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Abstract—Monotonicity testing of Boolean functions on
the hypergrid, f : [n]? — {0, 1}, is a classic topic in prop-
erty testing. Determining the non-adaptive complexity of
this problem is an important open question. For arbitrary
n, [Black-Chakrabarty-Seshadhri, SODA 2020] describe a
tester with query complexity O(c~*/3d%/®). This complex-
ity is independent of n, but has a suboptimal dependence on
d. Recently, [Braverman-Khot-Kindler-Minzer, ITCS 2023]
and [Black-Chakrabarty-Seshadhri, STOC 2023] describe
O(e?n*Vd) and O(s~*n+/d)-query testers, respectively.
These testers have an almost optimal dependence on d, but
a suboptimal polynomial dependence on n.

In this paper, we describe a non-adaptive, one-
sided monotonicity tester with query complexity
O(e~2d"/**°M), independent of n. Up to the d°V-
factors, our result resolves the non-adaptive complexity of
monotonicity testing for Boolean functions on hypergrids.
The mdePendence of n yields a non-adaptive, one-sided

(e72d*/?*°MW).query monotonicity tester for Boolean
functlons f : RY — {0,1} associated with an arbitrary
product measure.

Index Terms—Property testing; Monotonicity testing

I. INTRODUCTION

Since its introduction more than two decades ago,
the problem of monotonicity testing has attracted an
immense amount of attention (see §I-C). In this paper,
we focus on the question of testing of Boolean functions
f : [n]¢ — {0,1} over the d-dimensional hypergrid.
Here [n] denotes the set {1,2,...,n}. Each element
x € [n]? is represented as a d-dimensional vector with
x; € [n] denoting the ith coordinate. The partial order
of the hypergrid is defined as: x <y iff x; <y, for all
i € [d]. When n = 2, the hypergrid [n]? is isomorphic
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to the hypercube {0, 1}%. A Boolean hypergrid function
f:[n]¢ — {0,1} is monotone if f(x) < f(y) whenever
x 2Yy.

The distance between two functions f and g, denoted
A(f,g), is the fraction of points where they differ.
A function f : [n]? — {0,1} is called e-far from
monotone if A(f,g) > e for all monotone functions
g : [n]® — {0,1}. Given a proximity parameter ¢ and
query access to a function, a monotonicity tester accepts
a monotone function and rejects a function that is e-
far from monotone. Both should occur with probabilty
> 2/3. If the tester accepts monotone functions with
probability 1, it is called one-sided. If the tester decides
its queries without seeing any responses, it is called non-
adaptive.

An outstanding open question in property testing is
to determine the optimal non-adaptive query complexity
of monotonicity testing for Boolean hypergrid func-
tions. While we leave the details of the road to the
state of the art to §I-C, here we mention the current
best bounds. Black, Chakrabarty, and Seshadhri [1], [2]
give a O(e=4/3d°/%)-query tester. Note that the query
complexity is independent of n. Building on seminal
work of Khot, Minzer, and Safra [3], Braverman, Khot,
Kindler, and Minzer [4] and Black, Chakrabarty, and Se-
shadhri [5] recently give O(¢~2n?v/d) and O(c~?nV/d)
testers, respectively. Chen, Waingarten, and Xie [6] give
an Q(+/d) lower bound for Boolean monotonicity testing
on hypercubes (n = 2). Hence, these last bounds are
nearly optimal in d, but are sub-optimal in n. Can
one achieve the optimal v/d dependence while being
independent of n?

We answer in the affirmative, giving a non-adaptive,
one-sided monotonicity tester for Boolean functions over
hypergrids with almost optimal query complexity.
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2] for more de-
tails.) Domain reduction results [2], [7] show that mono-
tonicity testing over general hypergrids and continuous
(measurable) spaces can be reduced to the case where
n = poly(e~1d) via sampling. A direct consequence
of TheoremI.1 is the following theorem for continuous
monotonicity testing.

A. Path Testers, Directed Isoperimetry, and the Depen-
dence on n

All o(d) non-adaptive, one-sided monotonicity testers
are path testers that check for violations among com-
parable points which are at a distance from each other.
Consider the fully augmented directed hypergrid graph
defined as follows. Its vertices are [n]¢ and its edges con-
nect all pairs x < y that differ in exactly one coordinate.
A path tester picks a random point x in [n]?, performs a
random walk in this directed graph to get another point
y = x, and rejects if f(x) > f(y). The whole game is
to lower bound the probability that f(x) > f(y) when
f is e-far from being monotone. Unlike random walks
on undirected graphs, these directed random walks are
ill-behaved. In particular, one cannot walk for “too long”
and the length of the walk has to be carefully chosen. The
approach to analyzing such path testers has two distinct
parts.

e Directed Isoperimetry. A Boolean isoperimetric the-
orem relates the volume of a subset of the hyper-
cube/grid, in our case the preimage f~!(1), to the
edge and vertex expansion properties of this set in the
graph. A directed analogue replaces the volume with
the distance to monotonicity, and deals with directed
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expansion properties. This connection between mono-
tonicity testing and directed isoperimetric theorems was
first made explicit in [8], which also gave the first o(d)
tester on hypercubes.

e Random walk analysis. The second part is to use
the directed isoperimetric theorem to lower bound the
success probability of the path tester. The analogy is:
if the (directed) expansion of a set is large, then the
probability of a directed random walk starting from a 1
and ending at a O is also large. This analysis is subtle
and proceeds via special combinatorial substructures in
the graph of violations.

The seminal result of Khot, Minzer, and Safra [3]
(henceforth KMS) gave near optimal analyses for both
parts, for the hypercube domain. For the first part,
they prove a directed, robust version of the Talagrand
isoperimetric theorem. For this section it is not crucial
to know this theorem. Rather, what is important is that
KMS use this directed isoperimetric theorem to construct
“good subgraphs” of the fully augmented hypergrid com-
prising of violated edges. For the second part mentioned
above, KMS relate the success probability of the directed
random walk to properties of this subgraph. We shortly
give details on this second part.

Coming to hypergrids, one needs to generalize both
parts of the analysis, and this offers many challenges.
For the first part, Black, Chakrabarty, and Seshadhri [5]
generalize the directed Talagrand inequality to the hy-
pergrid domain. Unfortunately, even with this stronger
directed Talagrand/isoperimetric bound for hypergrids,
the generalization of the KMS random walk analysis
only yields a 1/(n\/d) lower bound on the escape
probability.

The main technical contribution of this paper

is a new random walk analysis whose success

probability is at least 2d~(*/2+0(1),
In what follows, we describe the KMS random walk
analysis, the generalization to hypergrids, and the chal-
lenges in removing the dependence on n. In §I-B we
describe our main technical ideas required to bypass
these challenges and obtain the independence from n.

a) The KMS random walk analysis on {0,1}% in
a nutshell.: For simplicity, let’s assume ¢ is a small
constant so that we ignore the dependence on ¢. Using
the directed isoperimetric theorem, KMS extract a large
“good subgraph” of violations. A violation subgraph
G (X,Y,FE) is a bipartite graph where Vx €
X, f(x) =1, Vy €Y, f(y) = 0, and all edges in
E are hypercube edges. A good subgraph is a violation
subgraph that satisfies certain lower bounds on the total
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number of edges and has an approximate regularity
property. The specifics are a bit involved (Definition 6.1-
6.3, in [3]), but it is most instructive to think of the
simplest good subgraph. This is a matching between X
and Y where | X| = |Y| = Q(2%).

When the good subgraph is a matching, KMS show
that a random walk of length 7 = O(Vd) succeeds
in finding a violation with Q(d~'/2) probability. A key
insight in the analysis is the notion of 7-persistence: a
vertex x is 7-persistent if a 7-length directed random
walk leads to a point z where f(x) f(z) with
constant probability. Using a simple argument based on
the influence of the function, KMS argue that an average
directed random walk has < 7/v/d = o(1) influential
edges. Using Markov’s inequality, at most o(2¢) points
in {0,1}9 can be non-persistent. Let us remove all non-
persistent points and their matched partners from X and
Y, to get a matching between X’ and Y. All points in
X’ and Y’ are persistent, and given the size bounds,
|X'| = Y| is still (29).

With Q(1) probability, the tester starts from x € X'.
Note that f(x) = 1. Let the matched partner of x be
y. Let i be the dimension of the violated edge (x,y).
With probability roughly 7/d = Q(d~'/?), the directed
walk will cross the ith dimension. Let us condition
on this event. We can interpret the random walk as
traversing the edge (x,y), and then taking a (7 — 1)-
length directed walk from y to reach the destination y’.
(Note that we do not care about the specific order of
edges traversed by the random walk. We only care about
the value at the destination.) Since y is 7-persistent,
with (1) probability the final destination y’ will satisfy
f(y') = f(y) = 0. Putting it all together, the tester
succeeds with probability Q(d~1/?).

We stress that the above analysis discards any non-
persistent vertex in the original matching. Hence, it is
critical that the good subgraph is a sufficiently large
matching. In general, a good subgraph might not be
a matching. However, the KMS directed isoperimetric
theorem can be used to obtain a subgraph of violated
edges with the following property: if the maximum
degree is A, then the number of edges is Q(v/A2%);
when A = 1, the subgraph is indeed a large matching.
One can then argue that the random walk of length’
7 ~ \/d/A has success probability is Q(d~'/?). In all
cases, the analysis needs an interplay between the notion

lTechnic:ally, one needs (7 — 1)-persistence, which holds from 7-
persistence.

2The algorithm tries all O(log d) walks of lengths which are a power
of 2

1798

of persistence, the size of the sets X, Y, and the degrees
in the good subgraph.

b) The challenge in hypergrids.: As mentioned ear-
lier, [5] proves an isoperimetric theorem for hypergrids
generalizing the one in [3]. Using similar techniques to
the hypercube case, one can construct “good subgraphs”
of the fully augmented hypergrid. The definition is
involved (Theorem 7.8 in [5]), but the simplest case
is again a violation matching of (X,Y,FE) of size
| X | = Y| = 2(n?). Note that the matched pairs (x,y)
are axis-aligned, that is, differ in exactly one coordinate
i. But y; — x; is an integer in {1,2...,n — 1}.

In the hypergrid, the directed random walk must
necessarily perform “jumps”. At each step, the walk
changes a chosen coordinate to a random larger value.
One can generalize the hypercube persistence arguments
to show that with constant probability, a 7 = ©(v/d)-
step random walk will result in both endpoints having the
same value. And so, like before, we can remove all “non-
persistent” points to end up with an Q(n?) violation
matching (X', Y”) where all vertices are T-persistent.

The tester picks x € X’ with (1) probability.
Let y be its matched partner, which differs in the
ith coor(iinate. If the number of steps is 7, then with
7/d =~ Q(d~'/?) probability, the walk will choose to
move along the ith coordinate. Conditioned on this event,
we would like to relate the random walk to persistent
walk from y. However, there is only a 1/n chance that
the length jumped along that coordinate will be the jump
yi: — X;. One loses an extra n factor in the success
probabilNity, and indeed, this is the high-level analysis
of the Og(n\/a)-tester from [5] (at least for the case of
the matching).

How does one get rid of this dependence on n? At
some level, there is no (simple) way around this impasse.
If y; — x; is, say O(n), we cannot relate the walk from
x to a (persistent) walk from y without losing this n
factor. If one desires to be free of the parameter n, then
one needs to consider the internal points in the segment
(x,¥y). But all internal points could be non-persistent.
Even though most internal points z in the segment (x,y)
may be 0-valued, a (7 — 1)-step walk from z could lead
to 1-valued points. So the final pair won’t be a violation.

One may think that since the matching size was large
(= n?), perhaps the “interior” (the union of the interiors
of the matching segments) would also be large and most
of the internal nodes would be pesistent. Unfortunately,
that may not be the case, and the following is an illus-
trative example. We define a Boolean hypergrid function
f and an associated violation matching iteratively. Let
n < d/Ind. Start with all function values undefined. If
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x1 = 1, set f(x) = 1. If x; = n, set f(x) = 0. Take
the natural violation matching between these points. For
every undefined point x: if x5 =1, set f(x) =1 and if
x, = 1, set f(x) = 0. Iterating over all coordinates, we
define the function at all points “on the surface”. In the
“interior”, where Vi, x; ¢ {1,n}, we set f arbitrarily.
The interior has size n¢-(1—2/n)? ~ ndexp(—21Ind) <
n?/d?. This is a tiny fraction of the domain, while the
matching has size Q(n?). Hence, it is possible to have
a large violation matching such that the union of (strict)
interiors is vanishingly small.

In sum, to get rid of the dependence on n requires a
new set of ideas.

B. Our Main Ideas

As in §I-AOb, we begin with the basic case of a
violation matching G = (X,Y, E) of size Q(n?) in
the fully augmented hypergrid. The general case will be
discussed at the end of this section. We set 7 = O(v/d).
Using the persistence and Markov inequality arguments,
we can assume that all points in X UY are 7-persistent.

Let us describe the tester (Algorithm 1). A 7-
step/length upwalk from a point x € [n]? first chooses 7
coordinates at random to increase. To pick the increment
on each coordinate, we apply a standard technique for
hypergrid property testing. For each coordinate inde-
pedently, the tester picks a random power of 2, and
then picks a uniform random increment less than the
random power of 2. Analogously, the tester performs
downwalks. Unlike the path testers for hypercubes, it
will be important that our tester performs both upwalk
and downwalks. In our analysis, we will relate the
success probabilities of these different walks.

The tester also performs shifted path tests. First, it
finds a pair (x, w) using the directed random walk. Then,
it samples a random shift vector s € [n]?. This is a
random vector with 7 non-zero coordinates. The shifted
pair is (x —s,w —s). Note that the shifted pair is also
comparable, and is equivalent to generating points by
correlated random downwalks from x and w.

a) Mostly-zero-below points, and red edges.: The
following is a key definition: we call a point w mostly-
zero-below for length 7, or simply 7-mzb, if a 7-length
downwalk from w leads to a zero with > 0.9 probability
(Definition IV.1). Suppose an upwalk of length 7 from
a point x € X reaches an 7-mzb point w. Then, a
random shift (x —s,w — s) has a constant probability
of being a violation. The reason is (i) Pr[f(x —s) =
f(x) = 1] > 0.9 because x is 7-persistent, and (ii)
Pr[f(w —s) = 0] > 0.9 because w is T-mostly-zero-
below. By a union bound, the tester will find a violation
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with constant probability (conditioned on discovering the
pair (x, w)).

To formalize this analysis, we define a matching edge
(x,y) to be red if it satisfies the following condition.
For a constant fraction of the interior points z in the
segment (x,y), a (7 — 1)-length upwalk ends at a 7-
mzb point with constant probability (Definition IV.2). If
there are Q(n) red matching edges, we can argue that
the tester succeeds with the desired probability. Firstly,
with probability (1), the tester starts the walk at and
endpoint x of a red edge. Let the matched edge be (x,y).
With probability 7/d =~ d~'/2, the walk will cross the
dimension corresponding to (x,y). Conditioned on this
event, we can interpret the walk as first moving to a
random interior point z in the segment (x,y) and then
taking a (7 — 1)-length upwalk from z to get to the
point z’. (Refer to Fig. 1.) Since the edge was red, with
constant probability, z’ is 7-mzb. Consider a random
shift of (x,z’), shown as (x —t,z" —t) in Fig. 1. As
discussed in the previous paragraph, this shifted pair is
a violation with constant probability. All in all, the tester
succeeds with Q(d~'/2) probability.

Fig. 1. This figure shows the key argument that either upwalks +
downshifts, or downwalks find violations. The edge (x,y) is in the
initial violation matching. Parallel curves of the same shape denote
the same shift. So x' = x+s,y' =y +s, and z’ = z+s. Similarly,
we see both x and z' shifted below by t. The 1-valued points are
colored black and the 0-valued points are colored white. Gray points
do not have an a priori guarantee on function value. If z’ is mzb,
then f(z' —t) = 0 with high probability. In this case, (x —t,z’ —t)
is a likely violation. If not, then (z' — t,y’) is a likely violation.

But what if there are no red edges? This takes us to
the next key idea of our paper: translations of violation
subgraphs.

b) Translations of violation subgraphs, and blue
edges.: Suppose most of the matching edges edges
(x,y) are not red. So, for most points z in the segment
(x,¥), a (1 — 1)-length walk does not reach a 7-mzb
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point. Fix one such walk, which can be described by an
“up-shift” s. So the walk from z reaches z’ := z +s.

Consider the corresponding shift of the full edge
(x,y) to (x',y'), where X’ = x+sandy =y +s.
Refer to Fig. 1. What can we say about this edge? Since
both x and y are up-persistent, with high probability
both f(x') = f(x) =1 and f(y’) = f(y) = 0. Observe
that most internal points z’ in (x’,y’) are not mostly-
zero-below. Consider a 7-length downward walk from
7', whose destination can be represented as z’ —t (for a
downshift t). With probability > 0.1, f(z' —t) = 1.

Recall, the tester performs a downward random walk
(Algorithm 1, Step 3). Suppose this walk starts at y’.
With probability ~ 7/d d~1/2, the walk moves
(downward) in the ¢th coordinate with constant prob-
ability. Conditioned on this, the walk ends up at a
point z’ — t. As discussed above, z’ is likely to be not
mostly-zero-below. Hence f(z’ — t) = 1 with constant
probability, and the tester discovers the violating pair
(z —t,y).

Fig. | summarizes the above observations. If (x,y) is
red, then the pair (x —t,z’ —t) is likely to a violation.
If (x,y) is not red, then the pair (z' — t,y’) is a likely
violation. This motivates the definition of our blue edges.
We call a violating edge blue, if for a constant fraction of
points in the interior, a downward walk leads to a 1-point
with constant probability (Definition IV.3). We argued
above that if the edge (x,y) in the violation matching
was not red, then a random shift or translation up to
(x',y’) leads to a blue edge. If most edges in our original
violation matching were not red, then we could translate
“all these edges together” to get a (potentially) new large
violation subgraph. If most of these new edges are blue,
then the downward walk would catch a violation with
~ d~1/? probability.

What does it mean to translate “all edges together”?
In particular, how do we pin down this new violation
matching? We use ideas from network flows. Through
the random translation, every non-red edge (x,y) in the
original violation matching leads to a distribution over
blue edges (x’,y’). We treat this as a fractional flow on
these blue edges. If the original matching had few red
edges, we can construct a large collection of blue edges
sustaining a large flow. Integrality of flow implies there
must be another large violation matching in the support
of this distribution whose edges are blue. This is the
essence of the “red/blue” lemma (Lemma IV.4).

~
~

Putting it together, suppose G = (X,Y, E) is a large
violation matching. Either the upwalk with a shift or the
downwalk succeeds with probability ~ d—1/2.
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c) Lopsided violation subgraphs and translation
again.: We have discussed the situation of a large
violation matching G = (X,Y, F) with | X| = |Y| =
(n?). However, such a large matching may not exist.
Instead, the directed isoperimetric theorems imply the
existence of a “good subgraph” with bounded maximum
degree and many edges. These graphs G = (X,Y, FE)
may be lopsided with |X| < [Y|. This causes a
significant headache for our algorithm, and once again,
the issue is persistence. The good subgraph could have
| X| ~ n?/Vd, |Y| ~ n?, and edges that are structured
as follows. All edges incident to an individual y € Y
are aligned along the same dimension. For the path tester
to find a violation starting from any y € Y, it must take
a walk of length 7 = Q(v/d).

Unlike in [3] or in [5], the tester must run both the
upwalk and downwalk. In the situation of Fig. 1, it is
critical that both upwalks and downwalks have the same
length. In the lopsided good subgraph indicated above,
the walk length is Q(v/d). For this length, the fraction
of non-persistent points could be 2(1). In particular, all
the vertices in X could be non-persistent with respect
to this length. Thus, the upward walk + downward shift
is no longer guaranteed to work. (In Fig. 1, we are no
longer guaranteed that f(x —t) = 1. To ensure that, the
walk must be much shorter. But in that case, the walk
from y’ is unlikely to cross the ith dimension.)

To cross this hurdle, we use the translation idea
again. Suppose we had a lopsided violation subgraph
G = (X,Y,E) with | X| < |Y|. For the walk length
7 determined by Y, most vertices in X are not down
persistent. However, the vertices in X must be up
persistent for otherwise the upward walk would succeed
(Claim VI.6). Therefore, we can take upward translations
of G and again using network flow arguments alluded
to in the previous paragraph, we are able to construct
another violation subgraph G’ = (X', Y, E’) that satis-
fies the following properties. Firstly, G’ is “structurally”
similar to G, in terms of degree bounds and the number
of edges. Either vertices in X’ are 7-down persistent or
|X'| > 2|X|. We refer to this as the ‘persist-or-blow-
up’ lemma (Lemma VI.7). The argument is somewhat
intricate and requires a delicate balance of parameters.
An interesting aspect is that we can either beat the usual
Markov upper bound for persistent vertices, or improve
the parameters of the violation graph. By iterations of
the lemma, we can argue the existence of a violation
subgraph with all the desired persistent properties. Then,
the analysis akin to the matching case generalizes to give
the desired result.
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d) Thresholded degrees, peeling, and the d°)
loss.: Another gnarly issue with hypergrids is the dis-
tinction between degree and “thresholded degree”. The
relevant “degree” of a vertex x (for the path tester
analysis) in a violation subgraph is not the number of
edges incident on it, but rather the number of different
dimensions ¢ so that there is an i-edge incident on it.
We refer to this quantity as the “thresholded degree”,
and it is between 1 and d. Note that the standard degree
could be as large as nd. It is critical one uses thresholded
degree for the path tester analysis, to avoid the linear
dependence on n in our calculations. Observe that for
the matching case, these degrees are identical, making
the analysis easier.

While the path tester analysis works with thresholded
degree, the flow-based translation arguments alluded to
above need to use normal degrees. In particular, we
can use flow-arguments to relate the bound the standard
degree of the new violation subgraphs. But we cannot a
priori do so for the thresholded degree.

To argue about the thresholded degree, we begin with
a stronger notion of a good subgraph called the seed
regular violation subgraph (Lemma VI.1). This subgraph
satisfies specific conditions for both thresholded and
standard degrees of the vertices. It is in the construction
of the seed graph where we lose the d°!) factor.

e) Roadmap.: Here is the roadmap of the whole
analysis. We use the isoperimetric theorem in [5]
to prove the existence of the seed regular graph
(Lemma VI.1). This subgraph may not have the desired
persistence properties, so we apply the persist-or-blow-
up lemma, Lemma VI.7, to obtain a more robust graph
G'. This graph G’ may have lots of red edges, in which
case it is a “nice red subgraph” (Definition IV.5), and
then the upwalk + down-shift (Step 4 in Algorithm 1)
succeeds with good probability. Otherwise, we apply
the “red/blue” lemma to obtain a “nice blue subgraph”
(Definition IV.6), and then the downwalk (Step 3 in Al-
gorithm 1) succeeds with good probability. Of course,
the lopsidedness in the seed graph can be | X| > |Y|
in which case the argument is analogous, except one of
Step 2 or Step 5 in Algorithm 1 succeed.

C. Related Work

Monotonicity testing, and in particular that of Boolean
functions on the hypergrid, has been studied exten-
sively in the past 25 years [I]-[34]. Most of the
early works focused on the special case of hypercubes
{0,1}%. Early works defined the problem and described
a O(d) tester [9], [11]. This was improved by [8] to
give an O.(d"/®) tester and this paper introduced the
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connection to directed isoperimetry. Subsequently, [3]
described their O.(v/d) non-adaptive, one-sided tester
via the directed robust version of Talagrand’s isoperimet-
ric theorem, and this dependence on d is tight even for
two-sided testers [6], [14], [31]. The best lower bound
for adaptive testers is Q(d'/3) [6], [33].

Dodis et al [12] were the first to define the prob-
lem of monotonicity testing on general hypergrids, and
they gave a non-adaptive, one-sided O((d/e) log®(d/e))-
query tester for the Boolean range. Thus, it was known
from the beginning that independence of n is achievable
for Boolean monotonicity testing. Berman, Raskhod-
nikova, and Yaroslavtsev improved the upper bound to
O((d/e)log(d/e)) [29]. They also show a non-adaptive
lower bound of Q(log(1/¢)/e) and prove an adaptivity
gap by giving an adaptive O(1/¢)-query tester for con-
stant d.

The first o(d) tester for hypergrids was given by Black,
Chakrabarty, Seshadhri [1]. Using a directed Margulis
inequality, they achieve a O.(d°/®logn) upper bound.
In a subsequent result, they introduce the concept of
domain reduction and show that n can be reduced to
poly(de~!) by subsampling the hypergrid [2]. Harms
and Yoshida gave a substantially simpler proof of the
domain reduction theorem, though their result is not
“black-box” [7].

Most relevant to our work are the independent, recent
results of Black, Chakrabarty, Seshadhri, and Braver-
man, Kindler, Khot, Minzer [4], [5]. These results give
O(poly(n)v/d) query testers, but with different ap-
proaches. The former follows the KMS path, and proves
a new directed Talagrand inequality over the hypergrid.
This theorem is a key tool in our result. The result
of [4] follows a different approach, via reductions to
hypercube monotonicity testing. This is a tricky and
intricate construction; naive subsampling approaches to
reduce to the hypercube are known to fail (see Sec. 8
of [2]). Instead, their result uses a notion of “monotone”
embeddings that embed functions over arbitrary product
domains to hypercube functions, while preserving the
distance to monotonicity. However, these embeddings
increase the dimension by poly(n), which appears to
be inherent.

D. Discussion

It is an interesting question to see if the d°(!) de-
pendence can be reduced to polylogarithmic in d. As
mentioned above, the loss arises due to our need for a
stronger notion of a “good subgraph”. Nevertheless, we
feel one could obtain an O(s~2v/d)-tester. In Section
8 of their paper, [5] conjecture a stronger “weighted”
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isoperimetric theorem which would imply a O(c~2v/d)-
tester. Our work currently has no bearing on that con-
jecture, and that is still open.

At a qualitative level, our work and the result in [5]
indicates the Boolean monotonicity testing question on
the hypergrid seems more challenging than on the
hypercube. Is there a quantitative separation possible?
It is likely that non-adaptive monotonicity testing for
general hypergrids is harder than hypercubes by “only”
a log d factor. The gap between the non-adaptive upper
and lower bounds even for hypercubes is poly(logd).
So, achieving this separation between hypergrids and
hypercubes seems quite challenging, as it would require
upper and lower bounds of far higher precision.

II. RANDOM WALKS AND THE MONOTONICITY
TESTER

Without loss of generality> we assume that n is a
power of 2. We use © € .S to denote choosing a uniform
random element = from the set .S. Abusing notation,
we define intervals in Z,, by wrapping around. So, if
1 < i< n < j, then the interval [i,j] in Z,, is the set
[i,n] UL, (j —1) (mod n)].

The directed (lazy) random walk distribution in [n
that we consider is defined as follows. The distribution
induced by this directed walk has multiple equivalent
formulations, which are discussed in §III-B.

}d

Definition II.1 (Hypergrid Walk Distribution). For a
point x € [n]% and walk length 7, the distribution U, (x)
over y € [n]? reached by an upward lazy random walk
from x of 7-steps is defined as follows.

1) Pick a uniform random subset R C [d] of T
coordinates.

2) For each r € R:

a) Choose q. €r {1,2,...,logn} uniformly at

random.

b) Choose a uniform random interval I, in Z,, of

size 297 such that x, € I,.

¢) Choose a uniform random c, €g I, \ {X,}.

Generate y as follows. For every r € [d], if r € R

and ¢, > x,, set y, = c,. Else, set y, = X,.

3)

Analogously, let D, (x) be the distribution defined pre-
cisely as above, but the >-sign is replaced by the <-sign
in step 3. This is the distribution of the endpoint of a
downward lazy random walk from x of 7-steps.

A crucial step of our algorithm involves performing
the exact same random walk, but originating from two

3See Theorem A.1 of [1]. Note this assumption is not crucial, but
we choose to use it for the sake of a cleaner presentation.

different points. We can express our random walk dis-
tribution in terms of shifts (rather than destinations) as
follows.

Definition IL.2 (Shift Distributions). The up-shift dis-
tribution from x, denoted US.(x) is the distribution of
x' — x, where X' ~ U(x). The down-shift distribution

from x, denoted DS, (x) is the distribution of x — x/,
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where x' ~ D, (x).

Note that U, (x) is equivalent to the distribution of
x+s, where s ~ US,(x). Similarly, D, (x) is equivalent
to the distribution of x — s, where s ~ DS, (x). Using
Definition II.1 and Definition II.2, our tester is defined
in Alg. 1.

Algorithm 1 Monotonicity tester for Boolean functions
on [n]?

Input: A Boolean function f: [n]? — {0, 1}

1) Choose p €r {0,1,2,...,[logd]} uniformly at
random and set 7 := 2P,

2) Run the upward path test with walk length £/ = 7—1
and { =T

a) Choose x € [n]? and sample y from U (x).

b) If f(x) > f(y). then reject.

3) Run the downward path test with walk length ¢ =

T—1land £ =T

a) Choose y € [n]¢ and sample x from Dy(y).

b) If f(x) > f(y). then reject.

4) Run the upward path + downward shift test with walk

length f=7—1and ¢ =7

a) Choose x €p [n]?, sample y from U, (x), and sample
s from DS, _1(x).

b) If f(x —s) > f(y —s), then reject.

5) Run the downward path + upward shift test with walk

length {=7—1and ¢ =7

a) Choose y €r [n]?, sample x from D;(y), and sample
s from US,_1(y).

b) If f(x+s) > f(y +s), then reject.

Remark IL3. Given a function f : [n]? — {0,1},
consider the doubly-flipped function g : [n]? — {0,1}
defined as g(x) := 1— f(X) where X; :== n—x;. That is,
we swap all the zeros and ones in f, and then reverse
the hypergrid (the all zeros point becomes the all n’s

point and vice-versa). The distance to monotonicity of

both f and g are the same: a pair (x,y) is violating
in f if and only if (X,y) is violating in g. In Alg. I,
Step 2 on f is the same as Step 3 on g, and Step 4
on f is the same as Step 5 on g. In our analysis, we
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will construct a violation subgraph between vertex sets
X and Y. Points in X are 1-valued and points in' Y
are 0-valued. If | X| < |Y|, then the steps 2, 3, and
4 suffice for the analysis. If |Y| < |X|, then (by the
same analysis) we run steps 2,3, and 4 on the function
g. This is equivalent to running steps 2, 3, and 5 on
the function f. So, the tester covers both situations, and
we can assume wlog that | X| < |Y|. This discussion
happens in Section VI-Al.

Our main result is the following lower bound on the
rejection probability of Alg. 1.

Theorem I1.4 is proved in §V. We first use Theo-
remIL.4 to prove our main testing results, TheoremI.1
and TheoremI.2.

A. Proof of Theorem 1.1 and Theorem 1.2

To prove TheoremI.1, we use the domain reduction
Theorem 1.3 of [2], which we state here for ease of
reading.

Theorem II.5 (Domain Reduction Theorem 1.3, [2]).
Suppose f : [n]® — {0, 1} is e-far from being monotone.
Let k = (e 1d)8. If T =Ty x --- x Ty is a randomly
chosen sub-grid, where for each i € [d], T; is a (multi)-
set formed by taking k independent, uniform samples
from [n], then Exlef ] > /2.

Remark I1.6. We note that [7] obtain a more efficient
domain reduction result. However, the domain reduction
from [2] can be used in a black-box fashion, resulting
in a simpler tester.

For ease of reading, we give a simplified proof of
a weaker version of TheoremI.1. This proof obtains a
tester with an €3 dependence, instead of the stated
€72 A more nuanced argument yields the improved
e~ 2log(1/e) dependence, which proves Theorem 1.1 as
stated*. For details, we refer the reader to Section 7 of
[2]. In particular, we run Algorithm 1 in Section 7 of
[2] with the sub-routine in line 5 replaced by Alg. 1.

Proof. of TheoremlI.1: Consider the tester which does
the following, given f: [n]? — {0,1} and ¢ € (0, 1).

4When we invoke Alg. 1, we assume that ¢ > d=1/2 and so

loglogl/e
logl/e = d Tead & dO(1/loglogd) The factor of log1/e is
absorbed by d©(1/10glogd) iy the query complexity.
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1) If e < d~%/2, then run the O(¢~'d) query non-
adaptive and 1-sided tester of [12] or [29].
2) If ¢ > d~'/2, then set k = (¢7'd)® < d'? and
repeat the following 8¢~ times.
a) Sample a [k]? sub-grid T C [n]? according to
the distribution described in Theorem IL.5.
b) Run 32 -2 . d/2t90) jterations of the tester
described in Alg. 1 on the restricted function f|.
3) Accept.
If ¢ < d~'/2, then the number of queries is
O(e~'d) = O(¢72d"'/?). We are done in this case.
Assume £ > d~'/2. The total number of queries made
by this tester is at most % - d'/?tC0)  Clearly, if
f is monotone, then the tester will accept, so suppose
€y > €. By the domain reduction Theorem IL.5, we have
Exlef.] > €/2. So, Ep[l —ef.] <1 —¢/2 and thus
by Markov’s inequality,

1—¢/2
I?Fr[lfgﬂT 2175/4] < Ty
1—¢g/4—¢c/4
= ————— <]__ 4.
l—e/4 — Z

Thus, Prrles. > /4] > /4. Thus, with probability
at least 1 — (1 —£/4)%/¢ > 1 — ¢~2, some iteration of
step (2a) will produce T such that ef,. > /4. When
this happens, some iteration of step (2b) will reject with
probability at least 1 — e~2, by Theorem II.4. Thus, the
tester rejects f with probability at least (1 — e2)% >
2/3. O

The proof of Theorem I.2 for testing on R follows the
exact same argument, using the corresponding domain
reduction Theorem 1.4 of [2] for functions over R%. We
omit the proof.

III. TECHNICAL PRELIMINARIES

In this section, we list out preliminary definitions and
notations. Throughout the section, we fix a function
f : [n]* — {0,1} that is e-far from monotone. For
ease of readability, most proofs of this section are in
the appendix which we have chosen to omit from this
version of the paper. For the full version which includes
the appendix we refer the reader to [35].

A. Violation Subgraphs and Isoperimetry

The fully augmented hypergrid is a graph whose vertex
set is [n]? where edges connect all pairs that differ in
exactly one coordinate. We direct all edges from lower
to higher endpoint. The edge (x,y) is called an i-edge
for ¢ € [d] if x and y differ in the ith coordinate. We use
I(x,y) = {z: x < z <y} to denote the points z in the
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segment [x,y], that is, they are the points which differ
from x and y only in the ith coordinate, and x; < z; <
y;. Given a function f : [n]¢ — {0,1} the edge (x,y)
of the fully augmented hypergrid is a violating/violated
edge if f(x)=1and f(y) = 0.

Definition III.1. A violation subgraph is a subgraph of
the fully augmented hypergrid all of whose edges are
violations.

Note that any violation subgraph is a bipartite sub-
graph, where the bipartition is given by the 1-valued
and 0-valued points. We henceforth always express a vi-
olation subgraph as G = (X,Y, E) such that ¥x € X,
f(x)=1and Yy € Y, f(y) = 0. There are a number
of relevant parameters of violation subgraphs that play
a role in our analysis.

Definition IIL.2. Fix a violation subgraph G
(X,Y,FE) and a point x € X.

o The degree of x in G is the number of edges in E
incident to x and is denoted as Dg(x).

o For any coordinate i € [d], the i-degree of x in G is
the total number of i-edges in E incident to x and is
denoted as T' ;(x). Note Dg(x) = Z?Zl 'qi(x).

o The thresholded degree of x in G is the number of
coordinates i € [d) withT'g ;(x) > 0 and is denoted
as P (x).

Whenever G is clear from context, for brevity, we remove
it from the subscript.

Note that ®(x) is an integer between 0 and d, T';(x) is
an integer between 0 and (n—1), and D(x) is an integer
between 0 and (n — 1)d. We next define the following
parameters of a violation subgraph G.

Definition IIL.3. Consider a violation subgraph G =
(X,Y,E).

e D(X) is the maximum degree of a vertex in X,
that is, D(X) = maxyex D(xX).

o For i€ [d], T;(X) is the maximum i-degree in X,
that is, T;(X) = maxye x [';(x).

o I'(X) is the maximum value of 1';(X), that is,
['(X) = max® ; T;(X).

e O(X) is the maximum thresholded degree in X,
that is, ®(X) = maxxex P(x).

o m(G) is the number of edges in G.
(We analogously define these parameters for Y .)

We recall the notion of thresholded influence of a
function f : [n]¢ — {0, 1} as defined in [4], [5]. For any
x € [n]? and i € [d], ®;(x;i) is the indicator for the
existence of a violating ¢-edge incident to x. The thresh-
olded influence of f at x is ®¢(x) = 2?21 D (x;1).
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We use the same Greek letter & both for thresholded
influence and thresholded degree. In the graph Gj
(X0, Yo, E) consisting of all violating edges of the fully
augmented hypergrid, ®¢(x) is indeed ¢, (x).

For applications to monotonicity testing, we require
colored/robust versions of the thresholded influence. For
hypercubes this was suggested by [3], and for hypergrids
this was generalized by [5]. Let x : E — {0,1} be an
arbitrary coloring of all the edges of the fully augmented
hypergrid to 0 or 1. Given a point x and i € [d],
P4, (x;1) is the indicator of a violating i-edge e incident
to x with y(e) = f(x). The colored thresholded influ-
ence of x wrt x is simply @, (x) = Zle Dy (x51).
The Talagrand objective of f is defined as

Tal(f) := D x(x).

The main result of [5] is the following.

Theorem IIL.4 (Theorem 1.4, [5]). If f: [n]? — {0,1}
is e-far from monotone, then Tal(f) = Q(=2-).

logn

We stress that the RHS above only loses a logn
factor, which allows for domain reduction (setting n =
poly(d)). This is what yields the nearly optimal \/d
dependence and independence on n in the tester query
complexity.

We extend the definition of Tal(f) to arbitrary vio-
lation subgraphs as follows. Given a violation subgraph
G = (X,Y,E) and a bicoloring x : E — {0,1} of its
edges, for z € X UY and i € [d] let ¢ (z;7) = 1
if there is a violating i-edge e € E(G) incident to z
such that x(e) = f(z), and ®¢ ,(2z;i) = 0 otherwise.
Define & (x) = S0, @, (x;4). Note, if y = 1, that
is every edge is colored 1, then ®¢ , (x) = P (x) for
x € X and @, (y) = 0 for all y € Y. Similarly,
if x = 0, then ®¢,(y) = Pe(y) for y € Y and
P\ (x) =0 for x € X.

Definition IILS5S. Given violation — subgraph
G (X,Y,E), we define Tal(G)
miny > vy [V Pax(2)], where the min is taken
over all edge bicolorings x : E(G) — {0, 1}.

a

If G is the subgraph of all violations in the fully aug-
mented hypergrid, then Theorem II1.4 states Tal(Gy) =
Q(en?/logn). We make a couple of observations.

Observation IIL.6. For any violation subgraph G =
(X,Y,E),

e D(X)<T(X)®(X) and DY) <T(Y)2(Y).

e m(G) > Tal(G).
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Proof. For any x € X, we have D(x) = Zle Ii(x) =
2ir, (>0 Li(¥) < (max; I'i(x))-@(x) < T(X)2(X).
The proof is analogous for Y. For the second bullet,
observe that m(G) = > x D(x) > > .x ®(x) >

erX \/(I)(X) = ZzEXUY Ogy=1(2) > Tal(G%]

Remark IIL.7. Throughout the remainder of the paper,
we consider d to be at least a large constant and fix
o > m. As a result, we use bounds such as
“d® > polylogd” or “d — Cvd > d/3” without
explicitly reminding the reader that d is large. We use
O(9) to denote C - § for some unspecified, but fixed
constant C.

B. Equivalent Formulations of the Random Walk Distri-
bution

Recall the random walk distribution described in Def-
inition II.1. It is useful to think of this walk as first sam-
pling a random hypercube and then taking a random walk
on that hypercube. The following definition describes the
appropriate distribution over sub-hypercubes in [n]?.

Definition II1.8 (Hypercube Distribution). We define the
following distribution I, 4 over sub-hypercubes in [n]?.
For each coordinate i € [d):
1) Choose ¢; €r {1,2,..
dom.
2) Choose a uniform random interval I; of size 2% in
L,
3) Choose a uniform random pair a; < b; from I;.
Output H = H?:l {a;,b;}. When n and d are clear from
context, we abbreviate T = H,, 4.

.,logn} uniformly at ran-

It will also be useful for us to think of our random
walk distribution as first sampling x €x [n]¢, then
sampling a random hypercube which contains x, and
then taking a random walk from x in that hypercube.
The appropriate distribution over hypercubes containing
a point x is defined as follows.

Definition II1.9 (Conditioned Hypercube Distribution).
Given x € [n]%, we define the conditioned sub-hypercube
distribution H,, 4(x) as follows. For each i € [d]:
1) Choose q; €r {1,2,..
dom.
2) Choose a uniform random interval I; in Z,, of size
29 such that x; € I;.
3) Choose a uniform random ¢; €g I; \ {x;}.
4) Set a; = min(x;, ¢;) and b; = max(x;, ¢;).
Output H = H?Zl {a;,b;}. When n and d are clear from
context we will abbreviate H(x) = H,, 4(x).

.,logn} uniformly at ran-

The random walk distribution in a hypercube H is
defined as follows.

Definition II1.10 (Hypercube Walk Distribution). For
a hypercube H = [[._,{a;,b;}, a point x € H, and
a walk length T, we define the upward random walk
distribution Uz - (x) over points y € H as follows.
1) Pick a uniform random subset R C [d] of T
coordinates.

2) Generate 'y as follows. For every r € [d], if r € R
and X, = a,, set'y, = b,. Else, set y, = X,.
Analogously, the downward random walk distribution
Du - (x) is defined precisely as above, but instead in
step 2 if r € R and x, = b,, we set y, = a,, and

otherwise y, = X.

We observe that the following walk distributions are
equivalent and defer the proof to the appendix. See
Section A.1 in the full version [35].

Fact III.11. The following three distributions over pairs
(x,y) € [n]? x [n)? are all equivalent.

1) x €g [n]4, y ~ U (x).

2) H~H xep H, y ~Un - (x).

3) x€r 04, H ~H(x), y ~Un ().
The analogous three distributions defined using down-
ward random walks are also equivalent.

It is also convenient to define the shift distribution for
hypercubes.

Definition III.12 (Shift Distributions for Hypercube
Walks). Given a hypercube H, the up-shift distribution
from x € H, denoted USk - (X) is the distribution of
x' —x, where X' ~ Ug +(x). The down-shift distribution
from'y € H, denoted DSy (y) is the distribution of
y =y, where y' ~ DSu - (y).

C. Influence and Persistence

We define the following notion of influence for our
random walk distribution Definition II.1.
Definition II1.13. The total and negative influences of
f:[n]¢ — {0,1} are defined as follows.

. {f = IExe[n]"l [d : Prywul (%) [f(X) 7é f(Y)]]

o 17 =Eyepnpe [d- Pryeyy o0lf(x) > f(y)]]

The probability of the tester (Alg. 1) finding a viola-

tion in step (2b) when 7 = 1 is precisely [ /d. Recall
the definition of the distribution H in Definition III.8.

For brevity, for a hypercube H = H;i:l{ai,bi}
sampled from H, we abbreviate Ipy := [ Fler and
Iy = I, That is, if f(x) = 1, then Ig(x) is
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the number of coordinates ¢ for which x; = a;, and
fxa, X1, 0, X415, %xq) = 0, and if f(x) =0,
then Ig(x) = 0. Then, Iy = Exem[Im(x)]. The
definition is analogous for I;.

Claim IL14. I = By [In] and I} = Egen [I5).

Proof. By FactIIL11, the distribution (x €x [n]?,y ~
U (x)) is equivalent to first sampling H ~ H, then
sampling (x €gr H,y ~ Up,1(x)). Recalling Defini-
tion IIL10, observe that Pry. i/, () [f(%) # f(y)] =
I (x)/d. Putting these observations together yields

ff = ]Exe[n]d d- Pr

L Pr (760 # F3)

=En~uBxen [[a(x)] = Ex~ullH]

An analogous argument proves the statement for negative
influence. O

The following claim states that if the normal influence
is (very) large, then so is the negative influence. This
is a simple generalization of, and indeed easily follows
from, Theorem 9.1 in [3]. The proof is deferred to the
appendix. See Section A.2 in the full version [35].

Claim IIL15. If Iy > 9V/d, then I; > V/d.

Next, we define the notion of persistent points. This
is similar to that in [3] with a parameterization that we
need for our purpose.

Definition I11.16. Given a point x € [n]?, a walk length
7, and a parameter 3 € (0,1), we say that x is (7, 3)-
up-persistent if
Pr[f(y) # f(x)] < 8.
y~l/{.,-(x)

Similarly, x is called (1, B)-down-persistent if the above
bound holds when y is drawn from the downward walk
distribution, D (x). If both bounds hold, then we call x
(7, B)-persistent.

The following claim upper bounds the fraction of non-
persistent points. This is a generalization of Lemma 9.3
in [3]. The proof is deferred to the appendix. See Section
A.2 in the full version [35].

Claim IIL.17. If I, < 9\/&, then the fraction of vertices
that are not (1, 3)-persistent is at most Cperﬁ where
Cper is a universal constant.
D. The Middle Layers, Typical Points, and Walk Re-
versibility

All proofs in this section are deferred to the appendix,

which we omit from this version of the paper. We refer
the reader to Section A.3 in the full version [35].

Definition II1.18. In a hypercube {0,1}¢, the c-middle
layers consist of all points with Hamming weight in the
range [d/2 £ \/4cdlog(d/e)]. Given a d-dimensional
hypercube H, we let H. C H denote the c-middle
layers of H.

We state a bound on the number of points in the
hypercube which lie in the middle layers. This follows
from a standard Chernoff bound argument.

Claim IIL19. For a d-dimensional hypercube H and
c>1, we have |H.| > (1 — (¢/d)°) - 2%

We now define the notion of typical points in [n].
Recall the distribution H, 4 (Definition III.8) over ran-
dom sub-hypercubes in [n]? and the distribution H,, 4(x)
(Definition II1.8) over random sub-hypercubes in [n]?
that contain x. A point x is c-typical if for most sub-
hypercubes containing x, the point x is present in their
c-middle layers.

Definition IIL.20 (Typical Points). Given ¢ > 1, a point
x € [n]? is called c-typical if
p H.]>1-(g/d)".
pBr B H] =1 (/)
Claim IIL.21 (Most Points are Typical). For any € €
(0,1) and ¢ > 6,
Pr [x is c-typical] > 1 — (g/d)*™°.
xER[n]d
Intuitively, a short random walk from a typical point

will always lead to point that is almost as typical. This
is formalized as follows.

Claim IIL.22 (Translations of Typical Points). Suppose
x € [n]? is c-typical. Then for a walk length T < \/d,
every point x' € supp(U, (x))Usupp(D-(x)) is (c+ \;H)'
typical.

Recall the three equivalent ways of expressing the
walk distribution in FactIIl.11. We define the random
walk probabilities only on points in the middle layers.
This setup allows for the approximate reversibility of
Lemma II1.24.

Definition IIL.23. Consider two vertices x < x' € [n]?
and a walk length 7. We define

Pxr (%)

= EHNH(X) 1 (X, x € HIOO) Pr

z~Upg - (X)

[z =x']| (1)

to be the probability of reaching x' by a random walk
from x, only counting the contribution when the random
walk is taken on a hypercube that contains X and X' in
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the 100-middle layers. We analogously define px -(x)
using the downward random walk distribution in H.

Consider x < x’ are two points in the middle layers.
The following lemma asserts that the probability of
reaching from x to x’ via an upward walk of length
< V/d is similar to the probability of reaching from x’
to x via downward walk of the same length.

Lemma II1.24 (Reversibility Lemma). For any points
x < x' € [n]* and walk length ¢ < \/d/log’(d/e), we
have

Pxe(x') = (1 £ 1og ™ d)pyr ¢(%).

IV. RED EDGES, BLUE EDGES, AND NICE
SUBGRAPHS

We now set the stage to prove Theorem I1.4. The first
definition is that of mostly-zero-below points. These are
points from which a downward random walk (Defini-
tion II.1) leads to a point where the function evaluates
to 0 with high probability.

Definition IV.1. A point z is called ¢-mostly-zero-below,
or L-mzb, if Pr,p,)[f(2z') = 0] > 0.9.

To appreciate the utility of {-mzb points, consider the
following scenario. Suppose x is a point with f(x) =1
and is (¢, §)-down-persistent (Definition I11.16) for some
small . Next suppose an upward random walk from x
reaches an /-mzb point z. Then, we claim that Step 4 of
Alg. 1 would succeed with constant probability in finding
a violated edge. An /¢-length downward walk from x, due
to down-persistence, would lead to a x’ with f(x’)
1 with probability at least 1 — (. The same /¢-length
downward walk from z would lead to a z’ with f(z') =0
with > 0.9 probability, since z is mostly-zero-below.
Since (x,z) are comparable, so would be (x’,z"). By a
union bound, (x’,z’) is a violation with probability at
least 0.9 — f3.

The next definition describes edges (x,y) of the
violation subgraph most of whose internal vertices lead
to mzb-points via an upward random walk. Uncreatively,
we call such edges red. Recall that I(x,y) = {z: x =
z =<y} denotes the closed interval of points from x to

y.
Definition IV.2. A violated edge (x,y) is called/colored
red for walk length { if

Pr Pr
z€l(x,y) z' ~U(z)

[z’ is (-mzb] > 0.01.

When ( is clear by context, we call the edge red.

There may be no ¢-mzb points for the lengths we
choose, that is, a downward walk from any point leads
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to a point where the function evaluates to 1. In that case,
Step 3 of Alg. | is poised to succeed; for any violating
edge (x,y), if we start from y then the downward
walk should give a violation. This motivates the next
definition which recognizes violated edges (x,y) most
of whose internal vertices lead to points where the
function evaluates to 1 via a downward random walk.
We call such edges blue.

Definition IV.3. A violated edge (x,y) is called/colored
blue for walk length ( if

Pr

Pr z') =1] > 0.01.
zcl(x,y) z' ~Dy(z) f( ) ] -

When ( is clear by context, we simply call the edge blue.

We note that a violating edge (x,y) may be borh red
and blue, or perhaps more problematically, neither red
nor blue. One of the key lemmas we prove is that we can
get our hands on a violation subgraph with sufficiently
many colored edges. If we have our hands on a large
violation subgraph G with few red edges (but has some
other properties), then we can find another comparable
sized violation subgraph [ all of whose edges are blue,
and whose maximum degrees are bounded by those in
G. The precise statement is given below. We defer the
proof of this lemma to §VII.

Lemma IV.4 (Red/Blue Lemma). Let G(X,Y, E) be
a violation subgraph and 1 < ¢ < \/d/log®(d/e) be a
walk length such that the following hold.

1) At most half the edges are red for walk length (.

2) All vertices in X U'Y are ({,log”°d)-up-
persistent.

3) All vertices in X UY are 99-typical.
Then there exists another violation
H(L,R,E') such that

1) All edges are blue for walk length ¢ and m(H) >
m(G)/7.

2) (L) <T(X) and T(R) <T(Y).

3) D(L) < D(X) and D(R) < D(Y).

subgraph

The next two definitions capture certain “nice” vio-
lation subgraphs consisting of either red or blue edges.
In §V, we show that if either of these subgraphs exist
then we can prove the tester works with the desired
probability. In §VI we show that one of these subgraphs
must exist. Recall, @ (x) is the thresholded degree of
x in the subgraph H and § > (loglognd)~! is fixed
(Remark II1.7).

Definition IV.5 ((o,7)-nice red violation subgraph).
Given a parameter o € (0,1) and a walk length T, a
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violation subgraph H(A, B, E) is called a (o, T)-nice
red violation subgraph if the following hold.

(a) All edges in H are red for walk length 7 — 1.

(b) All vertices in A are (T — 1,0.6)-down-persistent.
(¢c) o®py(x) < dY/? for all x € A.

(d) 03 cn®u(x)>e?-nd.d-00),

(e) di72=0() > 1 > 5. q1/2=0(6).

The first two conditions dictate that the subgraph is
nice with respect to the length of the walk. In particular,
the edges are red with respect to this length and further-
more the 1-vertices are down-persistent. As explained
before the definition of red edges, this property is crucial
for the success of Step 4 of Alg. 1. The fourth condition
says that the total thresholded degree of the 1-vertices in
H is large. L.e. for an average vertex x € A, there will
be many coordinates ¢ for which there is an i-edge in
H incident to x. The third condition says that the max
thresholded degree of vertices in A is not too large and
so the total thresholded degree from the fourth condition
must be somewhat spread amongst the vertices in A. The
final condition shows that the length of the walk is large
compared to o. Note, if 0 = ©(1) and the third bullet
point’s right hand side was 1 instead of \/E, we would
be in the case of a large matching of violated edges,
which was the “simple case” discussed in §I-B.

The next definition is the analogous case of blue
edges. When this type of subgraph exists we argue that
Step 3 of Alg. 1 succeeds. Note that Step 3 is the down-
ward path test (without a shift) and so we don’t need
a persistence property like condition (b) in the previous
definition. This definition has the same conditions on the
thresholded degree as the previous definition, but with
respect to the O-vertices of the subgraph.

Definition IV.6 ((o, 7)-nice blue violation subgraph).
Given a parameter o € (0,1) and a walk length T, a
violation subgraph H(A, B, E) is called a (o, T)-nice
blue violation subgraph if the following hold.

(a) All edges in H are blue for walk length T — 1.

(b) o®y(y) < d'/? forall y € B.

(€) 0 ep ®uly) > -nt-d—O0.

(d) dl/2—O(§) >r>0- d1/2—0(5)_

The following lemma captures the utility of the above
definitions. It’s proof can be found in §V.

Lemma IV.7 (Nice Subgraphs and Random Walks).
Suppose for a power of two T > 2, there exists a (o, T)-
nice red subgraph or a (o, 7)-nice blue subgraph. Then

Alg. 1 finds a violating pair, and thus rejects f, with
probability at least €2 - d—(1/2+0(9)),

The following lemma shows that one of the two nice
subgraphs always exists. It’s proof can be found in §VI.

Lemma IV.8 (Existence of nice subgraphs). Let
n,e~t < poly(d). Suppose f: [n]* — {0, 1} is e-far
from monotone and Iy < 9v/d. Let § > m be a
parameter. There exists 0 < 01 < 09 < 1, a violation
subgraph H(A, B, E), and a power of two T > 2, such
that either H is a (o1, T)-nice red subgraph or a (o2, T)-
nice blue subgraph.

V. TESTER ANALYSIS

In this section we prove Theorem IL.4. First, in §V-A
we prove Lemma V.7 which is the main tester analysis.
Then in §V-B we combine LemmalV.7, LemmalV.8
(which will be proven in §VI), and Claim III.15 to prove
Theorem I1.4.

A. Main Analysis: Proof of LemmalIV.7

There are two cases depending on whether we have
a nice red subgraph or a nice blue subgraph. In Case 1,
Step 4 of Alg. 1 proves the lemma while in Case 2, Step
3 of Alg. 1 proves the lemma. The proofs are similar,
but we provide both for completeness.

1) Case 1: H is a (o,7)-nice red subgraph: Since
7 is a power of 2, the tester in Alg. 1 chooses it with
probability log ™' d. Thus, in the rest of the analysis we
will condition on this event.

Given x € A, let Cx C [d] denote the set of
coordinates for which x has an outgoing edge in H. Note
|Cx] = ®g(x). Recall the upward path + downward
shift test described in Step 4 of Alg. |1 and the walk
distribution U, _1(x) defined in Definition II.1. We first
lower bound the probability that x € A and RNCyx #
where x is chosen uniformly by the tester and R C [d] is
a random set of 7 coordinates. Let £; denote this event.
The main calculation is to lower bound the probability
of this event as follows.

Pr[&)] = id > Pr[RNCy # 0]
x€EA
o5
% e (2]

The RHS can only decrease if we replace 7 with its

lower bound (Deﬁmtlon IV.5, (e)) of o-d*/2=90) Also,

d1205|C\ G’@H()
observe that = = Ji/stom < 1 using our

upper bound, o®p(x) < d1/2 (Definition IV.5, (c)).
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Now, using e™* < 1 — % for x < 1, the exponential

term in the RHS is at most 1 — 25‘1;117&)5)

LY e
XEA

82

J1/2+0(5)

yielding

Prlé 2 srom

2

(Definition IV.5, (d))

The event £; asserts that the tester has chosen a point
x € A and there is at least one r € R for which there
exists a red edge (x,x+ae,) € FE for some integer a > 0
in the subgraph H. Fix the smallest such » € RN Cyx
and the corresponding edge in H.

Recall the random walk process in Definition II.1. We
define the following good events.

o & Step (2a) chooses ¢, satisfying: if a < n/4,
then 29 € [2a,4al; if a > n/4, then 29" = n.
E;: Step (2b) chooses the interval I, O [x,, %, +a].
E4: Step (2¢) chooses ¢, uniformly® from [x,., X, +

al.
e &y is (T — 1)-mostly-zero-below as per Defini-
tion IV.1.

& f(y —s) =0 for s chosen in Step 4 of Alg. 1
from DS, _1(x).
Er: f(x —s) =1 for s chosen in Step 4 of Alg. |
from DS;_1(x).

Firstly, note that Pr[€,] = log™'n for both cases
of the edge length, a. Now, suppose a < n/4. Then,
Pr[€s | &] > 1/2 by the condition ¢, > 2a and
Pri&s | &,&] > 1/4 by the condition ¢, < 4a. If
a > n/4, then Pr[€s | £] = 1, since in this case I, = [n]
and again Pr[&y | &, &3] > 1/4 since [x,, X, + a] is at
least a fourth of the entire line, [n].

Now, since the edge (x,x + ae,) is red (Defini-
tion IV.2) for walk length 7 — 1, we have Pr[&s | &4] >
0.01.

Since y is (7 — 1)-mostly-zero-below, if we sample s’
from DS, _1(y) we get f(y—s’) = 0 with probability >
0.9. Now note that DS, _1(y) and DS, _;(x) differ only
when the set R C [d] chosen in Definition II.1 contains
a coordinate in supp(y — x). Since |supp(y — x)| < 7,
|R| < 7, and 7 = o(v/d), we have Prg[R N supp(y —
x) # (] < 72/d = o(1). Therefore, when s is drawn

SWe point out the following minor technicality in our presentation.
From Definition IL.1, note that ¢, is chosen from I, \ {x,} and so
technically we will never have ¢, = x,-. However, note that Step 4 of
Alg. 1 also runs the upward path + downward shift tester using walk
length 7 — 1 and this is equivalent to setting ¢,, = X, in this analysis,
so that the first step of the walk is of length 0. Thus, it is sound in
this analysis to think of ¢, as uniformly chosen from 7, and we make
this simplification for ease of reading.
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from DS, _1(x), we get f(y —s) = 0 with probability

> 0.9(1 — o(1)) > 0.8. That is, Pr[& | &] > 0.8.
Finally, all points in A are (7—1, 0.6)-down-persistent

(Definition I11.16) and so Pr[&; | x € A] > 0.4.

Now, let’s put everything together. The final success

probability of the tester is at least Pr[& A £7], which

by a union bound and the reasoning above, is at least

5
(1= Pr[=& | &) —Pr[=&r | x € A]) - /\ ]
2 1 1 71
> (1 =02-06) —o5m o0 5 1 T
> (1—0.2—0.6) 417200 logn 2 100
2
g

= J1/2+0()

where in the last inequality we used n < poly(d). This
completes the proof when the nice subgraph is red.

2) Case 2: H is a (o,7)-nice blue subgraph: As in
Case 1, since 7 is a power of 2, the tester in Alg. 1
chooses it with probability log™' d. Thus, in the rest of
the analysis we will condition on this event. Given y €
B, let Cy C [d] denote the set of coordinates for which
y has an incoming edge in H. Note |Cy| = Py (y).
Recall the downward path tester described in Step 3
of Alg. 1 and the walk distribution D,_;(y) defined in
Definition II.1. We first lower bound the probability that
y € B and RNCy # () where y is chosen uniformly by
the tester and R C [d] is a random set of 7 coordinates.
Let & denote this event. The main calculation is to lower
bound the probability of this event as follows.

Pr(&y] = — ) Pr[RNCy # 0]
yeB
1 ICyl\"
ZMZP<1d>]
yeB
7|Cy|
>0 3 [1-ew (7))
yeB
As in Case 1, the RHS can only decrease if we re-

place 7 with its lower bound (Definition IV.6, (d)) of

o -d'/?=90) and a similar argument as in Case 1 gives
o
yeB
2
> o 3)
< J1/2+0(5)

(Definition IV.6, (¢))

As in Case 1, the event &; says that the tester has
chosen a point y € B and there exists € R such that
there exists an edge (y —ae,,y) € F in the subgraph H
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for some integer a > 0. Fix the smallest r € RNCy, and
the corresponding edge in H. Now define the following
good events for the remainder of the tester analysis.

o &: Step (2a) chooses ¢, satisfying: if a < n/4,

then 29 € [2a, 4a]; if a > n/4, then 29 = n.

o &3: Step (2b) chooses the interval I, D [y, —a, y,].

o &4t Step (2¢) chooses ¢, uniformly® from [yr —

a,yy)-

° 55: f(X) =1.

The final success probability of the tester is at least
Pr[A2_,&]. Firstly, note that Pr[€,] = log™' n for both
cases of the edge length, a. Suppose a < n/4. Then,
Pr[& | &] > 1/2 by the condition ¢, > 2a and
Pri& | &,E&] > 1/4 by the condition ¢, < 4a. If
a > n/4, then Pr[€;3 | &] = 1, since in this case I, = [n]
and again Pr[&, | &, &3] > 1/4.

Finally, since the edge (y — ae,,y) is blue for walk
length 7 — 1, by definition (Definition IV.3) we have
Pr[&5 | £4] > 0.01. Putting everything together, we have

5 2
5 1 1 1 1
Pr l/\l‘%] d1/2+0G) "logn 2 4 100

52

= J1/2+0(3)

Vv

where in the last step we used n < poly(d) and this
completes the proof when the nice subgraph is blue.
Together, the cases complete the proof of Lemma IV.7.

B. Tying it Together: Proof of Theorem I1.4

Suppose f : [n]? — {0,1} is e-far from being
monotone. Recall the definitions of [ f,If_ in Defini-
tion IT1.13. By Claim IIL15, if I; > 9v/d, then I; > V/d
and so the tester (Alg. 1) finds a violation in step (2)
when 7 = 1 with probability Q(d~'/2). Thus, we will
assume [y < 9v/d and so we may invoke LemmalV.8
which gives us either a nice red subgraph or a nice
blue subgraph. Lemma IV.7 then proves that Alg. 1
finds a violating pair and rejects with probability at least
g2 . d~(1/2+0)) This proves Theorem I1.4.

VI. FINDING NICE SUBGRAPHS

In this section we prove Lemma I'V.8 which we restate
below.

Lemma IV.8 (Existence of nice subgraphs). Let
n,e~! < poly(d). Suppose f: [n]? — {0,1} is e-far

%The same minor technicality arises here as in the previous subsec-
tion. We will never have ¢, =y, as per Definition II.1, but Step 3 of
Alg. 1 also runs the downward path tester with walk length 7 — 1 and
this is equivalent to setting ¢, =y in this analysis. Thus, it is again
sound in this analysis to think of ¢, being uniformly chosen from 7.

from monotone and ff < 9vVd. Let § > m be a
parameter. There exists 0 < o1 < 09 < 1, a violation
subgraph H(A, B, E), and a power of two T > 2, such
that either H is a (o1, T)-nice red subgraph or a (o2, T)-
nice blue subgraph.

The proof proceeds over multiple steps and constitutes
a key technical contribution of the paper. We give a
sketch of what is forthcoming.

e In §VI-A we describe the construction of a seed
regular violation subgraph G. This uses the directed
isoperimetric result Theorem III.4 proved in [5] and
a “peeling argument” not unlike that present in [3].
At the end of this section, we will fix the parameters
01,09 and the walk length 7. In particular, the
length 7 will be defined by the larger side of this
violating bipartite graph.

« In §VI-B, we obtain a regular violating graph H that
has persistence properties with respect to the walk
length 7. In [3] and [5], one obtained this violating
graph by simply deleting the non-persistent points
from the seed violation subgraph. In our case, since
we choose the walk length depending on the larger
side, we need to be careful. We use the idea of
“translating violation subgraphs” on G (repeatedly)
to find a different violation subgraph H with the
desired persistence properties.

e In §VI-C, we use the graph H to obtain either
a nice red subgraph [, or a nice blue subgraph
H,. If most of the edges in H were red, then a
simple surgery on H itself gives us H;. On the
other hand, if H has few red edges (but has the
persistence properties as guaranteed), then we apply
the red/blue lemma (Lemma IV.4) to obtain the
desired nice blue-subgraph Hs. The proof of the
red/blue lemma, which is present in §VII, uses the
translating violation subgraphs idea as well.

Throughout, we assume f : [n]? — {0,1} is a

function which is e-far from being monotone, Iy < 9d
and n,e~! < poly(d). In particular, we fix a constant c

so that nd < d°. We also fix a § ~ m =o(1).

A. Peeling Argument to Obtain Seed Regular Violation
Subgraph

Recall the definition of the Talagrand objective (Def-
inition IIL5) Tal(G) of a violation subgraph G =
(X,Y, E). Let G denote the violation subgraph formed
by all violating edges in the fully augmented hyper-
grid. Theorem 1.4 in [5] (paraphrased in this paper
as Theorem I11.4) is that Tal(G) = Q(en?/logn). Also
recall the definitions in Definition III.2. The following
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lemma asserts that there exists a subgraph of Gy whose
Talagrand objective is not much lower, but satisfies
certain regularity properties.

Lemma VI.1 (Seed Regular Violation Subgraph). There
exists a violation subgraph G(X,Y , E) satisfying the
following properties.

(a) Tal(G) >¢e-d=° - nd.

(b) m(G) > d=3* max(| X |®(X)['(X),

Y[2(Y)D(Y)).
(c) All vertices in X UY are 98-typical.
(d) |X],IY] > g 0.

Let us make a few comments before proving the above
lemma. Condition (a) shows that the Talagrand objective
degrades only by a d°(*) factor. Condition (b) shows that
the graph is nearly regular since the RHS term without
the d=°() term is the maximum value of m(G). This is
because ¢ (X )I'(X) is an upper bound on the maximum
degree of any vertex x € X. Indeed, if one can prove a
stronger lemma which replaces the d°(*) terms in (a) and
(b) by polylog(d)’s, then the remainder of our analysis
could be easily modified to give a O(e~2/d) tester.

We need a few tools to prove this lemma. Our first
claim is a consequence of the subadditivity of the square
root function.

Claim VL2. Consider a partition of (the edges of)
a violation subgraph G into Hy,Hs, ..., Hy. Then
> i<k, Tal(Hj) > Tal(G).

Proof. Let x; denote the coloring of the subgraph
H; that obtains the minimum Tal(H;). Since the
H,,..., Hy form a partition, we can aggregate the colors
to get a coloring x of G.

Consider any z € X UY. Let ®p, ,,(z) be the
thresholded degree of z, restricted to the edges colored
by x;. By the subadditivity of the square root func-

tion, > iy \/Pu,x;(2) = \/Di<h Py ox;(2). Ob-

serve that thresholded degrees are also subadditive, so
> i<k ®H;.x;(2) = Py (2). Hence,

SmaH) =3 Y \/m

j<k j<kzeXUY

= Z Z\/ q)vaXj(Z)

ZEXUY j<k

> Y JPer(@) > TalG). @)

zeXUY

O

Remark VI.3. The proof of Claim VI.2 crucially uses
the fact that in the definition of Tal(), we minimize over
all possible colorings x’s of the edges. In particular, if
we had defined Tal(G) only with respect to the all ones
or the all zeros coloring, then the above proof fails. In the
remainder of the paper, we will only be using the x = 1
or x = 0 colorings, and the curious reader may wonder
why we need the definition of Tal(G) to minimize over all
colorings. This is exactly the point where we need it. We
make this remark because the “uncolored” isoperimetric
theorem is much easier to prove than the “colored”
version, but the colored/robust version is essential for
the tester analysis.

Our next step is a simple bucketing argument.

Claim VI4. Consider a violation subgraph G =
(X,Y, E). Both of the following are true.

1) There exists a subgraph G' = (X', Y',E') of
G such that Tal(G') > §*Tal(G) and m(G') >
(nd)~°|X'|®(X")I(X).

2) There exists a subgraph G' = (X')Y' E’) of
G such that Tal(G') > §*Tal(G) and m(G') >
(nd)=°|[Y'|2(Y")T(Y").

Proof. We prove item (1) and the proof of item (2) is
analogous.

For convenience, we assume that § is the reciprocal
of a natural number. For each x € X, we bucket the
incident edges as follows. First, for each a € [1/4], let
S, be the set of dimensions ¢, such that the i-degree of
x is in the range [n(¢~19 na%). Note that Si,..., S /s
forms a partition of the set of coordinates, [d]. Now, for
each a,b € [1/4], let the (a,b) edge bucket of x, denoted
E. x> be defined as follows. If |S,| € [d(®~19 d¥),
then E, 1 « is the set of all edges incident to x along
dimensions in S,. If [S,| ¢ [d®~1% d"), then F, 4 =
(). Observe {E,x: a,b € [1/4]} partitions the edges
incident to x.

Now, let G/, denote the subgraph formed by the
edge set Uxex g x. Let X, be the set of ver-
tices in X with non-zero degree in G, ;. Observe
that ®(X,;) < d* and I'(X,;) < n®. Moreover,
the degree of each x € X, is at least d(®~1% x
n(@=1% > (nd)=0®(X, )T (X,p). Hence, m(Gop) >
(nd)~0| X 00| ®( X0 )T (Xup)-

Finally, by construction, the G, subgraphs parti-
tion the edges of G. Hence, by Claim VI.2 we have
>apeqiys) Tal(Gap) = Tal(G). By averaging, there ex-
ists some choice of a, b such that Tal(G, ;) > 6*Tal(G).
This gives the desired subgraph G’. O
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Claim VI.4, part 1 above gives the regularity condition
only with respect to X, and part 2 gives the analogous
guarantee with respect to Y, but the trouble is in getting
both simultaneously. We do an iterative construction
using Claim VI.4 to get the simultaneous guarantee.

Proof. (part (a) and (b) of Lemma VI.1) By the robust di-
rected Talagrand theorem for hypergrids (Theorem III1.4),
there is a violation subgraph Gy = (X, Yy, Ey) such
that Tal(Gy) = Q(en?/logn). We construct a series of
subgraphs Gy 2 G; 2 G2 D --- D G, as follows.

Let¢ > 1. If ¢ is odd, we apply item (1) of Claim V1.4
to G;_1 to get G;(X;,Y;, E;) with the regularity condi-
tion on Xj;. If 7 is even, we apply item (2) of Claim VI.4
to G;_1 to get G;(X;,Y;, E;) with the regularity con-
dition on Y;. If i > 1 and m(G;) > (nd)"°m(Gi_1),
then we terminate the series. By Claim VI.4, the series
satisfies the following three properties for all ¢ > 1.

o Tal(G;) = Q(6%en/logn).

o If i is odd, m(G;) > (nd)~%|X;|®(X,)T(X;). If

i is even, m(G;) > (nd)~°|Y;|®(Y;)I(Y;).

o If the series has not terminated by step ¢, then

m(Gl) < (nd)idm(Gifl).

The first two statements hold by the guarantees of
Claim V1.4 and the fact that Tal(Gy) = Q(sn?/logn).
The third statement holds simply by the termination
condition for the sequence. The trivial bound on the
number of edges is m(Go) < nd - n. The third bullet
point yields m(G;) < (nd)~% -nd - n?, if the series has
not terminated by step <.

Claim VL5. The series terminates in at most 3/ steps.

Proof. Suppose not. Noting that m(G;) > Tal(G;)
(Observation II1.6), we get the following chain of in-
equalities using the properties of our subgraph graph
G5

— 9(66/55nd/ logn)

—  (nd)"2 = Q(6%%/logn)

Note that we may assume € > 1/d and so C'e/logn >
(nd)~! for any constant C. Thus we have (nd)~! >
§6/9. Given that § > 1/loglognd, this inequality is a
contradiction. O

By the previous claim the series terminates in some
r < 3/6 steps, producing G.(X,,Y,, E,), which we
claim has the desired properties to prove conditions (a)
and (b) of LemmaVLI. Since r < 3/4, Tal(G,) =
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Q(6%%en?/logn). Note that since § > 1/loglognd,
we have

59 > (loglog ncl)fg (nd)_%'
> (nd)_62 > (nd)~% -logn > d~“’logn

log loglog nd
log nd

where the second to last step holds because
6 log log log nd 1 3 . .
Tog d < |\ ogtogna) < 07 The last inequality

used nd < d°. This proves condition (a). Towards
proving condition (b), note that C'§%/%/logn > (nd)~°
for any constant C'.

Let’s assume without loss of generality that r is even.
Thus we have m(G,) > (nd)~°|Y,|®(Y,)I(Y;) by
the second bullet point above. Next, since the series
terminated at step r, we have

m(G,) > (nd)_‘sm(G,«_l)
2 (nd>_26|Xr—1"I)(Xr—l)F(Xr—l)
> (nd)™?|X,[®(X,)T(X,)

where the second inequality is again by the second bullet
point above and the fact that ¢ — 1 is odd and the third
inequality is simply because G is a subgraph of G,._.
Again using nd < d°, we have (nd)~% > d~° and
so we get that GG, satisfies conditions (a) and (b) of
Lemma VI.1. O

Proof. (Conditions (c¢) and (d) LemmaVI.1) To ob-
tain condition (c), we simply remove the non-typical
points. Recall the definition of c-typical points (Defi-
nition II1.20). By Claim III.21, the number of points
that are not 98-typical is at most (¢/d)**n?. Thus,
removing all such vertices can decrease Tal(G) by at
most (£/d)*n?-v/d which is negligible compared to the
RHS in condition (a). Thus, we remove all such vertices
from G and henceforth assume that all of X UY is
98-typical.

Condition (d) follows from condition (a). Consider the
constant coloring x = 1 and observe that

X |Vd > Taly=1(G) > Tal(G) > & - d~ - n.

where the first inequality follows from the trivial ob-
servation that the maximum ®¢(x) can be is d. Using
the coloring x = 0 proves the same lower bound for
Y| O

1) Choice of the walk length: We end this section by
specifying what the parameters 01,09 and 7 are going
to be in Lemma IV.8. We now make the assumption
|X| < |Y|. Given Remark IL.3, this is without loss of
generality; this fact would be true either in f or in g,
and running steps 2, 3, 5 on f is equivalent to running

Authorized licensed use limited to: Dartmouth College Library. Downloaded on March 15,2024 at 15:46:34 UTC from IEEE Xplore. Restrictions apply.



steps 2, 3, 4 on g. The violation subgraphs for f and g
are isomorphic. Then,

and set 7 to be the unique power of two such that

1
Q{UY . d1/27766.| <7-1< {UY . d1/27766"|'

We conclude the subsection by establishing the fol-
lowing upper bound on the number of vertices which
are not up-persistent.

Claim VL.6. We may assume that

o the number of vertices x € X where f(x) = 1
that are not (1 —1,log ™" d)-up-persistent is at most
d=% . |X|, and

o the number of vertices y € Y where f(y) = 0
that are not (1 —1,log™° d)-up-persistent is at most
d=5 . |Y|.

Proof. The statement for points where f(x) = 1 is
implied by item (4) of Lemma VI.1, for otherwise the
tester succeeds with the desired probability when it runs
the upward path tester with walk length 7 — 1 (step (2)
of Alg. 1).

Now we prove the statement for points where f(y)
0. By Claim II1.17, the total number of (7 —1,log™° d
non-persistent vertices is at most Cper7~log5 d- ﬁ nt <
oy -d=%.n? where we have simply used log® d < d
and our definition of 7. O

~—

N

B. Using ‘Persist-or-Blow-up’ Lemma to obtain Down-
Persistence

Lemma VI.1 provides a seed violation subgraph which
has a large Talagrand objective and has regularity prop-
erties. Claim VI.6 shows that we may assume these
vertices are up-persistent with respect to walk length of
7 — 1. However, we may not have down persistence.
In particular, it could be | X| < |Y| and if we try to
apply Claim III.17 and remove all nodes from X which
are not (7 — 1,0.6)-down-persistent, we may end up
removing everything. To obtain a subgraph with down-
persistence properties, we need to apply a translation
procedure which is encapsulated in the lemma below.
The proof of the lemma is deferred to §VIII.

Lemma V1.7 (Persist-or-Blow-up Lemma). Consider a
violation subgraph G = (X,Y , E) such that all vertices
in G are c-typical where ¢ < 99 and (£,log™° d)-up
persistent where 1 < { < +/d/log®(d/). Then, there
exists a violation subgraph G' = (X', Y’ E") where all

vertices are (c + %)—typical and satisfying one of the
following conditions.

1) Down-persistent case:
a) All vertices in X' are (¢,0.6)-down persistent.
b) m(G") > m(G)/log” d.
c¢) D(X') < D(X), and Vi € [d|,I';(X’) <
I';(X)
d) D(Y') < D(Y), and ¥i € [d], Ti(Y") <
(Y.

2) Blow-up case:
a) m(G") > 2(1 —3log~*d) - m(Q).
b) D(X') < D(X), and Vi € [d],T:(X") <
Ii(X)
¢) D(Y') < 2D(Y), and ¥i € [d], T;(Y") <
2I,(Y).

That is, the application of the above lemma either
gives the violation subgraph we need, or it gives us a
violation subgraph with around double the edges. In the
remainder of this section we use Lemma VI.7 and the
graph G(X,Y,E) derived in the previous section to
prove the following lemma.

Lemma VL8 (Down-Persistent Violation Subgraph). Let
G(X,Y,E) be the subgraph asserted in Lemma VI.I.
There exists a natural number s < log3 d and a violation
subgraph H(A, B, E) with the following properties.

1) m(H) > 2° {4,

2) T(A) <T(X) and T'(B) < 2°T(Y).

3) D(A) < D(X) and D(B) < 2°D(Y).

4) All vertices in AU B are (1 — 1,log™” d)-up-
persistent and 99-typical.

5) All vertices in A are (T — 1,0.6)-down-persistent.

Proof. We use Lemma V1.7 to define the following pro-
cess generating a sequence of violation subgraphs. The
initial graph is Gy = (X, Yo, Eg) which is the seed
regular violation subgraph obtained from Lemma VI.1.

For each i > 1:

1) Obtain G)_, by removing all vertices from
X, 1 UY;_, that are not (7 — 1,log ™ d)-up-
persistent.

2) Invoke Lemma VI.7 with walk length 7 — 1 on
G)_, to obtain G; = (X,,Y;, E;).

3) If G; satisfies the down persistence condition
of Lemma VI.7 then halt and return G;.

4) If G; satisfies the blowup condition of
Lemma VI.7, then continue.
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By Lemma V1.7, if the process does not halt on step
1, then we have the following recurrences.
e m(G;) > 2(1 —3log™3d) - m(G,_,).
e D(X;) < D(X;-1), I'(X;) <T(Xi-1), D(Y3)
2D(Y;-1), I'(Y;) < 2I(Yi-1).
Furthermore, we have the following claim that bounds
the number of edges lost in step (1).

<

Claim VLY. For every i > 1, we have m(G)_;) >

m(Gifl) — 20 . gi-1. m(G)

Proof. By Claim VI.6, the number of vertices we remove
from X;_; in step (1) is at most d~%¢ - | X| and the
number of vertices we remove from Y;_; in step (1) is
at most d~%-|Y’|. The number of edges we remove by
deleting these vertices from Y;_; is at most

d_666|Y|D(1’;‘,1) < d—6062i—1|Y|D(Y)

< d327 m(@) (5)

where in the second inequality we used D(Y) <
®(Y)I'(Y) and the regularity property on G (item (2)
of Lemma VI.1).

An analogous argument bounds the number of re-
moved edges when we delete non-persistent vertices
from X;_;. Thus the total number of edges removed
is at most d—2°°2"1m(Q). O

Claim VL10. If i < log®d and the process has not
halted by step i, then m(G;) > Q(2'm(Q)).

Proof. For brevity, let « 2(1 — 3log™*d) and
B = d=2m(G). Using the above bounds, we get the
recurrence

m(Gi) > a-m(Gi_y) > a(m(Gi—1) — f2'71).

Expanding this recurrence yields m(G;) > a'm(G) —
B375_ @l - 277, Observe that the subtracted term can
be bounded as

BY ol 279 =d?*2'm(G) > (1 - 3log™*d)’
j=1

j=1
< d=92'm(G)

simply using the fact that i < log®d < d°. The first
term is

a'm(G) = 2'(1 — 3log > d)'m(G) > C - 2'm(G)

for some constant C'. Combining the above two bounds
completes the proof. O

Claim VL11. The above process halts in s < log®d
iterations.
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Proof. Suppose that the above process has not halted by
step © = log3 d. By the previous claim, the number of
edges in G; is at least C - 2'm(G) = C - d°8” 4m(Q)
for some constant C. By Observation III.6, note that
m(G) > Tal(G) and thus is > ¢ - d~ - n? by item
(1) of Lemma VI.1. Thus, the number of edges in G; is
at least C - ¢ - d°8” 4=<3pd_Note that the total number
of edges in the fully augmented hypergrid is at most
nd - n®. Moreover, recall that we are assuming nd < d°
and £ > d~1/2. Therefore, m(G;) > nd - n? and this is
a contradiction. O

By Claim VI.11 ar}d Lemma VL7, the process halts
in some s < log3 d number of steps producing
G+(Xs,Ys, Es) with the following properties.

m(Gy) > 2° - .

All vertices in X are (7 — 1, 0.6)-down-persistent.
I'(X;) <T'(X) and T'(Y;) < 2°T(Y).

D(X,) < D(X) and D(Y;) <2°D(Y).

Note that by Lemma VI.7 and (c¢) of Lemma VIL.1, all
vertices in Gy, ...,G, are (98 + %)—typieal. Moreover,

by our choice of 7, we have s < v/d and so all vertices
in Gy,...,G are 99-typical.

One last time, we remove all vertices in X, U Y
that are not (7 — 1,log™° d)-up-persistent and obtain our
final graph H(A, B, E). Using a similar argument made
above in (5), the number of edges that are removed by
deleting the non-persistent vertices from Yy is at most

d~5C|Y|D(Y;) < 2°d"%|Y[D(Y)
< 2°d73°m(Q)
< d=3°m(G,)log®d
< A2 (G,)
and an analogous argument bounds the number of edges
lost when we remove the non-persistent vertices from

X . Thus we have m(H) > m(Gy)(1—d=¢%) > 2¢ ;Zé?ji
and this completes the proof of Lemma VI.8.

C. Using Red/Blue Lemma to Obtain the Final Red or
Blue Nice Subgraph

In this section, we prove LemmalIV.8 using the viola-
tion subgraph H(A, B, F) obtained in the previous sec-
tion (Lemma VI.8) and the red/blue lemma, Lemma IV.4.
We split into two cases depending on how many edges
in H are red.

1) Case 1: At least half the edges of H are red: In
this case, we consider the graph H; by simply removing
all the non-red edges. We claim that H; makes progress
towards a (o1, 7)-nice red subgraph (Definition IV.5).
Condition (a) holds by definition. Condition (b) is
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satisfied due to Lemma VI.8, condition 5). Condition
(e) is satisfied because 7 — 1 > 0.50yd5~ 7% and
oy > ox = o1. We need to establish condition (c)
and (d). That is, we need to establish

(©) ox -Pp(x) < Vd forall x € A
(d) ox erA Pp(x)>e?-nd. d—6¢o

Let A’ C A be the vertices x € A which have
Dp(x) > £~ If |A’| > d—°%| X |, then simply consider
H,(A’,B,E') by deleting all vertices not in A’ from
A. Conditions (a), (b), (e) still hold, and (c) holds by
design. Furthermore,

vd

ox

> Tp,(x) = d X -

x€A’

which implies

_5e e
ox Z ¢H1(X)Zd d(s'm'nd'\/g
x€A’

:E'nd 'd76c5

where we used Lemma VL1, part (d) for the lower
bound on | X|. Note that this implies something slightly
stronger than condition (d) above (the exponent of ¢ is
D).

Therefore, we may assume |A’| < d~5|X|. In this
case, let H; = (A\ A’, B, E’) where we simply remove
the A’ vertices. The number of edges this destroys is at
most

A D(A)|X| < d™** D(X)|X]|
< d—2c6m(G)
< d~m(H)

where in the second inequality we used D(X) <
®(X)T'(X) and the regularity property (Lemma VI.I,
property (b)) of G. Thus, the number of edges we’ve
discarded is negligible, and condition (c) holds. In par-
ticular, the number of edges in H; is at least m(H)/2.
We now prove condition (d) also holds.

Claim VL.12. ox ZxEA\A’ Dp, (X) > e2.nd. g6

Proof. Forany x € A\ A’, we have @y, (x) > o and

thus Y, 4 a0 Par(x) > "2, Since T(A) < T(X)

we have

m(H)

25 - m(QG)
~ (X)) log” d
4 IXO(X)0(X)
- 2D(X)log"d
> d 11X |9 (X)
>d0 ) Da(x). (6)

xeX

where in the second inequality we used (P1) to lower
bound the number of edges in H with that of G. In the
third inequality we used the regularity property (property
(b) of Lemma VI.1), in the fourth we used d®® >
21og” d for large enough d, and the fifth inequality uses
the trivial upper bound ®(X) > ®(x) for all x € X.

Now we apply the fact (Lemma VI.1, condition 1) that
Tal(G) is large. Using the coloring x = 1 for edges in
G, we get

> Vea(x) = Tal(G) > e-d - nf
xeX
which implies

Evex|v@a] = =L

ox

Jensen’s inequality gives

2. d—2c<§

Exex[®Pc(x)] > B

which implies

X =
and so
ox Z Dg(x) > 2d2pd
xeX
Plugging into (6) proves the claim. O

2) Case 2: At most half the edges of H are red: In
this case we invoke the Red/Blue lemma, LemmaIV.4 to
obtain a violation subgraph Hy = (L, R, E’) with the
following key properties.

(P1) All edges are blue and m(H) > 23%.

(P2) T'(R) <T'(B)<2°-T'(Y).

(P3) D(R) < D(B)<2%-D(Y).

We claim that H; makes progress towards a (os,7)-
nice blue subgraph (Definition I'V.6). Condition (a) holds
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by definition. Condition (d) is satisfied because 7 >
0.50yd*5 7 and oy = o5. We need to establish
condition (b) and (c). That is, we need to establish

(b) oy - Pu(y) < Vd forall x € R
(¢) oy ZyER Op(y) >e?-nd.d=0°
As in Case 1, we begin by removing low degree vertices.
Let R’ C R be the vertices y € R which have &y (y) >
U—\/E. If |R'| > d=°%%|Y|, then we would just focus on
Hy(R/,L,E’) and this would satisfy (b) and (c) for a
very similar reason as in Case 1. And so, we may assume
|R/| is smaller than d—°°°|Y| and we define Ho(L, R\
R’,E’), and this leads to a negligible decrease in the
number of edges. Condition (b) holds by design, and the
proof that condition (c) holds is similar. We provide it
for completeness.

Claim VL13. oy > c p\ g @, (y) > €2 -0 - d70,

Proof. For any y € R\ R/, we have &y, (y) > %
and thus 37 g\ g Pa,(y) = mlfgg)p. Since T'(R) <
25 - T(Y) we have

—

D m(H)
yER\R/ ‘I’H(Y) - 2F(R)
25 -m(G)

T 25 14T(Y) log” d

- d=39Y |e(Y)T(Y)
141(Y ) log” d

> d~ Y |0(Y)

>d Y Ba(y) (7)

yeY

where in the second inequality we used Lemma VI.8,
part 1, to lower bound the number of edges in H with
that of G, the original seed graph from Lemma VI.1.
In the third inequality we used the regularity property
(property 2 of Lemma VI.1), in the fourth we used d°® >>
141og” d for large enough d, and the fifth inequality uses
the trivial upper bound ®(Y") > ®g(y) forally € Y.

The rest of the proof is the same as Case 1 except we
apply the coloring xy = 0 for edges in G. We omit this
very similar calculation. O

These two cases conclude the proof of Lemma IV.8.
All that remains is to prove the Red/Blue
lemma, Lemma IV.4 and the Persist-or-Blow-up
lemma, Lemma VI.7. We prove these in the subsequent
two sections, and both of these use the translation of
violation subgraphs idea.

VII. PROOF OF THE RED/BLUE LEMMA, LEMMA IV.4
Let us recall the red/blue lemma.

Lemma IV4 (Red/Blue Lemma). Let G(X,Y,E) be
a violation subgraph and 1 < { < \/d/log’(d/e) be a
walk length such that the following hold.

1) At most half the edges are red for walk length (.

2) All vertices in X U'Y are ({,log°d)-up-
persistent.

3) All vertices in X UY are 99-typical.
Then there exists another violation
H(L,R, E') such that

1) All edges are blue for walk length ¢ and m(H) >
m(G)/7.

2) (L) <T(X) and T(R) < T(Y).

3) D(L) < D(X) and D(R) < D(Y).

subgraph

Proof. We first recall the definition of px ¢(x’) in Def-
inition II1.23. For a fixed x, consider the process of
sampling a hypercube H ~ H(x) and then sampling
z ~ Up ¢(x). Recall from FactIIL.11 that this is one
of three equivalent ways of expressing our random walk
distribution. Given x, x’, ¢, we have

pxe(x') =Pr[x,x’ € Hyg and z = x'].

We use these values to set up a flow problem as follows.

Recall the definition of red and blue edges (Defini-
tion IV.2 and Definition IV.3). Let B denote the set
of all edges in the fully augmented hypergrid that are
blue for walk length ¢. For every non-red edge (x,y)
of G and every shift s € supp(USe(x)), if the edge
e = (x+s,y +s) is blue, then we put px ¢(x + s) units
of flow on e.

Claim VIIL.1. Every non-red edge of G inserts at least
0.95 units of flow in B.

Proof. Fix a non-red edge (x,y), and let i denote its
dimension. Generate H ~ H(x) and s ~ USk ¢(x).
Note that it is equivalent to directly sample s ~ US,(x).
We then consider the random edge e = (x+s,y+s). We
setx’ = x+sand y’ = y+s. Let us define the following
series of events. (i) &1:s; = 0. (i) & f(x') = 1. (iii)
Es: f(y') = 0. (iv) &4 at least half of I(x',y’) is not ¢-
mostly-zero-below, (v) &5: x,x’ € Hygo. We will show
that whenever &, &, and &, occur, the edge (x',y’)
is blue by definition. Therefore, recalling the definition
of px¢(x’), the edge (x,y) inserts at least Pr[A7_,&)]
units of flow in B. Subsequently, we will show that the
probability of this event is at least 0.95 and this will
prove the claim.
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Since [[s]|, < ¢ < f we have Pr[&;] > 1 — 1/Vd.
Since x is (£,log™° d)-up-persistent, Pr[&] > 1 —
logf5 d. Note that conditioned in &7, the distribution on
y +s is identical to U, (y). Thus, since y is (£,log ™ d)-
up-persistentPr[E5 | £;] > 1—log ™ d. By a union bound

Pri£1 A&y N Es] > 1 —3log °d. )

To deal with &, we bring in the non-redness of our edge
(x,y). By definition,

Pr Pr

[z’ is not ¢-mzb] > 0.99
zel(x,y) z' ~Uy(z)

In terms of shifts, we can express this bound as

Pr Pr

[z + s is not £-mzb] > 0.99
zel(x,y) s~US(z)

Since the probability of & is at least 1 — o(1), we have

Pr Pr

[z + s is not £-mzb | &;] > 0.98
zcl(x,y) s~US¢(z)

Note that conditioned in &7, the distributions /Sy(z) and
USy(x) are identical. Hence,

Pr Pr

[z + s is not £-mzb | &] > 0.98
s~USy(x) z€I(x,y)

Let X be the fraction of points in I(x+s,y+s) that are
not ¢-mzb. By linearity of expectation, Eg[Xs | &1] >
0.98. Hence Eq[1 — X5 | &] < 0.02 and by Markov’s
inequality, Prs[l — Xs > 0.5 | &] < 1/50. Hence,
Prs[Xs > 0.5 | &] > 49/50 = .98. Since Pr[1] =
1 —o(1), we have Pr[&4] = Prs[Xs > 0.5] > 0.97.

Combining with (8), we have Pr[/\?-:lé’j} > 0.96.
When /\?:153‘ occurs, the edge (x',y’) is a violated
edge and at least half of I(x',y’) is not ¢-mzb.
For z’ € I(x',y’) that is not ¢-mzb, by definition
Pry,p,(z)[f(w) = 1] > 0.1. Hence,

Pr Pr [f(w)=

1] > 0.5 x 0.1 > 0.01
z'€rl(x',y’) w~Dy(z’)

We conclude that (x',y’) is blue, whenever /\;1-:1
oceurs.

Stepping back, with probability at least 0.96 over the
shift s ~ USy(x), the edge (x + s,y + s) is blue.
Finally, since all points in X are 99-typical, we have
Pr[x € Hg] > 1 — (¢/d)®, and conditioned on this
event we have x' € Hyg since ¢ < Vd. Together, we
get Pr[&s] > 1 —2(g/d)® > 0.99. Thus, by a union
bound Pr[A%_,&;] > 0.95 and so the amount of flow
that (x,y) inserts is at least 0.95. O

&j

Let E' C B denote the set of blue edges which receive
non-zero flow. Let H(L,R,E’) denote the bipartite
graph on these edges. Since £ < v/d/log”(d/e), by the

reversibility Lemma I11.24, px ¢(x") < 2px ¢(x) for any
x € X,x' € Land py ¢(y') < 2py 4(y)foranyy € Y,
y’ € R. Using this bound we’re able to establish the
desired capacity constraints on the flow as follows.

Claim VIL.2 (Edge Congestion). The total flow on an
edge (x',y') € B is at most 2.

Proof. By construction, the total flow on an edge (x’,y’)

is at most
X/) S 2 Z px/,g(X) <2

Z px,@(

xeX xeX
since ) o x Pxre(x) < 1. O

Claim VIL3 (Vertex Congestion). The following hold.

1) The total amount of flow through a vertex x' € L
is at most 2D(X).

2) The total amount of flow through a vertex y' € R
is at most 2D(Y).

3) For all i € [d], the total amount of i-flow through
a vertex x' € L is at most 2T';(X).

4) For all i € [d), the total amount of i-flow through
a vertex y' € R is at most 2T;(Y).

Proof. The total flow through a vertex x’ € L is at most

Z px[ pr@

(x,y)€EE xeX
< 2D Z DPx’, E
x€[n]d
< 2D(X).

The first inequality holds because the max degree of
x € X is D(X), the second inequality is because
Px,0(x") < 2pxr ¢(x), and the last inequality is because
> xefn)t Px,¢(X) < 1. An analogous argument proves
(2). For a coordinate i € [d], let E; C E denote the set
of i-edges in G. The total i-flow through a vertex x’ € L

is at most
Z px Z

>

(x,y)€E; xeX
<N(X) D pralx
x€[n]d
<2l(X).

The first inequality holds because the max i-degree of
x € X is I';(X), the second inequality holds since

Px,e(x") < 2pxr ¢(x), and the last inequality is because
> _xefn)t Px,¢(X) < 1. An analogous argument proves
). 0
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By Claim VII.1 and the fact that at least half the edges
in G are not red, the total amount of flow is at least
m(G)/3 and this flow satisfies the constraints listed in
Claim VIL.2 and Claim VIIL.3. Thus, dividing by 2 yields
a flow of value m(G)/6 satisfying the following.

1) The flow on every edge is at most 1.
2) The total flow through any vertex in L is at most
D(X). The total i-flow through any vertex in L is
at most I';(X).
3) The total flow through any vertex in R is at most
D(Y'). The total i-flow through any vertex in R is
at most T';(Y).
By integrality of flow, there exists an integral flow of at
least |m(G)/6] > m(G)/7 units satisfying the same
capacity constraints. By item (1) above, the integral
flow is a subgraph containing at least m/7 edges and
satisfying the desired constraints listed in the lemma

statement. O
VIII. PROOF OF THE ‘PERSIST-OR-BLOW-UP’
LEMMA, LEMMA V1.7

Let us recall the ‘Persist-or-Blow-Up’ lemma.
Lemma V1.7 (Persist-or-Blow-up Lemma). Consider a

violation subgraph G = (X,Y , E) such that all vertices
in G are c-typical where ¢ < 99 and (£,log™" d)-up
persistent where 1 < { < +/d/log®(d/). Then, there
exists a violation subgraph G' = (X', Y’ E") where all
vertices are (c + —=)-typical and satisfying one of the

Vd
following conditions.

1) Down-persistent case:
a) All vertices in X' are (£,0.6)-down persistent.
b) m(G") > m(G)/log” d.

¢) D(X') < D(X), and Vi € [d],T;(X’) <
I';(X)

d) D(Y') < DY), and ¥i € [d], I;(Y') <
Ii(Y).

2) Blow-up case:

a) m(G') > 2(1 - 3log 2 d) - m(Q).

b) D(X') < D(X), and Vi € [d,T;(X') <
I'i(X)

¢) D(Y') < 2D(Y), and Vi € [d], T;(Y') <
2T (Y).

We first recall the definition of py ,(x’) in Defini-
tion II1.23. For a fixed x, consider the process of
sampling a hypercube H ~ H(x) and then sampling
z ~ Up(x). Recall from FactIIL.11 that this is one
of three equivalent ways of expressing our random walk
distribution. Given x, x’, /, we have

pxe(x’) =Pr[x,x' € Hyg and z = x'].
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We use these values to set up a flow problem as follows.
For every edge (x,y) of G and s € supp(US,(x)), if
e = (x+s,y +s) is a violation, then we put px(x +s)
units of flow on e. The flow, denoted F, is supported
on a violation subgraph G’ = (X', Y’, E)). Note that by

Claim II1.22, all vertices in G’ are (¢ + %)—typical.

Claim VIIL.1. Every edge of G inserts at least 1 —
log™* d units of flow.

Proof. The proof of this claim is similar to that
of Claim VILI. Fix an edge (x,y) € G and let
this be an i-edge. Generate H ~ H(x) and a shift
s ~ USH(x), and let X’ = x+sand y =y + x.
Consider the events: (i) &: s; = 0, (ii) & f(x') = 1,
(i) &: f(y') = 0, (iv)€s: x,x' € Hjgp. Note that
the total flow inserted by (x,y) is at least Pr[A?_, &].
Pr[&] > 1—1/V/d, since [|s||, < ¢ < V/d. Since x, y are
both (¢,log ™" d)-up-persistent and f(x) = 1, f(y) = 0,
we get Pr[&], Pr[€3] > 1— log%d. Finally, since x is 99-
typical, with probability 1 — (¢/d)> we have x € Hgg
which implies x’ € Hjg since ¢ < V/d. Thus by a
union bound, Pr[A?_,&] > 1 —2log™®d — 1/Vd —
(e/d)> >1—1log *d. O

Claim VIIL.2 (Edge Congestion). The flow on any edge
(x',y") is at most 3" x pxe(x') < (1 +log™>d).

Proof. Consider an edge (x',y’), which receives flow
from some (x,y) in G. Flow is inserted by translations
of edges, so y — x = y’ — x’. Hence, for a given x,
there exists a unique y such that (x,y) inserts flow on
(x’,y’). By construction, the flow inserted is px ¢(x’).
Thus, the total flow that (x’,y’) receives is at most
> xecx Px,~(x'). The RHS bound holds by Lemma IT1.24
and observing that )y pxr ¢(x) < 1. O

Claim VIIL.3 (Vertex Congestion). The following hold.
1) For any x' € X', the total flow on edges incident
to x' is at most

D(X) > pxe(x’) < D(X)(1 +1log™* d).

2) Forany x' € X', the total i-flow on edges incident
to x' is at most
Ti(X) ) pee(x) <Ti(X)(1 +1og™* d).
xeX

3) For any y' € Y', the total flow on edges incident
toy' is at most

D(Y) > pyuly’) < D(Y)(1+]log > d).
yeY
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4) Foranyy’ € Y', the total i-flow on edges incident
to 'y’ is at most

DY) D pye(y) STo(Y)(1+1log~*d).

Proof. Consider x' € X'. All the i-flow inserted on
edges incident to x’ comes from i-edges (x,y) in G.
Every i-edge in G inserts flow on at most a single
edge incident to x’ and there are at most I';(X) i-
edges incident to any vertex x € X. Hence, the total
i-flow inserted by a x € X through x’ is at most
I';(X) - px,-(x"). Thus, summing over all x € X and
using the reversibility Lemma II1.24 shows that the total
i-flow on edges incident to x’ is at most

Ti(X) Y per(x) < (1+10g 2 T3(X) Y po (%)

xeX xeX
< (1+log?d)i(X)

and this proves (2). The proof of (1) is identical, with
D(X) replacing T';(X), and statements (3) and (4) have
analogous proofs. O

We now come to a key definition in our analysis.

Definition VIIL.4 (Heavy Vertices). A vertex x' € X'
is called heavy if it satisfies any of the following.

1) There is an edge (x',y') receiving at least 1/2
units of flow.

2) The total flow on edges incident to x' is at least
D(X)/2.

3) There exists i € [d] such that the total i-flow on
edges incident 1o x' is at least T';(X) /2.

We refer to the flow passing through heavy vertices
as the heavy flow.

Claim VIILS. All heavy vertices are ({,0.6)-down per-
sistent.

Proof. Consider a heavy vertex x’. That is, x’ satisfies
one of the three conditions listed in Definition VIIL.4.
Suppose it satisfies the first condition: there is some
violated edge (x’,y’) receiving at least 1/2 units of
flow. By Claim VIIL.2, the total flow on (x',y’) is at
most Y -y Px,¢(X'). Hence, > 5 px(x') > 1/2.
In fact, observe that we can prove the exact same
inequality if x’ satisfies the second or third condition of
Definition VIIL4, by using the upper bound given by the
LHS of items (1) and (2), respectively, of Claim VIII.3.
Now, applying the reversibility LemmaIIl.24, we have

(1+log™?d) 3, e x Pxr,e(x) > 1/2. Note that f(x) = 1
for all x € X. Hence,
Pr ([f(z)=1]> > pw.(x)
2~ De(x) xeX
1

> >04 9
“ 21 +log?d) ~ ®

and so x’ is (¢, 0.6)-down-persistent. O

We are now set up to complete the proof. For conve-
nience, we use m to denote m(G). We refer to the flow
on edges incident to heavy vertices as the heavy flow.
We let Gy (X, Y, Ey) denote the bipartite graph of
all edges incident to heavy vertices, that is, Xy is the
set of all heavy vertices. We refer to the flow on edges
incident to non-heavy vertices as the light flow. We let
Gr(X,Yr, Er) denote the bipartite graph of all edges
incident to non-heavy vertices, that is, X = X'\ Xp
is the set of all non-heavy vertices. We split into two
cases based on the amount of heavy flow.

A. Case 1: The total amount of heavy flow is at least
Tostd

Note that by Claim VIILS, all vertices in Xy are
(£,0.6)-down persistent.

By Claim VIIL.2 and Claim VIIL.3, the heavy flow
satisfies the following capacity constraints.

1) The flow on every edge is at most (1 + log™> d).

2) For every x’ € X, the total flow on edges incident
to x’ is at most D(X)(1 + log™*d) and the total
i-flow on edges incident to x’ is at most I';(X)(1+
log™ % d).

3) For every y’ € Yy, the total flow on edges incident
to y’ is at most D(Y)(1 + log™*d) and the total
i-flow on edges incident to y’ is at most I';(Y")(1+
log ™% d).

Let us divide the flow by (1 + log™®d). Thus, we
now have at least @ Hog,?;”' DTog™d > log’g - units of flow
satisfying the following capacity constraints.

1) The flow on every edge is at most one.

2) For every x’ € Xy, the total flow on edges incident
to x’ is at most D(X ) and the total i-flow on edges
incident to x’ is at most I';(X).

3) For every y' € Yy, the total flow on edges incident
to y’ is at most D(Y") and the total i-flow on edges
incident to y’ is at most I';(Y").

By integrality of flow, there is an integral flow of at least

MLM units satisfying the above constraints. By condition

(1) above, this integral flow is a subgraph of Gy with
m

at least Tog"d edges, and satisfying the degree bounds
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listed in (1c) and (1d) of the lemma statement. Thus,
this subgraph satisfies case (1) of the lemma statement.

B. Case 2: The total amount of heavy flow is at most
Tog'd

By Claim VIILI, the total flow is at least m(1 —
log™* d) units. Thus, after removing the heavy flow,
the remaining light flow is at least m(1 — 2log™*d)
units. The light flow satisfies the following capacity
constraints.

1) Every edge has at most 1/2 units of flow.

2) For every x’ € X, the total flow on edges incident
to x’ is at most D(X)/2 and the total i-flow on
edges incident to x’ is at most T';(X)/2.

3) For every y’' € Yy, the total flow on edges in-
cident to y’ is at most (1 + log™*d)D(Y) and
the total i-flow on edges incident to y’ is at most
(1+log 2 d)Iy(Y).

Items (1) and (2) are simply by Definition VIIL.4 since
all vertices in X, are not heavy. Item (3) follows from
RHS bound on the vertex congestion in Claim VIIL.3.

We now by rescale the flow by multiplying it by

%. M > 2m(1 -
1+log=3d 1+log=3d =

2log™? d) units of flow with the following capacity
constraints:

We now have 2m

1) Every edge has at most one unit of flow.

2) For every x’ € X, the total flow on edges incident
to x” is at most D(X) and the total i-flow on edges
incident to x’ is at most T';(X).

3) For every y' € Y7, the total flow on edges incident
to y’ is at most 2D(Y") and the total i-flow on edges
incident to y’ is at most 2T';(Y").

By integrality of flow, we obtain an integral flow
of at least [2m(1 — 3log=*d)| > 2m(1 — 3log™*d)
units satisfying the same constraints listed above. In
particular, the flow on any edge is at most one and
so the integral flow is a violation subgraph with at
least 2m (1 — 3log™* d) edges and satisfying the degree
bounds listed in case (2) of the lemma statement.
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