k, Hk ∈ �
F×G. If Φ is an integral Lipschitz filter (see

Definition 3) with C > 0 and if the relative perturbation
size satisfies d(S, Ŝ) ≤ ε (see Definition 4), then

�Φ(·; H, S) − Φ(·; H, Ŝ)�P ≤ ε(1 + δ
√

n)CG + O(ε2) (38)

where δ = (�U−V�2+1)2−1 is the eigenvector misalignment
constant for U, the eigenvector basis of the absolute error
matrix E that solves (37).

Theorem 1 asserts that a change in the output of a
graph filter caused by a relative perturbation of the graph
support is upper bounded in proportion to the size of the
perturbation (37). This property of stability to relative per-
turbations is inherited by GNNs, as shown in the following
[39, Theorem 4].

Theorem 2 (GNN Stability to Relative Perturbations): Let
S and Ŝ be the support matrices of a graph G and its
perturbation Ĝ, respectively. Let Φ be a GNN [see (23)]
that satisfies Assumption 1. If the filters used in Φ are
integral Lipschitz (see Definition 3) with C > 0 and if
the relative perturbation size satisfies d(S, Ŝ) ≤ ε (see
Definition 4), then

�Φ(·; H, S)−Φ(·; H, Ŝ)�P ≤ ε(1+δ
√

n)CBL−1
L


l=1

Fl+O(ε2)

(39)
where δ = (�U−V�2+1)2−1 is the eigenvector misalignment
constant for U, the eigenvector basis of the relative error
matrix E that solves (37).

Theorem 2 states that the change in the output of the
GNN caused by a relative perturbation of the graph support
is upper bounded in a proportional manner to the size
of the perturbation (37). Theorem 2, thus, complements
Theorem 1, quantifying how the stability of graph filters
gets inherited by GNNs.

The main conclusion and key takeaway of
Theorems 1 and 2 are that the stability bound of
both graph filters and GNNs is linear on the size of
the perturbation, making both parameterizations stable
to relative perturbations of the graph support. This
bound also holds for all graphs with the same size n.
We emphasize that this bound establishes Lipschitz
continuity of graph filters and GNNs with respect to
changes in the underlying support, not with respect to
the input.1 We further emphasize that the results in
Theorems 1 and 2 hold for parameterizations using

1GNNs and graph filters are also Lipschitz continuous with respect
to the input, and this is trivial to show by using operator norms.

the same tensor filter coefficients H. More specifically,
stability to relative perturbations requires that the
graph filters obtained after training be integral Lipschitz
(see Definition 3). This condition is trivial on bounded
support [λmin, λmax] for filters given by an analytic
frequency response (21). As a matter of fact, the actual
value of C can be impacted during training by adding the
integral Lipschitz condition (35) as a penalty on the loss
function of the corresponding ERM problem (3).

The stability bound of Theorems 1 and 2 is proportional
to the size of the perturbation. The proportionality con-
stant is given by two terms. The first term is (1+ δ

√
n) and

involves the eigenvector misalignment constant δ, which
measures the change in the graph frequency basis caused
by the perturbation. This term is given by the admissible
perturbations of the specific problem under consideration.
We note that, while δ provided here applies for any graph
and any relative perturbation (see Definition 4), it is a
coarse bound, which can be improved if we know that the
space of possible perturbations is restricted by extraneous
information, as is the case of Euclidean data [18]. For
a numerical experiment showing how conservative the
bound is, see [39, Fig. 6].

The second term is CG for graph filters or
CBL−1�L

l=1 Fl for GNNs and is a direct consequence
of the design choices that result in the specific graph
filters used in the parameterization. The values of G or�L

l=1 Fl are design choices, whereas the values of C and
B result from the training phase. As discussed earlier, both
these values can be impacted by an appropriate choice
of penalty function during training if stability is to be
increased. We note that the resulting filters can, thus,
compensate for the specific perturbation characteristics.

Remark 3 (Absolute Perturbations): An alternative to
the relative perturbation model is the absolute one [39].
In this case, the distance between S and Ŝ is given by the
norm of a matrix E such that we can write PŜPT = S + E
for some perturbation matrix P. Note, however, that this
model can be misleading, in which the graph structure can
be altered completely without this being reflected in the
value of ε. To see this, consider a stochastic block model
with two disconnected communities. An absolute pertur-
bation given by the identity matrix results in a perturbed
graph that still respects this two-block structure. However,
an absolute perturbation given by the antidiagonal identity
matrix would disrupt this two-block structure by forcing
connections between the blocks. Yet, both perturbations
have the same absolute size ε. This is also evident in that
the sparsity of the graph is completely lost. As we can
see, absolute perturbations do not capture the specifics
of the graph support they affect, so we choose to focus
on relative perturbations. Details on the stability under
absolute perturbation model can be found in [39].

Remark 4 (Computation of the Bound): The key contri-
bution from Theorems 1 and 2 is that the change in the
output of a GNN due to a change in the graph support
is proportional to the size of the perturbation. This has

672 PROCEEDINGS OF THE IEEE | Vol. 109, No. 5, May 2021
Authorized licensed use limited to: University of Pennsylvania. Downloaded on March 15,2024 at 17:50:02 UTC from IEEE Xplore.  Restrictions apply. 



Ruiz et al.: Graph Neural Networks: Architectures, Stability, and Transferability

important implications in that a GNN trained on one graph
can be used on another graph as long as the graphs
are similar. This may entail computing d(S, Ŝ) directly,
which would lead to a combinatorial problem. To avoid
this, we can estimate d(S, Ŝ) by computing �S − Ŝ�/�S�.
As for the proportionality constant, we emphasize that the
stability of the architecture can be affected by changing
the integral Lipschitz constant of the filter, which can be
done through training. With respect to the eigenvector
misalignment constant, knowing its exact value does not
alter the conceptual implications of Theorems 1 and 2. This
constant depends on the specific perturbation, and if more
knowledge is available, it can be computed directly, as is
the case of the diffeomorphism in [18]. Alternatively, more
restrictions can be imposed on it [39, Theorem 3]. In any
case, we note that δ ≤ 8 always holds since it is related to
the norm of unitary matrices.

B. Discussion and Insights

Graph signals X can be completely characterized by
their frequency content X̃ given the one-to-one correspon-
dence between the GFT and the inverse GFT [see (31)].
Therefore, to analyze, understand, and learn from signals,
we need to use functions Φ that adequately capture the
difference and similarities of signals throughout the fre-
quency spectrum [61]. This concept is known in signal
processing as filter discriminability and is concerned with
how well a function Φ can tell apart different sections of
the frequency spectrum.

In graphs, the spectrum is discrete and given by the
eigenvalues λ1 < · · · < λn of the graph support S.
Perturbations to the graph structure S alter the eigenvalues
and, therefore, alter the location of the different frequency
coefficients of the signal within the given spectrum. It is
evident, then, that the concept of discriminability is related
to the concept of stability since relevant parts of the spec-
trum that need to be told apart (discriminability) change
under perturbations of the graph support (stability). Thus,
to analyze both the discriminability and stability of a
graph filter, we need to analyze the shape of its frequency
response (see Definition 2).

Stability to relative perturbations (see Definition 4)
requires integral Lipschitz filters (see Definition 3) as per
Theorems 1 and 2. The maximum discriminability of inte-
gral Lipschitz filters, however, is not only determined by
the integral Lipschitz constant C but also by the position
in the spectrum. Recall that integral Lipschitz filters are
Lipschitz with a constant 2C/(λ1 + λ2) that depends on
the spectrum. Thus, if we are in a portion of the spectrum
where λ is large, then the discriminability is very poor since
the maximum derivative has to be almost zero, irrespective
of C. On the contrary, if we are on the low-eigenvalue
part of the spectrum, the discriminability can be arbitrarily
high since the derivative of the frequency response can be
arbitrarily large. In a way, the value of C helps determine
the eigenvalue at which the integral Lipschitz filters enter

the flat zone (larger C implies that larger eigenvalues can
be discriminated before the filter becomes flat) but do not
affect the overall discriminability for small eigenvalues.
The value of C, however, does affect the stability of both
graph filters and GNNs, where lower values of C means
more stable representations (see Theorems 1 and 2).

This implies that, under the relative perturbation model,
the discriminability of the filters is independent of their
stability, meaning that, around low eigenvalues, they can
be arbitrarily discriminative, while, at high eigenvalues,
they cannot discriminate any frequency coefficient. All of
these are irrespective of the value of C. This suggests
that integral Lipschitz graph filters are well equipped to
successfully learn from signals, as long as the relevant
information is located in low-eigenvalue content. This
limits their use of this specific class of signals. GNNs,
however, can successfully capture information from high
eigenvalues by leveraging the nonlinearity and the sub-
sequent graph filters. This can be better understood by
looking at a specific, illustrative, and conceptual example
as we do next.

Consider the particular case of a perturbation that is
given by an edge dilation, that is, Ŝ = (1 + ε)S, where
ε ≈ 0 is small. This is a particular instance of a relative
perturbation model [see Definition 4]. In the case of the
movie recommendation problem, this can happen if we
use a biased estimator to compute the rating similarities,
and thus, Ŝ, the graph on which we operate, is an edge
dilation of the actual graph S. Note that Ŝ and S share the
same eigenvectors so that the eigenvector misalignment
constant of Theorems 1 and 2 is δ = 0. The eigenvalues
get perturbed as λ̂i = (1 + ε)λi. This implies that larger
eigenvalues get perturbed more than smaller eigenvalues.

In the context of this very simple edge dilation pertur-
bation, we see in Fig. 8(a) an illustration that Lipschitz
filters are not stable. This is because, for large eigenvalues,
the change in the output of a filter is very large, even
if the perturbation ε is small. To see this, notice that
|h(λ̂i) − h(λi)| ≤ C|λ̂i − λi| = Cελi so that, if λi is large,
the difference in the filter output |h(λ̂i)−h(λi)| can be very
large, even if ε is small.

In contrast, integral Lipschitz filters are stable, as illus-
trated in Fig. 8(b). For small eigenvalues, these filters
can have arbitrary variations, but, since small ε does not
cause a big change in the eigenvalues, and the output is
similar. For large eigenvalues, the frequency response is
flat; thus, even if there is a high variability of the eigenval-
ues, the filter output remains constant. This follows from
the integral Lipschitz condition, where |h(λ̂i) − h(λi)| ≤
2C|λ̂i − λi|/|λ̂i + λi| ≈ 2Cε only depends on ε but not on
the specific eigenvalue, leading to stability.

The price that integral Lipschitz filters pay for stability
is that they cannot discriminate information located at
high eigenvalues. Consider that we want to tell apart two
single-feature signals, x = vn and y = vn−1, where vi is
the eigenvector associated with λi (or λ̂i in the perturbed
graph). As we can see on the illustration in Fig. 9(a), this
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Fig. 8. Effect of a graph dilation �S � (1� ε)S. The eigenvalues move from λi (in blue) to �λi � (1� ε)λi (in red). Even if ε ≈ 0, large

eigenvalues change more than small eigenvalues. (a) Lipschitz filters are not stable. A small perturbation causes a large change in the

output of the filter due to the large change in large eigenvalues. (b) Integral Lipschitz filters are stable. For small eigenvalues, the filter can

change, but the eigenvalues do not change much. For large eigenvalues, the filter is flat, and thus, the large change in eigenvalues still

yields the same output.

is not doable by means of integral Lipschitz filters. On the
contrary, we could easily discriminate between these two
signals by using Lipschitz filters, as illustrated in Fig. 9(b).
However, this leads to an unstable filter, as discussed
before. Therefore, when using linear graph filters as para-
meterizations Φ, we are faced with the tradeoff between
discriminability and stability (where we need to increase
the C of integral Lipschitz filters to achieve discriminability
at high eigenvalues) or, alternatively, stick to processing
graph signals whose relevant information is located on low
eigenvalues.

GNNs are stable under relative perturbations by employ-
ing integral Lipschitz filters (see Theorem 2). While,
as discussed above, integral Lipschitz filters are unable
to discriminate information located in high eigenvalues,
GNNs can do so by leveraging the pointwise nonlinearity.
Essentially, applying a nonlinearity to a signal spreads
its information content throughout the spectrum, creating
frequency content in locations where it was not before.
As we can see in the illustration in Fig. 10(a), the fre-
quency content of x = vn after applying the nonlinearity
is located throughout the frequency spectrum. The same

happens when applying σ to y = vn−1, as shown in the
illustration in Fig. 10(b). Even more so, the resulting fre-
quency content is different in both resulting signals. Once
the frequency content has been spread throughout the
spectrum, the integral Lipschitz graph filters can, indeed,
discriminate between these two signals by processing only
the low-eigenvalue frequency content. In essence, the non-
linearities in GNNs act as frequency demodulators, spread-
ing the information content throughout the spectrum. This
allows for subsequent filters to process this information
in a stable manner. Thus, GNNs improve on graph filters,
by processing information in a way that is simultaneously
discriminative and stable.

V. T R A N S F E R A B I L I T Y O F G N N s
In different instances of the same network problem, it is
not uncommon for different graphs, even of different sizes,
to “look similar” in the sense that they share certain
defining structural characteristics. This motivates study-
ing groups of graphs—or graph families—and investi-
gating whether graph filters and GNNs are transferable
within them. Transferability of information processing

Fig. 9. Discriminability of large eigenvalues. Let x� vn and y � vn−1 be two different signals that we want to discriminate. (a) This can be

done by using a Lipschitz graph filter with G� 2 output features and a reasonable value of C. However, if the graph is subject to an edge

dilation, then the eigenvalues will fall out of the passband of the frequency response and, thus, yield an output of zero. Therefore, Lipschitz

filters can discriminate signals with large eigenvalue content but cannot do so in a stable manner. (b) Integral Lipschitz filter is not able to

discriminate between x and y since it cannot be narrow for large eigenvalues (unless the integral Lipschitz constant C is very large,

compromising the stability). In summary, Lipschitz filters can discriminate large eigenvalue content but are not stable, while integral

Lipschitz filters are stable but cannot discriminate large eigenvalue content.
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Fig. 10. Effect of applying nonlinearities. (a) Frequency content of signal σ(x) � ReLU(vn). (b) Frequency content of signal

σ(y) � ReLU(vn−1). The use of nonlinearities creates frequency content in parts of the spectrum that there were none. The nonlinearity

spreads the frequency content throughout the spectrum, in an effect akin to demodulation. This is a fundamental contribution of

nonlinearities since the frequency content at low eigenvalues can be stably discriminated by the graph filters used in the following layer.

While we cannot control what shape the signal will have after being applied a nonlinearity, we observe that this content will likely be

different, and thus, will be further discriminated. The effect of nonlinearities allows GNNs to process content in large eigenvalues in a stable

manner (by spreading it into low eigenvalues). (a) [ReLU(x)]i �max{0, [x]i}. (b) [ReLU(y)]i �max{0, [y]i}.

architectures is important because it allows the reuse of
systems without the need to retrain or redesign. This is
especially useful in applications where the network size
is dynamic, for example, recommendation systems for a
growing product portfolio (see Sections II-B and III-D).

From the architecture perspective, transferability is akin
to replacing the graph with another graph in the same
family, which, in itself, is a kind of perturbation. Therefore,
transferability can be seen as a type of stability. In this
section, we analyze the transferability of graph filters and
GNNs in a similar fashion to Section IV, with particular
focus on families of undirected graphs identified by objects
called graphons. All analyses assume the multilayer and
single-feature architectures of Section III-B.

A. Graphons and Graph Families

Graphons are bounded, symmetric, and measurable
functions W : [0, 1]2 → [0, 1], which can be thought of as
representations of undirected graphs with an uncountable
number of nodes. An example is the exponential graphon
W(u, v) = exp(−β(u − v)2) with parameter β > 0. Assign-
ing nodes i and j to points ui and uj of the unit interval,
the weight of the edge (i, j) is given by W(ui, uj). This
weight is largest when ui is close to uj ; therefore, the expo-
nential graphon can be used to model graphs with cyclic or
ring structure. As suggested by their infinite-dimensional
structure, graphons are also the limit objects of convergent
sequences of graphs.

A convergent sequence of graphs, denoted as {Gn},
is characterized by the convergence of the density of cer-
tain structures, or motifs, in the graphs Gn. We define these
motifs as graphs F = (V �, E�) that are unweighted and
undirected. Homomorphisms of F into G = (V, E, S) are
defined as adjacency preserving maps. There are |V ||V �| =

nn�
maps from V � to V , but only some of them are

homomorphisms. Hence, we can define a density of homo-
morphisms t(F, G), which represents the relative frequency
with which the motif F appears in G.

Homomorphisms of graphs into graphons are defined
analogously and denoted as t(F, W) for a motif F and a
graphon W. The graph sequence {Gn} converges to the
graphon W if, for all finite, unweighted, and undirected
graphs F:

lim
n→∞

t(F, Gn) = t(F, W). (40)

All graphons are limit objects of convergent graph
sequences, and every convergent graph sequence con-
verges to a graphon [45, Chapter 11]. This allows associat-
ing graphons with families of graphs of different sizes that
share structural similarities. The simplest examples of such
graphs are those obtained by evaluation of W. In particular,
our transferability results will hold for deterministic graphs
Gn constructed by associating the regular partition ui =

(i − 1)/n to nodes 1 ≤ i ≤ n and the weights W(ui, uj) to
edges (i, j). Explicitly

[Sn]ij = sij = W(ui, uj) (41)

where Sn is the adjacency matrix of Gn. This sequence of
deterministic graphs satisfies the condition in (40) and,
therefore, converges to the graphon W [45, Chapter 11].
The convergence mode in (40) also allows for other, more
general graph sequences than those consisting of determin-
istic graphs.

B. Graphon Filters

To understand the behavior of data that may be sup-
ported on the graphs belonging to a graphon family, it is
also natural to consider the abstractions of graphon data
and graphon information processing systems. Graphon data,
or graphon signals, are defined as functions X : [0, 1] → �

of L2. These signals can be modified through graphon
operations parameterized by the integral operator

(TWX)(v) :=

� 1

0

W(u, v)X(u)du (42)
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Fig. 11. Graphon eigenvalues. A graphon has an infinite number

of eigenvalues λj but for any fixed constant c the number of

eigenvalues |λj| > c is finite. Thus, eigenvalues accumulate at 0, and

this is the only accumulation point for graphon eigenvalues.

which is called graphon shift operator (WSO) in analogy
with the GSO [50]. Because W is bounded and symmetric,
the WSO is a self-adjoint Hilbert–Schmidt operator, allow-
ing us to express W in the operator’s spectral basis—the
graphon spectra—as

W(u, v) =
�

i∈�\{0}
λiϕi(u)ϕi(v). (43)

The operator TW can, thus, be rewritten as

(TWX)(v) =
�

i∈�\{0}
λiϕi(v)

� 1

0

ϕi(u)X(u)du (44)

where λi are the graphon eigenvalues, ϕi are the graphon
eigenfunctions, and i ∈ � \ {0}. The eigenvalues are
ordered according to their sign and in decreasing order
of absolute value, that is, 1 ≥ λ1 ≥ λ2 ≥ · · · ≥ · · · ≥
λ−2 ≥ λ−1 ≥ −1. The eigenvalues accumulate around
0 as |i| → ∞, as depicted in Fig. 11 [69, Theorem 3 and
Chapter 28].

Graphon convolutions are defined as shift-and-sum
operations where the shift is implemented by the graphon
shift operator. Explicitly, a graphon convolutional filter is
given by

Φ(X; h, W) =

K�
k=0

hk(T
(k)
W X)(v) = (THX)(v) with

(T
(k)
W X)(v) =

� 1

0

W(u, v)(T
(k−1)
W X)(u)du (45)

where T
(0)
W = I is the identity operator [50]. The vector

h = [h0, . . . , hK ] collects the filter coefficients. Using the
spectral decomposition in (44), Φ(X; h, W) can also be
written as

Φ(X; h, W) =
�

i∈�\{0}

K�
k=0

hkλk
i ϕi(v)

� 1

0

ϕi(u)X(u)du

=
�

i∈�\{0}
h(λi)ϕi(v)

� 1

0

ϕi(u)X(u)du. (46)

Note that the spectral representation of Φ(X; h, W) is given
by h(λ) =

�K
k=0 hkλk, which only depends on the graphon

eigenvalues and on the coefficients hk.

1) Generating Graph Filters From Graphon Fil-
ters: Like the spectral representation of the graphon filter,
the spectral representation of the graph filter, as shown
in Definition 2, depends uniquely on the graph eigenval-
ues and the filter coefficients. This allows making the
coefficients hk in (34) and (46) the same. Put differ-
ently, graphon filters can serve as generating models for
graph filters on graphs evaluated from the graphon. Take
the graphon filter Φ(X; h, W) from (45) and construct a
partition ui = (i−1)/n, 1 ≤ i ≤ n, of [0, 1]. The graph filter
Φ(xn; h, Sn) =

�K
k=0 hkSk

nxn can be obtained by defining

[Sn]ij = W(ui, uj) and

[xn]i = X(ui) (47)

where Sn is the GSO of Gn, the deterministic graph
obtained from W as in equation (41), and xn is the corre-
sponding deterministic graph signal obtained by evaluating
X at ui.

Generating graph filters from graphon filters is helpful
because it allows designing filters on graphons and apply-
ing them to graphs. This decouples the filter design from
a specific graph realization. Conversely, it is also possible
to define graphon filters induced by graph filters. The
graphon filter induced by Φ(xn; h, Sn) =

�K
k=0 hkSk

nxn is
given by

Φ(Xn; h, Wn) =

K�
k=0

hk(T
(k)
Wn

Xn)(v) = with

(T
(k)
Wn

Xn)(v) =

� 1

0

Wn(u, v)(T
(k−1)
Wn

Xn)(u)du (48)

where the graphon Wn is the graphon induced by Gn and
Xn is the graphon signal induced by the graph signal xn,
that is,

Wn(u, v) = [Sn]ij × �(u ∈ Ii)�(v ∈ Ij) and

Xn(u) = [xn]i × �(u ∈ Ii). (49)

This definition allows comparing graph and graphon filters
directly and analyzing the transferability of graph filters to
graphs of different sizes.

2) Approximating Graph Filters With Graphon Fil-
ters: Consider graph filters obtained from a graphon fil-
ter, as in (47). For increasing n, Gn converges to W,
which means that these graph filters become increasingly
similar to the graphon filter itself. Thus, the graph fil-
ter Φ(xn; h, Sn) can be used to approximate Φ(X; h, W).
In Theorem 3, we quantify how good this approximation is
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for different values of n. Because the continuous output
Y = Φ(X; h, W) cannot be compared with the discrete
output yn = Φ(xn; h, Sn) directly, we consider the output
of the graphon filter induced by Φ(xn; h, Sn), which is
given by Yn = Φ(Xn; h, Wn) [see (49)]. We also consider
the following definitions and assumptions.

Definition 5 (c-Band Cardinality of Gn): The c-band
cardinality of Gn, denoted as Bnc, is the number of
eigenvalues λn

i of Wn with absolute value larger or equal
to c, that is,

Bnc = #{λn
i : |λn

i | ≥ c}.

Definition 6 (c-Eigenvalue Margin of Gn): The
c-eigenvalue margin of Gn, denoted as δnc, is given by

δnc = min
i,j �=i

{|λn
i − λj | : |λn

i | ≥ c}

where λn
i and λi are the eigenvalues of Wn and W,

respectively.
Assumption 2: The graphon W is A1-Lipschitz, that is,

|W(u2, v2) − W(u1, v1)| ≤ A1(|u2 − u1| + |v2 − v1|).
Assumption 3: The spectral response of the convolu-

tional filter, h, is A2-Lipschitz and nonamplifying, that is,
|h(λ)| < 1.

Assumption 4: The graphon signal X is A3-Lipschitz.
Theorem 3 (Graphon Filter Approximation by Graph Fil-

ter): Consider the graphon filter given by Y = Φ(X; h, W),
as in (46), where h(λ) is constant for |λ| < c [see Fig. 13].
For the graph filter instantiated from Φ(X; h, W) as yn =

Φ(xn; h, Sn) [see (47)], under Assumptions 2–4, it holds

�Y − Yn�L2 ≤
√

A1

�
A2 +

πBnc

δnc

�
n− 1

2 �X�L2 +
2A3√

3
n− 1

2

where Yn = Φ(Xn; h, Wn) is the graph filter induced by
yn = Φ(xn; h, Sn) [see (49)].

Theorem 3 gives an asymptotic upper bound to the error
incurred when approximating graphon filters with graph
filters. This bound depends on the filter transferability
constant

√
A1(A2+πBnc/δnc)n

−0.5, which multiplies �X�,
and on a fixed error term depending on the variability
A3 of X (see Assumption 4) and corresponding to the
difference between X and the graphon signal Xn, which
is induced by xn. For large n, the first term dominates
the second. Hence, the quality of the approximation is
closely related to the transferability constant.

Aside from decreasing asymptotically with n, the trans-
ferability constant depends on the graphon and on the
filter parameters. The dependence on the graphon is due
to A1, which is proportional to the graphon variability
(see Assumption 2). The dependence on the filter para-
meters happens through the constants A2, Bnc, and δnc.
The first two determine the variability of the filter’s spec-
tral response, which is controlled by both the Lipschitz

Fig. 12. Comparison of graphon eigenvalues (blue) and

eigenvalues of a graph Gn from a convergent graph sequence (red).

As the number of nodes n grows, the eigenvalues of Gn converge to

those of W.

constant A2 (see Assumption 3) and the length of the
band [c, 1], as depicted in Fig. 13. In particular, the number
of eigenvalues within this band, given by Bnc, should
satisfy Bnc � n (i.e., Bnc <

√
n). This restriction on

the length of the passing band, which is necessary for
asymptotic convergence, is a consequence of two facts. The
first is that the eigenvalues of the graph converge to those
of the graphon [45, Ch. 11.6], as illustrated in Fig. 12.
The second is that the eigenvalues of the graphon, when
ordered in decreasing order of absolute value, accumulate
near zero. Combined, these facts imply that, for small
eigenvalues, the graph eigenvalues are hard to match to
the corresponding graphon eigenvalues, making consecu-
tive eigenvalues difficult to discriminate. As a consequence,
filters h with large variation near zero (i.e., small c)
may modify matching graphon and graph eigenvalues
differently, leading to large approximation error. Finally,
note that when the Bnc <

√
n requirement is satisfied,

asymptotic convergence is guaranteed by convergence of
the eigenvalues of Wn to those of W because δnc →
mini : λn

i
≥c |λi −λi+sgn(i)| �= 0, that is, δnc converges to the

minimum eigengap of the graphon in the passing band.

C. Graph Filter Transferability

By the triangle inequality, transferability of graph filters
follows directly from Theorem 3.

Theorem 4 (Graph Filter Transferability): Let Gn1 and
Gn2 , and xn1 and xn2 , be graphs and graph signals
obtained from the graphon W and the graphon signal X,
as in (47), with n1 �= n2. Consider the graph filters given
by yn1

= Φ(xn1 ; h, Sn1) and yn2
= Φ(xn2 ; h, Sn2), and let

their shared spectral response h(λ) [see (34)] be constant
for |λ| < c [see Fig. 13]. Then, under Assumptions 2–4,
it holds

�Yn1 − Yn2�L2

≤
√

A1

�
A2 +

πBc

δc

��
n1

− 1
2 + n2

− 1
2

�
�X�L2

+
2A3√

3

�
n
− 1

2
1 + n

− 1
2

2

�
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Fig. 13. Lipschitz continuous filter with spectral response h(λ)

constant for λ < c. The constant band for λ ∈ [0,c] ensures that the

filter has the same response for eigenvalues close to zero, which are

harder to discriminate. This is necessary to avoid mismatch of the

filter response for the graphon and graph eigenvalues in this range.

where Ynj = Φ(Xnj ; h, Wnj ) is the graphon fil-
ter induced by ynj

= Φ(xnj ; h, Snj ) [see (49)],
Bc = max{Bn1 c, Bn2 c} [see Definition 5], and δc =

min{δn1 c, δn2 c} [see Definition 6].
Theorem 4 upper bounds the difference between the

outputs of two identical graph filters on different graphs
belonging to the same graphon family. Because this bound
decreases asymptotically with n1 and n2, a filter designed
for one of these graphs can be transferred to the other with
good performance guarantees for large n1 and n2. Beyond
values of n1 and n2 satisfying a specific error requirement
of, say, 
, graph filters are scalable in the sense that they can
be applied to any other graph with size n > max(n1, n2)

and achieve less than 
 error.
The transferability constant in Theorem 4 is equal to

the sum of the transferability constant in Theorem 3 for
n = n1 and n = n2. Even if Theorem 4 does not require
explicitly defining the graphon filter and comparing its
spectral response to that of the graph filters, the band
[c, 1] should be small to guarantee that the filter be able
to match the eigenvalues of G1 and G2 and distinguish
between consecutive eigenvalues [see Fig. 13]. Therefore,
there exists a tradeoff between the transferability and
discriminability of graph filters.

D. Graphon Neural Networks

The graphon neural network (WNN) is defined as the
limit architecture of a GNN defined on the graphs of a con-
vergent graph sequence. Denoting the nonlinear activation
function σ, the �th layer of a multilayer WNN with F� = 1

feature per layer (like the GNNs in Section III-B) is given
by

X� = σ (Φ(X�−1; h�, W)) (50)

for 1 ≤ � ≤ L. Note that the input signal at the first layer,
X0, is the input data X, and the WNN output is given by
Y = XL.

Similar to the GNN, this WNN can also be written as a
map Y = Φ(X; H, W), where the matrix H = {h�}� groups
the filter coefficients of all layers. Note that the parameters
in H are completely independent of the graphon, which

is another characteristic that WNNs have in common with
GNNs.

1) Generating GNNs From WNNs: An important conse-
quence of the GNN and WNN parameterizations is that,
in the maps Φ(x; H, S) and Φ(X; H, W), the parameters H
can be the same. This allows sampling or evaluating GNNs
from a WNN, that is, the WNN acts as a generating model
for GNNs. To see this, consider the WNN Φ(X; H, W) and
define a partition ui = (i − 1)/n, 1 ≤ i ≤ n, of [0, 1].
A GNN Φ(xn; H, Sn) can be obtained by evaluating the
deterministic graph Gn and the deterministic graph signal
xn, as in (47).

The interpretation of GNNs as instantiations of a WNN is
important because it explicitly disconnects the GNN archi-
tecture from the graph. In this interpretation, the graph is
not a fixed hyperparameter of the GNN but a parameter
that can be changed according to the underlying graphon
and the value of n. This reveals the ability of GNNs to scale.
It also allows GNNs to be adapted both by optimizing the
weights in H and by changing the graph Gn, which adds
degrees of freedom to the architecture at no additional
computational cost.

WNNs induced by GNNs can also be defined. The
WNN induced by a GNN Φ(xn; H, Sn) is given by
Φ(Xn; H, Wn), where Wn, the graphon induced by Gn, and
Xn, the graphon signal induced by xn, are as in (49). This
definition allows establishing a direct comparison both
between GNNs and WNNs and between GNNs on graphs
of different sizes.

2) Approximating WNNs With GNNs: For large n, we can
expect the GNNs instantiated from a WNN to become
closer to the WNN itself at a similar rate at which the
graphs Gn converge to W. As such, the outputs of the GNN
and WNN maps Φ(xn; H, Sn) and Φ(X; H, W) should also
grow closer, allowing the GNN to be used as a proxy for
the WNN. To evaluate the quality of this approximation
for different values of n, the outputs of Φ(xn; H, Sn) and
Φ(X; H, W) must be compared. This is done by considering
the WNN induced by Φ(xn; H, Sn) and given by Yn =

Φ(Xn; H, Wn) [see (49)]. Under Assumption 5, the follow-
ing theorem from [40] holds.

Assumption 5: The activation functions are normalized
Lipschitz, that is, |σ(x) − σ(y)| ≤ |x − y|, and σ(0) = 0.

This assumption is satisfied for most conventional non-
linearities, for example, ReLU and hyperbolic tangent.

Theorem 5 (WNN Approximation by GNN): Consider
the L-layer WNN given by Y = Φ(X; H, W), where F� =

1 for 1 ≤ � ≤ L. Let the graphon convolutions h(λ)

[see (46)] be such that h(λ) is constant for |λ| < c

[see Fig. 13]. For the GNN instantiated from this WNN
as yn = Φ(xn; H, Sn) [see (47)], under Assumptions 2–5,
it holds

�Yn − Y �L2

≤ L
√

A1

�
A2 +

πBnc

δnc

�
n− 1

2 �X�L2 +
A3√

3
n− 1

2
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where Yn = Φ(Xn; H, Wn) is the WNN induced by yn =

Φ(xn; H, Sn) [see (49)].
Given a graph Gn and a signal xn obtained from W

and X, as in (47), the GNN Φ(xn; H, Sn) can approximate
the WNN Φ(X; H, W) with an error that decreases asymp-
totically with n. This error is upper bounded by a term
proportional to the input, controlled by the transferability
constant L

√
A1 (A2 + (πBnc)/δnc) n−0.5, and by a fixed

error term given by A3/
√

3n. The fixed error term is a
truncation error due to “discretizing” X to obtain xn.
Besides the dependence on the graphon and on the filter
parameters, the transferability constant also depends on
L. As for the constants A1, A2, Bnc, and δnc, the same
comments as in Theorem 3 apply.

E. GNN Transferability

By Theorem 5 and the triangle inequality, the following
theorem from [40] holds.

Theorem 6 (GNN Transferability): Let Gn1 and Gn2 , and
xn1 and xn2 , be graphs and graph signals obtained from the
graphon W and the graphon signal X, as in (47), with n1 �=
n2. Consider the L-layer GNNs given by Φ(xn1 ; H, Sn1) and
Φ(xn2 ; H, Sn2), where F� = 1 for 1 ≤ � ≤ L. Let the graph
convolutions h(λ) [see (34)] be such that h(λ) is constant
for |λ| < c. Then, under Assumptions 2–5, it holds

�Yn1 − Yn2�L2

≤ L
√

A1

�
A2 +

πBc

δc

��
n1

− 1
2 + n2

− 1
2

�
�X�L2

+
A3√

3

�
n
− 1

2
1 + n

− 1
2

2

�

where Ynj = Φ(Xnj ; H, Wnj ) is the WNN induced by
ynj

= Φ(xnj ; H, Snj ) [see (49)], Bc = max{Bn1 c, Bn2 c}
[see Definition 5], and δc = min{δn1 c, δn2 c} [see
Definition 6].

Theorem 6 proves that GNNs are transferable between
graphs of different sizes belonging to the same graphon
family. This has two important implications. If the GNN
hyperparameters are chosen carefully, the GNN can be
transferred from the graph on which it was trained to
another graph with an error bound inversely proportional
to the sizes of both graphs. In scenarios where the same
task has to be replicated on different graphs, for example,
operating the same type of sensor network on multiple
plants, this is the key because it avoids retraining the GNN.
This result also implies that GNNs, such as graph filters,
are scalable. They can be trained on smaller graphs than
the graphs on which they are deployed (and vice versa)
and are robust to increases in the graph size.

The approximation error is given by the transferability
constant LF L−1

√
A1(A2 + πBc/δc)(n1

−0.5 + n2
−0.5) and

the fixed error term A3(n
−0.5
1 + n2

−0.5)/
√

3, both of which
decrease asymptotically with n1 and n2. The fixed error
term measures how different the graph signals xn1 and xn2

are from the graphon signal X; therefore, its contribution

is small. The transferability constant, on the other hand,
is determined by the graphon variability A1, the number
of layers L, and the convolutional filter parameters A2,
Bc, and δc. Except for A1, all of these can be tuned.
In order to have an asymptotic bound for n2 > n1,
the number of eigenvalues in the band [c, 1] must satisfy
Bc <

√
n1 [see Fig. 13]. This restriction is necessary to

avoid mismatching the filter response for small eigenvalues
of Gn1 and Gn2 , which becomes harder to discriminate as
they accumulate around zero [see Fig. 12]. As long as this
condition is satisfied, the bound converges asymptotically
because, as n1, n2 → ∞, δc converges to the minimum
eigengap of the graphon in the passing band.

The transferability bound in Theorem 6, thus, reflects a
similar tradeoff between transferability and discriminabil-
ity to that observed for graph filters. However, in the case
of GNNs, this is partially overcome by the addition of
nonlinearities. Nonlinearities act as rectifiers that scatter
some spectral components associated with small λ around
the middle range of the spectrum. This makes for an inter-
esting parallel with the role of nonlinearities in stability,
which depends on the components associated with large
eigenvalues being scattered around the lower range of the
spectrum instead.

VI. D E C E N T R A L I Z E D C O L L A B O R AT I V E
S Y S T E M S
GNNs have been applied with success to learn decentral-
ized control policies [7], [9]. Consider then a team of n

agents that endeavor to accomplish a shared goal. Each
agent has access to local states xi and has to produce
local control actions ai. Agent proximity determines the
ability to exchange information between pairs of agents
and results in access to delayed information about the state
of the system. If agents i and j are separated by k commu-
nication hops, they know about their respective states with
a delay of k time units. We capture this limitation with the
definition of the information history of agent i:

Xi(t) =
K−1�
k=0

�
xj(t − k) : j ∈ N k

i (t)
�
. (51)

As per (51), agent i has access to its current state xi(t) but
only knows the states of k-hop neighbors at time t − k.
A decentralized controller is one in which actions ai(t) are
functions of the history Xi(t). It is notable that the graph
filters in (27) can be modified to have this property. Doing
so requires that we rewrite (27) in terms of a diffusion
sequence that takes time delays into consideration. Thus,
replace Zlk in (27) by Zlk(t) defined as

Zlk(t) = SZl,k−1(t − 1), with Zl0(t) = Xl(t). (52)

This is the same as (26) except for the use of time delays
to respect the information structure described by (51).
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Fig. 14. GNN maintains a cohesive flock, while the local controller allows the flock to scatter. (a) Average difference in velocities. Local

stands for K � 0. (b) Flock positions using the GNN. (c) Cost versus the number of agents.

GNNs have proved successful in learning policies for
flocking [7] and collaborative navigation [9]. We describe
here some flocking results from [7]. In this scenario, we are
given a team of n agents with random initial positions
and velocities. The goal is for agents to form a cohesive
flock, in which: 1) they all move with the same velocity
and 2) there are no collisions between agents. To solve
this problem, we consider local states xi(t) ∈ �

6 with
components

xT
i (t) =

�
��

j∈Ni

vij(t);
�

j∈Ni(t)

rij

�rij(t)�4
;
�

j∈Ni

rij(t)

�rij(t)�2

�
� .

(53)

In (53), rij(t) and vij(t) denote the positions and velocities
of agent j measured relative to the position and velocity of
agent i, respectively. The neighborhood Ni is made up of
nodes j for which the distance �rij� ≤ R. The distance R

represents a communication and sensing radius. The com-
ponents of the state in (53) are somewhat arbitrary. They
are motivated by their use in a benchmark decentralized
controller [70].

It is important to observe that an optimal centralized
controller is trivial as we can just order all the agents
to move in the same direction. The optimal decentralized
controller is, however, unknown. We, therefore, choose to
train a decentralized GNN to mimic the centralized con-
troller while respecting the information structure in (51).
While perfect mimicry is not attained, we do observe
improvement relative to existing decentralized controllers.
This is illustrated in Fig. 14(a) and (b) where we show
the velocities for a swarm that is controlled with a GNN
and a swarm that is controlled with the decentralized
controller in [70]. A more comprehensive evaluation is
shown in Fig. 14(c) where we illustrate the cost that is
attained by different GNN architectures as we vary the
flock size. The ability to attain a small cost for large swarms
is worth emphasizing.

Since we are training to mimic a centralized controller,
the training of the GNN is an offline process. This fact
implies that the networks that are observed during training
and the networks that are observed during execution are

different. This is not expected to be an issue because of the
stability and transferability results of Sections IV and V.
The numerical results in Fig. 14 corroborate that this is
true.

VII. W I R E L E S S C O M M U N I C AT I O N
N E T W O R K S
GNNs have also been applied with success to learn opti-
mal resource allocations in wireless communication net-
works [58]. Consider an ad hoc wireless network with
n transmitter and receiver pairs indexed by i ∈ {1, n}.
Wireless link states are represented with fading coefficients
sij ∈ �+, which denotes the fading state between a
transmitter i and a receiver j. The fading channel sii

connects transmitter i to its intended receiver j. The fading
channel sij with j �= i links i to other receivers on
which the transmission of i manifests as interference. All
channels are arranged in the matrix S ∈ �

m×m. The goal
is to map fading state observations S to power allocations
p := [p1; . . . ; pm] = p(S). The combination of chan-
nel realizations S and power allocations p(S) determines
the communication rate between each transmitter–receiver
pair. For instance, if using capacity achieving codes without
interference cancellation, rates are determined by the

Fig. 15. Performance of GNN during training for m � 20 pairs,

in comparison with FCNN and three heuristic baselines: WMMSE

[71], equal power division across all users, and across a random

subset of users.
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Fig. 16. Performance of GNN during training for m� 50 pairs,

in comparison with three heuristic baselines: WMMSE [71], equal

power division across all users, and across a random subset of users.

function

fi(p; S) := log

�
1 +

siipi(S)

1 +
�

j �=i sjipj(S)

�
. (54)

The expression in (54) represents an instantaneous perfor-
mance metric. It is customary to focus on the long-term
performance given by the expectation �[fi(p; S)] over real-
izations of the fading channels S. A particular problem
of interest is the maximization of the expected sum rate,
which leads to the optimal power allocation being given
by

p∗(S) = argmax
n�

i=1

�[fi(p; S)]. (55)

The problem in (55) is a statistical risk minimization
problem of the form in (II). We advocate its solution with
a GNN and, therefore, choose to parameterize the power
allocation as a p(S) = Φ(x;H, S). The important obser-
vation to make is that, in (55), we want to find a power
allocation p(S) associated with each fading realization S.
Thus, we are reinterpreting the shift operator S as an
input to the GNN. To emphasize this fact, we say that the
parameterization is a random-edge (RE)GNN. There is also
no input x in (55). We can, therefore, set x = 1 in the GNN
parameterization.

Figs. 15 and 16 show training curves for the
solution of (55) with an REGNN parameterization [58].
For comparison, training curves for an FCNN are also

shown along with heuristics [71]. Fig. 15 considers
20 communicating pairs. It is notable that both the REGNN
and the FCNN outperform existing heuristics and attain
similar performance. The advantage of the REGNN is that
it utilizes a smaller number of parameters. In Fig. 16,
we consider 50 communicating pairs. The REGNN still
outperforms standard heuristics. Missing from this picture
is a curve for an FCNN. This is because it fails to train in a
network of this size.

The formulation in (54) and (55) can be generalized
to different rate functions, and it can be modified to
incorporate constraints and network state representations.
We refer the interested reader to [58].

VIII. C O N C L U S I O N
GNNs are becoming the tool of choice for the processing
of signals supported on graphs. In this article, we have
shown that GNNs are minor variations of graph convo-
lutional filters. They differ in the incorporation of point-
wise nonlinear functions and the addition of multiple
layers. Being minor variations of graph filters, the good
empirical performance of GNNs is expected: we have
ample evidence supporting the usefulness of graph fil-
ters. What is unexpected is the appearance of significant
gains for what is such a minor variation. In this article,
we attempted to explain this phenomenon with a per-
turbation stability analysis, showing that pointwise non-
linearities make it possible to discriminate signals while
retaining robustness with respect to perturbations of the
graph.

We further introduced graphon filters and graphon
neural networks so as to understand the limit behavior
of GNNs. This analysis uncovers the ability to transfer
a GNN across graphs with different numbers of nodes.
As in the case of our stability analysis, we discovered that
GNNs exhibit more robust transferability than linear graph
filters.

In both domains, there remains much to be done. For
instance, our stability analysis has much to say about the
perturbation of eigenvalues of a graph shift operator but
little to say about the perturbation of its eigenvectors.
There are also other ways of defining graph limits that are
not graphons and several other GNN architectures whose
fundamental properties have not been studied. We hope
that this contribution can spark interest in understanding
the fundamental properties of GNNs.
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