
A d1/2+o(1) Monotonicity Tester for Boolean

Functions on d-Dimensional Hypergrids*

Hadley Black

Department of Computer Science

University of California, Los Angeles

Los Angeles, USA

hablack@cs.ucla.edu

Deeparnab Chakrabarty

Department of Computer Science

Dartmouth College

Hanover, USA

deeparnab@dartmouth.edu

C. Seshadhri

Department of Computer Science

University of California, Santa Cruz

Santa Cruz, USA

sesh@ucsc.edu

Abstract—Monotonicity testing of Boolean functions on
the hypergrid, f : [n]d → {0, 1}, is a classic topic in prop-
erty testing. Determining the non-adaptive complexity of
this problem is an important open question. For arbitrary
n, [Black-Chakrabarty-Seshadhri, SODA 2020] describe a

tester with query complexity Õ(ε−4/3d5/6). This complex-
ity is independent of n, but has a suboptimal dependence on
d. Recently, [Braverman-Khot-Kindler-Minzer, ITCS 2023]
and [Black-Chakrabarty-Seshadhri, STOC 2023] describe

Õ(ε−2n3
√
d) and Õ(ε−2n

√
d)-query testers, respectively.

These testers have an almost optimal dependence on d, but
a suboptimal polynomial dependence on n.

In this paper, we describe a non-adaptive, one-
sided monotonicity tester with query complexity

O(ε−2d1/2+o(1)), independent of n. Up to the do(1)-
factors, our result resolves the non-adaptive complexity of
monotonicity testing for Boolean functions on hypergrids.
The independence of n yields a non-adaptive, one-sided

O(ε−2d1/2+o(1))-query monotonicity tester for Boolean

functions f : R
d → {0, 1} associated with an arbitrary

product measure.

Index Terms—Property testing; Monotonicity testing

I. INTRODUCTION

Since its introduction more than two decades ago,

the problem of monotonicity testing has attracted an

immense amount of attention (see §I-C). In this paper,

we focus on the question of testing of Boolean functions

f : [n]d → {0, 1} over the d-dimensional hypergrid.

Here [n] denotes the set {1, 2, . . . , n}. Each element

x ∈ [n]d is represented as a d-dimensional vector with

xi ∈ [n] denoting the ith coordinate. The partial order

of the hypergrid is defined as: x � y iff xi ≤ yi for all

i ∈ [d]. When n = 2, the hypergrid [n]d is isomorphic

Hadley Black is supported by NSF award AF:Small 2007682,
NSF Award: Collaborative Research Encore 2217033. Deeparnab
Chakrabarty is supported by NSF-CAREER award 2041920. C. Se-
shadhri is supported by NSF DMS-2023495, CCF-1740850, 1839317,
1813165, 1908384, 1909790

to the hypercube {0, 1}d. A Boolean hypergrid function

f : [n]d → {0, 1} is monotone if f(x) ≤ f(y) whenever

x � y.

The distance between two functions f and g, denoted

∆(f, g), is the fraction of points where they differ.

A function f : [n]d → {0, 1} is called ε-far from

monotone if ∆(f, g) ≥ ε for all monotone functions

g : [n]d → {0, 1}. Given a proximity parameter ε and

query access to a function, a monotonicity tester accepts

a monotone function and rejects a function that is ε-

far from monotone. Both should occur with probabilty

≥ 2/3. If the tester accepts monotone functions with

probability 1, it is called one-sided. If the tester decides

its queries without seeing any responses, it is called non-

adaptive.

An outstanding open question in property testing is

to determine the optimal non-adaptive query complexity

of monotonicity testing for Boolean hypergrid func-

tions. While we leave the details of the road to the

state of the art to §I-C, here we mention the current

best bounds. Black, Chakrabarty, and Seshadhri [1], [2]

give a Õ(ε−4/3d5/6)-query tester. Note that the query

complexity is independent of n. Building on seminal

work of Khot, Minzer, and Safra [3], Braverman, Khot,

Kindler, and Minzer [4] and Black, Chakrabarty, and Se-

shadhri [5] recently give Õ(ε−2n3
√
d) and Õ(ε−2n

√
d)

testers, respectively. Chen, Waingarten, and Xie [6] give

an Ω̃(
√
d) lower bound for Boolean monotonicity testing

on hypercubes (n = 2). Hence, these last bounds are

nearly optimal in d, but are sub-optimal in n. Can

one achieve the optimal
√
d dependence while being

independent of n?

We answer in the affirmative, giving a non-adaptive,

one-sided monotonicity tester for Boolean functions over

hypergrids with almost optimal query complexity.

1796

2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS)

DOI 10.1109/FOCS57990.2023.00110

2
0
2
3
 I

E
E

E
 6

4
th

 A
n
n
u
al

 S
y
m

p
o
si

u
m

 o
n
 F

o
u
n
d
at

io
n
s

o
f

C
o
m

p
u
te

r
S

ci
en

ce
 (

F
O

C
S

)
| 9

7
9
-8

-3
5
0
3
-1

8
9
4
-4

/2
3
/$

3
1
.0

0
 ©

2
0
2
3
 I

E
E

E
 |

D
O

I:
 1

0
.1

1
0
9
/F

O
C

S
5
7
9
9
0
.2

0
2
3
.0

0
1
1
0

979-8-3503-1894-4/23/$31.00 ©2023 IEEE

Authorized licensed use limited to: Dartmouth College Library. Downloaded on March 15,2024 at 15:46:34 UTC from IEEE Xplore. Restrictions apply.

Theorem I.1. Consider Boolean functions over

the hypergrid, f : [n]d → {0, 1}. There is a

one-sided, non-adaptive tester for monotonicity that

makes ε−2d1/2+O(1/ log log d) queries.

Query complexities independent of n allow for mono-

tonicity testing over continuous spaces. Let μ =
∏d

i=1 μi

be an associated product Lebesgue measure over R
d.

A function f : R
d → {0, 1} is measurable if the

set f−1(1) is Lebesgue-measurable with respect to μ.

The μ-distance of f to monotonicity is defined as

infg∈M μ(∆(f, g)), where M is the family of mea-

surable monotone functions and ∆ is the symmetric

difference operator. (Refer to Sec. 6 of [2] for more de-

tails.) Domain reduction results [2], [7] show that mono-

tonicity testing over general hypergrids and continuous

(measurable) spaces can be reduced to the case where

n = poly(ε−1d) via sampling. A direct consequence

of Theorem I.1 is the following theorem for continuous

monotonicity testing.

Theorem I.2. Consider Boolean functions f :
R

d → {0, 1}, with an associated measure μ. There

is a one-sided, non-adaptive tester for monotonicity

that makes ε−2d1/2+O(1/ log log d) queries.

A. Path Testers, Directed Isoperimetry, and the Depen-

dence on n

All o(d) non-adaptive, one-sided monotonicity testers

are path testers that check for violations among com-

parable points which are at a distance from each other.

Consider the fully augmented directed hypergrid graph

defined as follows. Its vertices are [n]d and its edges con-

nect all pairs x ≺ y that differ in exactly one coordinate.

A path tester picks a random point x in [n]d, performs a

random walk in this directed graph to get another point

y ≻ x, and rejects if f(x) > f(y). The whole game is

to lower bound the probability that f(x) > f(y) when

f is ε-far from being monotone. Unlike random walks

on undirected graphs, these directed random walks are

ill-behaved. In particular, one cannot walk for “too long”

and the length of the walk has to be carefully chosen. The

approach to analyzing such path testers has two distinct

parts.

• Directed Isoperimetry. A Boolean isoperimetric the-

orem relates the volume of a subset of the hyper-

cube/grid, in our case the preimage f−1(1), to the

edge and vertex expansion properties of this set in the

graph. A directed analogue replaces the volume with

the distance to monotonicity, and deals with directed

expansion properties. This connection between mono-

tonicity testing and directed isoperimetric theorems was

first made explicit in [8], which also gave the first o(d)
tester on hypercubes.

• Random walk analysis. The second part is to use

the directed isoperimetric theorem to lower bound the

success probability of the path tester. The analogy is:

if the (directed) expansion of a set is large, then the

probability of a directed random walk starting from a 1
and ending at a 0 is also large. This analysis is subtle

and proceeds via special combinatorial substructures in

the graph of violations.

The seminal result of Khot, Minzer, and Safra [3]

(henceforth KMS) gave near optimal analyses for both

parts, for the hypercube domain. For the first part,

they prove a directed, robust version of the Talagrand

isoperimetric theorem. For this section it is not crucial

to know this theorem. Rather, what is important is that

KMS use this directed isoperimetric theorem to construct

“good subgraphs” of the fully augmented hypergrid com-

prising of violated edges. For the second part mentioned

above, KMS relate the success probability of the directed

random walk to properties of this subgraph. We shortly

give details on this second part.

Coming to hypergrids, one needs to generalize both

parts of the analysis, and this offers many challenges.

For the first part, Black, Chakrabarty, and Seshadhri [5]

generalize the directed Talagrand inequality to the hy-

pergrid domain. Unfortunately, even with this stronger

directed Talagrand/isoperimetric bound for hypergrids,

the generalization of the KMS random walk analysis

only yields a 1/(n
√
d) lower bound on the escape

probability.

The main technical contribution of this paper

is a new random walk analysis whose success

probability is at least ε2d−(1/2+o(1)).

In what follows, we describe the KMS random walk

analysis, the generalization to hypergrids, and the chal-

lenges in removing the dependence on n. In §I-B we

describe our main technical ideas required to bypass

these challenges and obtain the independence from n.

a) The KMS random walk analysis on {0, 1}d in

a nutshell.: For simplicity, let’s assume ε is a small

constant so that we ignore the dependence on ε. Using

the directed isoperimetric theorem, KMS extract a large

“good subgraph” of violations. A violation subgraph

G = (X,Y , E) is a bipartite graph where ∀x ∈
X, f(x) = 1, ∀y ∈ Y , f(y) = 0, and all edges in

E are hypercube edges. A good subgraph is a violation

subgraph that satisfies certain lower bounds on the total

1797

Authorized licensed use limited to: Dartmouth College Library. Downloaded on March 15,2024 at 15:46:34 UTC from IEEE Xplore. Restrictions apply.

number of edges and has an approximate regularity

property. The specifics are a bit involved (Definition 6.1-

6.3, in [3]), but it is most instructive to think of the

simplest good subgraph. This is a matching between X

and Y where |X| = |Y | = Ω(2d).

When the good subgraph is a matching, KMS show

that a random walk of length τ = Θ̃(
√
d) succeeds

in finding a violation with Ω̃(d−1/2) probability. A key

insight in the analysis is the notion of τ -persistence: a

vertex x is τ -persistent if a τ -length directed random

walk leads to a point z where f(x) = f(z) with

constant probability. Using a simple argument based on

the influence of the function, KMS argue that an average

directed random walk has � τ/
√
d = o(1) influential

edges. Using Markov’s inequality, at most o(2d) points

in {0, 1}d can be non-persistent. Let us remove all non-

persistent points and their matched partners from X and

Y , to get a matching between X ′ and Y ′. All points in

X ′ and Y ′ are persistent, and given the size bounds,

|X ′| = |Y ′| is still Ω(2d).

With Ω(1) probability, the tester starts from x ∈ X ′.
Note that f(x) = 1. Let the matched partner of x be

y. Let i be the dimension of the violated edge (x,y).
With probability roughly τ/d = Ω̃(d−1/2), the directed

walk will cross the ith dimension. Let us condition

on this event. We can interpret the random walk as

traversing the edge (x,y), and then taking a (τ − 1)-
length directed walk from y to reach the destination y′.
(Note that we do not care about the specific order of

edges traversed by the random walk. We only care about

the value at the destination.) Since y is τ -persistent1,

with Ω(1) probability the final destination y′ will satisfy

f(y′) = f(y) = 0. Putting it all together, the tester

succeeds with probability Ω̃(d−1/2).

We stress that the above analysis discards any non-

persistent vertex in the original matching. Hence, it is

critical that the good subgraph is a sufficiently large

matching. In general, a good subgraph might not be

a matching. However, the KMS directed isoperimetric

theorem can be used to obtain a subgraph of violated

edges with the following property: if the maximum

degree is ∆, then the number of edges is Ω(
√
∆2d);

when ∆ = 1, the subgraph is indeed a large matching.

One can then argue that the random walk of length2

τ ≈
√
d/∆ has success probability is Ω̃(d−1/2). In all

cases, the analysis needs an interplay between the notion

1Technically, one needs (τ − 1)-persistence, which holds from τ -
persistence.

2The algorithm tries all O(log d) walks of lengths which are a power
of 2

of persistence, the size of the sets X,Y , and the degrees

in the good subgraph.
b) The challenge in hypergrids.: As mentioned ear-

lier, [5] proves an isoperimetric theorem for hypergrids

generalizing the one in [3]. Using similar techniques to

the hypercube case, one can construct “good subgraphs”

of the fully augmented hypergrid. The definition is

involved (Theorem 7.8 in [5]), but the simplest case

is again a violation matching of (X,Y , E) of size

|X| = |Y | = Ω(nd). Note that the matched pairs (x,y)
are axis-aligned, that is, differ in exactly one coordinate

i. But yi − xi is an integer in {1, 2 . . . , n− 1}.

In the hypergrid, the directed random walk must

necessarily perform “jumps”. At each step, the walk

changes a chosen coordinate to a random larger value.

One can generalize the hypercube persistence arguments

to show that with constant probability, a τ = Θ̃(
√
d)-

step random walk will result in both endpoints having the

same value. And so, like before, we can remove all “non-

persistent” points to end up with an Ω(nd) violation

matching (X ′,Y ′) where all vertices are τ -persistent.

The tester picks x ∈ X ′ with Ω(1) probability.

Let y be its matched partner, which differs in the

ith coordinate. If the number of steps is τ , then with

τ/d ≈ Ω̃(d−1/2) probability, the walk will choose to

move along the ith coordinate. Conditioned on this event,

we would like to relate the random walk to persistent

walk from y. However, there is only a 1/n chance that

the length jumped along that coordinate will be the jump

yi − xi. One loses an extra n factor in the success

probability, and indeed, this is the high-level analysis

of the Õε(n
√
d)-tester from [5] (at least for the case of

the matching).

How does one get rid of this dependence on n? At

some level, there is no (simple) way around this impasse.

If yi − xi is, say Θ(n), we cannot relate the walk from

x to a (persistent) walk from y without losing this n
factor. If one desires to be free of the parameter n, then

one needs to consider the internal points in the segment

(x,y). But all internal points could be non-persistent.

Even though most internal points z in the segment (x,y)
may be 0-valued, a (τ − 1)-step walk from z could lead

to 1-valued points. So the final pair won’t be a violation.

One may think that since the matching size was large

(≈ nd), perhaps the “interior” (the union of the interiors

of the matching segments) would also be large and most

of the internal nodes would be pesistent. Unfortunately,

that may not be the case, and the following is an illus-

trative example. We define a Boolean hypergrid function

f and an associated violation matching iteratively. Let

n ≤ d/ ln d. Start with all function values undefined. If

1798

Authorized licensed use limited to: Dartmouth College Library. Downloaded on March 15,2024 at 15:46:34 UTC from IEEE Xplore. Restrictions apply.

x1 = 1, set f(x) = 1. If x1 = n, set f(x) = 0. Take

the natural violation matching between these points. For

every undefined point x: if x2 = 1, set f(x) = 1 and if

xn = 1, set f(x) = 0. Iterating over all coordinates, we

define the function at all points “on the surface”. In the

“interior”, where ∀i, xi /∈ {1, n}, we set f arbitrarily.

The interior has size nd ·(1−2/n)d ≈ nd exp(−2 ln d) ≤
nd/d2. This is a tiny fraction of the domain, while the

matching has size Ω(nd). Hence, it is possible to have

a large violation matching such that the union of (strict)

interiors is vanishingly small.

In sum, to get rid of the dependence on n requires a

new set of ideas.

B. Our Main Ideas

As in §I-A0b, we begin with the basic case of a

violation matching G = (X,Y , E) of size Ω(nd) in

the fully augmented hypergrid. The general case will be

discussed at the end of this section. We set τ = Θ̃(
√
d).

Using the persistence and Markov inequality arguments,

we can assume that all points in X∪Y are τ -persistent.

Let us describe the tester (Algorithm 1). A τ -

step/length upwalk from a point x ∈ [n]d first chooses τ
coordinates at random to increase. To pick the increment

on each coordinate, we apply a standard technique for

hypergrid property testing. For each coordinate inde-

pedently, the tester picks a random power of 2, and

then picks a uniform random increment less than the

random power of 2. Analogously, the tester performs

downwalks. Unlike the path testers for hypercubes, it

will be important that our tester performs both upwalk

and downwalks. In our analysis, we will relate the

success probabilities of these different walks.

The tester also performs shifted path tests. First, it

finds a pair (x,w) using the directed random walk. Then,

it samples a random shift vector s ∈ [n]d. This is a

random vector with τ non-zero coordinates. The shifted

pair is (x− s,w − s). Note that the shifted pair is also

comparable, and is equivalent to generating points by

correlated random downwalks from x and w.

a) Mostly-zero-below points, and red edges.: The

following is a key definition: we call a point w mostly-

zero-below for length τ , or simply τ -mzb, if a τ -length

downwalk from w leads to a zero with ≥ 0.9 probability

(Definition IV.1). Suppose an upwalk of length τ from

a point x ∈ X reaches an τ -mzb point w. Then, a

random shift (x − s,w − s) has a constant probability

of being a violation. The reason is (i) Pr[f(x − s) =
f(x) = 1] ≥ 0.9 because x is τ -persistent, and (ii)

Pr[f(w − s) = 0] ≥ 0.9 because w is τ -mostly-zero-

below. By a union bound, the tester will find a violation

with constant probability (conditioned on discovering the

pair (x,w)).

To formalize this analysis, we define a matching edge

(x,y) to be red if it satisfies the following condition.

For a constant fraction of the interior points z in the

segment (x,y), a (τ − 1)-length upwalk ends at a τ -

mzb point with constant probability (Definition IV.2). If

there are Ω(nd) red matching edges, we can argue that

the tester succeeds with the desired probability. Firstly,

with probability Ω(1), the tester starts the walk at and

endpoint x of a red edge. Let the matched edge be (x,y).
With probability τ/d ≈ d−1/2, the walk will cross the

dimension corresponding to (x,y). Conditioned on this

event, we can interpret the walk as first moving to a

random interior point z in the segment (x,y) and then

taking a (τ − 1)-length upwalk from z to get to the

point z′. (Refer to Fig. 1.) Since the edge was red, with

constant probability, z′ is τ -mzb. Consider a random

shift of (x, z′), shown as (x − t, z′ − t) in Fig. 1. As

discussed in the previous paragraph, this shifted pair is

a violation with constant probability. All in all, the tester

succeeds with Ω(d−1/2) probability.

� ��

�� ����

�

�

� � �

�� � �

Fig. 1. This figure shows the key argument that either upwalks +

downshifts, or downwalks find violations. The edge (x,y) is in the

initial violation matching. Parallel curves of the same shape denote

the same shift. So x′ = x+ s, y′ = y+ s, and z′ = z+ s. Similarly,

we see both x and z′ shifted below by t. The 1-valued points are

colored black and the 0-valued points are colored white. Gray points

do not have an a priori guarantee on function value. If z′ is mzb,

then f(z′ − t) = 0 with high probability. In this case, (x− t, z′ − t)
is a likely violation. If not, then (z′ − t,y′) is a likely violation.

But what if there are no red edges? This takes us to

the next key idea of our paper: translations of violation

subgraphs.

b) Translations of violation subgraphs, and blue

edges.: Suppose most of the matching edges edges

(x,y) are not red. So, for most points z in the segment

(x,y), a (τ − 1)-length walk does not reach a τ -mzb

1799

Authorized licensed use limited to: Dartmouth College Library. Downloaded on March 15,2024 at 15:46:34 UTC from IEEE Xplore. Restrictions apply.

point. Fix one such walk, which can be described by an

“up-shift” s. So the walk from z reaches z′ := z+ s.

Consider the corresponding shift of the full edge

(x,y) to (x′,y′), where x′ = x + s and y′ = y + s.

Refer to Fig. 1. What can we say about this edge? Since

both x and y are up-persistent, with high probability

both f(x′) = f(x) = 1 and f(y′) = f(y) = 0. Observe

that most internal points z′ in (x′,y′) are not mostly-

zero-below. Consider a τ -length downward walk from

z′, whose destination can be represented as z′− t (for a

downshift t). With probability ≥ 0.1, f(z′ − t) = 1.

Recall, the tester performs a downward random walk

(Algorithm 1, Step 3). Suppose this walk starts at y′.
With probability ≈ τ/d ≈ d−1/2, the walk moves

(downward) in the ith coordinate with constant prob-

ability. Conditioned on this, the walk ends up at a

point z′ − t. As discussed above, z′ is likely to be not

mostly-zero-below. Hence f(z′ − t) = 1 with constant

probability, and the tester discovers the violating pair

(z′ − t,y′).

Fig. 1 summarizes the above observations. If (x,y) is

red, then the pair (x− t, z′ − t) is likely to a violation.

If (x,y) is not red, then the pair (z′ − t,y′) is a likely

violation. This motivates the definition of our blue edges.

We call a violating edge blue, if for a constant fraction of

points in the interior, a downward walk leads to a 1-point

with constant probability (Definition IV.3). We argued

above that if the edge (x,y) in the violation matching

was not red, then a random shift or translation up to

(x′,y′) leads to a blue edge. If most edges in our original

violation matching were not red, then we could translate

“all these edges together” to get a (potentially) new large

violation subgraph. If most of these new edges are blue,

then the downward walk would catch a violation with

≈ d−1/2 probability.

What does it mean to translate “all edges together”?

In particular, how do we pin down this new violation

matching? We use ideas from network flows. Through

the random translation, every non-red edge (x,y) in the

original violation matching leads to a distribution over

blue edges (x′,y′). We treat this as a fractional flow on

these blue edges. If the original matching had few red

edges, we can construct a large collection of blue edges

sustaining a large flow. Integrality of flow implies there

must be another large violation matching in the support

of this distribution whose edges are blue. This is the

essence of the “red/blue” lemma (Lemma IV.4).

Putting it together, suppose G = (X,Y , E) is a large

violation matching. Either the upwalk with a shift or the

downwalk succeeds with probability ≈ d−1/2.

c) Lopsided violation subgraphs and translation

again.: We have discussed the situation of a large

violation matching G = (X,Y , E) with |X| = |Y | =
Ω(nd). However, such a large matching may not exist.

Instead, the directed isoperimetric theorems imply the

existence of a “good subgraph” with bounded maximum

degree and many edges. These graphs G = (X,Y , E)
may be lopsided with |X| ≪ |Y |. This causes a

significant headache for our algorithm, and once again,

the issue is persistence. The good subgraph could have

|X| ≈ nd/
√
d, |Y | ≈ nd, and edges that are structured

as follows. All edges incident to an individual y ∈ Y

are aligned along the same dimension. For the path tester

to find a violation starting from any y ∈ Y , it must take

a walk of length τ = Ω̃(
√
d).

Unlike in [3] or in [5], the tester must run both the

upwalk and downwalk. In the situation of Fig. 1, it is

critical that both upwalks and downwalks have the same

length. In the lopsided good subgraph indicated above,

the walk length is Ω̃(
√
d). For this length, the fraction

of non-persistent points could be Ω̃(1). In particular, all

the vertices in X could be non-persistent with respect

to this length. Thus, the upward walk + downward shift

is no longer guaranteed to work. (In Fig. 1, we are no

longer guaranteed that f(x− t) = 1. To ensure that, the

walk must be much shorter. But in that case, the walk

from y′ is unlikely to cross the ith dimension.)

To cross this hurdle, we use the translation idea

again. Suppose we had a lopsided violation subgraph

G = (X,Y , E) with |X| ≪ |Y |. For the walk length

τ determined by Y , most vertices in X are not down

persistent. However, the vertices in X must be up

persistent for otherwise the upward walk would succeed

(Claim VI.6). Therefore, we can take upward translations

of G and again using network flow arguments alluded

to in the previous paragraph, we are able to construct

another violation subgraph G′ = (X ′,Y ′, E′) that satis-

fies the following properties. Firstly, G′ is “structurally”

similar to G, in terms of degree bounds and the number

of edges. Either vertices in X ′ are τ -down persistent or

|X ′| ≥ 2|X|. We refer to this as the ‘persist-or-blow-

up’ lemma (Lemma VI.7). The argument is somewhat

intricate and requires a delicate balance of parameters.

An interesting aspect is that we can either beat the usual

Markov upper bound for persistent vertices, or improve

the parameters of the violation graph. By iterations of

the lemma, we can argue the existence of a violation

subgraph with all the desired persistent properties. Then,

the analysis akin to the matching case generalizes to give

the desired result.

1800

Authorized licensed use limited to: Dartmouth College Library. Downloaded on March 15,2024 at 15:46:34 UTC from IEEE Xplore. Restrictions apply.

d) Thresholded degrees, peeling, and the do(1)

loss.: Another gnarly issue with hypergrids is the dis-

tinction between degree and “thresholded degree”. The

relevant “degree” of a vertex x (for the path tester

analysis) in a violation subgraph is not the number of

edges incident on it, but rather the number of different

dimensions i so that there is an i-edge incident on it.

We refer to this quantity as the “thresholded degree”,

and it is between 1 and d. Note that the standard degree

could be as large as nd. It is critical one uses thresholded

degree for the path tester analysis, to avoid the linear

dependence on n in our calculations. Observe that for

the matching case, these degrees are identical, making

the analysis easier.

While the path tester analysis works with thresholded

degree, the flow-based translation arguments alluded to

above need to use normal degrees. In particular, we

can use flow-arguments to relate the bound the standard

degree of the new violation subgraphs. But we cannot a

priori do so for the thresholded degree.

To argue about the thresholded degree, we begin with

a stronger notion of a good subgraph called the seed

regular violation subgraph (Lemma VI.1). This subgraph

satisfies specific conditions for both thresholded and

standard degrees of the vertices. It is in the construction

of the seed graph where we lose the do(1) factor.

e) Roadmap.: Here is the roadmap of the whole

analysis. We use the isoperimetric theorem in [5]

to prove the existence of the seed regular graph

(Lemma VI.1). This subgraph may not have the desired

persistence properties, so we apply the persist-or-blow-

up lemma, Lemma VI.7, to obtain a more robust graph

G′. This graph G′ may have lots of red edges, in which

case it is a “nice red subgraph” (Definition IV.5), and

then the upwalk + down-shift (Step 4 in Algorithm 1)

succeeds with good probability. Otherwise, we apply

the “red/blue” lemma to obtain a “nice blue subgraph”

(Definition IV.6), and then the downwalk (Step 3 in Al-

gorithm 1) succeeds with good probability. Of course,

the lopsidedness in the seed graph can be |X| ≫ |Y |
in which case the argument is analogous, except one of

Step 2 or Step 5 in Algorithm 1 succeed.

C. Related Work

Monotonicity testing, and in particular that of Boolean

functions on the hypergrid, has been studied exten-

sively in the past 25 years [1]–[34]. Most of the

early works focused on the special case of hypercubes

{0, 1}d. Early works defined the problem and described

a O(d) tester [9], [11]. This was improved by [8] to

give an Õε(d
7/8) tester and this paper introduced the

connection to directed isoperimetry. Subsequently, [3]

described their Õε(
√
d) non-adaptive, one-sided tester

via the directed robust version of Talagrand’s isoperimet-

ric theorem, and this dependence on d is tight even for

two-sided testers [6], [14], [31]. The best lower bound

for adaptive testers is Ω(d1/3) [6], [33].

Dodis et al [12] were the first to define the prob-

lem of monotonicity testing on general hypergrids, and

they gave a non-adaptive, one-sided O((d/ε) log2(d/ε))-
query tester for the Boolean range. Thus, it was known

from the beginning that independence of n is achievable

for Boolean monotonicity testing. Berman, Raskhod-

nikova, and Yaroslavtsev improved the upper bound to

O((d/ε) log(d/ε)) [29]. They also show a non-adaptive

lower bound of Ω(log(1/ε)/ε) and prove an adaptivity

gap by giving an adaptive O(1/ε)-query tester for con-

stant d.

The first o(d) tester for hypergrids was given by Black,

Chakrabarty, Seshadhri [1]. Using a directed Margulis

inequality, they achieve a Õε(d
5/6 log n) upper bound.

In a subsequent result, they introduce the concept of

domain reduction and show that n can be reduced to

poly(dε−1) by subsampling the hypergrid [2]. Harms

and Yoshida gave a substantially simpler proof of the

domain reduction theorem, though their result is not

“black-box” [7].

Most relevant to our work are the independent, recent

results of Black, Chakrabarty, Seshadhri, and Braver-

man, Kindler, Khot, Minzer [4], [5]. These results give

Õ(poly(n)
√
d) query testers, but with different ap-

proaches. The former follows the KMS path, and proves

a new directed Talagrand inequality over the hypergrid.

This theorem is a key tool in our result. The result

of [4] follows a different approach, via reductions to

hypercube monotonicity testing. This is a tricky and

intricate construction; naive subsampling approaches to

reduce to the hypercube are known to fail (see Sec. 8

of [2]). Instead, their result uses a notion of “monotone”

embeddings that embed functions over arbitrary product

domains to hypercube functions, while preserving the

distance to monotonicity. However, these embeddings

increase the dimension by poly(n), which appears to

be inherent.

D. Discussion

It is an interesting question to see if the do(1) de-

pendence can be reduced to polylogarithmic in d. As

mentioned above, the loss arises due to our need for a

stronger notion of a “good subgraph”. Nevertheless, we

feel one could obtain an Õ(ε−2
√
d)-tester. In Section

8 of their paper, [5] conjecture a stronger “weighted”

1801

Authorized licensed use limited to: Dartmouth College Library. Downloaded on March 15,2024 at 15:46:34 UTC from IEEE Xplore. Restrictions apply.

isoperimetric theorem which would imply a Õ(ε−2
√
d)-

tester. Our work currently has no bearing on that con-

jecture, and that is still open.

At a qualitative level, our work and the result in [5]

indicates the Boolean monotonicity testing question on

the hypergrid seems more challenging than on the

hypercube. Is there a quantitative separation possible?

It is likely that non-adaptive monotonicity testing for

general hypergrids is harder than hypercubes by “only”

a log d factor. The gap between the non-adaptive upper

and lower bounds even for hypercubes is poly(log d).
So, achieving this separation between hypergrids and

hypercubes seems quite challenging, as it would require

upper and lower bounds of far higher precision.

II. RANDOM WALKS AND THE MONOTONICITY

TESTER

Without loss of generality3 we assume that n is a

power of 2. We use x ∈R S to denote choosing a uniform

random element x from the set S. Abusing notation,

we define intervals in Zn by wrapping around. So, if

1 ≤ i ≤ n < j, then the interval [i, j] in Zn is the set

[i, n] ∪ [1, (j − 1) (mod n)].
The directed (lazy) random walk distribution in [n]d

that we consider is defined as follows. The distribution

induced by this directed walk has multiple equivalent

formulations, which are discussed in §III-B.

Definition II.1 (Hypergrid Walk Distribution). For a

point x ∈ [n]d and walk length τ , the distribution Uτ (x)
over y ∈ [n]d reached by an upward lazy random walk

from x of τ -steps is defined as follows.

1) Pick a uniform random subset R ⊆ [d] of τ
coordinates.

2) For each r ∈ R:

a) Choose qr ∈R {1, 2, . . . , log n} uniformly at

random.

b) Choose a uniform random interval Ir in Zn of

size 2qr such that xr ∈ Ir.

c) Choose a uniform random cr ∈R Ir \ {xr}.

3) Generate y as follows. For every r ∈ [d], if r ∈ R
and cr > xr, set yr = cr. Else, set yr = xr.

Analogously, let Dτ (x) be the distribution defined pre-

cisely as above, but the >-sign is replaced by the <-sign

in step 3. This is the distribution of the endpoint of a

downward lazy random walk from x of τ -steps.

A crucial step of our algorithm involves performing

the exact same random walk, but originating from two

3See Theorem A.1 of [1]. Note this assumption is not crucial, but
we choose to use it for the sake of a cleaner presentation.

different points. We can express our random walk dis-

tribution in terms of shifts (rather than destinations) as

follows.

Definition II.2 (Shift Distributions). The up-shift dis-

tribution from x, denoted USτ (x) is the distribution of

x′ − x, where x′ ∼ Uτ (x). The down-shift distribution

from x, denoted DSτ (x) is the distribution of x − x′,
where x′ ∼ Dτ (x).

Note that Uτ (x) is equivalent to the distribution of

x+s, where s ∼ USτ (x). Similarly, Dτ (x) is equivalent

to the distribution of x − s, where s ∼ DSτ (x). Using

Definition II.1 and Definition II.2, our tester is defined

in Alg. 1.

Algorithm 1 Monotonicity tester for Boolean functions

on [n]d

Input: A Boolean function f : [n]d → {0, 1}
1) Choose p ∈R {0, 1, 2, . . . , ⌈log d⌉} uniformly at

random and set τ := 2p.

2) Run the upward path test with walk length ℓ = τ −1
and ℓ = τ :

a) Choose x ∈R [n]d and sample y from Uℓ(x).
b) If f(x) > f(y), then reject.

3) Run the downward path test with walk length ℓ =
τ − 1 and ℓ = τ :

a) Choose y ∈R [n]d and sample x from Dℓ(y).
b) If f(x) > f(y), then reject.

4) Run the upward path + downward shift test with walk

length ℓ = τ − 1 and ℓ = τ :

a) Choose x ∈R [n]d, sample y from Uℓ(x), and sample

s from DSτ−1(x).
b) If f(x− s) > f(y − s), then reject.

5) Run the downward path + upward shift test with walk

length ℓ = τ − 1 and ℓ = τ :

a) Choose y ∈R [n]d, sample x from Dℓ(y), and sample

s from USτ−1(y).
b) If f(x+ s) > f(y + s), then reject.

Remark II.3. Given a function f : [n]d → {0, 1},

consider the doubly-flipped function g : [n]d → {0, 1}
defined as g(x) := 1−f(x̄) where x̄i := n−xi. That is,

we swap all the zeros and ones in f , and then reverse

the hypergrid (the all zeros point becomes the all n’s

point and vice-versa). The distance to monotonicity of

both f and g are the same: a pair (x,y) is violating

in f if and only if (x̄, ȳ) is violating in g. In Alg. 1,

Step 2 on f is the same as Step 3 on g, and Step 4

on f is the same as Step 5 on g. In our analysis, we

1802

Authorized licensed use limited to: Dartmouth College Library. Downloaded on March 15,2024 at 15:46:34 UTC from IEEE Xplore. Restrictions apply.

will construct a violation subgraph between vertex sets

X and Y . Points in X are 1-valued and points in Y

are 0-valued. If |X| ≤ |Y |, then the steps 2, 3, and

4 suffice for the analysis. If |Y | ≤ |X|, then (by the

same analysis) we run steps 2,3, and 4 on the function

g. This is equivalent to running steps 2, 3, and 5 on

the function f . So, the tester covers both situations, and

we can assume wlog that |X| ≤ |Y |. This discussion

happens in Section VI-A1.

Our main result is the following lower bound on the

rejection probability of Alg. 1.

Theorem II.4 (Main Theorem). Let n, ε−1 ≤
poly(d). If f : [n]d → {0, 1} is ε-far from being

monotone, then for any δ > (log log nd)−1, Alg. 1

rejects f with probability at least ε2 ·d−(1/2+O(δ)).

Theorem II.4 is proved in §V. We first use Theo-

rem II.4 to prove our main testing results, Theorem I.1

and Theorem I.2.

A. Proof of Theorem I.1 and Theorem I.2

To prove Theorem I.1, we use the domain reduction

Theorem 1.3 of [2], which we state here for ease of

reading.

Theorem II.5 (Domain Reduction Theorem 1.3, [2]).

Suppose f : [n]d → {0, 1} is ε-far from being monotone.

Let k = (ε−1d)8. If T = T1 × · · · × Td is a randomly

chosen sub-grid, where for each i ∈ [d], Ti is a (multi)-

set formed by taking k independent, uniform samples

from [n], then ET[εf |T] ≥ ε/2.

Remark II.6. We note that [7] obtain a more efficient

domain reduction result. However, the domain reduction

from [2] can be used in a black-box fashion, resulting

in a simpler tester.

For ease of reading, we give a simplified proof of

a weaker version of Theorem I.1. This proof obtains a

tester with an ε−3 dependence, instead of the stated

ε−2. A more nuanced argument yields the improved

ε−2 log(1/ε) dependence, which proves Theorem I.1 as

stated4. For details, we refer the reader to Section 7 of

[2]. In particular, we run Algorithm 1 in Section 7 of

[2] with the sub-routine in line 5 replaced by Alg. 1.

Proof. of Theorem I.1: Consider the tester which does

the following, given f : [n]d → {0, 1} and ε ∈ (0, 1).

4When we invoke Alg. 1, we assume that ε ≥ d−1/2 and so

log 1/ε = d
log log 1/ε

log d ≪ dO(1/ log log d). The factor of log 1/ε is

absorbed by dO(1/ log log d) in the query complexity.

1) If ε < d−1/2, then run the Õ(ε−1d) query non-

adaptive and 1-sided tester of [12] or [29].

2) If ε ≥ d−1/2, then set k = (ε−1d)8 ≤ d12 and

repeat the following 8ε−1 times.

a) Sample a [k]d sub-grid T ⊆ [n]d according to

the distribution described in Theorem II.5.

b) Run 32 · ε−2 · d1/2+O(δ) iterations of the tester

described in Alg. 1 on the restricted function f |T.

3) Accept.

If ε < d−1/2, then the number of queries is

O(ε−1d) = O(ε−2d1/2). We are done in this case.

Assume ε ≥ d−1/2. The total number of queries made

by this tester is at most ε−3 · d1/2+O(δ). Clearly, if

f is monotone, then the tester will accept, so suppose

εf ≥ ε. By the domain reduction Theorem II.5, we have

ET[εf |T] ≥ ε/2. So, ET[1 − εf |T] ≤ 1 − ε/2 and thus

by Markov’s inequality,

Pr
T

[
1− εf |T ≥ 1− ε/4

]
≤ 1− ε/2

1− ε/4

=
1− ε/4− ε/4

1− ε/4
≤ 1− ε/4.

Thus, PrT[εf |T ≥ ε/4] ≥ ε/4. Thus, with probability

at least 1 − (1 − ε/4)8/ε ≥ 1 − e−2, some iteration of

step (2a) will produce T such that εf |T ≥ ε/4. When

this happens, some iteration of step (2b) will reject with

probability at least 1− e−2, by Theorem II.4. Thus, the

tester rejects f with probability at least (1 − e−2)2 ≥
2/3.

The proof of Theorem I.2 for testing on R
d follows the

exact same argument, using the corresponding domain

reduction Theorem 1.4 of [2] for functions over Rd. We

omit the proof.

III. TECHNICAL PRELIMINARIES

In this section, we list out preliminary definitions and

notations. Throughout the section, we fix a function

f : [n]d → {0, 1} that is ε-far from monotone. For

ease of readability, most proofs of this section are in

the appendix which we have chosen to omit from this

version of the paper. For the full version which includes

the appendix we refer the reader to [35].

A. Violation Subgraphs and Isoperimetry

The fully augmented hypergrid is a graph whose vertex

set is [n]d where edges connect all pairs that differ in

exactly one coordinate. We direct all edges from lower

to higher endpoint. The edge (x,y) is called an i-edge

for i ∈ [d] if x and y differ in the ith coordinate. We use

I(x,y) = {z : x � z � y} to denote the points z in the

1803

Authorized licensed use limited to: Dartmouth College Library. Downloaded on March 15,2024 at 15:46:34 UTC from IEEE Xplore. Restrictions apply.

segment [x,y], that is, they are the points which differ

from x and y only in the ith coordinate, and xi ≤ zi ≤
yi. Given a function f : [n]d → {0, 1} the edge (x,y)
of the fully augmented hypergrid is a violating/violated

edge if f(x) = 1 and f(y) = 0.

Definition III.1. A violation subgraph is a subgraph of

the fully augmented hypergrid all of whose edges are

violations.

Note that any violation subgraph is a bipartite sub-

graph, where the bipartition is given by the 1-valued

and 0-valued points. We henceforth always express a vi-

olation subgraph as G = (X,Y , E) such that ∀x ∈ X ,

f(x) = 1 and ∀y ∈ Y , f(y) = 0. There are a number

of relevant parameters of violation subgraphs that play

a role in our analysis.

Definition III.2. Fix a violation subgraph G =
(X,Y , E) and a point x ∈ X .

• The degree of x in G is the number of edges in E
incident to x and is denoted as DG(x).

• For any coordinate i ∈ [d], the i-degree of x in G is

the total number of i-edges in E incident to x and is

denoted as ΓG,i(x). Note DG(x) =
∑d

i=1 ΓG,i(x).
• The thresholded degree of x in G is the number of

coordinates i ∈ [d] with ΓG,i(x) > 0 and is denoted

as ΦG(x).

Whenever G is clear from context, for brevity, we remove

it from the subscript.

Note that Φ(x) is an integer between 0 and d, Γi(x) is

an integer between 0 and (n−1), and D(x) is an integer

between 0 and (n − 1)d. We next define the following

parameters of a violation subgraph G.

Definition III.3. Consider a violation subgraph G =
(X,Y , E).

• D(X) is the maximum degree of a vertex in X ,

that is, D(X) = maxx∈X D(x).
• For i ∈ [d], Γi(X) is the maximum i-degree in X ,

that is, Γi(X) = maxx∈X Γi(x).
• Γ(X) is the maximum value of Γi(X), that is,

Γ(X) = maxdi=1 Γi(X).
• Φ(X) is the maximum thresholded degree in X ,

that is, Φ(X) = maxx∈X Φ(x).
• m(G) is the number of edges in G.

(We analogously define these parameters for Y .)

We recall the notion of thresholded influence of a

function f : [n]d → {0, 1} as defined in [4], [5]. For any

x ∈ [n]d and i ∈ [d], Φf (x; i) is the indicator for the

existence of a violating i-edge incident to x. The thresh-

olded influence of f at x is Φf (x) =
∑d

i=1 Φf (x; i).

We use the same Greek letter Φ both for thresholded

influence and thresholded degree. In the graph G0 =
(X0,Y0, E) consisting of all violating edges of the fully

augmented hypergrid, Φf (x) is indeed ΦG0
(x).

For applications to monotonicity testing, we require

colored/robust versions of the thresholded influence. For

hypercubes this was suggested by [3], and for hypergrids

this was generalized by [5]. Let χ : E → {0, 1} be an

arbitrary coloring of all the edges of the fully augmented

hypergrid to 0 or 1. Given a point x and i ∈ [d],
Φf,χ(x; i) is the indicator of a violating i-edge e incident

to x with χ(e) = f(x). The colored thresholded influ-

ence of x wrt χ is simply Φf,χ(x) =
∑d

i=1 Φf,χ(x; i).
The Talagrand objective of f is defined as

Tal(f) := min
χ:E→{0,1}

∑

x∈[n]d

√
Φf,χ(x).

The main result of [5] is the following.

Theorem III.4 (Theorem 1.4, [5]). If f : [n]d → {0, 1}
is ε-far from monotone, then Tal(f) = Ω(εnd

logn).

We stress that the RHS above only loses a log n
factor, which allows for domain reduction (setting n =
poly(d)). This is what yields the nearly optimal

√
d

dependence and independence on n in the tester query

complexity.

We extend the definition of Tal(f) to arbitrary vio-

lation subgraphs as follows. Given a violation subgraph

G = (X,Y , E) and a bicoloring χ : E → {0, 1} of its

edges, for z ∈ X ∪ Y and i ∈ [d] let ΦG,χ(z; i) = 1
if there is a violating i-edge e ∈ E(G) incident to z

such that χ(e) = f(z), and ΦG,χ(z; i) = 0 otherwise.

Define ΦG,χ(x) =
∑d

i=1 ΦG,χ(x; i). Note, if χ ≡ 1, that

is every edge is colored 1, then ΦG,χ(x) = ΦG(x) for

x ∈ X and ΦG,χ(y) = 0 for all y ∈ Y . Similarly,

if χ ≡ 0, then ΦG,χ(y) = ΦG(y) for y ∈ Y and

ΦG,χ(x) = 0 for x ∈ X .

Definition III.5. Given a violation subgraph

G = (X,Y , E), we define Tal(G) :=
minχ

∑
z∈X∪Y

[
√
ΦG,χ(z)], where the min is taken

over all edge bicolorings χ : E(G) → {0, 1}.

If G0 is the subgraph of all violations in the fully aug-

mented hypergrid, then Theorem III.4 states Tal(G0) =
Ω(εnd/ log n). We make a couple of observations.

Observation III.6. For any violation subgraph G =
(X,Y , E),

• D(X) ≤ Γ(X)Φ(X) and D(Y) ≤ Γ(Y)Φ(Y).
• m(G) ≥ Tal(G).

1804

Authorized licensed use limited to: Dartmouth College Library. Downloaded on March 15,2024 at 15:46:34 UTC from IEEE Xplore. Restrictions apply.

Proof. For any x ∈ X , we have D(x) =
∑d

i=1 Γi(x) =∑
i:Γi(x)>0 Γi(x) ≤ (maxi Γi(x))·Φ(x) ≤ Γ(X)Φ(X).

The proof is analogous for Y . For the second bullet,

observe that m(G) =
∑

x∈X
D(x) ≥ ∑

x∈X
Φ(x) ≥∑

x∈X

√
Φ(x) =

∑
z∈X∪Y

√
ΦG,χ≡1(z) ≥ Tal(G).

Remark III.7. Throughout the remainder of the paper,

we consider d to be at least a large constant and fix

δ > 1
log lognd . As a result, we use bounds such as

“dδ ≥ poly log d” or “d − C
√
d ≥ d/3” without

explicitly reminding the reader that d is large. We use

O(δ) to denote C · δ for some unspecified, but fixed

constant C.

B. Equivalent Formulations of the Random Walk Distri-

bution

Recall the random walk distribution described in Def-

inition II.1. It is useful to think of this walk as first sam-

pling a random hypercube and then taking a random walk

on that hypercube. The following definition describes the

appropriate distribution over sub-hypercubes in [n]d.

Definition III.8 (Hypercube Distribution). We define the

following distribution Hn,d over sub-hypercubes in [n]d.

For each coordinate i ∈ [d]:

1) Choose qi ∈R {1, 2, . . . , log n} uniformly at ran-

dom.

2) Choose a uniform random interval Ii of size 2qi in

Zn.

3) Choose a uniform random pair ai < bi from Ii.

Output H =
∏d

i=1{ai, bi}. When n and d are clear from

context, we abbreviate H = Hn,d.

It will also be useful for us to think of our random

walk distribution as first sampling x ∈R [n]d, then

sampling a random hypercube which contains x, and

then taking a random walk from x in that hypercube.

The appropriate distribution over hypercubes containing

a point x is defined as follows.

Definition III.9 (Conditioned Hypercube Distribution).

Given x ∈ [n]d, we define the conditioned sub-hypercube

distribution Hn,d(x) as follows. For each i ∈ [d]:

1) Choose qi ∈R {1, 2, . . . , log n} uniformly at ran-

dom.

2) Choose a uniform random interval Ii in Zn of size

2qi such that xi ∈ Ii.
3) Choose a uniform random ci ∈R Ii \ {xi}.

4) Set ai = min(xi, ci) and bi = max(xi, ci).

Output H =
∏d

i=1{ai, bi}. When n and d are clear from

context we will abbreviate H(x) = Hn,d(x).

The random walk distribution in a hypercube H is

defined as follows.

Definition III.10 (Hypercube Walk Distribution). For

a hypercube H =
∏d

i=1{ai, bi}, a point x ∈ H , and

a walk length τ , we define the upward random walk

distribution UH,τ (x) over points y ∈ H as follows.

1) Pick a uniform random subset R ⊆ [d] of τ
coordinates.

2) Generate y as follows. For every r ∈ [d], if r ∈ R
and xr = ar, set yr = br. Else, set yr = xr.

Analogously, the downward random walk distribution

DH,τ (x) is defined precisely as above, but instead in

step 2 if r ∈ R and xr = br, we set yr = ar, and

otherwise yr = xr.

We observe that the following walk distributions are

equivalent and defer the proof to the appendix. See

Section A.1 in the full version [35].

Fact III.11. The following three distributions over pairs

(x,y) ∈ [n]d × [n]d are all equivalent.

1) x ∈R [n]d, y ∼ Uτ (x).
2) H ∼ H, x ∈R H , y ∼ UH,τ (x).
3) x ∈R [n]d, H ∼ H(x), y ∼ UH,τ (x).

The analogous three distributions defined using down-

ward random walks are also equivalent.

It is also convenient to define the shift distribution for

hypercubes.

Definition III.12 (Shift Distributions for Hypercube

Walks). Given a hypercube H , the up-shift distribution

from x ∈ H , denoted USH,τ (x) is the distribution of

x′−x, where x′ ∼ UH,τ (x). The down-shift distribution

from y ∈ H , denoted DSH,τ (y) is the distribution of

y − y′, where y′ ∼ DSH,τ (y).

C. Influence and Persistence

We define the following notion of influence for our

random walk distribution Definition II.1.

Definition III.13. The total and negative influences of

f : [n]d → {0, 1} are defined as follows.

• Ĩf = Ex∈[n]d
[
d · Pry∼U1(x)[f(x) �= f(y)]

]

• Ĩ−f = Ex∈[n]d
[
d · Pry∼U1(x)[f(x) > f(y)]

]

The probability of the tester (Alg. 1) finding a viola-

tion in step (2b) when τ = 1 is precisely Ĩ−f /d. Recall

the definition of the distribution H in Definition III.8.

For brevity, for a hypercube H =
∏d

i=1{ai, bi}
sampled from H, we abbreviate IH := If |H and

I−
H

:= I−f |H . That is, if f(x) = 1, then IH(x) is

1805

Authorized licensed use limited to: Dartmouth College Library. Downloaded on March 15,2024 at 15:46:34 UTC from IEEE Xplore. Restrictions apply.

the number of coordinates i for which xi = ai, and

f(x1, . . . ,xi−1, bi,xi+1, . . . ,xd) = 0, and if f(x) = 0,

then IH(x) = 0. Then, IH = Ex∈H [IH(x)]. The

definition is analogous for I−
H

.

Claim III.14. Ĩf = EH∼H [IH] and Ĩ−f = EH∼H

[
I−
H

]
.

Proof. By Fact III.11, the distribution (x ∈R [n]d,y ∼
U1(x)) is equivalent to first sampling H ∼ H, then

sampling (x ∈R H,y ∼ UH,1(x)). Recalling Defini-

tion III.10, observe that Pry∼UH,1(x)[f(x) �= f(y)] =
IH(x)/d. Putting these observations together yields

Ĩf = Ex∈[n]d

[
d · Pr

y∼U1(x)
[f(x) �= f(y)]

]

= EH∼HEx∈H [IH(x)] = EH∼H[IH]

An analogous argument proves the statement for negative

influence.

The following claim states that if the normal influence

is (very) large, then so is the negative influence. This

is a simple generalization of, and indeed easily follows

from, Theorem 9.1 in [3]. The proof is deferred to the

appendix. See Section A.2 in the full version [35].

Claim III.15. If Ĩf > 9
√
d, then Ĩ−f >

√
d.

Next, we define the notion of persistent points. This

is similar to that in [3] with a parameterization that we

need for our purpose.

Definition III.16. Given a point x ∈ [n]d, a walk length

τ , and a parameter β ∈ (0, 1), we say that x is (τ, β)-
up-persistent if

Pr
y∼Uτ (x)

[f(y) �= f(x)] ≤ β.

Similarly, x is called (τ, β)-down-persistent if the above

bound holds when y is drawn from the downward walk

distribution, Dτ (x). If both bounds hold, then we call x

(τ, β)-persistent.

The following claim upper bounds the fraction of non-

persistent points. This is a generalization of Lemma 9.3

in [3]. The proof is deferred to the appendix. See Section

A.2 in the full version [35].

Claim III.17. If Ĩf ≤ 9
√
d, then the fraction of vertices

that are not (τ, β)-persistent is at most Cper
τ

β
√
d

where

Cper is a universal constant.

D. The Middle Layers, Typical Points, and Walk Re-

versibility

All proofs in this section are deferred to the appendix,

which we omit from this version of the paper. We refer

the reader to Section A.3 in the full version [35].

Definition III.18. In a hypercube {0, 1}d, the c-middle

layers consist of all points with Hamming weight in the

range [d/2 ±
√
4cd log(d/ε)]. Given a d-dimensional

hypercube H , we let Hc ⊆ H denote the c-middle

layers of H .

We state a bound on the number of points in the

hypercube which lie in the middle layers. This follows

from a standard Chernoff bound argument.

Claim III.19. For a d-dimensional hypercube H and

c ≥ 1, we have |Hc| ≥ (1− (ε/d)c) · 2d.

We now define the notion of typical points in [n]d.

Recall the distribution Hn,d (Definition III.8) over ran-

dom sub-hypercubes in [n]d and the distribution Hn,d(x)
(Definition III.8) over random sub-hypercubes in [n]d

that contain x. A point x is c-typical if for most sub-

hypercubes containing x, the point x is present in their

c-middle layers.

Definition III.20 (Typical Points). Given c ≥ 1, a point

x ∈ [n]d is called c-typical if

Pr
H∼H(x)

[x ∈ Hc] ≥ 1− (ε/d)5.

Claim III.21 (Most Points are Typical). For any ε ∈
(0, 1) and c ≥ 6,

Pr
x∈R[n]d

[x is c-typical] ≥ 1− (ε/d)c−5.

Intuitively, a short random walk from a typical point

will always lead to point that is almost as typical. This

is formalized as follows.

Claim III.22 (Translations of Typical Points). Suppose

x ∈ [n]d is c-typical. Then for a walk length τ ≤
√
d,

every point x′ ∈ supp(Uτ (x))∪supp(Dτ (x)) is (c+ τ√
d
)-

typical.

Recall the three equivalent ways of expressing the

walk distribution in Fact III.11. We define the random

walk probabilities only on points in the middle layers.

This setup allows for the approximate reversibility of

Lemma III.24.

Definition III.23. Consider two vertices x ≺ x′ ∈ [n]d

and a walk length τ . We define

px,τ (x
′)

= EH∼H(x)

[
1 (x,x′ ∈ H100) Pr

z∼UH,τ (x)
[z = x′]

]
(1)

to be the probability of reaching x′ by a random walk

from x, only counting the contribution when the random

walk is taken on a hypercube that contains x and x′ in

1806

Authorized licensed use limited to: Dartmouth College Library. Downloaded on March 15,2024 at 15:46:34 UTC from IEEE Xplore. Restrictions apply.

the 100-middle layers. We analogously define px′,τ (x)
using the downward random walk distribution in H .

Consider x ≺ x′ are two points in the middle layers.

The following lemma asserts that the probability of

reaching from x to x′ via an upward walk of length

≪
√
d is similar to the probability of reaching from x′

to x via downward walk of the same length.

Lemma III.24 (Reversibility Lemma). For any points

x ≺ x′ ∈ [n]d and walk length ℓ ≤
√
d/ log5(d/ε), we

have

px,ℓ(x
′) = (1± log−3 d)px′,ℓ(x).

IV. RED EDGES, BLUE EDGES, AND NICE

SUBGRAPHS

We now set the stage to prove Theorem II.4. The first

definition is that of mostly-zero-below points. These are

points from which a downward random walk (Defini-

tion II.1) leads to a point where the function evaluates

to 0 with high probability.

Definition IV.1. A point z is called ℓ-mostly-zero-below,

or ℓ-mzb, if Prz′∼Dℓ(z)[f(z
′) = 0] ≥ 0.9.

To appreciate the utility of ℓ-mzb points, consider the

following scenario. Suppose x is a point with f(x) = 1
and is (ℓ, β)-down-persistent (Definition III.16) for some

small β. Next suppose an upward random walk from x

reaches an ℓ-mzb point z. Then, we claim that Step 4 of

Alg. 1 would succeed with constant probability in finding

a violated edge. An ℓ-length downward walk from x, due

to down-persistence, would lead to a x′ with f(x′) =
1 with probability at least 1 − β. The same ℓ-length

downward walk from z would lead to a z′ with f(z′) = 0
with ≥ 0.9 probability, since z is mostly-zero-below.

Since (x, z) are comparable, so would be (x′, z′). By a

union bound, (x′, z′) is a violation with probability at

least 0.9− β.

The next definition describes edges (x,y) of the

violation subgraph most of whose internal vertices lead

to mzb-points via an upward random walk. Uncreatively,

we call such edges red. Recall that I(x,y) = {z : x �
z � y} denotes the closed interval of points from x to

y.

Definition IV.2. A violated edge (x,y) is called/colored

red for walk length ℓ if

Pr
z∈I(x,y)

Pr
z′∼Uℓ(z)

[z′ is ℓ-mzb] ≥ 0.01.

When ℓ is clear by context, we call the edge red.

There may be no ℓ-mzb points for the lengths we

choose, that is, a downward walk from any point leads

to a point where the function evaluates to 1. In that case,

Step 3 of Alg. 1 is poised to succeed; for any violating

edge (x,y), if we start from y then the downward

walk should give a violation. This motivates the next

definition which recognizes violated edges (x,y) most

of whose internal vertices lead to points where the

function evaluates to 1 via a downward random walk.

We call such edges blue.

Definition IV.3. A violated edge (x,y) is called/colored

blue for walk length ℓ if

Pr
z∈I(x,y)

Pr
z′∼Dℓ(z)

[f(z′) = 1] ≥ 0.01.

When ℓ is clear by context, we simply call the edge blue.

We note that a violating edge (x,y) may be both red

and blue, or perhaps more problematically, neither red

nor blue. One of the key lemmas we prove is that we can

get our hands on a violation subgraph with sufficiently

many colored edges. If we have our hands on a large

violation subgraph G with few red edges (but has some

other properties), then we can find another comparable

sized violation subgraph H all of whose edges are blue,

and whose maximum degrees are bounded by those in

G. The precise statement is given below. We defer the

proof of this lemma to §VII.

Lemma IV.4 (Red/Blue Lemma). Let G(X,Y , E) be

a violation subgraph and 1 ≤ ℓ ≤
√
d/ log5(d/ε) be a

walk length such that the following hold.

1) At most half the edges are red for walk length ℓ.
2) All vertices in X ∪ Y are (ℓ, log−5 d)-up-

persistent.

3) All vertices in X ∪ Y are 99-typical.

Then there exists another violation subgraph

H(L,R, E′) such that

1) All edges are blue for walk length ℓ and m(H) ≥
m(G)/7.

2) Γ(L) ≤ Γ(X) and Γ(R) ≤ Γ(Y).
3) D(L) ≤ D(X) and D(R) ≤ D(Y).

The next two definitions capture certain “nice” vio-

lation subgraphs consisting of either red or blue edges.

In §V, we show that if either of these subgraphs exist

then we can prove the tester works with the desired

probability. In §VI we show that one of these subgraphs

must exist. Recall, ΦH(x) is the thresholded degree of

x in the subgraph H and δ > (log log nd)−1 is fixed

(Remark III.7).

Definition IV.5 ((σ, τ)-nice red violation subgraph).

Given a parameter σ ∈ (0, 1) and a walk length τ , a

1807

Authorized licensed use limited to: Dartmouth College Library. Downloaded on March 15,2024 at 15:46:34 UTC from IEEE Xplore. Restrictions apply.

violation subgraph H(A,B, E) is called a (σ, τ)-nice

red violation subgraph if the following hold.

(a) All edges in H are red for walk length τ − 1.

(b) All vertices in A are (τ − 1, 0.6)-down-persistent.

(c) σΦH(x) ≤ d1/2 for all x ∈ A.

(d) σ
∑

x∈A
ΦH(x) ≥ ε2 · nd · d−O(δ).

(e) d1/2−O(δ) ≥ τ ≥ σ · d1/2−O(δ).

The first two conditions dictate that the subgraph is

nice with respect to the length of the walk. In particular,

the edges are red with respect to this length and further-

more the 1-vertices are down-persistent. As explained

before the definition of red edges, this property is crucial

for the success of Step 4 of Alg. 1. The fourth condition

says that the total thresholded degree of the 1-vertices in

H is large. I.e. for an average vertex x ∈ A, there will

be many coordinates i for which there is an i-edge in

H incident to x. The third condition says that the max

thresholded degree of vertices in A is not too large and

so the total thresholded degree from the fourth condition

must be somewhat spread amongst the vertices in A. The

final condition shows that the length of the walk is large

compared to σ. Note, if σ = Θ(1) and the third bullet

point’s right hand side was 1 instead of
√
d, we would

be in the case of a large matching of violated edges,

which was the “simple case” discussed in §I-B.

The next definition is the analogous case of blue

edges. When this type of subgraph exists we argue that

Step 3 of Alg. 1 succeeds. Note that Step 3 is the down-

ward path test (without a shift) and so we don’t need

a persistence property like condition (b) in the previous

definition. This definition has the same conditions on the

thresholded degree as the previous definition, but with

respect to the 0-vertices of the subgraph.

Definition IV.6 ((σ, τ)-nice blue violation subgraph).

Given a parameter σ ∈ (0, 1) and a walk length τ , a

violation subgraph H(A,B, E) is called a (σ, τ)-nice

blue violation subgraph if the following hold.

(a) All edges in H are blue for walk length τ − 1.

(b) σΦH(y) ≤ d1/2 for all y ∈ B.

(c) σ
∑

y∈B
ΦH(y) ≥ ε2 · nd · d−O(δ).

(d) d1/2−O(δ) ≥ τ ≥ σ · d1/2−O(δ).

The following lemma captures the utility of the above

definitions. It’s proof can be found in §V.

Lemma IV.7 (Nice Subgraphs and Random Walks).

Suppose for a power of two τ ≥ 2, there exists a (σ, τ)-
nice red subgraph or a (σ, τ)-nice blue subgraph. Then

Alg. 1 finds a violating pair, and thus rejects f , with

probability at least ε2 · d−(1/2+O(δ)).

The following lemma shows that one of the two nice

subgraphs always exists. It’s proof can be found in §VI.

Lemma IV.8 (Existence of nice subgraphs). Let

n, ε−1 ≤ poly(d). Suppose f : [n]d → {0, 1} is ε-far

from monotone and Ĩf ≤ 9
√
d. Let δ > 1

log lognd be a

parameter. There exists 0 < σ1 ≤ σ2 < 1, a violation

subgraph H(A,B, E), and a power of two τ ≥ 2, such

that either H is a (σ1, τ)-nice red subgraph or a (σ2, τ)-
nice blue subgraph.

V. TESTER ANALYSIS

In this section we prove Theorem II.4. First, in §V-A

we prove Lemma IV.7 which is the main tester analysis.

Then in §V-B we combine Lemma IV.7, Lemma IV.8

(which will be proven in §VI), and Claim III.15 to prove

Theorem II.4.

A. Main Analysis: Proof of Lemma IV.7

There are two cases depending on whether we have

a nice red subgraph or a nice blue subgraph. In Case 1,

Step 4 of Alg. 1 proves the lemma while in Case 2, Step

3 of Alg. 1 proves the lemma. The proofs are similar,

but we provide both for completeness.

1) Case 1: H is a (σ, τ)-nice red subgraph: Since

τ is a power of 2, the tester in Alg. 1 chooses it with

probability log−1 d. Thus, in the rest of the analysis we

will condition on this event.

Given x ∈ A, let Cx ⊆ [d] denote the set of

coordinates for which x has an outgoing edge in H . Note

|Cx| = ΦH(x). Recall the upward path + downward

shift test described in Step 4 of Alg. 1 and the walk

distribution Uτ−1(x) defined in Definition II.1. We first

lower bound the probability that x ∈ A and R∩Cx �= ∅
where x is chosen uniformly by the tester and R ⊆ [d] is

a random set of τ coordinates. Let E1 denote this event.

The main calculation is to lower bound the probability

of this event as follows.

Pr[E1] =
1

nd

∑

x∈A

Pr[R ∩ Cx �= ∅]

≥ 1

nd

∑

x∈A

[
1−

(
1− |Cx|

d

)τ]

≥ 1

nd

∑

x∈A

[
1− exp

(
−τ |Cx|

d

)]

The RHS can only decrease if we replace τ with its

lower bound (Definition IV.5, (e)) of σ ·d1/2−O(δ). Also,

observe that
σd1/2−O(δ)|Cx|

d = σΦH(x)
d1/2+O(δ) ≤ 1 using our

upper bound, σΦH(x) ≤ d1/2 (Definition IV.5, (c)).

1808

Authorized licensed use limited to: Dartmouth College Library. Downloaded on March 15,2024 at 15:46:34 UTC from IEEE Xplore. Restrictions apply.

Now, using e−x ≤ 1 − x
2 for x ≤ 1, the exponential

term in the RHS is at most 1− σΦH(x)
2d1/2+O(δ) , yielding

Pr[E1] ≥
σ

2d1/2+O(δ)
· 1

nd

∑

x∈A

ΦH(x)

≥︸︷︷︸
(Definition IV.5, (d))

ε2

d1/2+O(δ)
(2)

The event E1 asserts that the tester has chosen a point

x ∈ A and there is at least one r ∈ R for which there

exists a red edge (x,x+aer) ∈ E for some integer a > 0
in the subgraph H . Fix the smallest such r ∈ R ∩ Cx

and the corresponding edge in H .

Recall the random walk process in Definition II.1. We

define the following good events.

• E2: Step (2a) chooses qr satisfying: if a ≤ n/4,

then 2qr ∈ [2a, 4a]; if a > n/4, then 2qr = n.

• E3: Step (2b) chooses the interval Ir ⊇ [xr,xr+a].
• E4: Step (2c) chooses cr uniformly5 from [xr,xr+
a].

• E5: y is (τ − 1)-mostly-zero-below as per Defini-

tion IV.1.

• E6: f(y − s) = 0 for s chosen in Step 4 of Alg. 1

from DSτ−1(x).
• E7: f(x− s) = 1 for s chosen in Step 4 of Alg. 1

from DSτ−1(x).

Firstly, note that Pr[E2] = log−1 n for both cases

of the edge length, a. Now, suppose a ≤ n/4. Then,

Pr[E3 | E2] ≥ 1/2 by the condition qr ≥ 2a and

Pr[E4 | E2, E3] ≥ 1/4 by the condition qr ≤ 4a. If

a > n/4, then Pr[E3 | E2] = 1, since in this case Ir = [n]
and again Pr[E4 | E2, E3] ≥ 1/4 since [xr,xr + a] is at

least a fourth of the entire line, [n].
Now, since the edge (x,x + aer) is red (Defini-

tion IV.2) for walk length τ − 1, we have Pr[E5 | E4] ≥
0.01.

Since y is (τ −1)-mostly-zero-below, if we sample s′

from DSτ−1(y) we get f(y−s′) = 0 with probability ≥
0.9. Now note that DSτ−1(y) and DSτ−1(x) differ only

when the set R ⊆ [d] chosen in Definition II.1 contains

a coordinate in supp(y− x). Since |supp(y− x)| ≤ τ ,

|R| ≤ τ , and τ = o(
√
d), we have PrR[R ∩ supp(y −

x) �= ∅] ≤ τ2/d = o(1). Therefore, when s is drawn

5We point out the following minor technicality in our presentation.
From Definition II.1, note that cr is chosen from Ir \ {xr} and so
technically we will never have cr = xr . However, note that Step 4 of
Alg. 1 also runs the upward path + downward shift tester using walk
length τ − 1 and this is equivalent to setting cr = xr in this analysis,
so that the first step of the walk is of length 0. Thus, it is sound in
this analysis to think of cr as uniformly chosen from Ir and we make
this simplification for ease of reading.

from DSτ−1(x), we get f(y − s) = 0 with probability

≥ 0.9(1− o(1)) ≥ 0.8. That is, Pr[E6 | E5] ≥ 0.8.

Finally, all points in A are (τ−1, 0.6)-down-persistent

(Definition III.16) and so Pr[E7 | x ∈ A] ≥ 0.4.

Now, let’s put everything together. The final success

probability of the tester is at least Pr[E6 ∧ E7], which

by a union bound and the reasoning above, is at least

(1− Pr[¬E6 | E5]− Pr[¬E7 | x ∈ A]) · Pr
[

5∧

i=1

Ei
]

≥ (1− 0.2− 0.6) · ε2

d1/2+O(δ)
· 1

log n
· 1
2
· 1
4
· 1

100

≥ ε2

d1/2+O(δ)

where in the last inequality we used n ≤ poly(d). This

completes the proof when the nice subgraph is red.

2) Case 2: H is a (σ, τ)-nice blue subgraph: As in

Case 1, since τ is a power of 2, the tester in Alg. 1

chooses it with probability log−1 d. Thus, in the rest of

the analysis we will condition on this event. Given y ∈
B, let Cy ⊆ [d] denote the set of coordinates for which

y has an incoming edge in H . Note |Cy| = ΦH(y).
Recall the downward path tester described in Step 3

of Alg. 1 and the walk distribution Dτ−1(y) defined in

Definition II.1. We first lower bound the probability that

y ∈ B and R∩Cy �= ∅ where y is chosen uniformly by

the tester and R ⊆ [d] is a random set of τ coordinates.

Let E1 denote this event. The main calculation is to lower

bound the probability of this event as follows.

Pr[E1] =
1

nd

∑

y∈B

Pr[R ∩ Cy �= ∅]

≥ 1

nd

∑

y∈B

[
1−

(
1− |Cy|

d

)τ]

≥ 1

nd

∑

y∈B

[
1− exp

(
−τ |Cy|

d

)]

As in Case 1, the RHS can only decrease if we re-

place τ with its lower bound (Definition IV.6, (d)) of

σ · d1/2−O(δ), and a similar argument as in Case 1 gives

Pr[E1] ≥
σ

d1/2+O(δ)
· 1

nd

∑

y∈B

ΦH(y)

≥︸︷︷︸
(Definition IV.6, (c))

ε2

d1/2+O(δ)
(3)

As in Case 1, the event E1 says that the tester has

chosen a point y ∈ B and there exists r ∈ R such that

there exists an edge (y−aer,y) ∈ E in the subgraph H

1809

Authorized licensed use limited to: Dartmouth College Library. Downloaded on March 15,2024 at 15:46:34 UTC from IEEE Xplore. Restrictions apply.

for some integer a > 0. Fix the smallest r ∈ R∩Cy and

the corresponding edge in H . Now define the following

good events for the remainder of the tester analysis.

• E2: Step (2a) chooses qr satisfying: if a ≤ n/4,

then 2qr ∈ [2a, 4a]; if a > n/4, then 2qr = n.

• E3: Step (2b) chooses the interval Ir ⊇ [yr−a,yr].
• E4: Step (2c) chooses cr uniformly6 from [yr −
a,yr].

• E5: f(x) = 1.

The final success probability of the tester is at least

Pr[∧5
i=1Ei]. Firstly, note that Pr[E2] = log−1 n for both

cases of the edge length, a. Suppose a ≤ n/4. Then,

Pr[E3 | E2] ≥ 1/2 by the condition qr ≥ 2a and

Pr[E4 | E2, E3] ≥ 1/4 by the condition qr ≤ 4a. If

a > n/4, then Pr[E3 | E2] = 1, since in this case Ir = [n]
and again Pr[E4 | E2, E3] ≥ 1/4.

Finally, since the edge (y − aer,y) is blue for walk

length τ − 1, by definition (Definition IV.3) we have

Pr[E5 | E4] ≥ 0.01. Putting everything together, we have

Pr

[
5∧

i=1

Ei
]
≥ ε2

d1/2+O(δ)
· 1

log n
· 1
2
· 1
4
· 1

100

≥ ε2

d1/2+O(δ)

where in the last step we used n ≤ poly(d) and this

completes the proof when the nice subgraph is blue.

Together, the cases complete the proof of Lemma IV.7.

B. Tying it Together: Proof of Theorem II.4

Suppose f : [n]d → {0, 1} is ε-far from being

monotone. Recall the definitions of Ĩf , Ĩ
−
f in Defini-

tion III.13. By Claim III.15, if Ĩf > 9
√
d, then Ĩ−f >

√
d

and so the tester (Alg. 1) finds a violation in step (2)

when τ = 1 with probability Ω(d−1/2). Thus, we will

assume Ĩf ≤ 9
√
d and so we may invoke Lemma IV.8

which gives us either a nice red subgraph or a nice

blue subgraph. Lemma IV.7 then proves that Alg. 1

finds a violating pair and rejects with probability at least

ε2 · d−(1/2+O(δ)). This proves Theorem II.4.

VI. FINDING NICE SUBGRAPHS

In this section we prove Lemma IV.8 which we restate

below.

Lemma IV.8 (Existence of nice subgraphs). Let

n, ε−1 ≤ poly(d). Suppose f : [n]d → {0, 1} is ε-far

6The same minor technicality arises here as in the previous subsec-
tion. We will never have cr = yr as per Definition II.1, but Step 3 of
Alg. 1 also runs the downward path tester with walk length τ − 1 and
this is equivalent to setting cr = yr in this analysis. Thus, it is again
sound in this analysis to think of cr being uniformly chosen from Ir .

from monotone and Ĩf ≤ 9
√
d. Let δ > 1

log lognd be a

parameter. There exists 0 < σ1 ≤ σ2 < 1, a violation

subgraph H(A,B, E), and a power of two τ ≥ 2, such

that either H is a (σ1, τ)-nice red subgraph or a (σ2, τ)-
nice blue subgraph.

The proof proceeds over multiple steps and constitutes

a key technical contribution of the paper. We give a

sketch of what is forthcoming.

• In §VI-A we describe the construction of a seed

regular violation subgraph G. This uses the directed

isoperimetric result Theorem III.4 proved in [5] and

a “peeling argument” not unlike that present in [3].

At the end of this section, we will fix the parameters

σ1, σ2 and the walk length τ . In particular, the

length τ will be defined by the larger side of this

violating bipartite graph.

• In §VI-B, we obtain a regular violating graph H that

has persistence properties with respect to the walk

length τ . In [3] and [5], one obtained this violating

graph by simply deleting the non-persistent points

from the seed violation subgraph. In our case, since

we choose the walk length depending on the larger

side, we need to be careful. We use the idea of

“translating violation subgraphs” on G (repeatedly)

to find a different violation subgraph H with the

desired persistence properties.

• In §VI-C, we use the graph H to obtain either

a nice red subgraph H1 or a nice blue subgraph

H2. If most of the edges in H were red, then a

simple surgery on H itself gives us H1. On the

other hand, if H has few red edges (but has the

persistence properties as guaranteed), then we apply

the red/blue lemma (Lemma IV.4) to obtain the

desired nice blue-subgraph H2. The proof of the

red/blue lemma, which is present in §VII, uses the

translating violation subgraphs idea as well.

Throughout, we assume f : [n]d → {0, 1} is a

function which is ε-far from being monotone, Ĩf ≤ 9
√
d

and n, ε−1 ≤ poly(d). In particular, we fix a constant c
so that nd ≤ dc. We also fix a δ ≈ 1

log lognd = o(1).

A. Peeling Argument to Obtain Seed Regular Violation

Subgraph

Recall the definition of the Talagrand objective (Def-

inition III.5) Tal(G) of a violation subgraph G =
(X,Y , E). Let G0 denote the violation subgraph formed

by all violating edges in the fully augmented hyper-

grid. Theorem 1.4 in [5] (paraphrased in this paper

as Theorem III.4) is that Tal(G0) = Ω(εnd/ log n). Also

recall the definitions in Definition III.2. The following

1810

Authorized licensed use limited to: Dartmouth College Library. Downloaded on March 15,2024 at 15:46:34 UTC from IEEE Xplore. Restrictions apply.

lemma asserts that there exists a subgraph of G0 whose

Talagrand objective is not much lower, but satisfies

certain regularity properties.

Lemma VI.1 (Seed Regular Violation Subgraph). There

exists a violation subgraph G(X,Y , E) satisfying the

following properties.

(a) Tal(G) ≥ ε · d−cδ · nd.

(b) m(G) ≥ d−3cδ max(|X|Φ(X)Γ(X),
|Y |Φ(Y)Γ(Y)).

(c) All vertices in X ∪ Y are 98-typical.

(d) |X|, |Y | ≥ ε
d1/2+cδ · nd.

Let us make a few comments before proving the above

lemma. Condition (a) shows that the Talagrand objective

degrades only by a do(1) factor. Condition (b) shows that

the graph is nearly regular since the RHS term without

the d−o(1) term is the maximum value of m(G). This is

because Φ(X)Γ(X) is an upper bound on the maximum

degree of any vertex x ∈ X . Indeed, if one can prove a

stronger lemma which replaces the do(1) terms in (a) and

(b) by polylog(d)’s, then the remainder of our analysis

could be easily modified to give a Õ(ε−2
√
d) tester.

We need a few tools to prove this lemma. Our first

claim is a consequence of the subadditivity of the square

root function.

Claim VI.2. Consider a partition of (the edges of)

a violation subgraph G into H1, H2, . . . , Hk. Then∑
j≤k Tal(Hj) ≥ Tal(G).

Proof. Let χj denote the coloring of the subgraph

Hj that obtains the minimum Tal(Hj). Since the

H1, . . . , Hk form a partition, we can aggregate the colors

to get a coloring χ of G.

Consider any z ∈ X ∪ Y . Let ΦHj ,χj
(z) be the

thresholded degree of z, restricted to the edges colored

by χj . By the subadditivity of the square root func-

tion,
∑

j≤k

√
ΦHj ,χj

(z) ≥
√∑

j≤k ΦHj ,χj
(z). Ob-

serve that thresholded degrees are also subadditive, so∑
j≤k ΦHj ,χj

(z) ≥ ΦG,χ(z). Hence,

∑

j≤k

Tal(Hj) =
∑

j≤k

∑

z∈X∪Y

√
ΦHj ,χj

(z)

=
∑

z∈X∪Y

∑

j≤k

√
ΦHj ,χj

(z)

≥
∑

z∈X∪Y

√
ΦG,χ(z) ≥ Tal(G). (4)

Remark VI.3. The proof of Claim VI.2 crucially uses

the fact that in the definition of Tal(), we minimize over

all possible colorings χ’s of the edges. In particular, if

we had defined Tal(G) only with respect to the all ones

or the all zeros coloring, then the above proof fails. In the

remainder of the paper, we will only be using the χ ≡ 1
or χ ≡ 0 colorings, and the curious reader may wonder

why we need the definition of Tal(G) to minimize over all

colorings. This is exactly the point where we need it. We

make this remark because the “uncolored” isoperimetric

theorem is much easier to prove than the “colored”

version, but the colored/robust version is essential for

the tester analysis.

Our next step is a simple bucketing argument.

Claim VI.4. Consider a violation subgraph G =
(X,Y , E). Both of the following are true.

1) There exists a subgraph G′ = (X ′,Y ′, E′) of

G such that Tal(G′) ≥ δ2Tal(G) and m(G′) ≥
(nd)−δ|X ′|Φ(X ′)Γ(X ′).

2) There exists a subgraph G′ = (X ′,Y ′, E′) of

G such that Tal(G′) ≥ δ2Tal(G) and m(G′) ≥
(nd)−δ|Y ′|Φ(Y ′)Γ(Y ′).

Proof. We prove item (1) and the proof of item (2) is

analogous.

For convenience, we assume that δ is the reciprocal

of a natural number. For each x ∈ X , we bucket the

incident edges as follows. First, for each a ∈ [1/δ], let

Sa be the set of dimensions i, such that the i-degree of

x is in the range [n(a−1)δ, naδ). Note that S1, . . . , S1/δ

forms a partition of the set of coordinates, [d]. Now, for

each a, b ∈ [1/δ], let the (a, b) edge bucket of x, denoted

Ea,b,x, be defined as follows. If |Sa| ∈ [d(b−1)δ, dbδ),
then Ea,b,x is the set of all edges incident to x along

dimensions in Sa. If |Sa| /∈ [d(b−1)δ, dbδ), then Ea,b,x =
∅. Observe {Ea,b,x : a, b ∈ [1/δ]} partitions the edges

incident to x.

Now, let Ga,b denote the subgraph formed by the

edge set ∪x∈XEa,b,x. Let Xa,b be the set of ver-

tices in X with non-zero degree in Ga,b. Observe

that Φ(Xa,b) ≤ dbδ and Γ(Xa,b) ≤ naδ . Moreover,

the degree of each x ∈ Xa,b is at least d(b−1)δ ×
n(a−1)δ ≥ (nd)−δΦ(Xa,b)Γ(Xa,b). Hence, m(Ga,b) ≥
(nd)−δ|Xa,b|Φ(Xa,b)Γ(Xa,b).

Finally, by construction, the Ga,b subgraphs parti-

tion the edges of G. Hence, by Claim VI.2 we have∑
a,b∈[1/δ] Tal(Ga,b) ≥ Tal(G). By averaging, there ex-

ists some choice of a, b such that Tal(Ga,b) ≥ δ2Tal(G).
This gives the desired subgraph G′.

1811

Authorized licensed use limited to: Dartmouth College Library. Downloaded on March 15,2024 at 15:46:34 UTC from IEEE Xplore. Restrictions apply.

Claim VI.4, part 1 above gives the regularity condition

only with respect to X , and part 2 gives the analogous

guarantee with respect to Y , but the trouble is in getting

both simultaneously. We do an iterative construction

using Claim VI.4 to get the simultaneous guarantee.

Proof. (part (a) and (b) of Lemma VI.1) By the robust di-

rected Talagrand theorem for hypergrids (Theorem III.4),

there is a violation subgraph G0 = (X0,Y0, E0) such

that Tal(G0) = Ω(εnd/ log n). We construct a series of

subgraphs G0 ⊇ G1 ⊇ G2 ⊇ · · · ⊇ Gr as follows.

Let i ≥ 1. If i is odd, we apply item (1) of Claim VI.4

to Gi−1 to get Gi(Xi,Yi, Ei) with the regularity condi-

tion on Xi. If i is even, we apply item (2) of Claim VI.4

to Gi−1 to get Gi(Xi,Yi, Ei) with the regularity con-

dition on Yi. If i > 1 and m(Gi) ≥ (nd)−δm(Gi−1),
then we terminate the series. By Claim VI.4, the series

satisfies the following three properties for all i ≥ 1.

• Tal(Gi) = Ω(δ2iεnd/ log n).
• If i is odd, m(Gi) ≥ (nd)−δ|Xi|Φ(Xi)Γ(Xi). If

i is even, m(Gi) ≥ (nd)−δ|Yi|Φ(Yi)Γ(Yi).
• If the series has not terminated by step i, then

m(Gi) < (nd)−δm(Gi−1).

The first two statements hold by the guarantees of

Claim VI.4 and the fact that Tal(G0) = Ω(εnd/ log n).
The third statement holds simply by the termination

condition for the sequence. The trivial bound on the

number of edges is m(G0) ≤ nd · nd. The third bullet

point yields m(Gi) < (nd)−iδ ·nd ·nd, if the series has

not terminated by step i.

Claim VI.5. The series terminates in at most 3/δ steps.

Proof. Suppose not. Noting that m(Gi) ≥ Tal(Gi)
(Observation III.6), we get the following chain of in-

equalities using the properties of our subgraph graph

G3/δ .

(nd)−(3/δ)·δ · nd · nd > m(Gi) ≥ Tal(Gi)

= Ω(δ6/δεnd/ log n)

=⇒ (nd)−2 = Ω(δ6/δε/ log n)

Note that we may assume ε ≥ 1/d and so Cε/ log n ≥
(nd)−1 for any constant C. Thus we have (nd)−1 ≥
δ6/δ . Given that δ > 1/ log lognd, this inequality is a

contradiction.

By the previous claim the series terminates in some

r ≤ 3/δ steps, producing Gr(Xr,Yr, Er), which we

claim has the desired properties to prove conditions (a)

and (b) of Lemma VI.1. Since r ≤ 3/δ, Tal(Gr) =

Ω(δ6/δεnd/ log n). Note that since δ > 1/ log lognd,

we have

δ6/δ > (log log nd)
− 6

δ = (nd)−
6
δ ·

log log log nd
log nd

> (nd)−δ2 > (nd)−δ · log n > d−cδ log n

where the second to last step holds because
6 log log lognd

log d ≪
(

1
log lognd

)3

< δ3. The last inequality

used nd ≤ dc. This proves condition (a). Towards

proving condition (b), note that Cδ6/δ/ log n ≥ (nd)−δ

for any constant C.

Let’s assume without loss of generality that r is even.

Thus we have m(Gr) ≥ (nd)−δ|Yr|Φ(Yr)Γ(Yr) by

the second bullet point above. Next, since the series

terminated at step r, we have

m(Gr) ≥ (nd)−δm(Gr−1)

≥ (nd)−2δ|Xr−1|Φ(Xr−1)Γ(Xr−1)

≥ (nd)−2δ|Xr|Φ(Xr)Γ(Xr)

where the second inequality is again by the second bullet

point above and the fact that i− 1 is odd and the third

inequality is simply because Gr is a subgraph of Gr−1.

Again using nd ≤ dc, we have (nd)−δ ≥ d−cδ and

so we get that Gr satisfies conditions (a) and (b) of

Lemma VI.1.

Proof. (Conditions (c) and (d) Lemma VI.1) To ob-

tain condition (c), we simply remove the non-typical

points. Recall the definition of c-typical points (Defi-

nition III.20). By Claim III.21, the number of points

that are not 98-typical is at most (ε/d)93nd. Thus,

removing all such vertices can decrease Tal(G) by at

most (ε/d)93nd ·
√
d which is negligible compared to the

RHS in condition (a). Thus, we remove all such vertices

from G and henceforth assume that all of X ∪ Y is

98-typical.

Condition (d) follows from condition (a). Consider the

constant coloring χ ≡ 1 and observe that

|X|
√
d ≥ Talχ≡1(G) ≥ Tal(G) ≥ ε · d−cδ · nd.

where the first inequality follows from the trivial ob-

servation that the maximum ΦG(x) can be is d. Using

the coloring χ ≡ 0 proves the same lower bound for

|Y |.
1) Choice of the walk length: We end this section by

specifying what the parameters σ1, σ2 and τ are going

to be in Lemma IV.8. We now make the assumption

|X| ≤ |Y |. Given Remark II.3, this is without loss of

generality; this fact would be true either in f or in g,

and running steps 2, 3, 5 on f is equivalent to running

1812

Authorized licensed use limited to: Dartmouth College Library. Downloaded on March 15,2024 at 15:46:34 UTC from IEEE Xplore. Restrictions apply.

steps 2, 3, 4 on g. The violation subgraphs for f and g
are isomorphic. Then,

σ1 = σX :=
|X|
nd

and σ2 = σY :=
|Y |
nd

and set τ to be the unique power of two such that

1

2
⌈σY · d1/2−7cδ⌉ < τ − 1 ≤ ⌈σY · d1/2−7cδ⌉.

We conclude the subsection by establishing the fol-

lowing upper bound on the number of vertices which

are not up-persistent.

Claim VI.6. We may assume that

• the number of vertices x ∈ X where f(x) = 1
that are not (τ−1, log−5 d)-up-persistent is at most

d−6cδ · |X|, and

• the number of vertices y ∈ Y where f(y) = 0
that are not (τ−1, log−5 d)-up-persistent is at most

d−6cδ · |Y |.
Proof. The statement for points where f(x) = 1 is

implied by item (4) of Lemma VI.1, for otherwise the

tester succeeds with the desired probability when it runs

the upward path tester with walk length τ − 1 (step (2)

of Alg. 1).

Now we prove the statement for points where f(y) =
0. By Claim III.17, the total number of (τ −1, log−5 d)-
non-persistent vertices is at most Cperτ ·log5 d· 1√

d
·nd ≤

σY ·d−6cδ ·nd, where we have simply used log5 d ≪ dcδ

and our definition of τ .

B. Using ‘Persist-or-Blow-up’ Lemma to obtain Down-

Persistence

Lemma VI.1 provides a seed violation subgraph which

has a large Talagrand objective and has regularity prop-

erties. Claim VI.6 shows that we may assume these

vertices are up-persistent with respect to walk length of

τ − 1. However, we may not have down persistence.

In particular, it could be |X| ≪ |Y | and if we try to

apply Claim III.17 and remove all nodes from X which

are not (τ − 1, 0.6)-down-persistent, we may end up

removing everything. To obtain a subgraph with down-

persistence properties, we need to apply a translation

procedure which is encapsulated in the lemma below.

The proof of the lemma is deferred to §VIII.

Lemma VI.7 (Persist-or-Blow-up Lemma). Consider a

violation subgraph G = (X,Y , E) such that all vertices

in G are c-typical where c ≤ 99 and (ℓ, log−5 d)-up

persistent where 1 ≤ ℓ ≤
√
d/ log5(d/ε). Then, there

exists a violation subgraph G′ = (X ′,Y ′, E′) where all

vertices are (c + ℓ√
d
)-typical and satisfying one of the

following conditions.

1) Down-persistent case:

a) All vertices in X ′ are (ℓ, 0.6)-down persistent.

b) m(G′) ≥ m(G)/ log5 d.

c) D(X ′) ≤ D(X), and ∀i ∈ [d],Γi(X
′) ≤

Γi(X)

d) D(Y ′) ≤ D(Y), and ∀i ∈ [d], Γi(Y
′) ≤

Γi(Y).

2) Blow-up case:

a) m(G′) ≥ 2(1− 3 log−3 d) ·m(G).

b) D(X ′) ≤ D(X), and ∀i ∈ [d],Γi(X
′) ≤

Γi(X)

c) D(Y ′) ≤ 2D(Y), and ∀i ∈ [d], Γi(Y
′) ≤

2Γi(Y).

That is, the application of the above lemma either

gives the violation subgraph we need, or it gives us a

violation subgraph with around double the edges. In the

remainder of this section we use Lemma VI.7 and the

graph G(X,Y , E) derived in the previous section to

prove the following lemma.

Lemma VI.8 (Down-Persistent Violation Subgraph). Let

G(X,Y , E) be the subgraph asserted in Lemma VI.1.

There exists a natural number s ≤ log3 d and a violation

subgraph H(A,B, E) with the following properties.

1) m(H) ≥ 2s m(G)
log7 d

.

2) Γ(A) ≤ Γ(X) and Γ(B) ≤ 2sΓ(Y).

3) D(A) ≤ D(X) and D(B) ≤ 2sD(Y).

4) All vertices in A ∪ B are (τ − 1, log−5 d)-up-

persistent and 99-typical.

5) All vertices in A are (τ − 1, 0.6)-down-persistent.

Proof. We use Lemma VI.7 to define the following pro-

cess generating a sequence of violation subgraphs. The

initial graph is G0 = (X0,Y0, E0) which is the seed

regular violation subgraph obtained from Lemma VI.1.

For each i ≥ 1:

1) Obtain G′
i−1 by removing all vertices from

Xi−1 ∪ Yi−1 that are not (τ − 1, log−5 d)-up-

persistent.

2) Invoke Lemma VI.7 with walk length τ − 1 on

G′
i−1 to obtain Gi = (Xi,Yi, Ei).

3) If Gi satisfies the down persistence condition

of Lemma VI.7 then halt and return Gi.

4) If Gi satisfies the blowup condition of

Lemma VI.7, then continue.

1813

Authorized licensed use limited to: Dartmouth College Library. Downloaded on March 15,2024 at 15:46:34 UTC from IEEE Xplore. Restrictions apply.

By Lemma VI.7, if the process does not halt on step

i, then we have the following recurrences.

• m(Gi) ≥ 2(1− 3 log−3 d) ·m(G′
i−1).

• D(Xi) ≤ D(Xi−1), Γ(Xi) ≤ Γ(Xi−1), D(Yi) ≤
2D(Yi−1), Γ(Yi) ≤ 2Γ(Yi−1).

Furthermore, we have the following claim that bounds

the number of edges lost in step (1).

Claim VI.9. For every i ≥ 1, we have m(G′
i−1) ≥

m(Gi−1)− d−2cδ · 2i−1 ·m(G).

Proof. By Claim VI.6, the number of vertices we remove

from Xi−1 in step (1) is at most d−6cδ · |X| and the

number of vertices we remove from Yi−1 in step (1) is

at most d−6cδ · |Y |. The number of edges we remove by

deleting these vertices from Yi−1 is at most

d−6cδ|Y |D(Yi−1) ≤ d−6cδ2i−1|Y |D(Y)

≤ d−3cδ2i−1m(G) (5)

where in the second inequality we used D(Y) ≤
Φ(Y)Γ(Y) and the regularity property on G (item (2)

of Lemma VI.1).

An analogous argument bounds the number of re-

moved edges when we delete non-persistent vertices

from Xi−1. Thus the total number of edges removed

is at most d−2cδ2i−1m(G).

Claim VI.10. If i ≤ log3 d and the process has not

halted by step i, then m(Gi) ≥ Ω(2im(G)).

Proof. For brevity, let α = 2(1 − 3 log−3 d) and

β = d−2cδm(G). Using the above bounds, we get the

recurrence

m(Gi) ≥ α ·m(G′
i−1) ≥ α(m(Gi−1)− β2i−1).

Expanding this recurrence yields m(Gi) ≥ αim(G) −
β
∑i

j=1 α
j · 2i−j . Observe that the subtracted term can

be bounded as

β

i∑

j=1

αj · 2i−j = d−2cδ2im(G)
i∑

j=1

(1− 3 log−3 d)j

≤ d−cδ2im(G)

simply using the fact that i ≤ log3 d ≪ dcδ . The first

term is

αim(G) = 2i(1− 3 log−3 d)im(G) ≥ C · 2im(G)

for some constant C. Combining the above two bounds

completes the proof.

Claim VI.11. The above process halts in s ≤ log3 d
iterations.

Proof. Suppose that the above process has not halted by

step i = log3 d. By the previous claim, the number of

edges in Gi is at least C · 2im(G) = C · dlog2 dm(G)
for some constant C. By Observation III.6, note that

m(G) ≥ Tal(G) and thus is ≥ ε · d−cδ · nd by item

(1) of Lemma VI.1. Thus, the number of edges in Gi is

at least C · ε · dlog2 d−cδnd. Note that the total number

of edges in the fully augmented hypergrid is at most

nd · nd. Moreover, recall that we are assuming nd ≤ dc

and ε ≥ d−1/2. Therefore, m(Gi) ≫ nd · nd and this is

a contradiction.

By Claim VI.11 and Lemma VI.7, the process halts

in some s ≤ log3 d number of steps producing

Gs(Xs,Ys, Es) with the following properties.

• m(Gs) ≥ 2s · m(G)
log6 d

.

• All vertices in Xs are (τ − 1, 0.6)-down-persistent.

• Γ(Xs) ≤ Γ(X) and Γ(Ys) ≤ 2sΓ(Y).
• D(Xs) ≤ D(X) and D(Ys) ≤ 2sD(Y).

Note that by Lemma VI.7 and (c) of Lemma VI.1, all

vertices in G1, . . . , Gs are (98+ sτ√
d
)-typical. Moreover,

by our choice of τ , we have sτ ≪
√
d and so all vertices

in G1, . . . , Gs are 99-typical.

One last time, we remove all vertices in Xs ∪ Ys

that are not (τ −1, log−5 d)-up-persistent and obtain our

final graph H(A,B, E). Using a similar argument made

above in (5), the number of edges that are removed by

deleting the non-persistent vertices from Ys is at most

d−6cδ|Y |D(Ys) ≤ 2sd−6cδ|Y |D(Y)

≤ 2sd−3cδm(G)

≤ d−3cδm(Gs) log
6 d

≤ d−2cδm(Gs)

and an analogous argument bounds the number of edges

lost when we remove the non-persistent vertices from

Xs. Thus we have m(H) ≥ m(Gs)(1−d−cδ) ≥ 2s m(G)
log7 d

and this completes the proof of Lemma VI.8.

C. Using Red/Blue Lemma to Obtain the Final Red or

Blue Nice Subgraph

In this section, we prove Lemma IV.8 using the viola-

tion subgraph H(A,B, E) obtained in the previous sec-

tion (Lemma VI.8) and the red/blue lemma, Lemma IV.4.

We split into two cases depending on how many edges

in H are red.

1) Case 1: At least half the edges of H are red: In

this case, we consider the graph H1 by simply removing

all the non-red edges. We claim that H1 makes progress

towards a (σ1, τ)-nice red subgraph (Definition IV.5).

Condition (a) holds by definition. Condition (b) is

1814

Authorized licensed use limited to: Dartmouth College Library. Downloaded on March 15,2024 at 15:46:34 UTC from IEEE Xplore. Restrictions apply.

satisfied due to Lemma VI.8, condition 5). Condition

(e) is satisfied because τ − 1 ≥ 0.5σY d0.5−7cδ and

σY ≥ σX = σ1. We need to establish condition (c)

and (d). That is, we need to establish

(c) σX · ΦH(x) ≤
√
d for all x ∈ A

(d) σX

∑
x∈A

ΦH(x) ≥ ε2 · nd · d−6cδ

Let A′ ⊆ A be the vertices x ∈ A which have

ΦH(x) >
√
d

σX

. If |A′| ≥ d−5cδ|X|, then simply consider

H1(A
′,B, E′) by deleting all vertices not in A′ from

A. Conditions (a), (b), (e) still hold, and (c) holds by

design. Furthermore,

∑

x∈A′

ΦH1
(x) ≥ d−5cδ|X| ·

√
d

σX

which implies

σX

∑

x∈A′

ΦH1(x) ≥ d−5cδ · ε

d1/2+cδ
· nd ·

√
d

= ε · nd · d−6cδ

where we used Lemma VI.1, part (d) for the lower

bound on |X|. Note that this implies something slightly

stronger than condition (d) above (the exponent of ε is

1).

Therefore, we may assume |A′| ≤ d−5cδ|X|. In this

case, let H1 = (A\A′,B, E′) where we simply remove

the A′ vertices. The number of edges this destroys is at

most

d−5cδD(A)|X| ≤ d−5cδD(X)|X|
≤ d−2cδm(G)

≤ d−cδm(H)

where in the second inequality we used D(X) ≤
Φ(X)Γ(X) and the regularity property (Lemma VI.1,

property (b)) of G. Thus, the number of edges we’ve

discarded is negligible, and condition (c) holds. In par-

ticular, the number of edges in H1 is at least m(H)/2.

We now prove condition (d) also holds.

Claim VI.12. σX

∑
x∈A\A′ ΦH1

(x) ≥ ε2 · nd · d−6cδ .

Proof. For any x ∈ A\A′, we have ΦH1
(x) ≥ D(x)

Γ(x) and

thus
∑

x∈A\A′ ΦH(x) ≥ m(H)/2
Γ(A) . Since Γ(A) ≤ Γ(X)

we have

∑

x∈A\A′

ΦH(x) ≥ m(H)

2Γ(A)

≥ 2s ·m(G)

2Γ(X) log7 d

≥ d−3cδ|X|Φ(X)Γ(X)

2Γ(X) log7 d

≥ d−4cδ|X|Φ(X)

≥ d−4cδ
∑

x∈X

ΦG(x). (6)

where in the second inequality we used (P1) to lower

bound the number of edges in H with that of G. In the

third inequality we used the regularity property (property

(b) of Lemma VI.1), in the fourth we used dcδ ≫
2 log7 d for large enough d, and the fifth inequality uses

the trivial upper bound Φ(X) ≥ ΦG(x) for all x ∈ X .

Now we apply the fact (Lemma VI.1, condition 1) that

Tal(G) is large. Using the coloring χ ≡ 1 for edges in

G, we get
∑

x∈X

√
ΦG(x) ≥ Tal(G) ≥ ε · d−cδ · nd

which implies

Ex∈X [
√
ΦG(x)] ≥

ε · d−cδ

σX

.

Jensen’s inequality gives

Ex∈X [ΦG(x)] ≥
ε2 · d−2cδ

σ2
X

which implies

σ2
X

|X|
∑

x∈X

ΦG(x) ≥ ε2d−2cδ

and so

σX

∑

x∈X

ΦG(x) ≥ ε2d−2cδnd.

Plugging into (6) proves the claim.

2) Case 2: At most half the edges of H are red: In

this case we invoke the Red/Blue lemma, Lemma IV.4 to

obtain a violation subgraph H2 = (L,R, E′) with the

following key properties.

(P1) All edges are blue and m(H) ≥ 2s m(G)
7 log7 d

.

(P2) Γ(R) ≤ Γ(B) ≤ 2s · Γ(Y).
(P3) D(R) ≤ D(B) ≤ 2s ·D(Y).

We claim that Hs makes progress towards a (σ2, τ)-
nice blue subgraph (Definition IV.6). Condition (a) holds

1815

Authorized licensed use limited to: Dartmouth College Library. Downloaded on March 15,2024 at 15:46:34 UTC from IEEE Xplore. Restrictions apply.

by definition. Condition (d) is satisfied because τ ≥
0.5σY d0.5−7cδ and σY = σ2. We need to establish

condition (b) and (c). That is, we need to establish

(b) σY · ΦH(y) ≤
√
d for all x ∈ R

(c) σY

∑
y∈R

ΦH(y) ≥ ε2 · nd · d−6cδ

As in Case 1, we begin by removing low degree vertices.

Let R′ ⊆ R be the vertices y ∈ R which have ΦH(y) >√
d

σY

. If |R′| ≥ d−5cδ|Y |, then we would just focus on

H2(R
′,L, E′) and this would satisfy (b) and (c) for a

very similar reason as in Case 1. And so, we may assume

|R′| is smaller than d−5cδ|Y | and we define H2(L,R \
R′, E′), and this leads to a negligible decrease in the

number of edges. Condition (b) holds by design, and the

proof that condition (c) holds is similar. We provide it

for completeness.

Claim VI.13. σY

∑
y∈R\R′ ΦH2

(y) ≥ ε2 · nd · d−6cδ .

Proof. For any y ∈ R \ R′, we have ΦH2
(y) ≥ D(y)

Γ(y)

and thus
∑

y∈R\R′ ΦH2
(y) ≥ m(H)/2

Γ(R) . Since Γ(R) ≤
2s · Γ(Y) we have

∑

y∈R\R′

ΦH(y) ≥ m(H)

2Γ(R)

≥ 2s ·m(G)

2s · 14Γ(Y) log7 d

≥ d−3cδ|Y |Φ(Y)Γ(Y)

14Γ(Y) log7 d

≥ d−4cδ|Y |Φ(Y)

≥ d−4cδ
∑

y∈Y

ΦG(y) (7)

where in the second inequality we used Lemma VI.8,

part 1, to lower bound the number of edges in H with

that of G, the original seed graph from Lemma VI.1.

In the third inequality we used the regularity property

(property 2 of Lemma VI.1), in the fourth we used dcδ ≫
14 log7 d for large enough d, and the fifth inequality uses

the trivial upper bound Φ(Y) ≥ ΦG(y) for all y ∈ Y .

The rest of the proof is the same as Case 1 except we

apply the coloring χ ≡ 0 for edges in G. We omit this

very similar calculation.

These two cases conclude the proof of Lemma IV.8.

All that remains is to prove the Red/Blue

lemma, Lemma IV.4 and the Persist-or-Blow-up

lemma, Lemma VI.7. We prove these in the subsequent

two sections, and both of these use the translation of

violation subgraphs idea.

VII. PROOF OF THE RED/BLUE LEMMA, LEMMA IV.4

Let us recall the red/blue lemma.

Lemma IV.4 (Red/Blue Lemma). Let G(X,Y , E) be

a violation subgraph and 1 ≤ ℓ ≤
√
d/ log5(d/ε) be a

walk length such that the following hold.

1) At most half the edges are red for walk length ℓ.
2) All vertices in X ∪ Y are (ℓ, log−5 d)-up-

persistent.

3) All vertices in X ∪ Y are 99-typical.

Then there exists another violation subgraph

H(L,R, E′) such that

1) All edges are blue for walk length ℓ and m(H) ≥
m(G)/7.

2) Γ(L) ≤ Γ(X) and Γ(R) ≤ Γ(Y).
3) D(L) ≤ D(X) and D(R) ≤ D(Y).

Proof. We first recall the definition of px,ℓ(x
′) in Def-

inition III.23. For a fixed x, consider the process of

sampling a hypercube H ∼ H(x) and then sampling

z ∼ UH,ℓ(x). Recall from Fact III.11 that this is one

of three equivalent ways of expressing our random walk

distribution. Given x,x′, ℓ, we have

px,ℓ(x
′) = Pr [x,x′ ∈ H100 and z = x′] .

We use these values to set up a flow problem as follows.

Recall the definition of red and blue edges (Defini-

tion IV.2 and Definition IV.3). Let B denote the set

of all edges in the fully augmented hypergrid that are

blue for walk length ℓ. For every non-red edge (x,y)
of G and every shift s ∈ supp(USℓ(x)), if the edge

e = (x+ s,y+ s) is blue, then we put px,ℓ(x+ s) units

of flow on e.

Claim VII.1. Every non-red edge of G inserts at least

0.95 units of flow in B.

Proof. Fix a non-red edge (x,y), and let i denote its

dimension. Generate H ∼ H(x) and s ∼ USH,ℓ(x).
Note that it is equivalent to directly sample s ∼ USℓ(x).
We then consider the random edge e = (x+s,y+s). We

set x′ = x+s and y′ = y+s. Let us define the following

series of events. (i) E1: si = 0. (ii) E2: f(x′) = 1. (iii)

E3: f(y′) = 0. (iv) E4: at least half of I(x′,y′) is not ℓ-
mostly-zero-below, (v) E5: x,x′ ∈ H100. We will show

that whenever E2, E3, and E4 occur, the edge (x′,y′)
is blue by definition. Therefore, recalling the definition

of px,ℓ(x
′), the edge (x,y) inserts at least Pr[∧5

j=1Ej]
units of flow in B. Subsequently, we will show that the

probability of this event is at least 0.95 and this will

prove the claim.

1816

Authorized licensed use limited to: Dartmouth College Library. Downloaded on March 15,2024 at 15:46:34 UTC from IEEE Xplore. Restrictions apply.

Since ‖s‖0 ≤ ℓ ≤
√
d, we have Pr[E1] ≥ 1 − 1/

√
d.

Since x is (ℓ, log−5 d)-up-persistent, Pr[E2] ≥ 1 −
log−5 d. Note that conditioned in E1, the distribution on

y+s is identical to Uℓ(y). Thus, since y is (ℓ, log−5 d)-
up-persistentPr[E3 | E1] ≥ 1−log−5 d. By a union bound

Pr[E1 ∧ E2 ∧ E3] ≥ 1− 3 log−5 d. (8)

To deal with E4, we bring in the non-redness of our edge

(x,y). By definition,

Pr
z∈I(x,y)

Pr
z′∼Uℓ(z)

[z′ is not ℓ-mzb] ≥ 0.99

In terms of shifts, we can express this bound as

Pr
z∈I(x,y)

Pr
s∼USℓ(z)

[z+ s is not ℓ-mzb] ≥ 0.99

Since the probability of E1 is at least 1− o(1), we have

Pr
z∈I(x,y)

Pr
s∼USℓ(z)

[z+ s is not ℓ-mzb | E1] ≥ 0.98

Note that conditioned in E1, the distributions USℓ(z) and

USℓ(x) are identical. Hence,

Pr
s∼USℓ(x)

Pr
z∈I(x,y)

[z+ s is not ℓ-mzb | E1] ≥ 0.98

Let Xs be the fraction of points in I(x+s,y+s) that are

not ℓ-mzb. By linearity of expectation, Es[Xs | E1] ≥
0.98. Hence Es[1 − Xs | E1] ≤ 0.02 and by Markov’s

inequality, Prs[1 − Xs > 0.5 | E1] ≤ 1/50. Hence,

Prs[Xs ≥ 0.5 | E1] ≥ 49/50 = .98. Since Pr[E1] =
1− o(1), we have Pr[E4] = Prs[Xs ≥ 0.5] ≥ 0.97.

Combining with (8), we have Pr[∧4
j=1Ej] ≥ 0.96.

When ∧4
j=1Ej occurs, the edge (x′,y′) is a violated

edge and at least half of I(x′,y′) is not ℓ-mzb.

For z′ ∈ I(x′,y′) that is not ℓ-mzb, by definition

Prw∼Dℓ(z′)[f(w) = 1] ≥ 0.1. Hence,

Pr
z′∈RI(x′,y′)

Pr
w∼Dℓ(z′)

[f(w) = 1] ≥ 0.5× 0.1 ≥ 0.01

We conclude that (x′,y′) is blue, whenever ∧4
j=1Ej

occurs.

Stepping back, with probability at least 0.96 over the

shift s ∼ USℓ(x), the edge (x + s,y + s) is blue.

Finally, since all points in X are 99-typical, we have

Pr[x ∈ H99] ≥ 1 − (ε/d)5, and conditioned on this

event we have x′ ∈ H100 since ℓ ≪
√
d. Together, we

get Pr[E5] ≥ 1 − 2(ε/d)5 ≥ 0.99. Thus, by a union

bound Pr[∧5
j=1Ej] ≥ 0.95 and so the amount of flow

that (x,y) inserts is at least 0.95.

Let E′ ⊆ B denote the set of blue edges which receive

non-zero flow. Let H(L,R, E′) denote the bipartite

graph on these edges. Since ℓ ≤
√
d/ log5(d/ε), by the

reversibility Lemma III.24, px,ℓ(x
′) ≤ 2px′,ℓ(x) for any

x ∈ X , x′ ∈ L and py,ℓ(y
′) ≤ 2py′,ℓ(y) for any y ∈ Y ,

y′ ∈ R. Using this bound we’re able to establish the

desired capacity constraints on the flow as follows.

Claim VII.2 (Edge Congestion). The total flow on an

edge (x′,y′) ∈ B is at most 2.

Proof. By construction, the total flow on an edge (x′,y′)
is at most

∑

x∈X

px,ℓ(x
′) ≤ 2

∑

x∈X

px′,ℓ(x) ≤ 2

since
∑

x∈X
px′,ℓ(x) ≤ 1.

Claim VII.3 (Vertex Congestion). The following hold.

1) The total amount of flow through a vertex x′ ∈ L

is at most 2D(X).
2) The total amount of flow through a vertex y′ ∈ R

is at most 2D(Y).
3) For all i ∈ [d], the total amount of i-flow through

a vertex x′ ∈ L is at most 2Γi(X).
4) For all i ∈ [d], the total amount of i-flow through

a vertex y′ ∈ R is at most 2Γi(Y).

Proof. The total flow through a vertex x′ ∈ L is at most
∑

(x,y)∈E

px,ℓ(x
′) ≤ D(X)

∑

x∈X

px,ℓ(x
′)

≤ 2D(X)
∑

x∈[n]d

px′,ℓ(x)

≤ 2D(X).

The first inequality holds because the max degree of

x ∈ X is D(X), the second inequality is because

px,ℓ(x
′) ≤ 2px′,ℓ(x), and the last inequality is because∑

x∈[n]d px′,ℓ(x) ≤ 1. An analogous argument proves

(2). For a coordinate i ∈ [d], let Ei ⊆ E denote the set

of i-edges in G. The total i-flow through a vertex x′ ∈ L

is at most
∑

(x,y)∈Ei

px(x
′) ≤ Γi(X)

∑

x∈X

px,ℓ(x
′)

≤ 2Γi(X)
∑

x∈[n]d

px′,ℓ(x)

≤ 2Γi(X).

The first inequality holds because the max i-degree of

x ∈ X is Γi(X), the second inequality holds since

px,ℓ(x
′) ≤ 2px′,ℓ(x), and the last inequality is because∑

x∈[n]d px′,ℓ(x) ≤ 1. An analogous argument proves

(4).

1817

Authorized licensed use limited to: Dartmouth College Library. Downloaded on March 15,2024 at 15:46:34 UTC from IEEE Xplore. Restrictions apply.

By Claim VII.1 and the fact that at least half the edges

in G are not red, the total amount of flow is at least

m(G)/3 and this flow satisfies the constraints listed in

Claim VII.2 and Claim VII.3. Thus, dividing by 2 yields

a flow of value m(G)/6 satisfying the following.

1) The flow on every edge is at most 1.

2) The total flow through any vertex in L is at most

D(X). The total i-flow through any vertex in L is

at most Γi(X).
3) The total flow through any vertex in R is at most

D(Y). The total i-flow through any vertex in R is

at most Γi(Y).

By integrality of flow, there exists an integral flow of at

least ⌊m(G)/6� ≥ m(G)/7 units satisfying the same

capacity constraints. By item (1) above, the integral

flow is a subgraph containing at least m/7 edges and

satisfying the desired constraints listed in the lemma

statement.

VIII. PROOF OF THE ‘PERSIST-OR-BLOW-UP’

LEMMA, LEMMA VI.7

Let us recall the ‘Persist-or-Blow-Up’ lemma.

Lemma VI.7 (Persist-or-Blow-up Lemma). Consider a

violation subgraph G = (X,Y , E) such that all vertices

in G are c-typical where c ≤ 99 and (ℓ, log−5 d)-up

persistent where 1 ≤ ℓ ≤
√
d/ log5(d/ε). Then, there

exists a violation subgraph G′ = (X ′,Y ′, E′) where all

vertices are (c + ℓ√
d
)-typical and satisfying one of the

following conditions.

1) Down-persistent case:

a) All vertices in X ′ are (ℓ, 0.6)-down persistent.

b) m(G′) ≥ m(G)/ log5 d.

c) D(X ′) ≤ D(X), and ∀i ∈ [d],Γi(X
′) ≤

Γi(X)
d) D(Y ′) ≤ D(Y), and ∀i ∈ [d], Γi(Y

′) ≤
Γi(Y).

2) Blow-up case:

a) m(G′) ≥ 2(1− 3 log−3 d) ·m(G).
b) D(X ′) ≤ D(X), and ∀i ∈ [d],Γi(X

′) ≤
Γi(X)
c) D(Y ′) ≤ 2D(Y), and ∀i ∈ [d], Γi(Y

′) ≤
2Γi(Y).

We first recall the definition of px,ℓ(x
′) in Defini-

tion III.23. For a fixed x, consider the process of

sampling a hypercube H ∼ H(x) and then sampling

z ∼ UH,ℓ(x). Recall from Fact III.11 that this is one

of three equivalent ways of expressing our random walk

distribution. Given x,x′, ℓ, we have

px,ℓ(x
′) = Pr [x,x′ ∈ H100 and z = x′] .

We use these values to set up a flow problem as follows.

For every edge (x,y) of G and s ∈ supp(USℓ(x)), if

e = (x+ s,y+ s) is a violation, then we put px(x+ s)
units of flow on e. The flow, denoted F , is supported

on a violation subgraph G′ = (X ′,Y ′, E). Note that by

Claim III.22, all vertices in G′ are (c+ ℓ√
d
)-typical.

Claim VIII.1. Every edge of G inserts at least 1 −
log−4 d units of flow.

Proof. The proof of this claim is similar to that

of Claim VII.1. Fix an edge (x,y) ∈ G and let

this be an i-edge. Generate H ∼ H(x) and a shift

s ∼ USH,ℓ(x), and let x′ = x + s and y′ = y + x.

Consider the events: (i) E1: si = 0, (ii) E2: f(x′) = 1,

(iii) E3: f(y′) = 0, (iv)E4: x,x′ ∈ H100. Note that

the total flow inserted by (x,y) is at least Pr[∧4
i=1Ei].

Pr[E1] ≥ 1−1/
√
d, since ‖s‖0 ≤ ℓ ≤

√
d. Since x,y are

both (ℓ, log−5 d)-up-persistent and f(x) = 1, f(y) = 0,

we get Pr[E2],Pr[E3] ≥ 1− 1
log5 d

. Finally, since x is 99-

typical, with probability 1 − (ε/d)5 we have x ∈ H99

which implies x′ ∈ H100 since ℓ ≪
√
d. Thus by a

union bound, Pr[∧5
i=1Ei] ≥ 1 − 2 log−5 d − 1/

√
d −

(ε/d)5 ≥ 1− log−4 d.

Claim VIII.2 (Edge Congestion). The flow on any edge

(x′,y′) is at most
∑

x∈X
px,ℓ(x

′) ≤ (1 + log−3 d).

Proof. Consider an edge (x′,y′), which receives flow

from some (x,y) in G. Flow is inserted by translations

of edges, so y − x = y′ − x′. Hence, for a given x,

there exists a unique y such that (x,y) inserts flow on

(x′,y′). By construction, the flow inserted is px,ℓ(x
′).

Thus, the total flow that (x′,y′) receives is at most∑
x∈X

px,τ (x
′). The RHS bound holds by Lemma III.24

and observing that
∑

x∈X
px′,ℓ(x) ≤ 1.

Claim VIII.3 (Vertex Congestion). The following hold.

1) For any x′ ∈ X ′, the total flow on edges incident

to x′ is at most

D(X)
∑

x∈X

px,ℓ(x
′) ≤ D(X)(1 + log−3 d).

2) For any x′ ∈ X ′, the total i-flow on edges incident

to x′ is at most

Γi(X)
∑

x∈X

px,ℓ(x
′) ≤ Γi(X)(1 + log−3 d).

3) For any y′ ∈ Y ′, the total flow on edges incident

to y′ is at most

D(Y)
∑

y∈Y

py,ℓ(y
′) ≤ D(Y)(1 + log−3 d).

1818

Authorized licensed use limited to: Dartmouth College Library. Downloaded on March 15,2024 at 15:46:34 UTC from IEEE Xplore. Restrictions apply.

4) For any y′ ∈ Y ′, the total i-flow on edges incident

to y′ is at most

Γi(Y)
∑

y∈Y

py,ℓ(y
′) ≤ Γi(Y)(1 + log−3 d).

Proof. Consider x′ ∈ X ′. All the i-flow inserted on

edges incident to x′ comes from i-edges (x,y) in G.

Every i-edge in G inserts flow on at most a single

edge incident to x′ and there are at most Γi(X) i-
edges incident to any vertex x ∈ X . Hence, the total

i-flow inserted by a x ∈ X through x′ is at most

Γi(X) · px,τ (x′). Thus, summing over all x ∈ X and

using the reversibility Lemma III.24 shows that the total

i-flow on edges incident to x′ is at most

Γi(X)
∑

x∈X

px,τ (x
′) ≤ (1 + log−3 d)Γi(X)

∑

x∈X

px′,τ (x)

≤ (1 + log−3 d)Γi(X)

and this proves (2). The proof of (1) is identical, with

D(X) replacing Γi(X), and statements (3) and (4) have

analogous proofs.

We now come to a key definition in our analysis.

Definition VIII.4 (Heavy Vertices). A vertex x′ ∈ X ′

is called heavy if it satisfies any of the following.

1) There is an edge (x′,y′) receiving at least 1/2
units of flow.

2) The total flow on edges incident to x′ is at least

D(X)/2.

3) There exists i ∈ [d] such that the total i-flow on

edges incident to x′ is at least Γi(X)/2.

We refer to the flow passing through heavy vertices

as the heavy flow.

Claim VIII.5. All heavy vertices are (ℓ, 0.6)-down per-

sistent.

Proof. Consider a heavy vertex x′. That is, x′ satisfies

one of the three conditions listed in Definition VIII.4.

Suppose it satisfies the first condition: there is some

violated edge (x′,y′) receiving at least 1/2 units of

flow. By Claim VIII.2, the total flow on (x′,y′) is at

most
∑

x∈X
px,ℓ(x

′). Hence,
∑

x∈X
px,ℓ(x

′) ≥ 1/2.

In fact, observe that we can prove the exact same

inequality if x′ satisfies the second or third condition of

Definition VIII.4, by using the upper bound given by the

LHS of items (1) and (2), respectively, of Claim VIII.3.

Now, applying the reversibility Lemma III.24, we have

(1+log−3 d)
∑

x∈X
px′,ℓ(x) ≥ 1/2. Note that f(x) = 1

for all x ∈ X . Hence,

Pr
z∼Dℓ(x′)

[f(z) = 1] ≥
∑

x∈X

px′,ℓ(x)

≥ 1

2(1 + log−3 d)
≥ 0.4 (9)

and so x′ is (ℓ, 0.6)-down-persistent.

We are now set up to complete the proof. For conve-

nience, we use m to denote m(G). We refer to the flow

on edges incident to heavy vertices as the heavy flow.

We let GH(XH ,YH , EH) denote the bipartite graph of

all edges incident to heavy vertices, that is, XH is the

set of all heavy vertices. We refer to the flow on edges

incident to non-heavy vertices as the light flow. We let

GL(XL,YL, EL) denote the bipartite graph of all edges

incident to non-heavy vertices, that is, XL = X ′ \XH

is the set of all non-heavy vertices. We split into two

cases based on the amount of heavy flow.

A. Case 1: The total amount of heavy flow is at least
m

log4 d

Note that by Claim VIII.5, all vertices in XH are

(ℓ, 0.6)-down persistent.

By Claim VIII.2 and Claim VIII.3, the heavy flow

satisfies the following capacity constraints.

1) The flow on every edge is at most (1 + log−3 d).
2) For every x′ ∈ XH , the total flow on edges incident

to x′ is at most D(X)(1 + log−3 d) and the total

i-flow on edges incident to x′ is at most Γi(X)(1+
log−3 d).

3) For every y′ ∈ YH , the total flow on edges incident

to y′ is at most D(Y)(1 + log−3 d) and the total

i-flow on edges incident to y′ is at most Γi(Y)(1+
log−3 d).

Let us divide the flow by (1 + log−3 d). Thus, we

now have at least m
(1+log−3 d) log4 d

≥ m
log5 d

units of flow

satisfying the following capacity constraints.

1) The flow on every edge is at most one.

2) For every x′ ∈ XH , the total flow on edges incident

to x′ is at most D(X) and the total i-flow on edges

incident to x′ is at most Γi(X).
3) For every y′ ∈ YH , the total flow on edges incident

to y′ is at most D(Y) and the total i-flow on edges

incident to y′ is at most Γi(Y).

By integrality of flow, there is an integral flow of at least
m

log5 d
units satisfying the above constraints. By condition

(1) above, this integral flow is a subgraph of GH with

at least m
log5 d

edges, and satisfying the degree bounds

1819

Authorized licensed use limited to: Dartmouth College Library. Downloaded on March 15,2024 at 15:46:34 UTC from IEEE Xplore. Restrictions apply.

listed in (1c) and (1d) of the lemma statement. Thus,

this subgraph satisfies case (1) of the lemma statement.

B. Case 2: The total amount of heavy flow is at most
m

log4 d

By Claim VIII.1, the total flow is at least m(1 −
log−4 d) units. Thus, after removing the heavy flow,

the remaining light flow is at least m(1 − 2 log−4 d)
units. The light flow satisfies the following capacity

constraints.

1) Every edge has at most 1/2 units of flow.

2) For every x′ ∈ XL, the total flow on edges incident

to x′ is at most D(X)/2 and the total i-flow on

edges incident to x′ is at most Γi(X)/2.

3) For every y′ ∈ YL, the total flow on edges in-

cident to y′ is at most (1 + log−3 d)D(Y) and

the total i-flow on edges incident to y′ is at most

(1 + log−3 d)Γi(Y).

Items (1) and (2) are simply by Definition VIII.4 since

all vertices in XL are not heavy. Item (3) follows from

RHS bound on the vertex congestion in Claim VIII.3.

We now by rescale the flow by multiplying it by
2

1+log−3 d
. We now have 2m (1−2 log−4 d)

1+log−3 d
≥ 2m(1 −

2 log−3 d) units of flow with the following capacity

constraints:

1) Every edge has at most one unit of flow.

2) For every x′ ∈ XL, the total flow on edges incident

to x′ is at most D(X) and the total i-flow on edges

incident to x′ is at most Γi(X).
3) For every y′ ∈ YL, the total flow on edges incident

to y′ is at most 2D(Y) and the total i-flow on edges

incident to y′ is at most 2Γi(Y).

By integrality of flow, we obtain an integral flow

of at least ⌊2m(1 − 3 log−4 d)� ≥ 2m(1 − 3 log−3 d)
units satisfying the same constraints listed above. In

particular, the flow on any edge is at most one and

so the integral flow is a violation subgraph with at

least 2m(1− 3 log−3 d) edges and satisfying the degree

bounds listed in case (2) of the lemma statement.

REFERENCES

[1] H. Black, D. Chakrabarty, and C. Seshadhri, “A o(d)·polylog(n)
monotonicity tester for Boolean functions over the hypergrid
[n]d,” in Proceedings, ACM-SIAM Symposium on Discrete Al-

gorithms (SODA), 2018. 1, 6, 7

[2] ——, “Domain reduction: A o(d) tester for boolean functions
in d-dimensions,” in Proceedings, ACM-SIAM Symposium on

Discrete Algorithms (SODA), 2020. 1, 2, 6, 8

[3] S. Khot, D. Minzer, and M. Safra, “On monotonicity testing
and boolean isoperimetric-type theorems,” SIAM Journal on

Computing, vol. 47, no. 6, pp. 2238–2276, 2018, prelim. version
in Proc., FOCS 2015. 1, 2, 3, 5, 6, 9, 11, 15

[4] M. Braverman, S. Khot, G. Kindler, and D. Minzer, “Improved
monotonicity testers via hypercube embeddings,” in Innovations

in Theoretical Computer Science (ITCS), 2023, pp. 25:1–25:24.
1, 6, 9

[5] H. Black, D. Chakrabarty, and C. Seshadhri, “Directed isoperi-
metric theorems for boolean functions on the hypergrid and an

Õ(n
√
d) monotonicity tester,” in Proceedings, ACM Symposium

on Theory of Computing (STOC), 2023. 1, 2, 3, 5, 6, 7, 9, 15

[6] X. Chen, E. Waingarten, and J. Xie, “Beyond Talagrand: New
lower bounds for testing monotonicity and unateness,” in Pro-

ceedings, ACM Symposium on Theory of Computing (STOC),
2017. 1, 6

[7] N. Harms and Y. Yoshida, “Downsampling for testing and learn-
ing in product distributions,” in Proceedings, International Col-

loquium on Automata, Languages and Programming (ICALP),
vol. 229, 2022, pp. 71:1–71:19. 2, 6, 8

[8] D. Chakrabarty and C. Seshadhri, “An o(n) monotonicity tester
for Boolean functions over the hypercube,” SIAM Journal on

Computing (SICOMP), vol. 45, no. 2, pp. 461–472, 2014, prelim.
version in Proc., STOC 2013. 2, 6

[9] S. Raskhodnikova, “Monotonicity testing,” Masters Thesis, MIT,
1999. 6

[10] F. Ergun, S. Kannan, R. Kumar, R. Rubinfeld, and
M. Viswanathan, “Spot-checkers,” J. Comput. System Sci.,
vol. 60, no. 3, pp. 717–751, 2000, prelim. version in Proc.,
STOC 1998. 6

[11] O. Goldreich, S. Goldwasser, E. Lehman, D. Ron, and
A. Samordinsky, “Testing monotonicity,” Combinatorica, vol. 20,
pp. 301–337, 2000, prelim. version in Proc., FOCS 1998. 6

[12] Y. Dodis, O. Goldreich, E. Lehman, S. Raskhodnikova, D. Ron,
and A. Samorodnitsky, “Improved testing algorithms for mono-
tonicity,” Proceedings, International Workshop on Randomization

and Computation (RANDOM), 1999. 6, 8

[13] E. Lehman and D. Ron, “On disjoint chains of subsets,” Journal

of Combinatorial Theory, Series A, vol. 94, no. 2, pp. 399–404,
2001. 6

[14] E. Fischer, E. Lehman, I. Newman, S. Raskhodnikova, and
R. Rubinfeld, “Monotonicity testing over general poset domains,”
Proceedings, ACM Symposium on Theory of Computing (STOC),
2002. 6

[15] S. Halevy and E. Kushilevitz, “Distribution-free property test-
ing,” Proceedings, International Workshop on Randomization and

Computation (RANDOM), 2003. 6

[16] N. Ailon and B. Chazelle, “Information theory in property testing
and monotonicity testing in higher dimension,” Information and

Computation, vol. 204, no. 11, pp. 1704–1717, 2006. 6

[17] S. Halevy and E. Kushilevitz, “Testing monotonicity over graph
products,” Random Structures Algorithms, vol. 33, no. 1, pp. 44–
67, 2008, prelim. version in Proc., ICALP 2004. 6

[18] N. Ailon, B. Chazelle, S. Comandur, and D. Liu, “Estimating the
distance to a monotone function,” Random Structures Algorithms,
vol. 31, no. 3, pp. 371–383, 2007, prelim. version in Proc.,
RANDOM 2004. 6

[19] E. Fischer, “On the strength of comparisons in property testing,”
Information and Computation, vol. 189, no. 1, pp. 107–116,
2004. 6

[20] M. E. Saks and C. Seshadhri, “Parallel monotonicity recon-
struction,” in Proceedings, ACM-SIAM Symposium on Discrete

Algorithms (SODA), 2008. 6

[21] A. Bhattacharyya, “A note on the distance to monotonicity of
boolean functions,” Electronic Colloquium on Computational
Complexity (ECCC), Tech. Rep. 012, 2008. 6

[22] J. Briët, S. Chakraborty, D. G. Soriano, and A. Matsliah,
“Monotonicity testing and shortest-path routing on the cube,”
Combinatorica, vol. 32, no. 1, pp. 35–53, 2012. 6

1820

Authorized licensed use limited to: Dartmouth College Library. Downloaded on March 15,2024 at 15:46:34 UTC from IEEE Xplore. Restrictions apply.

[23] S. Fattal and D. Ron, “Approximating the distance to mono-
tonicity in high dimensions,” ACM Trans. on Algorithms (TALG),
vol. 6, no. 3, 2010. 6

[24] E. Blais, J. Brody, and K. Matulef, “Property testing lower
bounds via communication complexity,” Computational Com-

plexity, vol. 21, no. 2, pp. 311–358, 2012, prelim. version in
Proc., CCC 2011. 6

[25] D. Ron, R. Rubinfeld, M. Safra, A. Samorodnitsky, and O. We-
instein, “Approximating the influence of monotone boolean func-
tions in O(

√
n) query complexity,” ACM Trans. Comput. Theory,

vol. 4, no. 4, pp. 11:1–11:12, 2012, prelim. version in Proc.,
RANDOM 2011. 6

[26] A. Bhattacharyya, E. Grigorescu, M. Jha, K. Jung, S. Raskhod-
nikova, and D. Woodruff, “Lower bounds for local monotonicity
reconstruction from transitive-closure spanners,” SIAM Journal

on Discrete Mathematics (SIDMA), vol. 26, no. 2, pp. 618–646,
2012, prelim. version in Proc., RANDOM 2010. 6

[27] D. Chakrabarty and C. Seshadhri, “Optimal bounds for mono-
tonicity and Lipschitz testing over hypercubes and hypergrids,” in
Proceedings, ACM Symposium on Theory of Computing (STOC),
2013. 6

[28] X. Chen, R. A. Servedio, and L.-Y. Tan, “New algorithms and
lower bounds for monotonicity testing,” in Proceedings, IEEE

Symposium on Foundations of Computer Science (FOCS), 2014.
6

[29] P. Berman, S. Raskhodnikova, and G. Yaroslavtsev, “Lp-testing,”
in Proceedings, ACM Symposium on Theory of Computing

(STOC), 2014. 6, 8
[30] E. Blais, S. Raskhodnikova, and G. Yaroslavtsev, “Lower bounds

for testing properties of functions over hypergrid domains,” in
Proceedings, IEEE Conference on Computational Complexity

(CCC), 2014. 6
[31] X. Chen, A. De, R. A. Servedio, and L.-Y. Tan, “Boolean

function monotonicity testing requires (almost) O(n1/2) non-
adaptive queries,” in Proceedings, ACM Symposium on Theory

of Computing (STOC), 2015. 6
[32] D. Chakrabarty, K. Dixit, M. Jha, and C. Seshadhri, “Property

testing on product distributions: Optimal testers for bounded
derivative properties,” ACM Trans. on Algorithms (TALG),
vol. 13, no. 2, pp. 1–30, 2017, prelim. version in Proc., SODA
2015. 6

[33] A. Belovs and E. Blais, “A polynomial lower bound for testing
monotonicity,” SIAM Journal on Computing (SICOMP), vol. 50,
no. 3, pp. 406–433, 2021, prelim. version in Proc., STOC 2016.
6

[34] H. Black, I. Kalemaj, and S. Raskhodnikova, “Isoperimetric
inequalities for real-valued functions with applications to mono-
tonicity testing,” in 50th International Colloquium on Automata,

Languages, and Programming, ICALP 2023, July 10-14, 2023,

Paderborn, Germany, ser. LIPIcs, vol. 261. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2023, pp. 25:1–25:20. 6

[35] H. Black, D. Chakrabarty, and C. Seshadhri, “A d1/2+o(1)

monotonicity tester for boolean functions on d-dimensional hy-
pergrids,” arxiv preprint 2304.01416, 2023. 8, 10, 11

1821

Authorized licensed use limited to: Dartmouth College Library. Downloaded on March 15,2024 at 15:46:34 UTC from IEEE Xplore. Restrictions apply.

