Iron-sulfur cluster assembly scaffold protein IscU is required for activation of ferric uptake regulator (Fur) in *Escherichia coli*

Aidan G. Purcell[‡], Chelsey R. Fontenot[‡], and Huangen Ding*

From Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.

[‡]These authors contributed equally to this work.

Corresponding author:

Huangen Ding: hding@lsu.edu

Running title: IscU is required for Fur activation.

Keywords: Iron homeostasis, iron-sulfur cluster biogenesis, ferric uptake regulator (Fur).

Abstract

It was previously postulated that when intracellular free iron content is elevated in bacteria, the Ferric uptake regulator (Fur) binds its co-repressor a mononuclear ferrous iron to regulate intracellular iron homeostasis. However, the proposed iron-bound Fur had not been identified in any bacteria. In previous studies, we have demonstrated that Escherichia coli Fur binds a [2Fe-2S] cluster in response to elevation of intracellular free iron content, and that binding of the [2Fe-2S] cluster turns on Fur as an active repressor to bind a specific DNA sequence known as the Furbox. Here we find that the iron-sulfur cluster assembly scaffold protein IscU is required for the [2Fe-2S] cluster assembly in Fur, as deletion of IscU inhibits the [2Fe-2S] cluster assembly in Fur and prevents activation of Fur as a repressor in E. coli cells in response to elevation of intracellular free iron content. Additional studies reveal that IscU promotes the [2Fe-2S] cluster assembly in apo-form Fur and restores its Fur-box binding activity in vitro. While IscU is also required for the [2Fe-2S] cluster assembly in the *Haemophilus influenzae* Fur in *E. coli* cells, deletion of IscU does not significantly affect the [2Fe-2S] cluster assembly in the E. coli ferredoxin and siderophorereductase FhuF. Our results suggest that IscU may have a unique role for the [2Fe-2S] cluster assembly in Fur, and that regulation of intracellular iron homeostasis is closely coupled with ironsulfur cluster biogenesis in *E. coli*.

Introduction

The Ferric uptake regulator (Fur) is the founding member of the Fur superfamily that regulates intracellular metal homeostasis in bacteria (1, 2). In Escherichia coli, Fur regulates over 158 genes (3-5) involved in intracellular iron homeostasis, energy metabolism, DNA synthesis, oxidative stress response, and bacterial virulence (6, 7). In the past three decades, it was postulated that when intracellular free iron content is elevated, Fur binds its co-repressor a mononuclear ferrous iron (1, 2, 8, 9) and regulates the expression of its target genes by binding to a specific DNA sequence known as the Fur-box (10-12). However, there is no concrete evidence supporting the idea that Fur binds ferrous iron in E. coli or any other bacteria. A number of Fur crystal structures including E. coli Fur (13), Mycobacterium tuberculosis Fur (14), Vibrio cholerae Fur (15), Helicobacter pylori Fur (16), Campylobacter jejuni Fur (17), and Francisella tularensis Fur (18) have been reported, and none of these structures contains iron. Fur proteins exist as a dimer or tetramer (19), and each Fur monomer has three putative metal binding sites (13, 15): site 1 is located within the dimerization domain; site 2 connects the DNA binding domain and the dimerization domain, and site 3 is positioned at the C-terminal end of the dimerization domain. In purified Fur proteins, site 1 and site 2 are often occupied by zinc (15, 20). Interestingly, the in vitro studies have showed that E. coli Fur has a relatively weak binding activity for ferrous iron with dissociation constants ranging from 1.2 μM to 55 μM (21, 22). However, since the intracellular free iron concentration in E. coli cells grown in LB medium is estimated to be less than 1 µM (23), it may explain why Fur does not bind any ferrous iron in E. coli cells.

Serendipitously, we have found that *E. coli* Fur binds a [2Fe-2S] cluster in *E. coli* cells in which intracellular free iron content is elevated (24-26). A suite of biophysical techniques including the electron paramagnetic resonance (EPR) and Mössbauer spectroscopy have been used

to assign a [2Fe-2S] cluster binding in Fur in *E. coli* cells in response to elevation of intracellular iron content (25). Additional studies have revealed that binding of the [2Fe-2S] cluster in Fur turns on its binding activity for the Fur-box (24). Furthermore, binding of the [2Fe-2S] cluster in Fur is highly conserved, as Fur proteins from *Haemophilus influenzae*, *V. cholerae*, and *H. pylori* also bind a [2Fe-2S] cluster in *E. coli* cells with an elevated intracellular free iron content (27). The results suggest that *E. coli* Fur binds a [2Fe-2S] cluster in response to elevation of intracellular free iron content and regulates intracellular iron homeostasis (24-26).

In *E. coli* and many other bacteria, iron-sulfur clusters in proteins are assembled by two iron-sulfur cluster assembly systems: the housekeeping *isc* operon (*iscSUA-hscBA-fdx*) (28) and the alternative *suf* operon (*sufABCDSE*) (29, 30). While the expression of the *suf* operon is induced under iron starvation (30) or oxidative stress (31, 32) conditions, the housekeeping *isc* operon is mainly responsible for iron-sulfur cluster assembly in cells under normal growth conditions (28). Among the core iron-sulfur cluster assembly proteins encoded by the housekeeping *isc* operon, IscS is a cysteine desulfurase that catalyzes desulfurization of L-cysteine and delivers sulfur for iron-sulfur cluster assembly in IscU (33-36). IscU is a scaffold protein that assembles iron-sulfur clusters and transfers the assembled clusters to target proteins (37-40). IscA was initially characterized as an alternative scaffold protein (41). However, unlike IscU, IscA has a very strong iron binding activity and may act as an iron chaperone for the [4Fe-4S] cluster assembly in proteins (42-46). Previously, we have found that deletion of IscA and its paralog SufA elevates intracellular free iron content and promotes the [2Fe-2S] cluster assembly in Fur in *E. coli* cells (25), indicating that IscA is not directly involved in the [2Fe-2S] cluster assembly in Fur.

Here we report that deletion of the iron-sulfur cluster assembly scaffold protein IscU inhibits the [2Fe-2S] cluster assembly in Fur and prevents activation of Fur as a repressor in *E. coli* cells

in response to elevation of intracellular free iron content. The *in vitro* studies further show that IscU promotes the [2Fe-2S] cluster assembly in apo-form Fur and restores its Fur-box binding activity. While IscU is also required for the [2Fe-2S] cluster assembly in the *H. influenzae* Fur expressed in *E. coli* cells, deletion of IscU has very little or no effects on the [2Fe-2S] cluster assembly in the *E. coli* ferredoxin (47, 48) and siderophore-reductase FhuF (49, 50), indicating that IscU may have a unique role for the [2Fe-2S] cluster assembly in Fur. The interplay between regulation of intracellular iron homeostasis and iron-sulfur cluster biogenesis in *E. coli* cells will be discussed.

Results

1. The [2Fe-2S] cluster assembly in the Ferric uptake regulator (Fur) requires the iron-sulfur cluster assembly scaffold IscU in *E. coli* cells.

To test whether the [2Fe-2S] cluster in Fur is assembled by the *isc* operon in *E. coli* cells, we have focused on the core iron-sulfur cluster assembly proteins: IscS, IscU, and IscA. IscS is required not only for iron-sulfur cluster biogenesis (33-35), but also for other key physiological processes such as tRNA modification (34) and biosynthesis of thiamine and NAD (51). Thus, deletion of IscS will affect multiple cellular functions (33). IscA is apparently not required for the [2Fe-2S] cluster assembly in Fur, because deletion of IscA and its paralog SufA promotes the [2Fe-2S] cluster assembly in Fur in *E. coli* cells grown in LB medium (25). Therefore, we have constructed an *E. coli* mutant in which gene *iscU* is in-frame deleted using the single-step gene inactivation procedure (52). Deletion of gene *iscU* was confirmed by PCR (Figure 1A). As reported previously by other groups (53, 54), deletion of IscU has only a mild effect on cell growth of *E. coli* in LB or M9 medium.

The plasmid encoding E. coli Fur (25) is then introduced into E. coli wild type and the $\triangle iscU$ mutant cells. Both cells are grown in M9 medium supplemented with 2 µM iron (ferrous ammonium sulfate) under aerobic growth conditions (24). Figure 1B shows that the E. coli Fur purified from wild type E. coli cells has a red color ((insert a) in Figure 1B) and three distinct absorption peaks at 325 nm, 410 nm, and 450 nm of the [2Fe-2S] cluster (spectrum 1), as reported previously (24). In contrast, the E. coli Fur purified from the $\Delta iscU$ mutant cells grown in M9 medium supplemented with 2 µM iron has no color and very small absorption peaks at 325 nm, 410 nm, and 450 nm (Figure 1B, spectrum 2). The iron and sulfur content analyses of the purified Fur proteins confirmed that Fur purified from the $\Delta iscU$ mutant cells contains very little or no ironsulfur clusters. As reported previously, increase of the iron concentration in M9 medium to 10 μM does not increase the [2Fe-2S] cluster binding in the Fur in wild type E. coli cells (Figure 1C), indicating that 2 µM iron in M9 medium is sufficient to saturate the [2Fe-2S] cluster binding in Fur in wild type E. coli cells (24). In parallel experiments, Fur expressed in the $\triangle iscU$ mutant cells remains as apo-form even when M9 medium is supplemented with 10 µM iron (Figure 1C). Thus, IscU is essential for the [2Fe-2S] cluster assembly in Fur in E. coli cells in response to elevation of intracellular free iron content.

2. Fur purified from the E. coli $\triangle iscU$ mutant cells fails to bind the Fur-box.

Upon binding a [2Fe-2S] cluster, $E.\ coli$ Fur becomes active to bind a specific DNA sequence known as the Fur-box (24). To explore the Fur-box binding activity of Fur purified from the $E.\ coli\ \Delta iscU$ mutant cells, we utilized the restriction site protection assay as described previously (24). The promoter region of the operon iucABCD which encodes the enzymes for biosynthesis of siderophore aerobactin has a consensus Fur-box sequence (5'-GAGAATCATTAGCATTCGC-

3') that also contains the restriction *hinf*I site (5'-GANTC-3') (9). The promoter region of the operon *iucABCD* was cloned into plasmid pUC19 to create pUC19-*iuc* as described previously (24). Binding of Fur to the Fur-box protects the *hinf*I site from being cleaved by *Hinf*I (9) and creates a new DNA band of 787 bp (24).

For the restriction site protection assays, pUC19-*iuc* is pre-incubated with increasing concentrations of Fur purified from wild type $E.\ coli$ cells, followed by the HinfI digestion. As shown in Figure 2A, the hinfI restriction site of the Fur-box site is protected by the Fur purified from wild type $E.\ coli$ cells. In contrast, when pUC19-*iuc* is pre-incubated with increasing concentrations of the Fur purified from the $E.\ coli\ \Delta iscU$ mutant cells, followed by the HinfI digestion, very little or no protection of the hinfI restriction site is observed (Figure 2A). The intensities of the DNA band of 787 bp on the agarose gel are quantified using ImageJ (NIH) and plotted as a function of the Fur concentrations (Figure 2B). The results demonstrate that Fur purified from the $E.\ coli\ \Delta iscU$ mutant cells lost its the Fur-box binding activity.

3. Fur fails to repress its target gene in the E. $coli \Delta isc U$ mutant cells in response to elevation of intracellular free iron content.

If deletion of IscU inhibits the [2Fe-2S] cluster assembly in Fur in E. coli cells (Figure 1) and produces apo-form Fur that does not bind the Fur-box (Figure 2), we expect that Fur may not be able to repress its target genes in the E. coli $\Delta iscU$ mutant cells in response to elevation of intracellular free iron content. To test this idea, we constructed a reporter gene fur::gfp encoding GFP (green fluorescent protein) controlled by a Fur-repressible promoter and inserted the reporter gene into plasmid pBAD (Figure 3A), as described in Experimental Procedures. The constructed plasmid is introduced into E. coli wild type and the $\Delta iscU$ mutant cells. The cells are grown in

M9 medium supplemented with 0, 1.0 μ M, 2.0 μ M, and 10.0 μ M iron, respectively. After five hours of cell growth at 37°C under aerobic growth conditions, the cells are subjected to the GFP fluorescence measurements at 507 nm using the excitation wavelength at 481 nm (55). Relative GFP fluorescence intensities are calculated from the ratios of the fluorescence intensity to the cell density at 600 nm. Figure 3B shows that the expression of the reporter gene fur::gfp is repressed in wild type $E.\ coli$ cells grown in M9 medium supplemented with increasing concentrations of iron. About 2 μ M iron in M9 medium is sufficient to repress the expression of the reporter gene fur::gfp (Figure 3B), in agreement with the [2Fe-2S] cluster binding in Fur in wild type $E.\ coli$ cells under the same growth conditions (Figure 1C). In contrast, the expression of the reporter gene fur::gfp remains essentially the same in the $E.\ coli\ \Delta iscU$ mutant cells grown in M9 medium supplemented with 0, 1.0 μ M, 2.0 μ M, and 10.0 μ M iron (Figure 3B), suggesting that Fur fails to repress the expression of the reporter gene fur::gfp in the $E.\ coli$ mutant cells with deletion of IscU in response to elevation of intracellular free iron content.

If deletion of gene iscU results in Fur protein that cannot be activated in response to elevation of intracellular free iron content, it is conceivable that the $\Delta iscU$ mutant cells would become more sensitive to iron than wild type cells. To test this idea, both wild type $E.\ coli$ and the $\Delta iscU$ mutant cells are grown in M9 medium supplemented with increasing concentrations of iron (0 to 10 μ M) under aerobic growth conditions. Figure 3C shows that the cell growth of wild type $E.\ coli$ increases when M9 medium is supplemented with iron, likely because M9 medium is iron deficient ($\sim 0.05\ \mu$ M total iron) (56). In contrast, the cell growth of the $\Delta iscU$ mutant cells significantly decreases when M9 medium is supplemented with iron. The results further suggest that the $E.\ coli$ mutant with deletion of gene iscU has an unresponsive Fur and becomes sensitive to excess iron in M9 medium.

4. IscU promotes the [2Fe-2S] cluster assembly in apo-form Fur in vitro.

For many iron-sulfur proteins, iron-sulfur clusters may be readily reconstituted with ferrous iron and sulfide in the presence of thiol-reducing agents such as dithiothreitol *in vitro* (57). However, we were unable to reconstitute the [2Fe-2S] cluster in apo-form *E. coli* Fur *in vitro*, even with excess amounts of ferrous iron and sulfide (25). Since IscU is required for the [2Fe-2S] cluster assembly in Fur in *E. coli* cells (Figure 1), we reason that IscU may promote the [2Fe-2S] cluster assembly in *E. coli* Fur *in vitro*.

Apo-form Fur (30 μM) (purified from the E. coli ΔiscU mutant cells) is incubated with ferrous ammonium sulfate (1 mM), L-cysteine (1 mM), cysteine desulfurase (IscS) (1 μM) and dithiothreitol (4 mM), with or without IscU (50 µM) at 37°C for 20 min in a cuvette. After incubation, the samples are subjected to UV-Vis absorption measurements. Figure 4A shows that without IscU in the reconstitution solution, very little or no [2Fe-2S] cluster is assembled in apoform Fur (Spectrum 1), as reported previously (25). However, when IscU is included in the reconstitution solution, the [2Fe-2S] clusters are assembled in apo-form Fur (spectrum 3). Attempts to re-purify Fur from the reconstitution solution were not successful as IscU and Fur have similar molecular weights (15.3 kDa and 16.8 kDa, respectively) and similar elusion profiles from the Mono-S column (GE HealthCare co) (data not shown). While addition of a new tag is possible for re-purification of Fur from the reaction solution, tags such as GST (Glutathione-S-Transferase, 26kDa) or MBP (Maltose Binding Protein, 42kDa) are too big relative to Fur and IscU and could potentially interfere with the activity of IscU and Fur. Thus, we digitally subtracted the spectrum of IscU after the reconstitution (spectrum 2) from the spectrum of apo-form Fur and IscU after the reconstitution (spectrum 3). Figure 4B shows the UV-Vis absorption spectra of apoform Fur after the reconstitution without IscU (spectrum 1) and with IscU (spectrum 2), indicating that IscU promotes the [2Fe-2S] cluster assembly in apo-form Fur in the presence of ferrous iron, L-cysteine, and IscS *in vitro*.

Importantly, while apo-form Fur after the reconstitution without IscU remains inactive to bind the Fur-box (lanes 1-3), apo-form Fur after the reconstitution with IscU becomes active to bind the Fur-box (lanes 4-6). As a control, IscU alone has no Fur-box binding activity (Figure 4C, lane 8). The intensities of the DNA band of 787 bp on the agarose gels are quantified using ImageJ (NIH) and plotted as a function of the Fur concentrations (Figure 4D). Taken together, the results suggest that the Fur-box binding activity of Fur is restored after the [2Fe-2S] cluster is reconstituted in apo-form Fur with IscU *in vitro*.

5. IscU is also required for the [2Fe-2S] cluster assembly in the *H. influenzae* Fur, but not for the [2Fe-2S] cluster assembly in the *E. coli* ferredoxin and FhuF in *E. coli* cells.

To explore whether IscU is also involved in the [2Fe-2S] cluster assembly in other Fur proteins, we expressed the H. influenzae Fur (HI-Fur) in E. coli wild type and the $\Delta iscU$ mutant cells grown in M9 medium supplemented with 2 μ M iron under aerobic growth conditions. Figure 5A shows that while HI-Fur purified from wild type E. coli cells has three absorption peaks at 325 nm, 410 nm, and 450 nm of the [2Fe-2S] cluster (Spectrum 1), the HI-Fur purified from the E. coli $\Delta iscU$ mutant cells has only very small absorption peaks at 325 nm, 410 nm, and 450 nm (spectrum 2), indicating that the [2Fe-2S] cluster assembly in HI-Fur in E. coli cells also requires IscU.

In parallel, the *E. coli* ferredoxin, a [2Fe-2S] cluster-containing protein involved in iron-sulfur cluster biogenesis (47, 48), is expressed in *E. coli* wild type and the $\Delta iscU$ mutant cells grown in M9 medium supplemented with 2 μ M iron under aerobic growth conditions. Figure 5B

shows that the UV-Vis absorption spectra of ferredoxin purified from wild type $E.\ coli$ cells and the $\Delta iscU$ mutant cells are essentially identical. Similarly, deletion of IscU has very little or no effects on the [2Fe-2S] cluster assembly in the $E.\ coli$ siderophore-reductase FhuF (49, 50) (Figure 5C). Thus, IscU seems to have a unique role for the [2Fe-2S] cluster assembly in Fur in $E.\ coli$ cells.

Discussion

Here, we report that the [2Fe-2S] cluster assembly in Fur requires the iron-sulfur cluster assembly scaffold protein IscU, as deletion of gene *iscU* inhibits the [2Fe-2S] cluster assembly in Fur and prevents activation of Fur as a repressor in *E. coli* cells in response to elevation of intracellular free iron content. The *in vitro* studies further suggest that IscU can promote the [2Fe-2S] cluster assembly in apo-form Fur and restore its Fur-box binding activity. The results demonstrate that the [2Fe-2S] cluster in Fur is enzymatically assembled by the iron-sulfur cluster assembly system and that IscU has a crucial role for activation of Fur in *E. coli* cells.

In eukaryotes, iron-sulfur cluster binding to key transcriptional or post-transcriptional regulators mediates intracellular iron sensing. In yeast, paralogs Aft1 and Aft2 activate the iron regulon when iron levels are low (58, 59). When iron levels are high, [2Fe-2S] cluster bound Aft1/2 is exported from the nucleus and the iron regulon is no longer activated (60). In animals, cellular iron homeostasis is regulated post-transcriptionally by iron regulatory protein IRP1(61, 62). When iron is scarce, IRP1 binds to stem-loop structures on mRNA called iron responsive elements (IREs) to modulate the translation of iron homeostatic genes. When iron is replete, IRP1 binds a [4Fe-4S] cluster and functions as a cytosolic aconitase rather than an IRP (61, 62). Our work extends the paradigm of sensing iron through iron-sulfur clusters to bacteria, where we previously demonstrated that Fur binds a [2Fe-2S] cluster, not mononuclear ferrous iron as was commonly

thought (1, 2, 8, 9). Moreover, we now also demonstrate that IscU, but not other iron-sulfur cluster assembly proteins like IscA or SufA, is required for [2Fe-2S] cluster assembly in Fur, and that IscU plays a privileged role in activating Fur given that other iron-sulfur proteins like FhuF are not dependent on IscU (Figure 5).

IscU has been shown to interact with cysteine desulfurase IscS and deliver the assembled iron-sulfur cluster to target proteins (37-40). In eukaryotic cells, deletion of IscU leads to accumulation of iron in mitochondria (63). Using the membrane-permeable iron indicator 2,2'dipyirdyl, we have also found that deletion of IscU elevates the chelatable intracellular iron content in E. col cells grown in LB medium under aerobic growth conditions (Supplemental Materials). However, unlike the E. coli $\triangle iscA/\triangle sufA$ mutant cells which also have an elevated intracellular free iron content (25), the E. coli ∆iscU mutant cells fail to assemble the [2Fe-2S] cluster in Fur in E. coli cells in response to elevation of intracellular free iron content (Figure 1B). The results strongly suggest that the iron-sulfur cluster assembly proteins IscA and IscU have their distinct roles in iron-sulfur cluster biogenesis (64). In this context, we propose that while deletion IscA and its paralog SufA increases intracellular free iron content and promotes the [2Fe-2S] cluster assembly in Fur (25), deletion of IscU interrupts the [2Fe-2S] cluster assembly process in Fur and results in apo-form Fur in E. coli cells. It should be pointed out that IscU is not required for the [2Fe-2S] cluster assembly in ferredoxin and FhuF in E. coli cells grown in M9 medium supplemented with 2 µM iron, suggesting that IscU may have a unique role for the [2Fe-2S] cluster assembly in the iron regulatory protein Fur. The underlying mechanism remains to be further investigated.

Ironically, the expression of iron-sulfur cluster assembly systems encoded by the housekeeping *isc* operon (*iscSUA-hscBA-fdx*) (28) and the alternative *suf* operon (*sufABCDSE*)

(29) is also regulated by Fur in *E. coli* cells. First, an active Fur will bind the Fur-box in the promoter of the *suf* operon and repress the expression of the operon (30, 31). Under iron-starvation (30) or oxidative stress conditions (31, 32), Fur becomes inactive and dissociates from the Fur-box site, and the *suf* operon is expressed for iron-sulfur cluster biogenesis or repair (30, 31). Second, Fur indirectly regulates the expression of the *isc* operon via an iron-responsive RNA, RyhB (65, 66). RyhB is a small RNA (containing 90 nt) that regulates at least 18 operons and over 56 genes in *E. coli* (66). The expression of RyhB is repressed by an active Fur (65). When Fur is inactivated, highly expressed RyhB binds to specific mRNA of the *isc* operon, resulting in inhibition of iron-sulfur cluster assembly in cells (67). Our finding that the [2Fe-2S] cluster in Fur is assembled by IscU reveals a novel link between iron-sulfur cluster biogenesis and regulation of intracellular iron homeostasis in *E. coli* cells (Figure 6).

Compared with other [2Fe-2S] proteins, *E. coli* Fur appears to have a relatively weak binding affinity for the cluster (25). For example, when the *E. coli* ferredoxin is expressed in wild type *E. coli* cells grown in LB medium, about 35% of ferredoxin binds a [2Fe-2S] cluster (47). However, when *E. coli* Fur is expressed in wild type *E. coli* cells grown in LB medium, only about 8% of Fur binds a [2Fe-2S] cluster (25). Furthermore, unlike many iron-sulfur proteins, the [2Fe-2S] cluster could not be readily reconstituted in apo-form *E. coli* Fur *in vitro* even with excess amounts of ferrous iron and sulfide (25). Only when IscU is included in the reconstitution solution, the [2Fe-2S] cluster is assembled in apo-form Fur in the presence of iron and L-cysteine and IscS (Figure 4). The weak binding activity of Fur for the [2Fe-2S] cluster may reflect its regulatory nature as a sensor of intracellular free iron content. When intracellular free iron content is depleted, Fur does not bind the [2Fe-2S] cluster and is inactive. When intracellular free iron content is elevated, the [2Fe-2S] cluster is enzymatically assembled in Fur, and Fur becomes active to repress

the expression of iron uptake systems, the iron-responsive RNA RyhB, and many other target genes (65, 66). Repression of RyhB expression will then enhance the expression of the *isc* operon and promote iron-sulfur cluster biogenesis activity in *E. coli* cells (67). Thus, regulation of intracellular iron homeostasis and iron-sulfur cluster biogenesis are closely coupled via this global iron regulator Fur in *E. coli* cells.

Experimental Procedures

Protein purification

Gene iscU in wild type E. coli cells (MC4100) was deleted in-frame using the single-step inactivation procedure (52) as described previously (43). Deletion of iscU was confirmed by PCR using two primers flanking the iscU gene. Plasmid pBAD expressing native E. coli Fur (25), histagged H. influenzae Fur (25), his-tagged E. coli ferredoxin (47), or his-tagged FhuF (49, 50) was introduced into wild type and the $\triangle iscU$ mutant E. coli cells as described previously (25). Overnight E. coli cultures were inoculated 1:100 dilution in freshly prepared M9 medium supplemented with 20 amino acids (10 µg each amino acid/mL), thiamine (1 µg/mL), glycerol (0.4%), ampicillin $(100 \mu g/mL)$, and Fe(NH₄)₂(SO₄)₂ $(0 \text{ to } 10.0 \mu M)$. When the cells were grown to OD at 600 nm of ~ 0.6 at 37°C under aerobic growth condition, the protein expression was induced by adding L-arabinose (0.04%). The cells were grown for three more hours, and Fur was purified from the cells as described previously (25). The purity of purified Fur proteins was more than 90% as judged from the electrophoresis analysis on a 15% polyacrylamide gel containing SDS followed by staining with Coomassie Blue. The concentration of purified protein was measured at 280 nm after iron-sulfur clusters in protein were removed by adding HCl (10 mM). The extinction coefficients of 5.6 mM⁻¹cm⁻¹, 6.9 mM⁻¹cm⁻¹, 9.2 mM⁻¹cm⁻¹, 56.4 mM⁻¹cm⁻¹, 42 mM⁻¹ ¹cm⁻¹, and 11.2 mM⁻¹cm⁻¹ at 280 nm were used for calculating the concentration of apo-form E. coli Fur, apo-form H. influenzae Fur, apo-form E. coli ferredoxin, apo-form E. coli FhuF, E. coli IscS, and E. coli IscU, respectively. The concentration of the [2Fe-2S] cluster in Fur was determined using an extinction coefficient of 10 mM⁻¹cm⁻¹ at 410 nm (25). The occupancy of the [2Fe-2S] cluster in Fur was calculated from the ratio of the [2Fe-2S] cluster to Fur monomer.

HinfI site protection assays

The Fur-box binding activity of *E. coli* Fur was analyzed using the *hin*fl site protection assays (9). The Fur-box in the *E. coli iucABCD* promoter (5'-GAGATCATTAGCATTCGC-3') contains the restriction enzyme *Hin*fl site (5'-GAATC-3'). Binding of Fur to the Fur-box protects the *hin*fl site (highlighted) from being cleaved by *Hin*fl (9). The *iucABCD* promoter was synthesized (GenScript co.) and cloned into plasmid pUC19 via *Bam*Hl and *Hin*dIII sites to create pUC19-*iuc*. For the *hin*fl site protection assays, pUC19-*iuc* was pre-incubated with purified Fur proteins in 10 μL reaction solutions containing MgCl₂ (2 mM), NaCl (150 mM), bovine serum albumin (0.1 mg/mL), and Tris (20 mM, pH 8.0) for 10 min at room temperature. Restriction enzyme *Hin*fl (0.5 unit) (New England Biolab co.) was then added to the reaction solutions. After incubation at 37°C for 10 min, the reaction was stopped by adding 2 μL 6x loading buffer (New England Biolab co). The digested DNA products were separated on 1.5% agarose electrophoresis gel containing ethidium bromide (0.1 μg/mL) in 0.5X TAE (Tris-acetate-EDTA) buffer, run at 120 V for 35 min. The gel images were taken using the Kodak Gel Logic 200 Imaging System. The intensities of the DNA band on the agarose gels were quantified using ImageJ (NIH).

In vivo repressor activity assays of Fur using the reporter gene *fur::gfp*.

A reporter gene fur::gfp with the E. coli fur promoter: (5'-ATGTCTACGCCGTATTAATAGATAATGCCAATCAAAATAATTGCTACAAATTTGTAA
CTTTTGCTGTTGTACCTGTACAATGTCCCGGTGTTCAAGTGGCCTTGCCGTTGTAAAT
GTAAGCTGTGCCACGTTTTTATTAACAATATTTGCCAGGGACTTGTGGTTTTCATTTA
GGCGTGGCAATTCTATAATGATACGCATTATCTCAAGAGCAAAATTCTGTCACTTCT

TCTAATGAAGTGAACCGCTTAGTAACAGGACAGATTCCGC-3') and the gfp gene (Addgene co.) was synthesized (GenScript co.) and cloned into plasmid pBAD via EcoRV and HindIII sites. The highlighted sequence represents the Fur-box (10, 11). The plasmid containing the reporter gene fur::gfp was introduced into wild type $E.\ coli$ (MC4100) and the $\Delta iscU$ mutant cells. Overnight culture was inoculated (1:100 dilution) in freshly prepared M9 medium supplemented with 20 amino acids (10 μ g each amino acid/mL), thiamine (1 μ g/mL), glycerol (0.4%), Fe(NH₄)₂(SO₄)₂ (0 to 10.0 μ M), and ampicillin (100 μ g/mL), and grown at 37°C under aerobic condition for five hours. Cells were then subjected to the GFP fluorescence measurements at 507 nm using the excitation wavelength at 481 nm in the fluorescence spectrometer (Perkin-Elmer LS-3). The relative fluorescence intensity was calculated by dividing the green fluorescence intensity with the cell density (O.D. at 600 nm). The $E.\ coli$ cells without the reporter gene fur::gfp grown in M9 medium supplemented with increasing concentrations of Fe(NH₄)₂(SO₄)₂ (0 to 10.0 μ M) were used as the controls.

In vitro reconstitution of the [2Fe-2S] cluster in apo-form E. coli Fur.

Apo-form *E. coli* Fur (purified from the *E. coli* Δ*iscU* mutant cells) was used for the iron-sulfur cluster reconstitution *in vitro*. Apo-form Fur (30 μM) was incubated with Fe(NH₄)₂(SO₄)₂ (1 mM), L-cysteine (1 mM), cysteine desulfurase (IscS) (1 μM), and dithiothreitol (4 mM) with or without *E. coli* IscU (50 μM) in a cuvette at 37°C. After 20 min incubation, UV-Vis absorption spectra of the samples were taken in a Jasco V-750 UV-Vis absorption spectrometer equipped with a temperature controller. For the baseline, IscU (50 μM) was incubated with Fe(NH₄)₂(SO₄)₂ (1 mM), L-cysteine (1 mM), cysteine desulfurase (IscS) (1 μM), and dithiothreitol (4 mM) at 37°C for 20 min. The net spectrum of the IscU-mediated reconstitution in Fur was obtained by

subtracting the spectrum of the reconstituted IscU from the spectrum of the reconstituted apo-form Fur and IscU.

Statistical analysis

All data are expressed as mean \pm SD (standard deviation) from at least three independent experiments.

Data availability statement

All data generated and analyzed in the present study are included in the manuscript. Raw data is available on request.

Supporting information

This article contains supporting information.

Acknowledgements

We thank the lab members for stimulative discussion and the reviewers for constructive comments.

Funding information

This work was supported by an NSF grant (MCB 2050032).

Conflict of interest

The authors declare that they have no conflicts of interest.

References:

- 1. Steingard, C. H., and Helmann, J. D. (2023) Meddling with Metal Sensors: Fur-Family Proteins as Signaling Hubs J Bacteriol **205**, e0002223 10.1128/jb.00022-23
- 2. Sevilla, E., Bes, M. T., Peleato, M. L., and Fillat, M. F. (2021) Fur-like proteins: Beyond the ferric uptake regulator (Fur) paralog Arch Biochem Biophys **701**, 108770 10.1016/j.abb.2021.108770
- 3. McHugh, J. P., Rodríguez-Quiñones, F., Abdul-Tehrani, H., Svistunenko, D. A., Poole, R. K., Cooper, C. E. *et al.* (2003) Global Iron-dependent Gene Regulation in *Escherichia coli*: A NEW MECHANISM FOR IRON HOMEOSTASIS J Biol Chem **278**, 29478-29486 10.1074/jbc.M303381200
- 4. Abed, N., Bickle, M., Mari, B., Schapira, M., Sanjuan-Espana, R., Robbe Sermesant, K. *et al.* (2007) A comparative analysis of perturbations caused by a gene knock-out, a dominant negative allele, and a set of peptide aptamers Mol Cell Proteomics **6**, 2110-2121 10.1074/mcp.M700105-MCP200
- 5. Gao, Y., Bang, I., Seif, Y., Kim, D., and Palsson, B. O. (2023) The Escherichia coli Fur pan-regulon has few conserved but many unique regulatory targets Nucleic Acids Res 51, 3618-3630 10.1093/nar/gkad253
- 6. Seo, S. W., Kim, D., Latif, H., O'Brien, E. J., Szubin, R., and Palsson, B. O. (2014) Deciphering Fur transcriptional regulatory network highlights its complex role beyond iron metabolism in Escherichia coli Nat Commun 5, 4910 10.1038/ncomms5910
- 7. Huja, S., Oren, Y., Biran, D., Meyer, S., Dobrindt, U., Bernhard, J. *et al.* (2014) Fur is the master regulator of the extraintestinal pathogenic Escherichia coli response to serum mBio 5, 10.1128/mBio.01460-14
- 8. Pinochet-Barros, A., and Helmann, J. D. (2018) Redox Sensing by Fe(2+) in Bacterial Fur Family Metalloregulators Antioxidants & redox signaling **29**, 1858-1871 10.1089/ars.2017.7359
- 9. Bagg, A., and Neilands, J. B. (1987) Ferric uptake regulation protein acts as a repressor, employing iron (II) as a cofactor to bind the operator of an iron transport operon in *Escherichia coli* Biochemistry **26**, 5471-5477, http://www.ncbi.nlm.nih.gov/pubmed/2823881
- 10. Calderwood, S. B., and Mekalanos, J. J. (1987) Iron regulation of Shiga-like toxin expression in Escherichia coli is mediated by the fur locus J Bacteriol **169**, 4759-4764 10.1128/jb.169.10.4759-4764.1987
- 11. Baichoo, N., and Helmann, J. D. (2002) Recognition of DNA by Fur: a reinterpretation of the Fur box consensus sequence J Bacteriol **184**, 5826-5832 10.1128/JB.184.21.5826-5832.2002

- 12. Troxell, B., and Hassan, H. M. (2013) Transcriptional regulation by Ferric Uptake Regulator (Fur) in pathogenic bacteria Frontiers in cellular and infection microbiology **3**, 59 10.3389/fcimb.2013.00059
- 13. Pecqueur, L., D'Autreaux, B., Dupuy, J., Nicolet, Y., Jacquamet, L., Brutscher, B. *et al.* (2006) Structural changes of *Escherichia coli* ferric uptake regulator during metal-dependent dimerization and activation explored by NMR and X-ray crystallography J Biol Chem **281**, 21286-21295 10.1074/jbc.M601278200
- 14. Lucarelli, D., Russo, S., Garman, E., Milano, A., Meyer-Klaucke, W., and Pohl, E. (2007) Crystal structure and function of the zinc uptake regulator FurB from *Mycobacterium tuberculosis* J Biol Chem **282**, 9914-9922 10.1074/jbc.M609974200
- 15. Sheikh, M. A., and Taylor, G. L. (2009) Crystal structure of the *Vibrio cholerae* ferric uptake regulator (Fur) reveals insights into metal co-ordination Mol Microbiol **72**, 1208-1220 10.1111/j.1365-2958.2009.06718.x
- 16. Dian, C., Vitale, S., Leonard, G. A., Bahlawane, C., Fauquant, C., Leduc, D. *et al.* (2011) The structure of the *Helicobacter pylori* ferric uptake regulator Fur reveals three functional metal binding sites Mol Microbiol **79**, 1260-1275 10.1111/j.1365-2958.2010.07517.x
- 17. Butcher, J., Sarvan, S., Brunzelle, J. S., Couture, J.-F., and Stintzi, A. (2012) Structure and regulon of *Campylobacter jejuni* ferric uptake regulator Fur define apo-Fur regulation Proceedings of the National Academy of Sciences **109**, 10047-10052 10.1073/pnas.1118321109
- 18. Perard, J., Nader, S., Levert, M., Arnaud, L., Carpentier, P., Siebert, C. *et al.* (2018) Structural and functional studies of the metalloregulator Fur identify a promoter-binding mechanism and its role in *Francisella tularensis* virulence Communications biology **1**, 93 10.1038/s42003-018-0095-6
- 19. Pérard, J., Covès, J., Castellan, M., Solard, C., Savard, M., Miras, R. *et al.* (2016) Quaternary Structure of Fur Proteins, a New Subfamily of Tetrameric Proteins Biochemistry **55**, 1503-1515 10.1021/acs.biochem.5b01061
- 20. Pohl, E., Haller, J. C., Mijovilovich, A., Meyer-Klaucke, W., Garman, E., and Vasil, M. L. (2003) Architecture of a protein central to iron homeostasis: crystal structure and spectroscopic analysis of the ferric uptake regulator Mol Microbiol 47, 903-915, https://www.ncbi.nlm.nih.gov/pubmed/12581348
- 21. Hamed, M. Y., Neilands, J. B., and Huynh, V. (1993) Binding of the ferric uptake regulation repressor protein (Fur) to Mn(II), Fe(II), Co(II), and Cu(II) ions as co-repressors: electronic absorption, equilibrium, and 57Fe Mossbauer studies J Inorg Biochem **50**, 193-210, http://www.ncbi.nlm.nih.gov/pubmed/8501465
- 22. Mills, S. A., and Marletta, M. A. (2005) Metal binding characteristics and role of iron oxidation in the ferric uptake regulator from *Escherichia coli* Biochemistry **44**, 13553-13559 10.1021/bi0507579

- 23. Brawley, H. N., Kreinbrink, A. C., Hierholzer, J. D., Vali, S. W., and Lindahl, P. A. (2023) Labile Iron Pool of Isolated Escherichia coli Cytosol Likely Includes Fe-ATP and Fe-Citrate but not Fe-Glutathione or Aqueous Fe J Am Chem Soc **145**, 2104-2117 10.1021/jacs.2c06625
- 24. Fontenot, C. R., and Ding, H. (2023) Ferric uptake regulator (Fur) binds a [2Fe-2S] cluster to regulate intracellular iron homeostasis in Escherichia coli J Biol Chem **299**, 104748 10.1016/j.jbc.2023.104748
- 25. Fontenot, C. R., Tasnim, H., Valdes, K. A., Popescu, C. V., and Ding, H. (2020) Ferric uptake regulator (Fur) reversibly binds a [2Fe-2S] cluster to sense intracellular iron homeostasis in *Escherichia coli* J Biol Chem **295**, 15454-15463 10.1074/jbc.RA120.014814
- 26. Fontenot, C. R., and Ding, H. (2023) The C-terminal domain of the ferric uptake regulator (Fur) binds a [2Fe-2S] cluster to sense the intracellular free iron content in Escherichia coli Biometals 10.1007/s10534-023-00517-6
- 27. Fontenot, C. R., and Ding, H. (2022) Ferric uptake regulators (Fur) from *Vibrio cholerae* and *Helicobacter pylori* bind a [2Fe–2S] cluster in response to elevation of intracellular free iron content Biometals 10.1007/s10534-022-00390-9
- 28. Zheng, L., Cash, V. L., Flint, D. H., and Dean, D. R. (1998) Assembly of iron-sulfur clusters. Identification of an *iscSUA-hscBA-fdx* gene cluster from *Azotobacter vinelandii* J Biol Chem **273**, 13264-13272,
- 29. Takahashi, Y., and Tokumoto, U. (2002) A third bacterial system for the assembly of iron-sulfur clusters with homologs in archaea and plastids J Biol Chem **277**, 28380-28383, http://www.ncbi.nlm.nih.gov/cgi-bin/Entrez/referer?http://www.jbc.org/cgi/content/full/277/32/28380
- 30. Outten, F. W., Djaman, O., and Storz, G. (2004) A suf operon requirement for Fe-S cluster assembly during iron starvation in Escherichia coli Mol Microbiol **52**, 861-872 10.1111/j.1365-2958.2004.04025.x
- 31. Lee, K. C., Yeo, W. S., and Roe, J. H. (2008) Oxidant-responsive induction of the suf operon, encoding a Fe-S assembly system, through Fur and IscR in Escherichia coli J Bacteriol **190**, 8244-8247 10.1128/jb.01161-08
- 32. Varghese, S., Wu, A., Park, S., Imlay, K. R., and Imlay, J. A. (2007) Submicromolar hydrogen peroxide disrupts the ability of Fur protein to control free-iron levels in Escherichia coli Mol Microbiol **64**, 822-830 10.1111/j.1365-2958.2007.05701.x
- 33. Schwartz, C. J., Djaman, O., Imlay, J. A., and Kiley, P. J. (2000) The cysteine desulfurase, IscS, has a major role in in vivo Fe-S cluster formation in *Escherichia coli* Proceedings of the National Academy of Sciences 97, 9009-9014, http://www.ncbi.nlm.nih.gov/cgibin/Entrez/referer?http://www.pnas.org/cgi/content/abstract/97/16/9009

- 34. Shi, R., Proteau, A., Villarroya, M., Moukadiri, I., Zhang, L., Trempe, J.-F. *et al.* (2010) Structural Basis for Fe–S Cluster Assembly and tRNA Thiolation Mediated by IscS Protein–Protein Interactions PLoS Biol **8**, e1000354 10.1371/journal.pbio.1000354
- 35. Cupp-Vickery, J. R., Urbina, H., and Vickery, L. E. (2003) Crystal structure of IscS, a cysteine desulfurase from *Escherichia coli* J Mol Biol **330**, 1049-1059, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12860127
- 36. Marinoni, E. N., de Oliveira, J. S., Nicolet, Y., Raulfs, E. C., Amara, P., Dean, D. R. *et al.* (2012) (IscS-IscU)2 Complex Structures Provide Insights into Fe2S2 Biogenesis and Transfer Angewandte Chemie International Edition **51**, 5439-5442 10.1002/anie.201201708
- 37. Agar, J. N., Krebs, C., Frazzon, J., Huynh, B. H., Dean, D. R., and Johnson, M. K. (2000) IscU as a scaffold for iron-sulfur cluster biosynthesis: sequential assembly of [2Fe-2S] and [4Fe-4S] clusters in IscU Biochemistry **39**, 7856-7862,
- 38. Kunichika, K., Nakamura, R., Fujishiro, T., and Takahashi, Y. (2021) The Structure of the Dimeric State of IscU Harboring Two Adjacent [2Fe-2S] Clusters Provides Mechanistic Insights into Cluster Conversion to [4Fe-4S] Biochemistry **60**, 1569-1572 10.1021/acs.biochem.1c00112
- 39. Bennett, S. P., Crack, J. C., Puglisi, R., Pastore, A., and Le Brun, N. E. (2022) Native mass spectrometric studies of IscSU reveal a concerted, sulfur-initiated mechanism of iron-sulfur cluster assembly Chem Sci 14, 78-95 10.1039/d2sc04169c
- 40. Bonomi, F., Iametti, S., and Barbiroli, A. (2022) Protein interactions in the biological assembly of iron-sulfur clusters in Escherichia coli: Molecular and mechanistic aspects of the earliest assembly steps IUBMB Life **74**, 723-732 10.1002/iub.2622
- 41. Krebs, C., Agar, J. N., Smith, A. D., Frazzon, J., Dean, D. R., Huynh, B. H. *et al.* (2001) IscA, an alternate scaffold for Fe-S cluster biosynthesis Biochemistry **40**, 14069-14080,
- 42. Tan, G., Lu, J., Bitoun, J. P., Huang, H., and Ding, H. (2009) IscA/SufA paralogues are required for the 4Fe-4S cluster assembly in enzymes of multiple physiological pathways in *Escherichia coli* under aerobic growth conditions Biochem J **420**, 463-472 10.1042/bj20090206
- 43. Lu, J., Yang, J., Tan, G., and Ding, H. (2008) Complementary roles of SufA and IscA in the biogenesis of iron-sulfur clusters in *Escherichia coli* Biochem J **409**, 535-543 BJ20071166
- 44. Ding, H., Harrison, K., and Lu, J. (2005) Thioredoxin reductase system mediates iron binding in IscA and iron delivery for the iron-sulfur cluster assembly in IscU J Biol Chem 280, 30432-30437, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list uids=15985427

- 45. Bitoun, J. P., Wu, G., and Ding, H. (2008) Escherichia coli FtnA acts as an iron buffer for re-assembly of iron-sulfur clusters in response to hydrogen peroxide stress Biometals **21**, 693-703 10.1007/s10534-008-9154-7
- 46. Mapolelo, D. T., Zhang, B., Naik, S. G., Huynh, B. H., and Johnson, M. K. (2012) Spectroscopic and functional characterization of iron-bound forms of (Nif)IscA Biochemistry **51**, 8056-8070 10.1021/bi300664j
- 47. Rogers, P. A., and Ding, H. (2001) L-cysteine-mediated destabilization of dinitrosyl iron complexes in proteins J Biol Chem **276**, 30980-30986., http://www.ncbi.nlm.nih.gov/cgibin/Entrez/referer?http://www.jbc.org/cgi/content/abstract/276/33/30980
- 48. Kim, J. H., Frederick, R. O., Reinen, N. M., Troupis, A. T., and Markley, J. L. (2013) [2Fe-2S]-Ferredoxin binds directly to cysteine desulfurase and supplies an electron for iron-sulfur cluster assembly but is displaced by the scaffold protein or bacterial frataxin J Am Chem Soc 135, 8117-8120 10.1021/ja401950a
- 49. Matzanke, B. F., Anemuller, S., Schunemann, V., Trautwein, A. X., and Hantke, K. (2004) FhuF, part of a siderophore-reductase system Biochemistry **43**, 1386-1392 10.1021/bi0357661
- 50. Muller, K., Matzanke, B. F., Schunemann, V., Trautwein, A. X., and Hantke, K. (1998) FhuF, an iron-regulated protein of Escherichia coli with a new type of [2Fe-2S] center Eur J Biochem 258, 1001-1008, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9990318
- 51. Lauhon, C. T., and Kambampati, R. (2000) The iscS gene in Escherichia coli is required for the biosynthesis of 4- thiouridine, thiamin, and NAD J Biol Chem **275**, 20096-20103, http://www.jbc.org/cgi/content/full/275/26/20096
- 52. Datsenko, K. A., and Wanner, B. L. (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97, 6640-6645,
- 53. Djaman, O., Outten, F. W., and Imlay, J. A. (2004) Repair of oxidized iron-sulfur clusters in Escherichia coli J Biol Chem **279**, 44590-44599 10.1074/jbc.M406487200
- 54. Mettert, E. L., Outten, F. W., Wanta, B., and Kiley, P. J. (2008) The impact of O(2) on the Fe-S cluster biogenesis requirements of *Escherichia coli* FNR J Mol Biol **384**, 798-811,
- 55. Cha, H. J., Srivastava, R., Vakharia, V. N., Rao, G., and Bentley, W. E. (1999) Green fluorescent protein as a noninvasive stress probe in resting Escherichia coli cells Appl Environ Microbiol 65, 409-414.,
- 56. Hartmann, A., and Braun, V. (1981) Iron uptake and iron limited growth of *Escherichia coli* K-12 Arch Microbiol **130**, 353-356 10.1007/bf00414599

- 57. Beinert, H., Holm, R. H., and Munck, E. (1997) Iron-sulfur clusters: nature's modular, multipurpose structures Science 277, 653-659, http://www.ncbi.nlm.nih.gov/cgibin/Entrez/referer?http://www.sciencemag.org/cgi/content/full/277/5326/653
- 58. Outten, C. E., and Albetel, A. N. (2013) Iron sensing and regulation in Saccharomyces cerevisiae: Ironing out the mechanistic details Curr Opin Microbiol **16**, 662-668 10.1016/j.mib.2013.07.020
- 59. Ramos-Alonso, L., Romero, A. M., Martinez-Pastor, M. T., and Puig, S. (2020) Iron Regulatory Mechanisms in Saccharomyces cerevisiae Front Microbiol 11, 582830 10.3389/fmicb.2020.582830
- 60. Li, H., and Outten, C. E. (2019) The conserved CDC motif in the yeast iron regulator Aft2 mediates iron-sulfur cluster exchange and protein-protein interactions with Grx3 and Bol2 J Biol Inorg Chem **24**, 809-815 10.1007/s00775-019-01705-x
- 61. Rouault, T. A., and Maio, N. (2017) Biogenesis and functions of mammalian iron-sulfur proteins in the regulation of iron homeostasis and pivotal metabolic pathways J Biol Chem **292**, 12744-12753 10.1074/jbc.R117.789537
- 62. Hernandez-Gallardo, A. K., and Missirlis, F. (2020) Cellular iron sensing and regulation: Nuclear IRP1 extends a classic paradigm Bba-Mol Cell Res **1867**, ARTN 118705
- 10.1016/j.bbamcr.2020.118705
- 63. Garland, S. A., Hoff, K., Vickery, L. E., and Culotta, V. C. (1999) Saccharomyces cerevisiae ISU1 and ISU2: members of a well-conserved gene family for iron-sulfur cluster assembly J Mol Biol **294**, 897-907., http://www.ncbi.nlm.nih.gov/cgibin/Entrez/referer?http://www.idealibrary.com/links/citation/0022-2836/294/897
- 64. Yang, J., Bitoun, J. P., and Ding, H. (2006) Interplay of IscA and IscU in biogenesis of iron-sulfur clusters J Biol Chem **281**, 27956-27963, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16877383
- 65. Massé, E., and Gottesman, S. (2002) A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli Proceedings of the National Academy of Sciences **99**, 4620-4625 10.1073/pnas.032066599
- 66. Masse, E., Vanderpool, C. K., and Gottesman, S. (2005) Effect of RyhB small RNA on global iron use in Escherichia coli J Bacteriol **187**, 6962-6971 187/20/6962 [pii]
- 10.1128/JB.187.20.6962-6971.2005
- 67. Desnoyers, G., Morissette, A., Prevost, K., and Masse, E. (2009) Small RNA-induced differential degradation of the polycistronic mRNA iscRSUA EMBO J **28**, 1551-1561 emboj2009116 [pii]
- 10.1038/emboj.2009.116

Figure Legends

- Figure 1. The iron-sulfur cluster assembly scaffold protein IscU is required for the [2Fe-2S] cluster assembly in Fur in *E. coli* cells.
- (A) PCR confirmation of gene iscU deletion in E. coli cells. Gene iscU was deleted using the single-step inactivation procedure (52) as described previously (43). Two primers (primer 1, 5'-TGACCTTTCTCCGCTGTGGG-3', and primer 2, 5'-CTTTACCGCGGTTAGCCAGA-3') were used for the PCR confirmation of the gene iscU deletion. Lane M, 100 bp DNA ladder (NEB). Lane 1, from wild type E. coli cells. Lane 2, from the $\Delta iscU$ mutant cells.
- (B) UV-Vis absorption spectra of Fur proteins purified from wild type $E.\ coli$ cells (spectrum 1) and the $\Delta iscU$ mutant cells (spectrum 2) grown in M9 medium supplemented with Fe(NH₄)₂(SO₄)₂ (2 μ M) under aerobic growth conditions. Purified Fur proteins (50 μ M) were dissolved in buffer containing NaCl (500 mM) and Tris (20 mM, pH 8.0). Insert a), the photograph of purified Fur from wild type $E.\ coli$ cells (1) and the $\Delta iscU$ mutant cells (2). Insert b), the SDS-PAGE gel of Fur proteins purified from wild type $E.\ coli$ cells (lane 1) and the $\Delta iscU$ mutant cells (lane 2) grown in M9 medium supplemented with Fe(NH₄)₂(SO₄)₂ (2.0 μ M) (lane 2). Lane M, the PAGE-MASTER protein markers (GenScript co.) with molecular weights.
- (C) The [2Fe-2S] cluster binding of Fur in *E. coli* wild type and the $\Delta iscU$ mutant cells grown in M9 medium supplemented with increasing concentrations of iron. Fur protein was purified from *E. coli* wild type and the $\Delta iscU$ mutant cells grown in M9 medium supplemented with indicated concentrations of Fe(NH₄)₂(SO₄)₂. The concentration of the [2Fe-2S] cluster in Fur was determined using an extinction coefficient of 10 mM⁻¹cm⁻¹ at 410 nm (25). The [2Fe-2S] cluster occupancies of Fur were calculated from the ratio of the [2Fe-2S] cluster to Fur and plotted as a

function of iron concentrations in M9 medium. Data represents mean \pm SD (standard deviation) from three independent experiments.

Figure 2. The Fur-box binding activity of Fur purified from *E. coli* wild type and the $\Delta iscU$ mutant cells grown in M9 medium supplemented with 2 μ M iron.

(A) The restriction site protection assays of Fur. pUC19-*iuc* (3.2 nM) was pre-incubated with increasing concentrations of purified Fur proteins, followed by digestion with *Hin*fI (0.5 unit) at 37°C for 10 min. The digested DNA products were separated by 1.5% agarose gel electrophoresis. Lanes 1 to 4, pUC19-*iuc* (3.2 nM) was pre-incubated with 2.0 μM, 1.0 μM, 0.5 μM, and 0.25 μM Fur purified from wild type *E. coli* cells, respectively. Lanes 5 to 8, pUC19-*iuc* (3.2 nM) was pre-incubated with 2.0 μM, 1.0 μM, 0.5 μM, and 0.25 μM Fur purified from the Δ*iscU* mutant *E. coli* cells, respectively. Lane 9, no Fur protein was added before the *Hin*fI digestion. Lane 10, pUC19-*iuc* only with no *Hin*fI digestion.

(B) Relative binding activity of Fur proteins purified from wild type and the $\Delta iscU$ mutant E.~coli cells. The intensities of the DNA band of 787 bp shown in (A) were quantified using ImageJ and plotted as a function of the Fur concentrations. Data represents mean \pm SD (standard deviation) from three independent experiments.

Figure 3. Deletion of gene iscU prevents activation of Fur as a repressor in E. coli cells.

(A) A reporter gene *fur::gfp* was constructed and cloned into a plasmid pBAD as described in the Experimental Procedures. An active Fur represses the expression of the reporter gene *fur::gfp* and decreases the GFP fluorescence in *E. coli* cells.

(B) The repressor activity of Fur in E. coli wild type and the $\triangle iscU$ mutant cells. The constructed plasmid containing the reporter gene fur::gfp was introduced into wild type and the $\Delta iscU$ mutant cells. Wild type E. coli and the $\triangle iscU$ mutant cells were grown in M9 medium supplemented with 0, 1.0 μM, 2.0 μM, and 10.0 μM Fe(NH₄)₂(SO₄)₂. After 5 hours growth at 37°C under aerobic conditions, the cells were subjected to the GFP fluorescence measurements. The relative GFP intensities were obtained from the ratios of the GFP fluorescence intensity to the cell density (O.D. at 600 nm) of the culture. The E. coli cells without the reporter gene fur::gfp were used as the controls. The data represents mean \pm SD (standard deviation) from three independent experiments. (C) Deletion of gene iscU increases the sensitivity of E. coli cells to iron in M9 medium. Wild type E. coli and the $\triangle iscU$ mutant cells were grown in M9 medium supplemented with 0, 1.0 μ M, 2.0 μM, and 10.0 μM Fe(NH₄)₂(SO₄)_{2.} After 5 hours growth at 37°C under aerobic conditions, the cell growth was measured at 600 nm. The ratios of the cell growth in M9 medium supplemented with increasing iron concentrations to the cell growth in M9 medium with no iron addition were plotted as a function of the iron concentrations in M9 medium. The O.D. values at 600 nm (cell growth) of wild type and the $\triangle iscU$ mutant grown in M9 medium with no iron addition were 0.74 ± 0.03 and 0.66 ± 0.04 for, respectively. The data represents mean \pm SD (standard deviation) from three independent experiments.

Figure 4. IscU promotes the [2Fe-2S] cluster assembly in apo-form E. coli Fur in vitro.

(A) UV-Vis absorption spectra of apo-form Fur (30 μM) after reconstitution with Fe(NH₄)₂(SO₄)₂ (1.0 mM), L-cysteine (1.0 mM), cysteine desulfurase (IscS) (1.0 μM), and dithiothreitol (4 mM) in the absence (spectrum 1) or presence (spectrum 3) of IscU (50 μM) at 37°C for 20 min.

Spectrum 2, IscU (50 μM) after reconstitution with Fe(NH₄)₂(SO₄)₂ (1.0 mM), L-cysteine (1.0 mM), cysteine desulfurase (IscS) (1.0 μM), and dithiothreitol (4 mM) at 37°C for 20 min.

- (B) the [2Fe-2S] cluster is reconstituted in apo-form *E. coli* Fur by IscU. Spectrum 1, apo-form Fur (30 μM) after the reconstitution without IscU. Spectrum 2, the net spectrum of apo-form Fur after the reconstitution with IscU (the reconstituted IscU (spectrum 2) was subtracted from the reconstituted apo-form Fur and IscU (spectrum 3) in (A)).
- (C) The restriction site protection assays of apo-form *E. coli* Fur after reconstitution with or without IscU. pUC19-*iuc* was pre-incubated with increasing concentrations of Fur proteins, followed by digestion with *Hinf*I at 37°C for 10 min. The digested DNA products were separated on 1.5% agarose gel electrophoresis. Lanes 1 to 3, pUC19-*iuc* (3.2 nM) was pre-incubated with 4.0 μM, 2.0 μM, and 1.0 μM apo-form Fur after reconstitution without IscU, respectively. Lanes 4 to 6, pUC19-*iuc* (3.2 nM) was pre-incubated with 4.0 μM, 2.0 μM, and 1.0 μM apo-form Fur after reconstitution with IscU, respectively. Lane 7, no Fur protein was added before the *Hinf*I digestion. Lane 8, pUC19-*iuc* (3.2 nM) was pre-incubated with IscU (4.0 μM). Lane 9, pUC19-*iuc* only. The data are representative from three independent experiments.
- (D) Relative binding activity of apo-form Fur after reconstitution with or without IscU. The intensities of the DNA band of 787 bp in the agarose gel shown in (C) were quantified using ImageJ and plotted as a function of the Fur concentrations. Data represents mean \pm SD (standard deviation) from three independent experiments.

Figure 5. IscU is also required for the [2Fe-2S] cluster assembly in the *H. influenzae* Fur but not for the [2Fe-2S] cluster assembly in the *E. coli* ferredoxin and FhuF in *E. coli* cells.

(A) UV-Vis absorption spectra of the *H. influenzae* Fur purified from wild type *E. coli* (spectrum 1) and the $\Delta iscU$ mutant (spectrum 2) cells grown in M9 medium supplemented with 2 μ M Fe(NH₄)₂(SO₄)₂ under aerobic growth conditions. Purified *H. influenzae* Fur (40 μ M) was dissolved in buffer containing NaCl (500 mM) and Tris (20 mM, pH 8.0).

(B) UV-Vis absorption spectra of the *E. coli* ferredoxin (Fdx) purified from wild type *E. coli* (spectrum 1) and the $\Delta iscU$ mutant (spectrum 2) cells grown in M9 medium supplemented with 2.0 μ M Fe(NH₄)₂(SO₄)₂ under aerobic growth conditions. Purified ferredoxin (75 μ M) was dissolved in buffer containing NaCl (500 mM) and Tris (20 mM, pH 8.0).

(C) UV-Vis absorption spectra of the *E. coli* FhuF purified from wild type *E. coli* (spectrum 1) and the $\Delta iscU$ mutant (spectrum 2) cells grown in M9 medium supplemented with 2.0 μ M Fe(NH₄)₂(SO₄)₂ under aerobic growth conditions. Purified FhuF (12 μ M) was dissolved in buffer containing NaCl (500 mM) and Tris (20 mM, pH 8.0). The results are representatives of three independent experiments.

Figure 6. A proposed model for the interplay between iron-sulfur cluster biogenesis and regulation of intracellular iron homeostasis in *E. coli* cells.

When intracellular free iron content is depleted, IscU cannot assemble a [2Fe-2S] cluster in Fur, and Fur is inactive. When intracellular free iron content is elevated, IscU, together with L-cysteine, cysteine desulfurase (IscS) and other iron-sulfur cluster assembly machinery, assembles a [2Fe-2S] cluster in Fur and Fur becomes an active repressor to bind the Fur-box and regulates intracellular iron homeostasis. A structural zinc binding site is shown in apo-Fur and the [2Fe-2S] cluster-bound Fur.

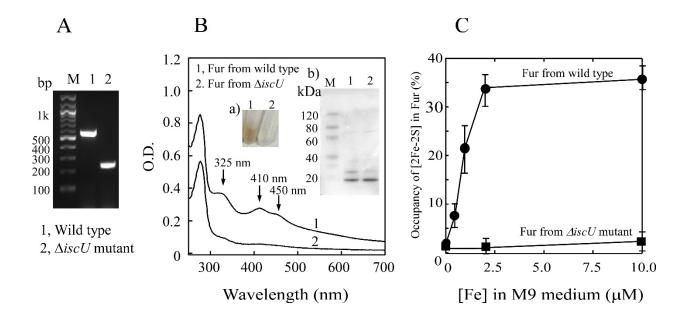


Figure 1

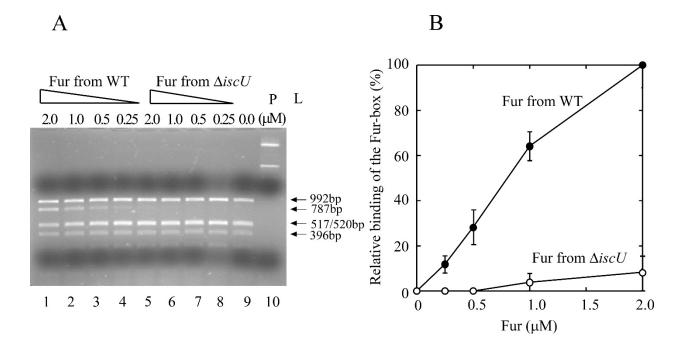


Figure 2

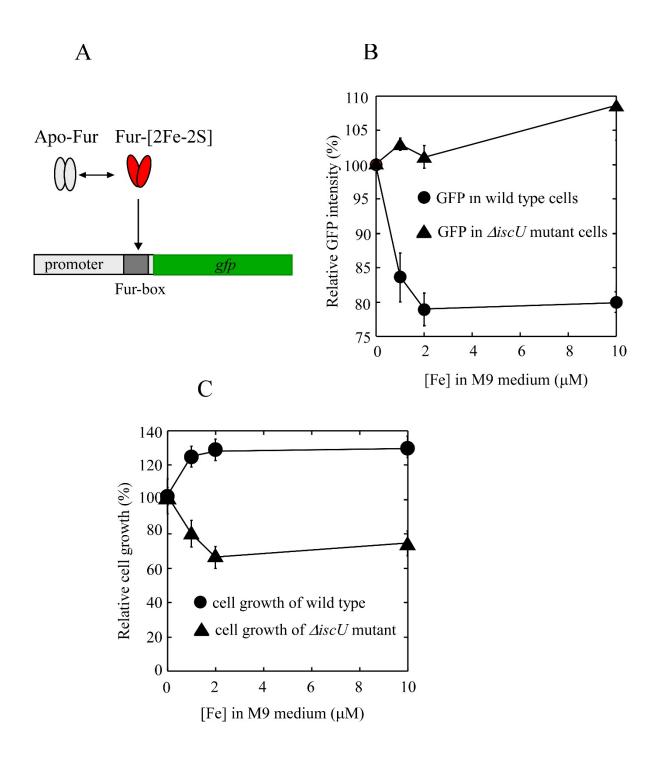


Figure 3

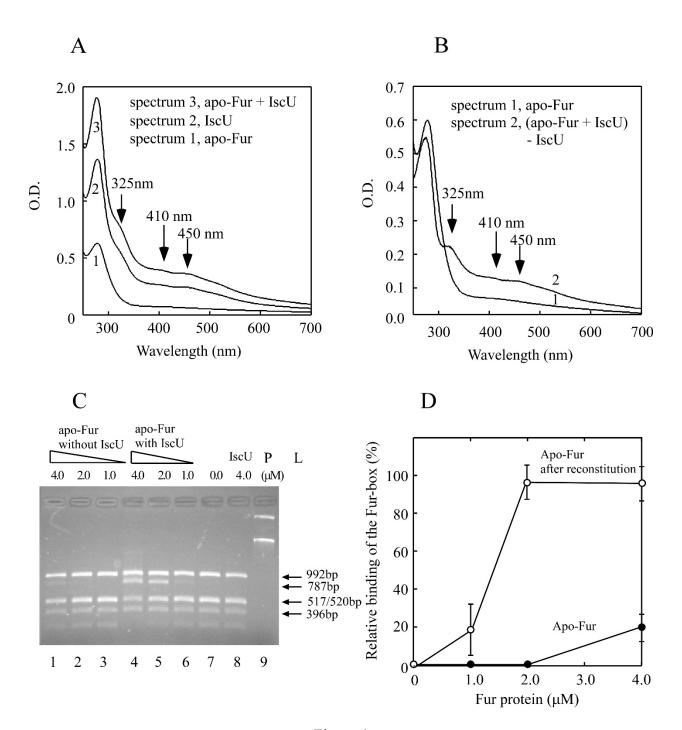


Figure 4

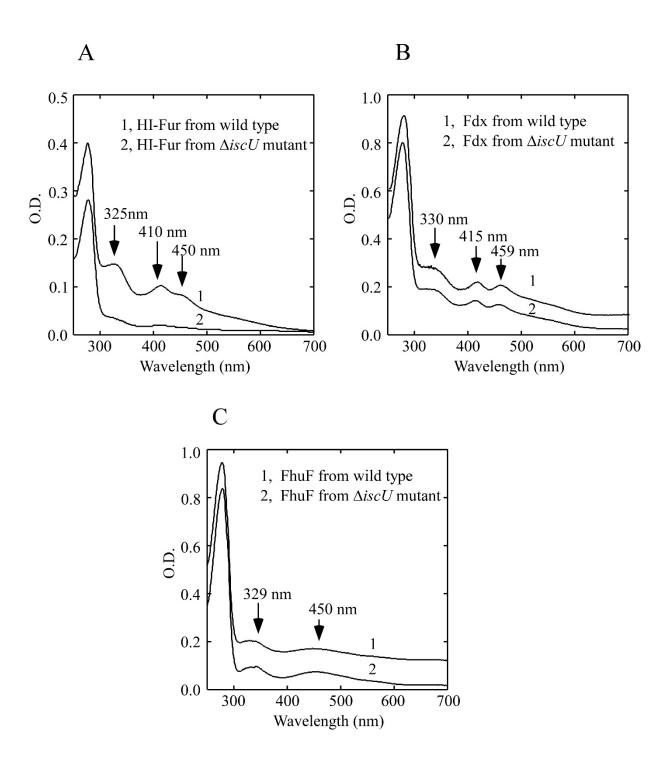


Figure 5

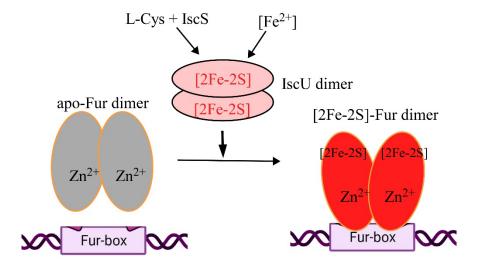


Figure 6