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Abstract 

Escherichia coli Ferric uptake regulator (Fur) binds a [2Fe-2S] cluster, not a mononuclear iron, 

when the intracellular free iron content is elevated in E. coli cells.  Here we report that the C-

terminal domain (residues 83-148) of E. coli Fur (Fur-CTD) is sufficient to bind the [2Fe-2S] 

cluster in response to elevation of the intracellular free iron content in E. coli cells.  Deletion of 

gene fur in E. coli cells increases the intracellular free iron content and promotes the [2Fe-2S] 

cluster binding in the Fur-CTD in the cells grown in LB medium under aerobic growth conditions.  

When the Fur-CTD is expressed in wild type E. coli cells grown in M9 medium supplemented 

with increasing concentrations of iron, the Fur-CTD also progressively binds a [2Fe-2S] cluster 

with a maximum occupancy of about 36%.  Like the E. coli Fur-CTD, the CTD of the Haemophilus 

influenzae Fur can also bind a [2Fe-2S] cluster in wild type E. coli cells grown in M9 medium 

supplemented with increasing concentrations of iron, indicating that binding of the [2Fe-2S] 

cluster in the C-terminal domain is highly conserved among Fur proteins.  The results suggest that 

the Fur-CTD can be used as a physiological probe to assess the intracellular free iron content in 

bacteria.  
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Introduction 

Iron is an essential element for living organisms. However, excess intracellular free iron is 

highly toxic to promote oxidative damage under aerobic conditions (1-4).  In Escherichia coli, the 

concentration of  the intracellular labile iron pool was estimated to be in the range from 1.0 µM 

(5), to 10 µM (6), 26 µM (7), 140 µM (8), and 200 µM (9), depending on detection methods. One 

common approach to probe the intracellular labile iron concentration was based on the membrane-

permeable iron chelator desferrioxamine (3, 7). Desferrioxamine binds ferric iron to form the ferric 

iron-desferrioxamine complex which has an electron paramagnetic resonance (EPR) signal at g = 

4.0 (3).  However, only the ferric iron-bound desferrioxamine has the EPR signal and intracellular 

ferrous iron cannot be detected using desferrioxamine.  Furthermore, desferrioxamine may extract 

weakly bound iron or iron-sulfur clusters from proteins (3), resulting in an overestimation of the 

intracellular free iron concentration in living cells.  An alternative approach to probe the 

intracellular labile iron concentration was the Mössbauer spectroscopy (9).  The Mössbauer 

spectroscopy can reveal the entire iron content in bacteria pre-labeled with 57Fe.  However, it 

cannot easily resolve the individual iron species in cells (9).  Recent eloquent Mössbauer studies 

have revealed that the intracellular labile iron pool consists of two major iron complexes with 

masses of ~500 Da (major) and ~1300 Da (minor) in E. coli cells (4), mostly iron-citrate and iron-

ATP, but not iron-glutathione or aqueous free iron (10).  Thus, the concentration of the intracellular 

free iron in bacteria remains largely elusive.  

The ferric uptake regulator (Fur) is a global transcription factor that regulates intracellular 

iron homeostasis in bacteria (11, 12).  Since the discovery of Fur in Escherichia coli (13), it has 

been postulated that Fur binds ferrous iron to repress the expression of its target genes (14-16) 

when intracellular free iron content is elevated (17, 18).  The in vitro studies indicated that E. coli 
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Fur is capable of binding Fe(III), Fe(II), Zn(II), Co(II), Cu(II), Cd(II), and Mn(II) (19-22).  

However, the idea that Fur can be activated by these divalent cation ions in vivo has been 

challenged because the metal binding affinity of Fur is relatively low with the dissociation 

constants ranging from 1.2 µM to 55 µM (8, 19, 20, 23).  Indeed, the proposed iron-bound Fur has 

never been identified in E. coli or any other bacteria.  In searching for the putative iron-bound Fur, 

we unexpectedly found that a small fraction (~4%) of E. coli Fur purified from wild-type E. coli 

cells grown in LB medium under aerobic growth conditions binds a [2Fe-2S] cluster (24).  The 

occupancy of the [2Fe-2S] cluster in Fur is increased to about 32% when Fur is expressed in the 

E. coli mutant cells in which the intracellular free iron content is elevated due to deletion of the 

iron-sulfur cluster assembly proteins IscA and SufA (24).  Importantly, the Fur homologs from 

Haemophilus influenzae, Vibrio cholerae and Helicobacter pylori can also bind a [2Fe-2S] cluster 

in the E. coli mutant cells with an elevated intracellular free iron content (25).  Furthermore, 

binding of a [2Fe-2S] cluster in E. coli Fur turns on its specific DNA binding activity to repress its 

target genes in E. coli cells (26). The results suggest that Fur binds a [2Fe-2S] cluster, but not a 

mononuclear iron, to regulate expression of target genes in response to elevation of intracellular 

free iron content in bacteria (24-26).   

Here we report that the C-terminal domain (amino acid residues 83-148) of E. coli Fur (Fur-

CTD) is sufficient to bind a [2Fe-2S] cluster in E. coli cells, and that deletion of gene fur results 

in elevation of intracellular free iron content (6, 27) and promotes the binding of a [2Fe-2S] cluster 

in the Fur-CTD in E. coli cells grown in LB medium under aerobic growth conditions.  When the 

Fur-CTD is expressed in wild type E. coli cells grown in M9 medium supplemented with 

increasing concentrations of iron, the Fur-CTD also progressively binds a [2Fe-2S] cluster with a 

maximum occupancy of about 36%.  Furthermore, like the E. coli Fur-CTD, the C-terminal domain 
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of the H. influenzae Fur (HI-Fur-CTD) also binds a [2Fe-2S] cluster in wild type E. coli cells 

grown in M9 medium supplemented with increasing concentration of iron under aerobic growth 

conditions.  We propose that the C-terminal domain of Fur may be used as a physiological probe 

to assess the intracellular free iron content in bacteria.  

 

Materials and Methods 

Preparation of the E. coli Fur-CTD and the H. influenzae Fur-CTD 

The DNA fragments encoding the C-terminal domain of E. coli Fur (Fur-CTD) (residues 83-148) 

(MAQQHHHDHLICLDCGKVIEFSDDSIEARQREIAAKHGIRLTNHSLYLYGHCAEGDCRE

DEHAHEGK) and H. influenzae Fur (HI-Fur-CTD) (residues 84-146) 

(MAPTEHHDHLICEDCGKVFEFTDNIIEQRQREISEKYGIKLKTHNVYLYGKCSDINHCDE

NNSK) were synthesized (GenScript co) and inserted into plasmid pBAD/His-A (Add gene co.).  

Because of the endogenous histidine residues in the C-terminal domain of E. coli Fur and H. 

influenzae Fur, no extra His-tag was added for protein purification. The cloned plasmid was 

introduced into E. coli wild-type or fur mutant cells.  Overnight cultures of E. coli cells were 

inoculated 1:100 dilution in freshly prepared LB medium.  When cells were grown to O.D. at 600 

nm of 0.6 at 37oC under aerobic conditions, protein expression was induced for three hours after 

adding L-arabinose (0.04%).  The E. coli cells were also grown in M9 medium supplemented with 

amino acids (100 µg/ml), thiamine (0.1 µg/ml), glycerol (0.4%), and indicated concentrations of 

Fe(NH4)2(SO4)2 at 37oC under aerobic conditions.  When cells were grown to O.D. at 600 nm of 

0.6, protein expression was induced for three hours after adding L-arabinose (0.04%).  The C-

terminal domain of the E. coli Fur (Fur-CTD) or the H. influenzae Fur (HI-Fur-CTD) was purified 

using the Ni-agarose column, followed by passing through a HiTrap Desalting column (GE 
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Healthcare co.) as described previously for the E. coli Fur protein (24).  The concentration of 

purified Fur-CTD was measured at 280 nm after iron-sulfur clusters were removed by adding HCl 

(10 mM). The extinction coefficients of the E. coli Fur-CTD and the H. influenzae Fur-CTD at 

280 nm are 3.0 and 4.3 mM-1cm-1, respectively.   

 

UV-Visible absorption and circular dichroism (CD) measurements of proteins. 

UV-Visible absorption spectra of purified E. coli Fur or the Fur-CTD were taken in a Jasco V-750 

UV-Vis absorption spectrometer at room temperature.  The circular dichroism (CD) spectra of 

purified E. coli Fur and the Fur-CTD were recorded in a Jasco J-815 CD spectrometer at room 

temperature.    

 

Construction of E. coli fur mutant 

The gene encoding Fur was deleted in wild type E. coli strain MC4100 using the one-step gene 

inactivation approach (28). Two primers: Fur-A, 5’-

TGTCACTTCTTCTAATGAAGTGAACCGCTTAGTAACAGGACAGATTCCGCGTGTAGG

CTGGAGCTGCTTC-3’, and Fur-B, 5’-

CTTGCATAAAAAAGCCAACCCGCAGGTTGGCTTTTCTCGTTCAGGCTGGCCATATGA

ATATCCTCCTTA-3’ were used for deletion of gene fur.  Deletion of gene fur was confirmed by 

PCR using two primers: Fur-F1, 5'-GTTCAAGTGGCCTTGCCGTTGT-3'; Fur-R, 5'-

AGCAGTGTCTGCGTGCAACGCAAAC-3'.  

 

Measurements of intracellular chelatable iron contents in E. coli cells. 



7 
 

The intracellular chelatable iron content in E. coli cells was measured using the membrane 

permeable iron chelator 2,2’-dipyridyl (24).  Briefly, when E. coli cells were grown in LB medium 

or M9 medium to O.D. at 600 nm of 0.4 under aerobic growth conditions, 2,2’-dipyridyl (50 µM) 

was added to the cell culture.  After additional cell growth for one hour, the cells were resuspended 

in buffer containing Tris (20 mM, pH 8.0) and NaCl (500 mM).  The cells were then subjected to 

French press and centrifuged to remove the cell debris.  The supernatants were subjected to UV-

Vis absorption measurements.  The absorption peak at 522 nm of the 2,2’-dipyridy-Fe(II) complex 

was used for calculating the chelatable intracellular iron content in E. coli cells using an extinction 

coefficient of 8.6 mM-1cm-1 (29).  

 

Iron and sulfide content determination in purified proteins 

The amounts of iron and sulfide in Fur protein samples were analyzed according to the Fischer’s 

method (30) and the Siegel’s method (31), respectively.  

 

Results and Discussion 

1. The C-terminal domain of E. coli Fur (Fur-CTD) binds a [2Fe-2S] cluster in wild type E. 

coli cells. 

E. coli Fur contains the N-terminal DNA binding domain and C-terminal regulatory domain 

(32) (Figure 1A).  Previous site-directed mutagenesis studies indicated that E. coli Fur binds a 

[2Fe-2S] cluster via the conserved cysteine residues at the C-terminal domain (24).  To test whether 

the C-terminal domain of Fur (Fur-CTD) is sufficient to bind the [2Fe-2S] cluster, we synthesized 

a DNA fragment encoding the E. coli Fur-CTD (residues 83-148, highlighted in color in Figure 

1A) and inserted the DNA fragment into plasmid pBAD.  Because the Fur-CTD does not have the 
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N-terminal DNA binding domain, the Fur-CTD has no DNA binding activity to directly regulate 

expression of the Fur-repressed genes in E. coli cells.  

The E. coli Fur-CTD was then expressed in wild type E. coli cells grown in LB medium 

under aerobic growth conditions.  Figure 1B shows that purified Fur-CTD has small but clear 

absorption peaks at 325 nm, 410 nm, and 450 nm (spectrum 2), indicative of a [2Fe-2S] cluster 

binding in the Fur-CTD (24).  The amplitudes of the absorption peaks of purified Fur-CTD are 

essentially identical to these of the full-length Fur purified from wild-type E. coli cells (spectrum 

1), suggesting that removal of the N-terminal domain does not affect the [2Fe-2S] cluster binding 

in the Fur-CTD in E. coli cells. 

Purified E. coli Fur-CTD and the full-length E. coli Fur were then subjected to the Circular 

Dichroism (CD) measurement (Figure 1C and D).  Simulation of the CD data using the CD 

simulation software (http://lucianoabriata.altervista.org/jsinscience/cd/cd3.html) revealed that the 

full-length E. coli Fur contains 74.3% alpha helix, 13.7% beta sheets, and 12.0% turns and loops, 

while the E. coli Fur-CTD contains 40.4% alpha helix, 50.7% beta sheets, and 8.9% turns and 

loops. The estimated secondary structures of the full-length Fur and the Fur-CTD generally agree 

with the structure models shown in Figure 1A, suggesting that the Fur-CTD is stably expressed in 

E. coli cells.  

 

2. Deletion of gene fur elevates the intracellular free iron content and increases the binding 

of the [2Fe-2S] cluster in the Fur-CTD in E. coli cells. 

The global transcription regulator Fur represses expression of the genes encoding iron 

acquisition systems (33-35) and stimulates expression of the gene encoding iron storage protein 

ferritin (36) when the intracellular free iron content is elevated in E. coli cells. Thus, deletion of 

http://lucianoabriata.altervista.org/jsinscience/cd/cd3.html
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gene fur is expected to elevate the intracellular free iron content in E. coli cells grown in LB 

medium under aerobic growth conditions (6, 27).  Here, we constructed an E. coli mutant in which 

gene fur was deleted using the one-step gene inactivation approach (28).  When the E. coli fur 

mutant and its parental wild type cells were grown in LB medium under aerobic growth conditions 

to O.D. at 600 nm of 0.4, 2,2’-dipyridyl (50 µM) was added to the cell culture and the growth was 

continued for one more hour.  Quantification of the Fe-2,2’-dipyridyl complex in the E. coli cell 

extracts confirmed that deletion of gene fur significantly elevated the intracellular iron content in 

E. coli cells, as reported previously (6, 27).   

The Fur-CTD was then expressed in wild type and the fur mutant E. coli cells grown in LB 

medium under aerobic conditions.  Figure 2A shows that the Fur-CTD expressed in the E. coli fur 

mutant cells (spectrum 2) has much higher amplitudes of absorption peaks at 325 nm, 410 nm, and 

450 nm than that in wild type E. coli cells (spectrum 1).  Using the extinction coefficient of 10 

mM-1cm-1 at 410 nm for the [2Fe-2S] cluster in Fur (24), we estimated that the occupancy of the 

[2Fe-2S] cluster in the Fur-CTD is increased from 2.6±0.3% in wild type E. coli cells to 7.7±2.3% 

in the E. coli fur mutant cells (Figure 2B).  The iron and sulfide content analyses showed that each 

Fur-CTD purified from wild type E. coli cells contains 0.04±0.02 iron and 0.03±0.01 sulfide atoms, 

while each Fur-CTD purified from the E. coli fur mutant cells has 0.13±0.04 iron and 0.10±0.03 

sulfide atoms, consistent with the estimated [2Fe-2S] cluster occupancy in the purified Fur-CTD 

proteins.  Thus, deletion of gene fur increases the intracellular free iron content and promotes the 

binding of a [2Fe-2S] cluster in the Fur-CTD in E. coli cells. 

In the previous studies, we reported that deletion of the iron-sulfur cluster assembly proteins 

IscA and SufA leads to deficiency of the [4Fe-4S] cluster biogenesis (37) and accumulation of the 

intracellular free iron content, and promotes the binding of a [2Fe-2S] cluster in Fur in E. coli cells 
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(24).  Here, we also expressed the Fur-CTD in the E. coli mutant cells with deletion of IscA and 

SufA.  Figure 2A shows that the Fur-CTD purified from the E. coli mutant cells with deletion of 

IscA and SufA also binds a [2Fe-2S] cluster (spectrum 3).  Thus, while the intracellular free iron 

content may be elevated via different mechanisms in the fur mutant cells and in the iscA/sufA 

mutant cells, both mutations promote the binding of a [2Fe-2S] cluster in the Fur-CTD in E. coli 

cells, suggesting that the Fur-CTD binds a [2Fe-2S] cluster in response to elevation of the 

intracellular free iron content in E. coli cells.   

Interestingly, the Fur-CTD purified from the E. coli iscA/sufA mutant cells apparently has a 

much higher occupancy of the [2Fe-2S] cluster (~21.5±3.5%) than that purified from the E. coli 

fur mutant cells (7.7 ±2.3%) (Figure 2B), indicating that the intracellular free iron content in the 

iscA/sufA mutant cells is much higher than that in the fur mutant cells. Deletion of the iron-sulfur 

cluster assembly proteins IscA and SufA blocks the [4Fe-4S] cluster biogenesis in E. coli cells 

under aerobic growth conditions (37).  Because there are a large number of iron-sulfur proteins 

contain a [4Fe-4S] cluster in bacteria, deletion of IscA and SufA may dramatically elevate the 

intracellular free iron concentration and promote the binding of the [2Fe-2S] cluster in the Fur-

CTD in bacteria. 

 

3. The E. coli Fur-CTD progressively binds a [2Fe-2S] cluster in wild type E. coli cells grown 

in M9 medium supplemented with increasing concentrations of iron.  

M9 medium is known to be iron deficient (containing about 0.05 µM iron) (38).  When wild 

type E. coli cells are grown in M9 medium, the intracellular free iron content in E. coli cells is 

very limited.  Addition of exogenous iron (10 µM) to M9 medium elevates intracellular free iron 

content and turns on Fur as an active repressor in E. coli cells (26, 39).  To evaluate the [2Fe-2S] 
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cluster binding in the Fur-CTD in wild type E. coli cells, we expressed the Fur-CTD in wild type 

E. coli cells grown in M9 medium supplemented with increasing concentrations of iron under 

aerobic growth conditions.  The Fur-CTD was then purified from these cells.   

Figure 3A shows that without addition of exogenous iron to M9 medium, only a very small 

fraction of purified Fur-CTD contains a [2Fe-2S] cluster, consistent with the notion that the 

intracellular free iron content is low in the E. coli cells grown in M9 medium under aerobic growth 

conditions (38).  When iron concentration in M9 medium is increased to 0.5 µM and 1.0 µM, the 

occupancy of the [2Fe-2S] cluster in the Fur-CTD is increased to 18.3±1.4% and 29.4±2.4%, 

respectively, indicating that the Fur-CTD progressively binds a [2Fe-2S] cluster in wild type E. 

coli cells in response to increasing iron concentration in M9 medium under aerobic growth 

conditions.  Interestingly, further increase of the iron concentration (2.0 µM or above) in M9 

medium does not significantly increase the occupancy of the [2Fe-2S] cluster in the Fur-CTD 

(Figure 3B), although the chelatable intracellular iron content (40) (which includes intracellular 

free iron and loosely bound iron centers in proteins and small molecules in cells (10)) still increases 

(Figure 3C).  A simple explanation is that the intracellular free iron concentration reaches the 

maximum in wild type E. coli cells grown in M9 medium supplemented with 1 µM iron (Figure 

3B).  Thus, the Fur-CTD can progressively bind a [2Fe-2S] cluster in response to elevation of the 

intracellular free iron content in wild type E. coli cells and reaches the maximum when M9 medium 

is supplemented with about 1.0 µM iron. 

 

4. The H. influenzae Fur-CTD also binds a [2Fe-2S] cluster in wild type E. coli cells grown 

in M9 medium supplemented with increasing concentrations of iron.  
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The H. influenzae Fur-CTD and the E. coli Fur-CTD share 63% identities and 79% 

similarities.  To test whether binding of a [2Fe-2S] cluster in the C-terminal domain is conserved 

among Fur proteins, we expressed the H. influenzae Fur-CTD in wild type E. coli cells grown in 

M9 medium supplemented with increasing concentrations of iron under aerobic growth conditions.  

Figure 4A shows that like the E. coli Fur-CTD, the H. influenzae Fur-CTD also progressively binds 

a [2Fe-2S] cluster in wild type E. coli cells grown in M9 medium supplemented with increasing 

concentrations of iron.  The occupancy of the [2Fe-2S] cluster in the H. influenzae Fur-CTD 

expressed in wild type E. coli cells reaches the maximum when the iron concentration in M9 

medium is about 1.0 µM.  Collectively, the results suggest that binding a [2Fe-2S] cluster in the 

C-terminal domain is highly conserved among Fur proteins, and that the Fur-CTD binds a [2Fe-

2S] cluster in response to the elevated intracellular free iron concentration in cells.   

 

Conclusion 

As a global transcript factor, Fur binds a [2Fe-2S] cluster, not a mononuclear iron, to regulate 

intracellular iron homeostasis in E. coli cells (24-26).  Here we report that the C-terminal domain 

of E. coli Fur (Fur-CTD) is sufficient for binding a [2Fe-2S] cluster in response to elevation of the 

intracellular free iron content in E. coli cells.  When gene fur or the iron-sulfur cluster assembly 

genes iscA/sufA are deleted in E. coli cells, the intracellular free iron content is elevated, which 

promotes the binding of a [2Fe-2S] cluster in the Fur-CTD.  Importantly, the E. coli Fur-CTD 

progressively binds a [2Fe-2S] cluster in wild type E. coli cells grown in M9 medium 

supplemented with increasing iron concentrations under aerobic growth conditions.  Binding of a 

[2Fe-2S] cluster in the Fur-CTD is apparently saturated when M9 medium is supplemented with 
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1.0 µM.  The results led us to propose that the Fur-CTD may be used as a physiological probe to 

assess dynamic change of the intracellular free iron content in bacteria.  
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Figure 1. The C-terminal domain of the E. coli Fur (Fur-CTD) purified from E. coli cells. A), 

structure model of E. coli Fur. The C-terminal domain (residues 83-148) of E. coli Fur is shown 

in color, and cysteine residues are shown in ball-and stick.   B), purification of the C-terminal 

domain of E. coli Fur (Fur-CTD). The gene encoding the Fur-CTD was expressed in wild-type E. 

coli cells grown in LB medium under aerobic growth conditions.  The Fur-CTD was purified from 

the E. coli cells. Spectrum 1, the full-length E. coli Fur purified from wild type E. coli cells. 

Spectrum 2, the Fur-CTD purified from wild-type E. coli cells. The protein concentrations of E. 

coli Fur and the Fur-CTD were 200 µM. C), Circular dichroism spectrum of the full-length E. coli 

Fur purified from wild type E. coli cells.  Fur (30 µM) was dissolved in buffer containing NaCl 

(500 mM) and Tris (20 mM, pH 8.0).  D), Circular dichroism spectrum of the Fur-CTD purified 

from wild type E. coli cells.  The Fur-CTD (30 µM) was dissolved in buffer containing NaCl (500 

mM) and Tris (20 mM, pH 8.0).  The results are representative of three independent experiments. 
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Figure 2. Deletion of gene fur promotes the binding of a [2Fe-2S] cluster in the Fur-CTD in 

E. coli cells.   The gene encoding the Fur-CTD was expressed in wild type E. coli, the fur mutant 

cells, and the iscA/sufA mutant cells grown in LB medium under aerobic growth conditions. The 

Fur-CTD was purified from the cells and subjected to UV-Vis absorption measurements.  A), UV-

Vis absorption spectra of purified Fur-CTD.  Spectrum 1, the Fur-CTD purified from wild type E. 

coli cells. Spectrum 2, the Fur-CTD purified from the E. coli fur mutant cells. Spectrum 3, the Fur-

CTD purified from the E. coli iscA/sufA mutant cells. B), the occupancy of the [2Fe-2S] cluster in 

the Fur-CTD purified from wild type E. coli, the fur mutant, and iscA/sufA mutant cells grown in 

LB medium under aerobic conditions.  The occupancy of the [2Fe-2S] cluster in the Fur-CTD was 

measured based on the amplitudes of the absorption peaks at 410 nm and 280 nm.  The data are 

presented as the averages ± standard deviations from three independent experiments. 
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Figure 3. The E. coli Fur-CTD progressively binds a [2Fe-2S] cluster in wild type E. coli cells 

grown in M9 medium supplemented with increasing concentrations of iron.  A), UV-vis 

absorption spectra of the Fur-CTD purified from wild type E. coli cells grown in M9 medium 

supplemented with 0, 0.5, 1.0, 2.0, and 10.0 µM Fe(NH4)2(SO4)2 at 37oC under aerobic conditions. 

B), the [2Fe-2S] cluster occupancies in the Fur-CTD purified from wild type E. coli cells grown 

in M9 medium supplemented with 0, 0.5, 1.0, 2.0, and 10.0 µM Fe(NH4)2(SO4)2 at 37oC under 

aerobic conditions.  Data were collected from A).  C), chelatable intracellular iron content in E. 

coli cells grown in M9 medium supplemented with increasing concentrations of iron. Chelatable 

intracellular iron content was measured using the membrane-permeable 2,2’-dipyridyl as described 

in Materials and Methods.   The data are presented as the average ± standard deviations from three 

experiments. 
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Figure 4. The C-terminal domain of the H. influenzae Fur binds a [2Fe-2S] cluster in wild 

type E. coli cells in response to elevation of intracellular free iron content.  UV-vis absorption 

spectra of purified H. influenzae Fur-CTD (HI-Fur-CD).  Wild type E. coli cells containing plasmid 

encoding HI-Fur-CTD were grown in M9 medium supplemented with 0, 0.5, 1.0, 2.0, and 10.0 

µM Fe(NH4)2(SO4)2 at 37oC under aerobic conditions. After three hours of cell growth to allow 

accumulation of intracellular free iron content, expression of the HI-Fur-CTD in E. coli cells was 

induced by adding L-arabinose (0.04%) for three more hours.  The HI-Fur-CTD was purified from 

the cells and subjected to UV-Vis absorption measurements.  Spectra were calibrated to O.D. at 

280 nm of 1.0.  The absorption peaks at 325 nm, 410 nm, and 450 nm represent binding of a [2Fe-

2S] cluster in the HI-Fur-CTD.  B), the occupancy of the [2Fe-2S] cluster in the HI-Fur-CTD in 

the wild type E. coli cells. The occupancies of the [2Fe-2S] cluster in the HI-Fur-CTD were 

calculated from the amplitude of the absorption at 410 nm to the protein concentration and plotted 

as a function of the iron concentrations in M9 medium. The data are presented as the averages ± 

standard deviations from three independent experiments.  
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