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Abstract

Despite being quite specious (~10,000 extant species), birds have a fairly uniform
genome size and karyotype (including the common occurrence of microchromosomes)
relative to other vertebrate lineages. Storks (Family Ciconiidae) are a charismatic and
distinct group of large wading birds with nearly worldwide distribution but few genomic
resources. Here we present an annotated chromosome-level reference genome and
chromosome orthology analysis for the wood stork (Mycteria americana), a species that
has been federally protected under the Endangered Species Act since 1984. The
annotated chromosome-level reference assembly was produced using the blood of a
wild female wood stork chick, has a length of 1.35 Gb, a contig N50 of 37 Mb, a scaffold
N50 of 80 Mb, and a BUSCO score of 98.8%. We identified 31 autosomal pairs and two
sex chromosomes in the wood stork genome, but failed to identify four additional
autosomal microchromosomes previously found via karyotyping. Orthology analyses
confirmed reported synapomorphies unique to storks and identified the chromosomes
participating in these fusions. This study highlights the difficulty and potential problems
associated with delineating microchromosomes in reference genome assemblies. It also
provides a foundation for studying karyotype evolution in the core water bird clade that
includes penguins, albatrosses, storks, cormorants, herons, and ibises. Finally, our
reference genome will allow for numerous genomic studies, such as genome-wide

association studies of local adaptation, that will aid in wood stork conservation.

Keywords: Ciconiiformes, microchromosomes, sequencing, scaffolding, vertebrate,

core water birds, orthology
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Introduction

Bird genomes feature a relatively small and stable genome size (nuclear DNA content)
compared to other vertebrate taxa (Tiersch & Wachtel, 1991). The reason for small
genome sizes in birds is unknown, but it has been hypothesized to be adaptive for the
energy requirements associated with flight (Hughes & Piontkivska, 2005). Genome
organization within Aves is also quite consistent. Birds have a diploid number of 2n = 80
which includes ~10 pairs of macrochromosomes (large chromosomes that can be flow-
sorted) and many somewhat smaller microchromosomes, although the transition in size
between macrochromosomes and microchromosomes is more gradual than this binary
classification implies (Griffin et al., 2007). Compared to macrochromosomes,
microchromosomes have high recombination rates and G+C content and are gene
dense with little repetitive sequence (International Chicken Genome Sequencing
Consortium, 2004). Other vertebrate taxa, such as reptiles (Olmo, 2008), amphibians
(Morescalchi, 1980), and fish (Ohno et al., 1969), contain species with
microchromosomes as well. However, the presence of many microchromosomes seems
to be particularly associated with avian genomes, which may have retained this feature
from an original chordate ancestor (Waters et al., 2021).

Storks (Order Ciconiiformes, Family Ciconiidae) are a distinct lineage of large
wading birds that constitute the only family in their order. Current molecular evidence
places storks within the clade Pelecanimorphae as sister to Pelecanes, a clade that
contains Order Suliformes (frigatebirds, gannets, boobies, darters, cormorants, and
shags) and Order Pelecaniformes (ibises, spoonbills, herons, bitterns, shoebill,

hamerkop, and pelicans) (Burleigh et al., 2015; Hackett et al., 2008; Kimball et al., 2019;
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Kuhl et al., 2021; Kuramoto et al., 2015; Prum et al., 2015). More broadly, storks are
members of the core water bird clade, Aequornithes, which includes Gaviiformes (loons)
and Feraequornithes (Burleigh et al., 2015; Sangster & Mayr, 2021). Feraequornithes
contains the Pelecanimorphae (ciconiiforms, suliforms, and pelecaniforms) and the
Procellariimorphae (albatrosses, petrels, and penguins) (Burleigh et al., 2015; Sangster
& Mayr, 2021).

Traditionally, storks have been classified into three distinct lineages, tribes
Mycteriini (genera Anastomus and Mycteria), Ciconiini (genus Ciconia), and Leptoptilini
(genera Leptoptilos, Jabiru, and Ephippiorhynchus), based on morphology and behavior
(Kahl, 1987). Several lines of evidence, including karyotype analysis by cell staining (de
Boer & van Brink, 1982), a DNA-DNA hybridization study (Slikas, 1997), comparison of
cytochrome b sequences (Slikas, 1997), and chromosome painting (Seligmann et al.,
2019) suggest non-monophyly of the tribe Leptoptilini. The recent stork phylogeny of
(Rodriguez-Rodriguez & Negro, 2021) supports this claim. Within this phylogeny, storks
are divided into four groups: 1) Jabiru and Ephippiorhynchus, 2) Mycteriini, 3) Ciconiini,
and 4) Leptoptilos. Groups 1 and 2 form a clade sister to a clade consisting of groups 3
and 4.

One member of tribe Mycteriini, the wood stork (Mycteria americana), is a
species of conservation concern in the United States. The wood stork’s range includes
the southeastern United States, Mexico, Central America, Cuba, and South America. In
1984, the U.S. government listed the wood stork as an endangered species
("Endangered and Threatened Wildlife and Plants; U.S. Breeding Population of the

Wood Stork Determined to be Endangered; Final Rule," February 28, 1984) due to the



93 loss of suitable feeding habitat in southern Florida, the historical stronghold of the U.S.
94  wood stork population (Ogden & Patty, 1981). Northward range expansion and a
95 concomitant increase in stork numbers in the succeeding decades motivated
96 downlisting of the species in the U.S. from endangered to threatened status
97 ("Endangered and Threatened Wildlife and Plants; Reclassification of the U.S. Breeding
98 Population of the Wood Stork from Endangered to Threatened; Final Rule," June 30,
99 2014). It has been recently proposed to delist the wood stork completely from the
100 Endangered Species Act due to recovery, including the perception of sufficient numbers
101  and productivity to guarantee long-term viability of the U.S. wood stork population.
102 However, the adaptative potential for the species remains unclear amidst climate
103  change related threats including changes in seasonal rainfall patterns, warming
104 temperatures, and sea level rise ("Endangered and Threatened Wildlife and Plants;
105 Removal of the Southeast U.S. Distinct Population Segment of the Wood Stork From
106 the the List of Endangered and Threatened Wildlife ", February 15, 2023).
107 There are currently few genomic resources for storks including only one stork
108 chromosome-level assembly (the maguari stork (Ciconia maguari); NCBI BioProject
109 PRJDB4709). The objective of this study is to build an annotated chromosome-level
110 genome for the wood stork that will provide a detailed map of what genes are present
111  on each chromosome and serve as a resource for conservation and evolutionary
112  studies. In this paper, we additionally test for genome-level synapomorphies unique to
113  storks to improve our understanding of genome evolution in birds.
114

115 Methods
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Biological Materials

The Jacksonville Zoo and Aquarium in northern Florida contains a wood stork rookery
that was naturally established in 1999 (Bear-Hull et al., 2005). In May 2021, fresh blood
samples from ten of the colony’s chicks were collected in tubes pre-coated with the
anticoagulant EDTA and stored at -80°C. DNA was extracted using the DNeasy Blood &
Tissue Kit (Qiagen., Valencia, CA, USA) following the manufacturer’s protocol. Birds
were sexed genetically according to Griffiths et al. (1998) and Lee et al. (2010) to
identify a female individual for genomic sequencing. In birds, female is the

heterogametic sex (ZW).

Nucleic Acid Library Preparation

Following genetic sexing, a blood sample from a single female wood stork was sent to
the commercial provider Cantata Bio (Scotts Valley, CA, USA) for nucleic acid library
preparation. Two genomic libraries were produced: 1) a PacBio high-fidelity (HiFi)
library (~20 kb) for long read sequencing, and 2) a Dovetail Omni-C library for short
read sequencing and continuity ligation. Additionally, an RNA-Seq library was produced
for genome annotation.

For HiFi library preparation, high-quality double stranded DNA was extracted
from stork blood and purified using the Blood & Cell Culture DNA Mini Kit (Qiagen).
Following purification, DNA was quantified using the Qubit 2.0 Fluorometer (Thermo
Fisher Scientific, Waltham, MA, USA) and the Qubit dsDNA Broad Range Assay Kit
(Thermo Fisher Scientific). The library was prepared using the SMRTbell Express

Template Prep Kit 2.0 (PacBio, Menlo Park, CA, USA) following the manufacturer’s
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protocol. The library was bound to DNA polymerase using the Sequel |l Binding Kit 2.0
(PacBio).

Dovetail Omni-C library preparation followed methods described in Putnam et al.
(2016). Briefly, chromatin was cross-linked using formaldehyde and extracted. Cross-
linked chromatin was subsequently fragmented using DNAse |, a sequence-
independent endonuclease. The ends of the chromatin fragments were blunted and
tagged with biotin, followed by proximity ligation to create chimeric molecules.
Crosslinks were reversed and DNA was purified from protein. Next, DNA was treated to
remove biotin that was not internalized within ligated fragments and sheared to ~350 bp
mean fragment size. Sequencing libraries were generated using NEBNext Ultra
enzymes (New England Biolabs, Ipswich, MA, USA) and lllumina-compatible adapters.
Streptavidin beads were used to isolate biotin-containing fragments, which were
subsequently amplified using polymerase chain reaction (PCR).

Extraction of total RNA was performed using the RNeasy Plus Mini Kit (Qiagen)
following the manufacturer’s protocol. After extraction, RNA was quantified using: 1) the
Qubit 2.0 Fluorometer (Thermo Fisher Scientific) with the Qubit RNA Broad Range
Assay Kit (Thermo Fisher Scientific), and 2) the 4200 TapeStation system (Agilent,
Santa Clara, CA, USA). DNase treatment, AMPure bead cleanup (Beckman Coulter Life
Sciences, Indianapolis, IN, USA), and Qiagen FastSelect HMR rRNA (Qiagen) depletion
were performed prior to library preparation. Library preparation was performed using the
NEBNext Ultra Il DNA Library Prep Kit for lllumina (New England Biolabs) following the

manufacturer’s protocol.
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Sequencing and Genome Assembly
Genome Assembly
Genomic assembly and annotation were executed by Cantata Bio. A list of all programs

and versions used throughout the assembly process is available in Table 1.

The HiFi library was loaded onto a Sequel 1| 8M SMRT cell (PacBio) using the
MagBindKit v2 (PacBio) and sequenced to 67x coverage using circular consensus
sequencing (CCS) mode (Wenger et al., 2019). A draft genome assembly was built from
the subsequent reads using default parameters in Hifiasm v0.15.4 (Cheng et al., 2021).
The Hifiasm output assembly (hifiasm.p_ctg.fa) was then compared to the BLAST
(Basic Local Alignment Search Tool) v2.9.0 (Altschul et al., 1990) nucleotide database
(nt). The resulting file was used as input for BlobTools v1.1.1 (Laetsch & Blaxter, 2017),
and scaffolds identified as possible contamination were removed from the assembly
(filtered.asm.cns.fa). Finally, Purge_dups v1.2.5 (Guan et al., 2020) was used to

remove haplotigs and contig overlaps (purged.fa).

The Omni-C library was sequenced on a HiSegX platform (lllumina, San Diego,
CA, USA) to ~30x coverage using 2 x 150 bp paired-end reads. The input de novo
assembly and the Omni-C library reads were used as input data for HiRise v2.1.1
(Putnam et al., 2016), a software pipeline designed to scaffold genome assemblies
using proximity ligation data. Briefly, the Omni-C reads were first mapped to the Hifiasm
assembly using BWA v0.7.17 (Li & Durbin, 2009). Only reads with mapping quality
scores = 50 were retained. Then, the separations of Omni-C read pairs mapped within
draft scaffolds were used by HiRise to produce a likelihood model that identified and

broke putative misjoins, scored prospective joins, and made novel joins.
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Assembly Validation

The qualities of the initial Hifasm assembly and the scaffolded HiRise assembly were
assessed for genome completeness using the program BUSCO v4.05 (Manni et al.,
2021). BUSCO uses universal single-copy orthologs; for this project, the
eukaryota_odb10 database, which includes 70 species and 255 single-copy orthologous

genes, was used.

Genome Annotation

First, repetitive regions (e.g., transposable elements) within the genome were identified
de novo using the pipeline RepeatModeler v2.0.1 (Flynn et al., 2020). This pipeline used
two distinct discovery algorithms to accomplish this task: RECON v1.08 (Bao & Eddy,
2002) and RepeatScout v1.0.6 (Price et al., 2005). The repeat library produced from the
pipeline was input into the program RepeatMasker v4.1.0 (Smit et al., 2013-2015) which
annotated and masked the repeats in the assembly file.

The RNA-Seq library was run on the NovaSeq6000 platform (lllumina) in 2 x 150
bp configuration. RNA-Seq reads were mapped onto the genome using the RNA-Seq
aligner STAR v2.7 (Dobin et al., 2013). The bam2hints tool within Augustus v2.5.5
(Stanke & Waack, 2003) was used to generate intron-exon boundary hints. Coding
sequences from four avian species, the little egret (Egretta garzetta), the crested ibis
(Nipponia nippon), the chicken (Gallus gallus), and the zebra finch (Taeniopygia
guttata), were used to train initial ab initio models for the gene prediction programs

SNAP v2006-07-28 (Korf, 2004) and Augustus; for Augustus, this included six rounds of
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prediction optimization. Following model training, gene prediction was performed in the
repeat-masked assembly file using SNAP and Augustus. Gene prediction was also
performed in the repeat-masked assembly file using the annotation pipeline MAKER
v3.01.03 (Cantarel et al., 2008). UnitProKB/Swiss-Prot peptide sequences from the
UniProt Knowledgebase (http://www.uniprot.org) and the protein sequences from the
four avian species above (i.e., little egret, crested ibis, chicken, and zebra finch) were
used when running MAKER. Annotation edit distance (AED) scores for each of the
predicted genes were generated by MAKER to assess gene prediction quality.

The final genome annotation contained the intersection of the genes predicted by
SNAP and Augustus. Genes were further characterized for their putative function by
performing a BLAST search of the peptide sequences against the UniProt

Knowledgebase. tRNAs were predicted using tRNAscan-SE v2.05 (Chan et al., 2021).

Determination of chromosome-level scaffolds including sex verification

After scaffolding with HiRise, a genomic contact matrix was produced to visualize
chromosomal-level scaffolds. First, the command parse in the Pairtools v1.0.2 (Open2C
et al. 2023) pipeline was used to identify valid ligation events present in the Omni-C
data. Then, the pairs were sorted and PCR duplicates were removed using the Pairtools
commands sort and dedup, respectively. Pairtools split was used to produce a .pairs
file, and the .pairs file was indexed with Pairix v0.3.7 (Lee et al., 2022). A single
resolution cool file was generated using the command cload pairix in Cooler v0.8.11

(Abdennur & Mirny, 2020). Subsequently, a multi-resolution mcool file was generated



230 using the command zoomify in Cooler. The genomic contact matrix, in the form of the
231  mcool file, was visualized in the software HiGlass v1.11.7 (Kerpedjiev et al., 2018).

232 Six different avian genomes with chromosome-level assemblies were

233  downloaded from the GenBank database (Benson et al., 2013): 1) chicken (WGS

234  master accession JAENSKO000000000; BioProject PRINA660757), 2) zebra finch (WGS
235 master accession RRCB00000000; BioProject PRINA489098), 3) common cuckoo
236  (Cuculus canorus; WGS master accession JAGIYT000000000; BioProject

237 PRJNA562015), 4) Humboldt penguin (Spheniscus humboldti; WGS master accession
238 JAPZLJ000000000; BioProject PRINA838343), 5) plumbeous ibis (Theristicus

239  caerulescens; WGS master accession JAJGSR000000000; BioProject PRINA774297),
240 and 6) maguari stork (WGS master accession JAGFVNO000000000; BioProject

241 PRJNA715733) for chromosome orthology analysis. To assess reciprocity in orthology,
242  each of these genomes were aligned with the wood stork genome twice using the

243  program D-GENIES v1.4.0 (Cabanettes & Klopp, 2018). One alignment used the wood
244  stork genome as the query and the other genome as the target and the other used the
245 wood stork genome as the target and the other genome as the query. The program
246  utilized Minimap2 v2.24 (Li, 2018), with the option for few repeats, for genome

247  alignment and then generated dot-plots. Additionally, D-GENIES produced an

248  association table for each comparison that included the best matching chromosome in
249 the target for each scaffold in the query (or vice-versa) as well as PAF (Pairwise

250 mApping Format) files that consisted of alignments between sequences.

251 The package pafr v0.0.2 (Winter et al., 2020) in R v4.2.1 (R Core Team, 2022)

252  was used in conjunction with the PAF files to visualize and confirm orthology between
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wood stork chromosome scaffolds and chromosomes of chicken, finch, cuckoo,
penguin, ibis, and maguari stork (see R Markdown). Briefly, we first visualized the
coverage of the wood stork sex chromosome scaffolds (wood stork Z chromosome =
MAMZ and wood stork W chromosome = MAMW) with the sex chromosomes of chicken
(GGAZ and GGAW) and maguari stork (CMAZ and CMAW). Coverage plots between
wood stork chromosomes and chicken and/or penguin chromosomes were produced
when dot plots and association tables indicated non 1:1 chromosome orthology
between species. Next, we used pafr to confirm orthology between microchromosomes
MAM25-29 and their complements in Humboldt penguin, maguari stork, and chicken.
Finally, we used the leftover microchromosomes in chicken, zebra finch, common
cuckoo, and Humboldt penguin that were not orthologous to MAM1-29 to identify if any
other scaffolds in the wood stork genome were chromosomes.

We compared the visualized alignment of the scaffold pertaining to the wood
stork mitogenome with that of the mitogenomes of the other species. Based on an
unusually large sequence length (33,032 bp) and incongruence with the other
mitogenomes, the wood stork mitochondrion scaffold was trimmed using Geneious
Prime v.2023.1.2 (https://www,geneious.com). First, the scaffold was aligned to the
white stork (Ciconia ciconia; GenBank accession NC_002197) mitogenome using a
Geneious alignment (parameters included a global alignment with free end gaps and a
cost matrix of 70% similarity) and trimmed. Geneious alignments between the trimmed
sequence and chicken (CM028585.1), oriental stork (Ciconia boyciana; NC_002196.1),
and black stork (Ciconia nigra; KF906246.1) mitogenomes available on GenBank were

performed to confirm accurate trimming.
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To verify using bioinformatics that our stork was a female, we mapped the
sequencing reads back to the assembled wood stork genome using BWA-MEM2 v2.2.1
(Vasimuddin et al., 2019). We then used the function coverage in SAMtools v1.16.1
(Danecek et al., 2021) to determine coverage or read depth of each scaffold. SAMtools
coverage also provided the mapping quality values for the wood stork reads mapped
onto the wood stork reference; this reinforced confidence in which scaffolds could be

assigned as chromosome-level scaffolds.

Results

Sequencing and Genome Assembly

Genome Assembly and Assembly Validation

We obtained ~4.7 million (67 gigabase-pairs (Gbp)) PacBio CCS reads, which resulted
in 67x coverage for the initial de novo genome assembly using Hifiasm. The initial de
novo genome assembly using Hifiasm had a total length of 1.35 Gbp across 359 contigs
(342 scaffolds) and a contig (and scaffold) N50 of 36,845,572 base-pairs (bp) after
primary filtering. The initial assembly had a longest contig length of 131,390,114 bp and
17 gaps. After scaffolding this assembly with HiRise using the Dovetail Omni-C library,
the final assembly retained a total length of ~1.35 Gbp. The final assembly contained
280 scaffolds; the number of contigs in the final assembly remained at 359 because the
scaffolding process does not change the number (or length) of contigs. The scaffold
N50 for the final assembly was 80,020,930 bp. The final assembly contained 70 gaps

and a BUSCO score of 98.8%.
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Genome Annotation

Annotation predicted 28,238 genes in the assembly, and these genes accounted
for 38.87 Mb or 2.88% of the length of the final assembly. The average gene length was
1.38 kb, and there were 2,731 single-exon genes identified. At least 50% of predicted
genes had AED scores <2.5 and at least 80% of predicted genes has AED scores <0.5,
signifying that most predicted genes in the annotation were well supported by external
evidence (Figure S1). Out of 255 BUSCO genes searched, BUSCO analysis of
predicted genes identified 226 (88.6%) complete single-copy BUSCOs and 18 (7.1%)
fragmented BUSCOs. Eleven (4.3%) BUSCOs were missing. In terms of repeats
masked in the genome, 15.4% of the total genome was masked. Within the genome,
5.9% were Class | TEs repeats, 0.1% were Class |l TEs repeats, 0.2% were low

complexity repeats, and 0.9% were simple repeats.

Determination of chromosomal-level scaffolds including sex verification
Visualization with HiGlass of the largest 53 scaffolds in the wood stork reference
assembly identified 26 well-defined scaffolds (Figure 1A). Based on orthology analyses,
these 26 scaffolds corresponded to wood stork chromosomes 1-24 (MAM1-24) and two
MAMZ scaffolds (a major MAMZ scaffold that accounted for most of the chromosome
and a minor MAMZb that was at a distal end of the Z chromosome; Table S1 and Figure
S2). After the 26™ scaffold, scaffolds became less defined, with some scaffolds having
little intra-scaffold contact (Figure 1B). Synteny plots with maguari stork, Humboldt
penguin, and chicken confirmed five scaffolds after scaffold 26 in the contact matrix

were most likely wood stork chromosomes 25-29 (MAM25-29; Figure 2). At least 50% of
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the orthologous maguari stork chromosome had synteny with the wood stork scaffold
and at least 60% of the wood stork scaffold was aligned to the orthologous penguin
microchromosome. One exception was MAM27, which was orthologous to maguari
stork chromosome 29 (CMA29) but showed little orthology to chicken or penguin
microchromosomes. Two scaffolds pertaining to MAMW (defined MAMWa and
MAMWDb) and an additional MAMZ scaffold (defined MAMZc) were also present after
scaffold 26 (Figure S2). The two MAMW scaffolds covered about a quarter of maguari
stork chromosome W (CMAW) but did not have significant alignments with chicken
chromosome W (GGAW,; Figure S2). MAMZc aligned to distal portions of both chicken
chromosome Z (GGAZ) and maguari stork chromosome Z (CMAZ; Figure S2).

Two additional microchromosomes were defined, wood stork chromosomes 30
and 31 (MAM30 and MAM31), based on synteny plotting between wood stork scaffolds
and additional microchromosomes in the Humboldt penguin genome (Figure 2). These
two microchromosomes were not previously identified in the maguari stork genome
assembly, but unique unplaced scaffolds in the maguari stork assembly were identified
that had at least 60% synteny with these microchromosomes. Additional scaffolds in the
wood stork genome were suspected of being orthologous to additional penguin
microchromosomes due to substantial sequence alignments (>30% of wood stork
scaffold aligned to a penguin microchromosome). However, there were no substantial
sequence alignments between these wood stork scaffolds and maguari stork unplaced
scaffolds (see R Markdown).

Chromosome orthology analyses based on dot plots and association tables

revealed fissions and fusions of chromosomes in the wood stork and the other avian
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species studied (Table S1 and Figure S3). Wood stork chromosomes 4 and 10 (MAM4
and MAM10) were orthologous to different sections of chicken chromosome 4 (GGA4;
Figure S4), but orthologous to separate chromosomes in the other avian species (Table
S1). Several wood stork chromosomes were fusions of two chromosomes in chicken: a)
MAM®6 was a fusion of GGA6 and GGA10, b) MAM7 was a fusion of GGA8 and GGA9,
and c) MAM8 was a fusion of GGA11 and GGA13 (Figure 3; Figure S5; Table S1).
These fusions were shared with maguari stork, but not with zebra finch, common
cuckoo, Humboldt penguin, or plumbeous ibis (Table S1).

Orthology analyses additionally identified fissions and fusions of chromosomes in
chicken and the other avian species. Chicken chromosome 1 (GGA1) was orthologous
to two chromosomes in zebra finch (TGU1 and TGU1A, data not shown) and two
chromosomes in plumbeous ibis (TCAZ2 and a portion of TCA3; Table S1; Figure 3c).
Also of note were the fusions observed within the clade Feraequornithes (Figure 3).
These fusions were not shared between Humboldt penguin, plumbeous ibis, and storks,
but did involve complements of the same chicken chromosomes 6-14 (GGA6-14). In
Humboldt penguin, chromosome 5 (SHU5) was a fusion of GGA6 and GGAS8 and
chromosome 6 (SHUG6) was a fusion of GGA7 and GGA9 (Figure 3a). In wood stork
(and maguari stork), as previously described, MAM6 was a fusion of GGA6 and GGA10,
MAM7 was a fusion of GGA8 and GGA9, and MAM8 was a fusion of GGA11 and
GGA13 (Figure 3b). Substantial chromosomal rearrangements occurred in the
plumbeous ibis genome (Figure 3c). Plumbeous ibis chromosome 5 (TCA5) was a
fusion of GGA7, GGAS8, and GGA14, chromosome 8 was a fusion of GGA9 and

GGA11, and chromosome 9 was a fusion of GGA10 and GGA12. It appears that GGA1
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experienced a fission event in plumbeous ibis, in which part of the chromosome became
plumbeous ibis chromosome 2 (TCAZ2) and the other part of the chromosome fused with
GGAG to become plumbeous ibis chromosome 3 (TCAS3).

Originally, it appeared that the scaffold pertaining to the wood stork
mitochondrion sequence was the composite of duplicated contigs (Figure S6). After
alignment and trimming, the final wood stork mitochondrion sequence was 17,347 bp in
length and appeared orthologous to chicken, white stork, black stork, and oriental stork
mitogenome sequences.

The mean coverage of wood stork autosomes 1-24 (MAM1-24) was 31.39.
Coverage of the major Z scaffold (MAMZ) was approximately half that of the autosomes

(17.63) validating that the individual sequenced was the heterogametic sex (female).

Discussion

Despite new technologies and diminishing costs facilitating the production of more
accurate and complete genomic resources for non-model organisms, challenges remain
in assembling genomes with complex architecture. Unlike human and other mammalian
genomes, most avian genomes, many reptile genomes, and some fish and amphibian
genomes include microchromosomes, or chromosomes < 0.5 ym in size, in addition to
macrochromosomes (Srikulnath et al., 2021; Waters et al., 2021). These
microchromosomes are often gene-rich, have little repetitive sequence, and comprise
up to a third of the total genome content in avian genomes. Recent genome assemblies
for chicken characterize all chromosomes including microchromosomes (Masabanda et

al., 2004), but many avian genomes are being deposited into public repositories (e.g.,
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GenBank) with discrepancies between karyotype number from cytological studies and
the number of chromosome sets identified in genome assemblies. This discordance is
likely due to the difficulty of distinguishing some microchromsomes from unplaced
scaffolds and thus results in the number of chromosomes in the final genomic
assemblies being underestimated.

We produced a highly contiguous genome assembly of the wood stork and were
able to identify 31 autosomes in the wood stork genome. Francisco and Galetti Junior
(2000), and more recently de Sousa et al. (2023), determined 2n = 72 for wood stork
based on karyotype analysis. Based on this diploid number, we would expect 35
autosomes in the wood stork genome and thus our assembly and subsequent analysis
has either failed to assemble or failed to identify four microchromosomes. This is not
surprising as microchromosomes are small and can be hard to both identify and
assemble. Future studies aimed at producing complete sequences for the wood stork
genome may utilize alternative techniques such as isolating and sequencing individual
microchromosomes.

Chromosome-level assemblies of wood stork and maguari stork identified
chromosome synapomorphies that are most likely unique to Order Ciconiiformes.
Previous research partially characterized these synapomorphies using chicken probes
for GGA1-9 on the jabiru and the maguari stork (Seligmann et al., 2019) and chicken
probes for GGA1-11 on the wood stork (de Sousa et al., 2023). Our data support the
identified GGA8/GGAS9 fusion in storks, and our comparisons with other members of the
clade Feraequornithes (Humboldt penguin and plumbeous ibis) provide additional

support that this fusion is unique to storks. Additionally, our study identified that GGA10
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was the unidentified chromosome in Seligmann et al. (2019) that was fused with GGAG6
in storks. This is in partial disagreement with de Sousa et al. 2023, who stated that
GGAG6 was fused with an unidentified chromosome in wood stork, but characterized
GGA10 as an independent chromosome in the wood stork karyotype.

The two stork fusions (GGA8/GGA9) and (GGA6/GGA10) were not found in a
chromosome painting study of three members of Pelecaniformes, the grey heron (Ardea
cinerea), the little egret (Egretta garzetta), and crested ibis (Nipponia nippon),
suggesting these fusions may also be stork specific (Wang et al., 2022). The inclusion
of additional taxa from within the clade Feraequornithes in studies of karyotype
evolution will be informative in determining if these chromosomal fusions are stork
specific.

Our study also identified the fusion, GGA11/GGA13, that was present in both
stork species but none of the other species tested, including Humboldt penguin and
plumbeous ibis. The fusion GGA11/GGA13 has also been identified in the neotropic
cormorant (Nannopterum brasilianum) (Kretschmer et al., 2021) and was partially
characterized for the wood stork by de Sousa et al. 2023 who found GGA11 fused to an
unidentified chromosome. Further research needs to be done to determine if the
GGA11/GGA13 fusion in some members of Feraequornithes occurred independently in
separate lineages or was the product of the same event.

The reference genome described here will allow for broader studies of genome
evolution in the core water bird clade (including penguins, albatrosses, storks,
cormorants, herons, and ibises) and numerous genomic studies of wood storks

specifically. In particular, the genomic population structure of wood storks has not been
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adequately tested and evidence of local adaptation of wood storks to nesting and
feeding sites has yet to be assessed. Such studies will provide a solid foundation for

wood stork management and conservation.
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