

1 **Chromosome-level genome of the wood stork (*Mycteria americana*) provides**
2 **insight into avian chromosome evolution**

3

4 Authors: Richard Flamio Jr.¹ and Kristina M. Ramstad¹

5 ¹Biological, Environmental, and Earth Sciences, University of South Carolina Aiken, 471
6 University Parkway, Aiken, SC, USA

7

8 Corresponding author: richard.flamio@gmail.com

9

10 Running title: Chromosome-level wood stork (*Mycteria americana*) genome

11

12

13

14

15

16

17

18

19

20

21

22

23

24 **Abstract**

25 Despite being quite specious (~10,000 extant species), birds have a fairly uniform
26 genome size and karyotype (including the common occurrence of microchromosomes)
27 relative to other vertebrate lineages. Storks (Family Ciconiidae) are a charismatic and
28 distinct group of large wading birds with nearly worldwide distribution but few genomic
29 resources. Here we present an annotated chromosome-level reference genome and
30 chromosome orthology analysis for the wood stork (*Mycteria americana*), a species that
31 has been federally protected under the Endangered Species Act since 1984. The
32 annotated chromosome-level reference assembly was produced using the blood of a
33 wild female wood stork chick, has a length of 1.35 Gb, a contig N50 of 37 Mb, a scaffold
34 N50 of 80 Mb, and a BUSCO score of 98.8%. We identified 31 autosomal pairs and two
35 sex chromosomes in the wood stork genome, but failed to identify four additional
36 autosomal microchromosomes previously found via karyotyping. Orthology analyses
37 confirmed reported synapomorphies unique to storks and identified the chromosomes
38 participating in these fusions. This study highlights the difficulty and potential problems
39 associated with delineating microchromosomes in reference genome assemblies. It also
40 provides a foundation for studying karyotype evolution in the core water bird clade that
41 includes penguins, albatrosses, storks, cormorants, herons, and ibises. Finally, our
42 reference genome will allow for numerous genomic studies, such as genome-wide
43 association studies of local adaptation, that will aid in wood stork conservation.

44

45 **Keywords:** Ciconiiformes, microchromosomes, sequencing, scaffolding, vertebrate,
46 core water birds, orthology

47 **Introduction**

48 Bird genomes feature a relatively small and stable genome size (nuclear DNA content)
49 compared to other vertebrate taxa (Tiersch & Wachtel, 1991). The reason for small
50 genome sizes in birds is unknown, but it has been hypothesized to be adaptive for the
51 energy requirements associated with flight (Hughes & Piontkivska, 2005). Genome
52 organization within Aves is also quite consistent. Birds have a diploid number of $2n \approx 80$
53 which includes ~10 pairs of macrochromosomes (large chromosomes that can be flow-
54 sorted) and many somewhat smaller microchromosomes, although the transition in size
55 between macrochromosomes and microchromosomes is more gradual than this binary
56 classification implies (Griffin et al., 2007). Compared to macrochromosomes,
57 microchromosomes have high recombination rates and G+C content and are gene
58 dense with little repetitive sequence (International Chicken Genome Sequencing
59 Consortium, 2004). Other vertebrate taxa, such as reptiles (Olmo, 2008), amphibians
60 (Morescalchi, 1980), and fish (Ohno et al., 1969), contain species with
61 microchromosomes as well. However, the presence of many microchromosomes seems
62 to be particularly associated with avian genomes, which may have retained this feature
63 from an original chordate ancestor (Waters et al., 2021).

64 Storks (Order Ciconiiformes, Family Ciconiidae) are a distinct lineage of large
65 wading birds that constitute the only family in their order. Current molecular evidence
66 places storks within the clade Pelecanimorphae as sister to Pelecanes, a clade that
67 contains Order Suliformes (frigatebirds, gannets, boobies, darters, cormorants, and
68 shags) and Order Pelecaniformes (ibises, spoonbills, herons, bitterns, shoebill,
69 hamerkop, and pelicans) (Burleigh et al., 2015; Hackett et al., 2008; Kimball et al., 2019;

70 Kuhl et al., 2021; Kuramoto et al., 2015; Prum et al., 2015). More broadly, storks are
71 members of the core water bird clade, Aequornithes, which includes Gaviiformes (loons)
72 and Feraequornithes (Burleigh et al., 2015; Sangster & Mayr, 2021). Feraequornithes
73 contains the Pelecanimorphae (ciconiiforms, suliforms, and pelecaniforms) and the
74 Procellariimorphae (albatrosses, petrels, and penguins) (Burleigh et al., 2015; Sangster
75 & Mayr, 2021).

76 Traditionally, storks have been classified into three distinct lineages, tribes
77 Mycteriini (genera *Anastomus* and *Mycteria*), Ciconiini (genus *Ciconia*), and Leptoptilini
78 (genera *Leptoptilos*, *Jabiru*, and *Ephippiorhynchus*), based on morphology and behavior
79 (Kahl, 1987). Several lines of evidence, including karyotype analysis by cell staining (de
80 Boer & van Brink, 1982), a DNA-DNA hybridization study (Slikas, 1997), comparison of
81 cytochrome b sequences (Slikas, 1997), and chromosome painting (Seligmann et al.,
82 2019) suggest non-monophyly of the tribe Leptoptilini. The recent stork phylogeny of
83 (Rodríguez-Rodríguez & Negro, 2021) supports this claim. Within this phylogeny, storks
84 are divided into four groups: 1) *Jabiru* and *Ephippiorhynchus*, 2) Mycteriini, 3) Ciconiini,
85 and 4) *Leptoptilos*. Groups 1 and 2 form a clade sister to a clade consisting of groups 3
86 and 4.

87 One member of tribe Mycteriini, the wood stork (*Mycteria americana*), is a
88 species of conservation concern in the United States. The wood stork's range includes
89 the southeastern United States, Mexico, Central America, Cuba, and South America. In
90 1984, the U.S. government listed the wood stork as an endangered species
91 ("Endangered and Threatened Wildlife and Plants; U.S. Breeding Population of the
92 Wood Stork Determined to be Endangered; Final Rule," February 28, 1984) due to the

93 loss of suitable feeding habitat in southern Florida, the historical stronghold of the U.S.
94 wood stork population (Ogden & Patty, 1981). Northward range expansion and a
95 concomitant increase in stork numbers in the succeeding decades motivated
96 downlisting of the species in the U.S. from endangered to threatened status
97 ("Endangered and Threatened Wildlife and Plants; Reclassification of the U.S. Breeding
98 Population of the Wood Stork from Endangered to Threatened; Final Rule," June 30,
99 2014). It has been recently proposed to delist the wood stork completely from the
100 Endangered Species Act due to recovery, including the perception of sufficient numbers
101 and productivity to guarantee long-term viability of the U.S. wood stork population.
102 However, the adaptative potential for the species remains unclear amidst climate
103 change related threats including changes in seasonal rainfall patterns, warming
104 temperatures, and sea level rise ("Endangered and Threatened Wildlife and Plants;
105 Removal of the Southeast U.S. Distinct Population Segment of the Wood Stork From
106 the the List of Endangered and Threatened Wildlife ", February 15, 2023).

107 There are currently few genomic resources for storks including only one stork
108 chromosome-level assembly (the maguari stork (*Ciconia maguari*); NCBI BioProject
109 PRJDB4709). The objective of this study is to build an annotated chromosome-level
110 genome for the wood stork that will provide a detailed map of what genes are present
111 on each chromosome and serve as a resource for conservation and evolutionary
112 studies. In this paper, we additionally test for genome-level synapomorphies unique to
113 storks to improve our understanding of genome evolution in birds.

114

115 **Methods**

116 **Biological Materials**

117 The Jacksonville Zoo and Aquarium in northern Florida contains a wood stork rookery
118 that was naturally established in 1999 (Bear-Hull et al., 2005). In May 2021, fresh blood
119 samples from ten of the colony's chicks were collected in tubes pre-coated with the
120 anticoagulant EDTA and stored at -80°C. DNA was extracted using the DNeasy Blood &
121 Tissue Kit (Qiagen., Valencia, CA, USA) following the manufacturer's protocol. Birds
122 were sexed genetically according to Griffiths et al. (1998) and Lee et al. (2010) to
123 identify a female individual for genomic sequencing. In birds, female is the
124 heterogametic sex (ZW).

125

126 **Nucleic Acid Library Preparation**

127 Following genetic sexing, a blood sample from a single female wood stork was sent to
128 the commercial provider Cantata Bio (Scotts Valley, CA, USA) for nucleic acid library
129 preparation. Two genomic libraries were produced: 1) a PacBio high-fidelity (HiFi)
130 library (~20 kb) for long read sequencing, and 2) a Dovetail Omni-C library for short
131 read sequencing and continuity ligation. Additionally, an RNA-Seq library was produced
132 for genome annotation.

133 For HiFi library preparation, high-quality double stranded DNA was extracted
134 from stork blood and purified using the Blood & Cell Culture DNA Mini Kit (Qiagen).
135 Following purification, DNA was quantified using the Qubit 2.0 Fluorometer (Thermo
136 Fisher Scientific, Waltham, MA, USA) and the Qubit dsDNA Broad Range Assay Kit
137 (Thermo Fisher Scientific). The library was prepared using the SMRTbell Express
138 Template Prep Kit 2.0 (PacBio, Menlo Park, CA, USA) following the manufacturer's

139 protocol. The library was bound to DNA polymerase using the Sequel II Binding Kit 2.0
140 (PacBio).

141 Dovetail Omni-C library preparation followed methods described in Putnam et al.
142 (2016). Briefly, chromatin was cross-linked using formaldehyde and extracted. Cross-
143 linked chromatin was subsequently fragmented using DNase I, a sequence-
144 independent endonuclease. The ends of the chromatin fragments were blunted and
145 tagged with biotin, followed by proximity ligation to create chimeric molecules.
146 Crosslinks were reversed and DNA was purified from protein. Next, DNA was treated to
147 remove biotin that was not internalized within ligated fragments and sheared to ~350 bp
148 mean fragment size. Sequencing libraries were generated using NEBNext Ultra
149 enzymes (New England Biolabs, Ipswich, MA, USA) and Illumina-compatible adapters.
150 Streptavidin beads were used to isolate biotin-containing fragments, which were
151 subsequently amplified using polymerase chain reaction (PCR).

152 Extraction of total RNA was performed using the RNeasy Plus Mini Kit (Qiagen)
153 following the manufacturer's protocol. After extraction, RNA was quantified using: 1) the
154 Qubit 2.0 Fluorometer (Thermo Fisher Scientific) with the Qubit RNA Broad Range
155 Assay Kit (Thermo Fisher Scientific), and 2) the 4200 TapeStation system (Agilent,
156 Santa Clara, CA, USA). DNase treatment, AMPure bead cleanup (Beckman Coulter Life
157 Sciences, Indianapolis, IN, USA), and Qiagen FastSelect HMR rRNA (Qiagen) depletion
158 were performed prior to library preparation. Library preparation was performed using the
159 NEBNext Ultra II DNA Library Prep Kit for Illumina (New England Biolabs) following the
160 manufacturer's protocol.

161

162 **Sequencing and Genome Assembly**

163 *Genome Assembly*

164 Genomic assembly and annotation were executed by Cantata Bio. A list of all programs
165 and versions used throughout the assembly process is available in Table 1.

166 The HiFi library was loaded onto a Sequel II 8M SMRT cell (PacBio) using the
167 MagBindKit v2 (PacBio) and sequenced to 67x coverage using circular consensus
168 sequencing (CCS) mode (Wenger et al., 2019). A draft genome assembly was built from
169 the subsequent reads using default parameters in Hifiasm v0.15.4 (Cheng et al., 2021).

170 The Hifiasm output assembly (hifiasm.p_ctg.fa) was then compared to the BLAST
171 (Basic Local Alignment Search Tool) v2.9.0 (Altschul et al., 1990) nucleotide database
172 (nt). The resulting file was used as input for BlobTools v1.1.1 (Laetsch & Blaxter, 2017),
173 and scaffolds identified as possible contamination were removed from the assembly
174 (filtered.asm.cns.fa). Finally, Purge_dups v1.2.5 (Guan et al., 2020) was used to
175 remove haplotigs and contig overlaps (purged.fa).

176 The Omni-C library was sequenced on a HiSeqX platform (Illumina, San Diego,
177 CA, USA) to ~30x coverage using 2 x 150 bp paired-end reads. The input *de novo*
178 assembly and the Omni-C library reads were used as input data for HiRise v2.1.1
179 (Putnam et al., 2016), a software pipeline designed to scaffold genome assemblies
180 using proximity ligation data. Briefly, the Omni-C reads were first mapped to the Hifiasm
181 assembly using BWA v0.7.17 (Li & Durbin, 2009). Only reads with mapping quality
182 scores ≥ 50 were retained. Then, the separations of Omni-C read pairs mapped within
183 draft scaffolds were used by HiRise to produce a likelihood model that identified and
184 broke putative misjoins, scored prospective joins, and made novel joins.

185

186 *Assembly Validation*

187 The qualities of the initial Hifiasm assembly and the scaffolded HiRise assembly were
188 assessed for genome completeness using the program BUSCO v4.05 (Manni et al.,
189 2021). BUSCO uses universal single-copy orthologs; for this project, the
190 eukaryota_odb10 database, which includes 70 species and 255 single-copy orthologous
191 genes, was used.

192

193 *Genome Annotation*

194 First, repetitive regions (e.g., transposable elements) within the genome were identified
195 *de novo* using the pipeline RepeatModeler v2.0.1 (Flynn et al., 2020). This pipeline used
196 two distinct discovery algorithms to accomplish this task: RECON v1.08 (Bao & Eddy,
197 2002) and RepeatScout v1.0.6 (Price et al., 2005). The repeat library produced from the
198 pipeline was input into the program RepeatMasker v4.1.0 (Smit et al., 2013-2015) which
199 annotated and masked the repeats in the assembly file.

200 The RNA-Seq library was run on the NovaSeq6000 platform (Illumina) in 2 x 150
201 bp configuration. RNA-Seq reads were mapped onto the genome using the RNA-Seq
202 aligner STAR v2.7 (Dobin et al., 2013). The bam2hints tool within Augustus v2.5.5
203 (Stanke & Waack, 2003) was used to generate intron-exon boundary hints. Coding
204 sequences from four avian species, the little egret (*Egretta garzetta*), the crested ibis
205 (*Nipponia nippon*), the chicken (*Gallus gallus*), and the zebra finch (*Taeniopygia*
206 *guttata*), were used to train initial *ab initio* models for the gene prediction programs
207 SNAP v2006-07-28 (Korf, 2004) and Augustus; for Augustus, this included six rounds of

208 prediction optimization. Following model training, gene prediction was performed in the
209 repeat-masked assembly file using SNAP and Augustus. Gene prediction was also
210 performed in the repeat-masked assembly file using the annotation pipeline MAKER
211 v3.01.03 (Cantarel et al., 2008). UniProKB/Swiss-Prot peptide sequences from the
212 UniProt Knowledgebase (<http://www.uniprot.org>) and the protein sequences from the
213 four avian species above (i.e., little egret, crested ibis, chicken, and zebra finch) were
214 used when running MAKER. Annotation edit distance (AED) scores for each of the
215 predicted genes were generated by MAKER to assess gene prediction quality.

216 The final genome annotation contained the intersection of the genes predicted by
217 SNAP and Augustus. Genes were further characterized for their putative function by
218 performing a BLAST search of the peptide sequences against the UniProt
219 Knowledgebase. tRNAs were predicted using tRNAscan-SE v2.05 (Chan et al., 2021).

220

221 **Determination of chromosome-level scaffolds including sex verification**

222 After scaffolding with HiRise, a genomic contact matrix was produced to visualize
223 chromosomal-level scaffolds. First, the command parse in the Pairtools v1.0.2 (Open2C
224 et al. 2023) pipeline was used to identify valid ligation events present in the Omni-C
225 data. Then, the pairs were sorted and PCR duplicates were removed using the Pairtools
226 commands sort and dedup, respectively. Pairtools split was used to produce a .pairs
227 file, and the .pairs file was indexed with Pairix v0.3.7 (Lee et al., 2022). A single
228 resolution cool file was generated using the command cload pairix in Cooler v0.8.11
229 (Abdennur & Mirny, 2020). Subsequently, a multi-resolution mcool file was generated

230 using the command zoomify in Cooler. The genomic contact matrix, in the form of the
231 mcool file, was visualized in the software HiGlass v1.11.7 (Kerpedjiev et al., 2018).

232 Six different avian genomes with chromosome-level assemblies were
233 downloaded from the GenBank database (Benson et al., 2013): 1) chicken (WGS
234 master accession JAENSK000000000; BioProject PRJNA660757), 2) zebra finch (WGS
235 master accession RRCB00000000; BioProject PRJNA489098), 3) common cuckoo
236 (*Cuculus canorus*; WGS master accession JAGYT000000000; BioProject
237 PRJNA562015), 4) Humboldt penguin (*Spheniscus humboldti*; WGS master accession
238 JAPZLJ000000000; BioProject PRJNA838343), 5) plumbbeous ibis (*Theristicus*
239 *caerulescens*; WGS master accession JAJGSR000000000; BioProject PRJNA774297),
240 and 6) maguari stork (WGS master accession JAGFVN000000000; BioProject
241 PRJNA715733) for chromosome orthology analysis. To assess reciprocity in orthology,
242 each of these genomes were aligned with the wood stork genome twice using the
243 program D-GENIES v1.4.0 (Cabanettes & Klopp, 2018). One alignment used the wood
244 stork genome as the query and the other genome as the target and the other used the
245 wood stork genome as the target and the other genome as the query. The program
246 utilized Minimap2 v2.24 (Li, 2018), with the option for few repeats, for genome
247 alignment and then generated dot-plots. Additionally, D-GENIES produced an
248 association table for each comparison that included the best matching chromosome in
249 the target for each scaffold in the query (or vice-versa) as well as PAF (Pairwise
250 mAppling Format) files that consisted of alignments between sequences.

251 The package pafr v0.0.2 (Winter et al., 2020) in R v4.2.1 (R Core Team, 2022)
252 was used in conjunction with the PAF files to visualize and confirm orthology between

253 wood stork chromosome scaffolds and chromosomes of chicken, finch, cuckoo,
254 penguin, ibis, and maguari stork (see R Markdown). Briefly, we first visualized the
255 coverage of the wood stork sex chromosome scaffolds (wood stork Z chromosome =
256 MAMZ and wood stork W chromosome = MAMW) with the sex chromosomes of chicken
257 (GGAZ and GGAW) and maguari stork (CMAZ and CMAW). Coverage plots between
258 wood stork chromosomes and chicken and/or penguin chromosomes were produced
259 when dot plots and association tables indicated non 1:1 chromosome orthology
260 between species. Next, we used pafr to confirm orthology between microchromosomes
261 MAM25-29 and their complements in Humboldt penguin, maguari stork, and chicken.
262 Finally, we used the leftover microchromosomes in chicken, zebra finch, common
263 cuckoo, and Humboldt penguin that were not orthologous to MAM1-29 to identify if any
264 other scaffolds in the wood stork genome were chromosomes.

265 We compared the visualized alignment of the scaffold pertaining to the wood
266 stork mitogenome with that of the mitogenomes of the other species. Based on an
267 unusually large sequence length (33,032 bp) and incongruence with the other
268 mitogenomes, the wood stork mitochondrion scaffold was trimmed using Geneious
269 Prime v.2023.1.2 (<https://www.geneious.com>). First, the scaffold was aligned to the
270 white stork (*Ciconia ciconia*; GenBank accession NC_002197) mitogenome using a
271 Geneious alignment (parameters included a global alignment with free end gaps and a
272 cost matrix of 70% similarity) and trimmed. Geneious alignments between the trimmed
273 sequence and chicken (CM028585.1), oriental stork (*Ciconia boyciana*; NC_002196.1),
274 and black stork (*Ciconia nigra*; KF906246.1) mitogenomes available on GenBank were
275 performed to confirm accurate trimming.

276 To verify using bioinformatics that our stork was a female, we mapped the
277 sequencing reads back to the assembled wood stork genome using BWA-MEM2 v2.2.1
278 (Vasimuddin et al., 2019). We then used the function coverage in SAMtools v1.16.1
279 (Danecek et al., 2021) to determine coverage or read depth of each scaffold. SAMtools
280 coverage also provided the mapping quality values for the wood stork reads mapped
281 onto the wood stork reference; this reinforced confidence in which scaffolds could be
282 assigned as chromosome-level scaffolds.

283

284 **Results**

285 **Sequencing and Genome Assembly**

286 *Genome Assembly and Assembly Validation*

287 We obtained ~4.7 million (67 gigabase-pairs (Gbp)) PacBio CCS reads, which resulted
288 in 67x coverage for the initial *de novo* genome assembly using Hifiasm. The initial *de*
289 *novo* genome assembly using Hifiasm had a total length of 1.35 Gbp across 359 contigs
290 (342 scaffolds) and a contig (and scaffold) N50 of 36,845,572 base-pairs (bp) after
291 primary filtering. The initial assembly had a longest contig length of 131,390,114 bp and
292 17 gaps. After scaffolding this assembly with HiRise using the Dovetail Omni-C library,
293 the final assembly retained a total length of ~1.35 Gbp. The final assembly contained
294 280 scaffolds; the number of contigs in the final assembly remained at 359 because the
295 scaffolding process does not change the number (or length) of contigs. The scaffold
296 N50 for the final assembly was 80,020,930 bp. The final assembly contained 70 gaps
297 and a BUSCO score of 98.8%.

298

299 *Genome Annotation*

300 Annotation predicted 28,238 genes in the assembly, and these genes accounted
301 for 38.87 Mb or 2.88% of the length of the final assembly. The average gene length was
302 1.38 kb, and there were 2,731 single-exon genes identified. At least 50% of predicted
303 genes had AED scores <2.5 and at least 80% of predicted genes has AED scores <0.5,
304 signifying that most predicted genes in the annotation were well supported by external
305 evidence (Figure S1). Out of 255 BUSCO genes searched, BUSCO analysis of
306 predicted genes identified 226 (88.6%) complete single-copy BUSCOs and 18 (7.1%)
307 fragmented BUSCOs. Eleven (4.3%) BUSCOs were missing. In terms of repeats
308 masked in the genome, 15.4% of the total genome was masked. Within the genome,
309 5.9% were Class I TEs repeats, 0.1% were Class II TEs repeats, 0.2% were low
310 complexity repeats, and 0.9% were simple repeats.

311

312 **Determination of chromosomal-level scaffolds including sex verification**

313 Visualization with HiGlass of the largest 53 scaffolds in the wood stork reference
314 assembly identified 26 well-defined scaffolds (Figure 1A). Based on orthology analyses,
315 these 26 scaffolds corresponded to wood stork chromosomes 1-24 (MAM1-24) and two
316 MAMZ scaffolds (a major MAMZ scaffold that accounted for most of the chromosome
317 and a minor MAMZb that was at a distal end of the Z chromosome; Table S1 and Figure
318 S2). After the 26th scaffold, scaffolds became less defined, with some scaffolds having
319 little intra-scaffold contact (Figure 1B). Synteny plots with maguari stork, Humboldt
320 penguin, and chicken confirmed five scaffolds after scaffold 26 in the contact matrix
321 were most likely wood stork chromosomes 25-29 (MAM25-29; Figure 2). At least 50% of

322 the orthologous maguari stork chromosome had synteny with the wood stork scaffold
323 and at least 60% of the wood stork scaffold was aligned to the orthologous penguin
324 microchromosome. One exception was MAM27, which was orthologous to maguari
325 stork chromosome 29 (CMA29) but showed little orthology to chicken or penguin
326 microchromosomes. Two scaffolds pertaining to MAMW (defined MAMWa and
327 MAMWb) and an additional MAMZ scaffold (defined MAMZc) were also present after
328 scaffold 26 (Figure S2). The two MAMW scaffolds covered about a quarter of maguari
329 stork chromosome W (CMAW) but did not have significant alignments with chicken
330 chromosome W (GGAW; Figure S2). MAMZc aligned to distal portions of both chicken
331 chromosome Z (GGAZ) and maguari stork chromosome Z (CMAZ; Figure S2).

332 Two additional microchromosomes were defined, wood stork chromosomes 30
333 and 31 (MAM30 and MAM31), based on synteny plotting between wood stork scaffolds
334 and additional microchromosomes in the Humboldt penguin genome (Figure 2). These
335 two microchromosomes were not previously identified in the maguari stork genome
336 assembly, but unique unplaced scaffolds in the maguari stork assembly were identified
337 that had at least 60% synteny with these microchromosomes. Additional scaffolds in the
338 wood stork genome were suspected of being orthologous to additional penguin
339 microchromosomes due to substantial sequence alignments (>30% of wood stork
340 scaffold aligned to a penguin microchromosome). However, there were no substantial
341 sequence alignments between these wood stork scaffolds and maguari stork unplaced
342 scaffolds (see R Markdown).

343 Chromosome orthology analyses based on dot plots and association tables
344 revealed fissions and fusions of chromosomes in the wood stork and the other avian

345 species studied (Table S1 and Figure S3). Wood stork chromosomes 4 and 10 (MAM4
346 and MAM10) were orthologous to different sections of chicken chromosome 4 (GGA4;
347 Figure S4), but orthologous to separate chromosomes in the other avian species (Table
348 S1). Several wood stork chromosomes were fusions of two chromosomes in chicken: a)
349 MAM6 was a fusion of GGA6 and GGA10, b) MAM7 was a fusion of GGA8 and GGA9,
350 and c) MAM8 was a fusion of GGA11 and GGA13 (Figure 3; Figure S5; Table S1).
351 These fusions were shared with maguari stork, but not with zebra finch, common
352 cuckoo, Humboldt penguin, or plumbeous ibis (Table S1).

353 Orthology analyses additionally identified fissions and fusions of chromosomes in
354 chicken and the other avian species. Chicken chromosome 1 (GGA1) was orthologous
355 to two chromosomes in zebra finch (TGU1 and TGU1A, data not shown) and two
356 chromosomes in plumbeous ibis (TCA2 and a portion of TCA3; Table S1; Figure 3c).
357 Also of note were the fusions observed within the clade Feraeornithes (Figure 3).
358 These fusions were not shared between Humboldt penguin, plumbeous ibis, and storks,
359 but did involve complements of the same chicken chromosomes 6-14 (GGA6-14). In
360 Humboldt penguin, chromosome 5 (SHU5) was a fusion of GGA6 and GGA8 and
361 chromosome 6 (SHU6) was a fusion of GGA7 and GGA9 (Figure 3a). In wood stork
362 (and maguari stork), as previously described, MAM6 was a fusion of GGA6 and GGA10,
363 MAM7 was a fusion of GGA8 and GGA9, and MAM8 was a fusion of GGA11 and
364 GGA13 (Figure 3b). Substantial chromosomal rearrangements occurred in the
365 plumbeous ibis genome (Figure 3c). Plumbeous ibis chromosome 5 (TCA5) was a
366 fusion of GGA7, GGA8, and GGA14, chromosome 8 was a fusion of GGA9 and
367 GGA11, and chromosome 9 was a fusion of GGA10 and GGA12. It appears that GGA1

368 experienced a fission event in plumbeous ibis, in which part of the chromosome became
369 plumbeous ibis chromosome 2 (TCA2) and the other part of the chromosome fused with
370 GGA6 to become plumbeous ibis chromosome 3 (TCA3).

371 Originally, it appeared that the scaffold pertaining to the wood stork
372 mitochondrion sequence was the composite of duplicated contigs (Figure S6). After
373 alignment and trimming, the final wood stork mitochondrion sequence was 17,347 bp in
374 length and appeared orthologous to chicken, white stork, black stork, and oriental stork
375 mitogenome sequences.

376 The mean coverage of wood stork autosomes 1-24 (MAM1-24) was 31.39.
377 Coverage of the major Z scaffold (MAMZ) was approximately half that of the autosomes
378 (17.63) validating that the individual sequenced was the heterogametic sex (female).

379

380 **Discussion**

381 Despite new technologies and diminishing costs facilitating the production of more
382 accurate and complete genomic resources for non-model organisms, challenges remain
383 in assembling genomes with complex architecture. Unlike human and other mammalian
384 genomes, most avian genomes, many reptile genomes, and some fish and amphibian
385 genomes include microchromosomes, or chromosomes < 0.5 μ m in size, in addition to
386 macrochromosomes (Srikulnath et al., 2021; Waters et al., 2021). These
387 microchromosomes are often gene-rich, have little repetitive sequence, and comprise
388 up to a third of the total genome content in avian genomes. Recent genome assemblies
389 for chicken characterize all chromosomes including microchromosomes (Masabanda et
390 al., 2004), but many avian genomes are being deposited into public repositories (e.g.,

391 GenBank) with discrepancies between karyotype number from cytological studies and
392 the number of chromosome sets identified in genome assemblies. This discordance is
393 likely due to the difficulty of distinguishing some microchromosomes from unplaced
394 scaffolds and thus results in the number of chromosomes in the final genomic
395 assemblies being underestimated.

396 We produced a highly contiguous genome assembly of the wood stork and were
397 able to identify 31 autosomes in the wood stork genome. Francisco and Galetti Junior
398 (2000), and more recently de Sousa et al. (2023), determined $2n = 72$ for wood stork
399 based on karyotype analysis. Based on this diploid number, we would expect 35
400 autosomes in the wood stork genome and thus our assembly and subsequent analysis
401 has either failed to assemble or failed to identify four microchromosomes. This is not
402 surprising as microchromosomes are small and can be hard to both identify and
403 assemble. Future studies aimed at producing complete sequences for the wood stork
404 genome may utilize alternative techniques such as isolating and sequencing individual
405 microchromosomes.

406 Chromosome-level assemblies of wood stork and maguari stork identified
407 chromosome synapomorphies that are most likely unique to Order Ciconiiformes.
408 Previous research partially characterized these synapomorphies using chicken probes
409 for GGA1-9 on the jabiru and the maguari stork (Seligmann et al., 2019) and chicken
410 probes for GGA1-11 on the wood stork (de Sousa et al., 2023). Our data support the
411 identified GGA8/GGA9 fusion in storks, and our comparisons with other members of the
412 clade Feraeornithes (Humboldt penguin and plumbeous ibis) provide additional
413 support that this fusion is unique to storks. Additionally, our study identified that GGA10

414 was the unidentified chromosome in Seligmann et al. (2019) that was fused with GGA6
415 in storks. This is in partial disagreement with de Sousa et al. 2023, who stated that
416 GGA6 was fused with an unidentified chromosome in wood stork, but characterized
417 GGA10 as an independent chromosome in the wood stork karyotype.

418 The two stork fusions (GGA8/GGA9) and (GGA6/GGA10) were not found in a
419 chromosome painting study of three members of Pelecaniformes, the grey heron (*Ardea*
420 *cinerea*), the little egret (*Egretta garzetta*), and crested ibis (*Nipponia nippon*),
421 suggesting these fusions may also be stork specific (Wang et al., 2022). The inclusion
422 of additional taxa from within the clade Feraeornithes in studies of karyotype
423 evolution will be informative in determining if these chromosomal fusions are stork
424 specific.

425 Our study also identified the fusion, GGA11/GGA13, that was present in both
426 stork species but none of the other species tested, including Humboldt penguin and
427 plumbeous ibis. The fusion GGA11/GGA13 has also been identified in the neotropic
428 cormorant (*Nannopterum brasilianum*) (Kretschmer et al., 2021) and was partially
429 characterized for the wood stork by de Sousa et al. 2023 who found GGA11 fused to an
430 unidentified chromosome. Further research needs to be done to determine if the
431 GGA11/GGA13 fusion in some members of Feraeornithes occurred independently in
432 separate lineages or was the product of the same event.

433 The reference genome described here will allow for broader studies of genome
434 evolution in the core water bird clade (including penguins, albatrosses, storks,
435 cormorants, herons, and ibises) and numerous genomic studies of wood storks
436 specifically. In particular, the genomic population structure of wood storks has not been

437 adequately tested and evidence of local adaptation of wood storks to nesting and
438 feeding sites has yet to be assessed. Such studies will provide a solid foundation for
439 wood stork management and conservation.

440

441 **Funding**

442 This material is based upon work supported by the National Science Foundation under
443 Grant No. 2129600.

444

445 **Acknowledgements**

446 The authors thank Donna Bear (Jacksonville Zoo and Gardens) for supplying wood
447 stork blood samples, which were collected under US Fish and Wildlife Service migratory
448 bird permit TE08606C, US Geological Survey banding permit 23946, and IACUC
449 approval USCA-IACUC-006. We also thank Jordan Zhang and Mark Daly (Cantata Bio)
450 for genome assembly, annotation, answering our questions about assembly statistics,
451 and connecting us with other avian genome researchers. Nicolas Alexandre (University
452 of California Berkeley) provided advice on which programs to use to analyze the
453 genome post-assembly and Linelle Abueg (Rockefeller University) provided us with
454 genomes from the Vertebrate Genomes Project and answered our questions regarding
455 VGP assembly. Finally, we thank Philippe Bordron (Centre INRA de Toulouse) for
456 providing help with the D-Genies program.

457 **Data Availability**

458 We have deposited the primary data and code underlying these analyses as follows:

459 • Description of the biological source material deposited at GenBank under
460 BioSample SAMN36274196.

461 • Annotated chromosome-level assembly deposited at GenBank under accession
462 JAUNZN000000000 in BioProject PRJNA990753.

463 • Raw DNA and RNA sequence reads were deposited under BioProject
464 PRJNA990753 in NIH's Sequence Read Archive (SRA).

465 • Pairwise mApping Format (PAF) files and chromosome orthology code can be
466 found in https://github.com/rflamio/stork_chrs.

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498 **References**

499 Abdennur, N., & Mirny, L. A. (2020). Cooler: Scalable storage for Hi-C data and other
500 genomically labeled arrays. *Bioinformatics*, 36(1), 311-316.
501 <https://doi.org/10.1093/bioinformatics/btz540>

502 Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment
503 search tool. *Journal of Molecular Biology*, 215(3), 403-410.
504 [https://doi.org/10.1016/S0022-2836\(05\)80360-2](https://doi.org/10.1016/S0022-2836(05)80360-2)

505 Bao, Z., & Eddy, S. R. (2002). Automated *de novo* identification of repeat sequence families in
506 sequenced genomes. *Genome Research*, 12(8), 1269-1276.
507 <https://doi.org/10.1101/gr.88502>

508 Bear-Hull, D., Brooks, W., Jr., & Maharaj, A. M. (2005, October 12-15). *Tracking movements of*
509 *an adult male wood stork Mycteria americana during the breeding season at the*
510 *Jacksonville Zoo and Gardens* [Conference session]. 29th Waterbird Society Meeting,
511 Jekyll Island, GA, United States.

512 Benson, D. A., Cavanaugh, M., Clark, K., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., & Sayers, E.
513 W. (2013). GenBank. *Nucleic Acids Research*, 41(D1), D36-42.
514 <https://doi.org/10.1093/nar/gks1195>

515 Burleigh, J. G., Kimball, R. T., & Braun, E. L. (2015). Building the avian tree of life using a large-
516 scale, sparse supermatrix. *Molecular Phylogenetics and Evolution*, 84, 53-63.
517 <https://doi.org/10.1016/j.ympev.2014.12.003>

518 Cabanettes, F., & Klopp, C. (2018). D-GENIES: Dot plot large genomes in an interactive, efficient
519 and simple way. *PeerJ*, 6, Article e4958. <https://doi.org/10.7717/peerj.4958>

520 Cantarel, B. L., Korf, I., Robb, S. M. C., Parra, G., Ross, E., Moore, B., Holt, C., Sánchez Alvarado,
521 A., & Yandell, M. (2008). MAKER: An easy-to-use annotation pipeline designed for
522 emerging model organism genomes. *Genome Research*, 18(1), 188-196.
523 <https://doi.org/10.1101/gr.6743907>

524 Chan, P. P., Lin, B. Y., Mak, A. J., & Lowe, T. M. (2021). tRNAscan-SE 2.0: Improved detection and
525 functional classification of transfer RNA genes. *Nucleic Acids Research*, 49(16), 9077-
526 9096. <https://doi.org/10.1093/nar/gkab688>

527 Cheng, H., Concepcion, G. T., Feng, X., Zhang, H., & Li, H. (2021). Haplotype-resolved *de novo*
528 assembly using phased assembly graphs with hifiasm. *Nature Methods*, 18(2), 170-175.
529 <https://doi.org/10.1038/s41592-020-01056-5>

530 International Chicken Genome Sequencing Consortium (2004). Sequence and comparative
531 analysis of the chicken genome provide unique perspectives on vertebrate evolution.
532 *Nature*, 432(7018), 695-716. <https://doi.org/10.1038/nature03154>

533 Danecek, P., Bonfield, J. K., Liddle, J., Marshall, J., Ohan, V., Pollard, M. O., Whitwham, A.,
534 Keane, T., McCarthy, S. A., Davies, R. M., & Li, H. (2021). Twelve years of SAMtools and
535 BCFtools. *Gigascience*, 10(2), 1-4. <https://doi.org/10.1093/gigascience/giab008>

536 de Boer, L. E. M., & van Brink, J. M. (1982). Cytotaxonomy of the Ciconiiformes (Aves), with
537 karyotypes of eight species new to cytology. *Cytogenetics and Cell Genetics*, 34(1-2), 19-
538 34. <https://doi.org/10.1159/000131791>

539 de Sousa, R. P. C., Campos, P. S. B., dos Santos, M. d. S., O'Brien, P. C., Ferguson-Smith, M. A., &
540 de Oliveira, E. H. C. (2023). Cytotaxonomy and molecular analyses of *Mycteria*
541 (*Ciconiidae: Ciconiiformes*): Insights on stork phylogeny. *Genes*, 14(4), Article
542 816. <https://doi.org/10.3390/genes14040816>

543 Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., &
544 Gingeras, T. R. (2013). STAR: Ultrafast universal RNA-Seq aligner. *Bioinformatics*, 29(1),
545 15-21. <https://doi.org/10.1093/bioinformatics/bts635>

546 Endangered and Threatened Wildlife and Plants; Reclassification of the U.S. Breeding
547 Population of the Wood Stork from Endangered to Threatened; Final Rule, 79 Fed. Reg.
548 37078-37103 (June 30, 2014).

549 Endangered and Threatened Wildlife and Plants; Removal of the Southeast U.S. Distinct
550 Population Segment of the Wood Stork From the the List of Endangered and Threatened
551 Wildlife, 88 Fed. Reg. 9830-9850 (February 15, 2023).

552 Endangered and Threatened Wildlife and Plants; U.S. Breeding Population of the Wood Stork
553 Determined to be Endangered; Final Rule, 49 Fed. Reg. 7332-7335 (February 28, 1984).

554 Flynn, J. M., Hubley, R., Goubert, C., Rosen, J., Clark, A. G., Feschotte, C., & Smit, A. F. (2020).
555 RepeatModeler2 for automated genomic discovery of transposable element families.
556 *Proceedings of the National Academy of Sciences*, 117(17), 9451-9457.
557 <https://doi.org/10.1073/pnas.1921046117>

558 Griffin, D. K., Robertson, L. B. W., Tempest, H. G., & Skinner, B. M. (2007). The evolution of the
559 avian genome as revealed by comparative molecular cytogenetics. *Cytogenetic and*
560 *Genome Research*, 117, 64-77. <https://doi.org/10.1159/000103166>

561 Griffiths, R., Double, M. C., Orr, K., & Dawson, R. J. G. (1998). A DNA test to sex most birds.
562 *Molecular Ecology*, 7(8), 1071-1075. <https://doi.org/10.1046/j.1365-294x.1998.00389.x>

563 Guan, D., McCarthy, S. A., Wood, J., Howe, K., Wang, Y., & Durbin, R. (2020). Identifying and
564 removing haplotypic duplication in primary genome assemblies. *Bioinformatics*, 36(9),
565 2896-2898. <https://doi.org/10.1093/bioinformatics/btaa025>

566 Guttenbach, M., Nanda, I., Feichtinger, W., Masabanda, J. S., Griffin, D. K., & Schmid, M. (2003).
567 Comparative chromosome painting of chicken autosomal paints 1-9 in nine different
568 bird species. *Cytogenetic and Genome Research*, 103(1-2), 173-184.
569 <https://doi.org/10.1159/000076309>

570 Hackett, S. J., Kimball, R. T., Reddy, S., Bowie, R. C. K., Braun, E. L., Braun, M. J., Chojnowski, J. L.,
571 Cox, W. A., Han, K.-L., Harshman, J., Huddleston, C. J., Marks, B. D., Miglia, K. J., Moore,
572 W. S., Sheldon, F. H., Steadman, D. W., Witt, C. C., & Yuri, T. (2008). A phylogenomic
573 study of birds reveals their evolutionary history. *Science*, 320(5884), 1763-1768.
574 <https://doi.org/10.1126/science.1157704>

575 Hughes, A. L., & Piontkivska, H. (2005). DNA repeat arrays in chicken and human genomes and
576 the adaptive evolution of avian genome size. *BMC Evolutionary Biology*, 5, Article 12.
577 <https://doi.org/10.1186/1471-2148-5-12>

578 Itoh, Y., & Arnold, A. P. (2005). Chromosomal polymorphism and comparative painting analysis
579 in the zebra finch. *Chromosome Research*, 13(2), 47-56.
580 <https://doi.org/10.1007/s10577-005-6602-x>

581 Kahl, M. P. (1987). An overview of the storks of the world. *Colonial Waterbirds*, 10(2), 131-134.
582 <https://doi.org/10.2307/1521251>

583 Kerpeljiev, P., Abdennur, N., Lekschas, F., McCallum, C., Dinkla, K., Strobel, H., Luber, J. M.,
584 Ouellette, S. B., Azhir, A., Kumar, N., Hwang, J., Lee, S., Alver, B. H., Pfister, H., Mirny, L.
585 A., Park, P. J., & Gehlenborg, N. (2018). HiGlass: Web-based visual exploration and
586 analysis of genome interaction maps. *Genome Biology*, 19(1), Article 125.
587 <https://doi.org/10.1186/s13059-018-1486-1>

588 Kimball, R. T., Oliveros, C. H., Wang, N., White, N. D., Barker, F. K., Field, D. J., Ksepka, D. T.,
589 Chesser, R. T., Moyle, R. G., Braun, M. J., Brumfield, R. T., Faircloth, B. C., Smith, B. T., &
590 Braun, E. L. (2019). A phylogenomic supertree of birds. *Diversity*, 11(7), Article 109.
591 <https://doi.org/10.3390/d11070109>

592 Korf, I. (2004). Gene finding in novel genomes. *BMC Bioinformatics*, 5, Article 59.
593 <http://www.biomedcentral.com/1471-2105/5/59>

594 Kretschmer, R., de Souza, M. S., Furo, I. O., Romanov, M. N., Gunski, R. J., Garner, A. D. V., de
595 Freitas, T. R. O., de Oliveira, E. H. C., O'Connor, R. E., & Griffin, D. K. (2021). Interspecies
596 chromosome mapping in Caprimulgiformes, Piciformes, Suliformes, and Trogoniformes
597 (Aves): Cytogenomic insight into microchromosome organization and karyotype
598 evolution in birds. *Cells*, 10(4). Article 826. <https://doi.org/10.3390/cells10040826>

599 Kuhl, H., Frankl-Vilches, C., Bakker, A., Mayr, G., Nikolaus, G., Boerno, S. T., Klages, S.,
600 Timmermann, B., & Gahr, M. (2021). An unbiased molecular approach using 3'-UTRs
601 resolves the avian family-level tree of life. *Molecular Biology and Evolution*, 38(1), 108-
602 127. <https://doi.org/10.1093/molbev/msaa191>

603 Kuramoto, T., Nishihara, H., Watanabe, M., & Okada, N. (2015). Determining the position of
604 storks on the phylogenetic tree of waterbirds by retroposon insertion analysis. *Genome
605 Biology and Evolution*, 7(12), 3180-3189. <https://doi.org/10.1093/gbe/evv213>

606 Laetsch, D. R., & Blaxter, M. L. (2017). BlobTools: Interrogation of genome assemblies [version
607 1; peer review: 2 approved with reservations]. *F1000Research*, 6, Article 1287.
608 <https://doi.org/10.12688/f1000research.12232.1>

609 Lee, J. C., Tsai, L. C., Hwa, P. Y., Chan, C. L., Huang, A., Chin, S. C., Wang, L. C., Lin, J. T., Linacre,
610 A., & Hsieh, H. M. (2010). A novel strategy for avian species and gender identification
611 using the CHD gene. *Molecular and Cellular Probes*, 24(1), 27-31.
612 <https://doi.org/10.1016/j.mcp.2009.08.003>

613 Lee, S., Bakker, C. R., Vitzthum, C., Alver, B. H., & Park, P. J. (2022). Pairs and Pairix: A file format
614 and a tool for efficient storage and retrieval for Hi-C read pairs. *Bioinformatics*, 38(6),
615 1729-1731. <https://doi.org/10.1093/bioinformatics/btab870>

616 Li, H. (2018). Minimap2: Pairwise alignment for nucleotide sequences. *Bioinformatics*, 34(18),
617 3094-3100. <https://doi.org/10.1093/bioinformatics/bty191>

618 Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler
619 transform. *Bioinformatics*, 25(14), 1754-1760.
620 <https://doi.org/10.1093/bioinformatics/btp324>

621 Manni, M., Berkeley, M. R., Seppey, M., Simao, F. A., & Zdobnov, E. M. (2021). BUSCO update:
622 Novel and streamlined workflows along with broader and deeper phylogenetic coverage
623 for scoring of eukaryotic, prokaryotic, and viral genomes. *Molecular Biology and
624 Evolution*, 38(10), 4647-4654. <https://doi.org/10.1093/molbev/msab199>

625 Masabanda, J. S., Burt, D. W., O'Brien, P. C. M., Vignal, A., Fillon, V., Walsh, P. S., Cox, H.,
626 Tempest, H. G., Smith, J., Habermann, F., Schmid, M., Matsuda, Y., Ferguson-Smith, M.

627 A., Croojimans, P. M. A., Groenen, M. A. M., & Griffin, D. K. (2004). Molecular
628 cytogenetic definition of the chicken genome: The first complete avian karyotype.
629 *Genetics*, 166(3), 1367-1373. <https://doi.org/10.1534/genetics.166.3.1367>

630 Morescalchi, A. (1980). Evolution and karyology of the amphibians. *Italian Journal of Zoology*,
631 47(sup1), 113-126. <https://doi.org/10.1080/11250008009438709>

632 Nanda, I., Benisch, P., Fetting, D., Haaf, T., & Schmid, M. (2011). Synteny conservation of
633 chicken macrochromosomes 1-10 in different avian lineages revealed by cross-species
634 chromosome painting. *Cytogenetic and Genome Research*, 132(3), 165-181.
635 <https://doi.org/10.1159/000322358>

636 Ogden, J. C., & Patty, B. W. (1981). The recent status of the wood stork in Florida and Georgia.
637 In R. Q. Odom & J. W. Guthrie (Eds.), *Proceedings of the nongame and endangered*
638 *wildlife symposium* (Technical Bulletin WL5, pp. 97-102). Georgia Department of Natural
639 Resources Game and Fish Division.

640 Ohno, S., Muramoto, J., Stenius, C., Christian, L., & Kittrell, W. A. (1969). Microchromosomes in
641 holocephalian, chondrostean and holostean fishes. *Chromosoma*, 26(1), 35-40.
642 <https://doi.org/10.1007/bf00319498>

643 Olmo, E. (2008). Trends in the evolution of reptilian chromosomes. *Integrative and Comparative*
644 *Biology*, 48(4), 486-493. <https://doi.org/10.1093/icb/icn049>

645 Open2C, Abdennur, N., Fudenberg, G., Flyamer, I. M., Galitsyna, A. A., Goloborodko, A.,
646 Imakaev, M., & Venev, S. V. (2023). Pairtools: From sequencing data to chromosome
647 contacts. Preprint at *bioRxiv*. <https://doi.org/10.1101/2023.02.13.528389>

648 Price, A. L., Jones, N. C., & Pevzner, P. A. (2005). *De novo* identification of repeat families in
649 large genomes. *Bioinformatics*, 21(Suppl 1), i351-i358.
650 <https://doi.org/10.1093/bioinformatics/bti1018>

651 Prum, R. O., Berv, J. S., Dornburg, A., Field, D. J., Townsend, J. P., Lemmon, E. M., & Lemmon, A.
652 R. (2015). A comprehensive phylogeny of birds (Aves) using targeted next-generation
653 DNA sequencing. *Nature*, 526(7574), 569-573. <https://doi.org/10.1038/nature15697>

654 Putnam, N. H., O'Connell, B. L., Stites, J. C., Rice, B. J., Blanchette, M., Calef, R., Troll, C. J., Fields,
655 A., Hartley, P. D., Sugnet, C. W., Haussler, D., Rokhsar, D. S., & Green, R. E. (2016).
656 Chromosome-scale shotgun assembly using an in vitro method for long-range linkage.
657 *Genome Research*, 26(3), 342-350. <https://doi.org/10.1101/gr.193474.115>

658 R Core Team. (2022). *R: A language and environment for statistical computing* (Version 4.2.2). R
659 Foundation for Statistical Computing. <https://www.R-project.org/>

660 Rodríguez-Rodríguez, E. J., & Negro, J. J. (2021). Integumentary colour allocation in the stork
661 family (Ciconiidae) reveals short-range visual cues for species recognition. *Birds*, 2(1),
662 138-146. <https://doi.org/10.3390/birds2010010>

663 Sangster, G., & Mayr, G. (2021). Feraequornithes: A name for the clade formed by
664 Procellariiformes, Sphenisciformes, Ciconiiformes, Suliformes and Pelecaniformes
665 (Aves). *Vertebrate Zoology*, 71, 49-53. <https://doi.org/10.3897/vz.71.e61728>

666 Seligmann, I. C. A., Furo, I. O., dos Santos, M. S., Tagliarini, M. M., Araujo, C. C. D., O'Brien, P. C.
667 M., Ferguson-Smith, M. A., & de Oliveira, E. H. C. (2019). Comparative chromosome
668 painting in two Brazilian stork species with different diploid numbers. *Cytogenetic and*
669 *Genome Research*, 159(1), 32-38. <https://doi.org/10.1159/000503019>

670 Slikas, B. (1997). Phylogeny of the avian family Ciconiidae (storks) based on cytochrome b
671 sequences and DNA-DNA hybridization distances. *Molecular Phylogenetics and*
672 *Evolution*, 8(3), 275-300. <https://doi.org/10.1006/mpev.1997.0431>

673 Smit, A. F. A., Hubley, R., & Green, P. (2013-2015). *RepeatMasker Open-4.0*. Institute for
674 Systems Biology. <http://www.repeatmasker.org>

675 Srikulnath, K., Ahmad, S. F., Singchat, W., & Panthum, T. (2021). Why do some vertebrates have
676 microchromosomes? *Cells*, 10(9), Article 2182. <https://doi.org/10.3390/cells10092182>

677 Stanke, M., & Waack, S. (2003). Gene prediction with a hidden Markov model and a new intron
678 submodel. *Bioinformatics*, 19(Suppl 2), ii215-ii225.
679 <https://doi.org/10.1093/bioinformatics/btg1080>

680 Tiersch, T. R., & Wachtel, S. S. (1991). On the evolution of genome size in birds. *Journal of*
681 *Heredity*, 82(5), 363-368. <https://doi.org/10.1093/oxfordjournals.jhered.a111105>

682 Vasimuddin, M., Misra, S., Li, H., & Aluru, S. (2019). Efficient architecture-aware acceleration of
683 BWA-MEM for multicore systems. *2019 IEEE International Parallel and Distributed*
684 *Processing Symposium (IPDPS)*, 314-324, <https://doi:10.1109/IPDPS.2019.00041>

685 Wang, J., Su, W., Hu, Y., Li, S., O'Brien, P. C. M., Ferguson-Smith, M. A., Yang, F., & Nie, W.
686 (2022). Comparative chromosome maps between the stone curlew and three
687 ciconiiform species (the grey heron, little egret and crested ibis). *BMC Ecology and*
688 *Evolution*, 22(1), Article 23. <https://doi.org/10.1186/s12862-022-01979-x>

689 Waters, P. D., Patel, H. R., Ruiz-Herrera, A., Álvarez-González, L., Lister, N. C., Simakov, O., Ezaz,
690 T., Kaur, P., Frere, C., Grützner, F., Georges, A., & Graves, J. A. M. (2021).
691 Microchromosomes are building blocks of bird, reptile, and mammal chromosomes.
692 *Proceedings of the National Academy of Sciences*, 118(45), Article e2112494118.
693 <https://doi.org/10.1073/pnas.2112494118>

694 Wenger, A. M., Peluso, P., Rowell, W. J., Chang, P.-C., Hall, R. J., Concepcion, G. T., Ebler, J.,
695 Fungtammasan, A., Kolesnikov, A., Olson, N. D., Töpfer, A., Alonge, M., Mahmoud, M.,
696 Qian, Y., Chin, C.-S., Phillippy, A. M., Schatz, M. C., Myers, G., Depristo, M. A., . . .
697 Hunkapiller, M. W. (2019). Accurate circular consensus long-read sequencing improves
698 variant detection and assembly of a human genome. *Nature Biotechnology*, 37(10),
699 1155-1162. <https://doi.org/10.1038/s41587-019-0217-9>

700 Winter, D., Lee, K., & Cox, M. (2020). *pafr: Read, manipulate and visualize 'Pairwise mAPPING*
701 *Format' data*. R package version 0.0.2. <https://CRAN.R-project.org/package=pafr>

702