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Abstract
We show that extended graph 4-manifolds (as defined by Frigerio–Lafont–Sisto in [12]) do
not support Einstein metrics.

Résumé
Nous montrons que les variétés grapheés généralisées de dimension 4 (définies par Frigerio–
Lafont–Sisto dans [12]) n’admettent aucune métrique d’Einstein.
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1 Introduction

The study of the interplay between curvature and topology is the aim of a considerable part
of modern Riemannian geometry. The study of Einstein metrics is currently an active line of
research in the field; see for example the authoritative book of Besse [3], and the classical
survey by LeBrun and Wang [21]. Recall that a Riemannian manifold (M, g) is said to be
Einstein if its Ricci tensor is proportional to the metric:

Ricg = λg,

where λ ∈ R is a constant. In real dimension two and three this condition is equivalent to the
constancy of the sectional curvature, so that the study of Einstein metrics in these dimensions
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reduces to the study of real space-forms. As a result, most 3-manifolds do not admit Einstein
metrics! Indeed, it follows from the works of Thurston, Hamilton, and Perelman (see for
example the survey by Lott and Kleiner [22]) that any irreducible closed 3-manifolds can
be manufactured as a graph of Seifert and real-hyperbolic pieces (the vertices) glued along
incompressible two dimensional tori (the edges). In other words, any 3-manifold whose
graph-like structure in not a single vertex cannot support an Einstein metric.

In higher dimensions, the idea of manufacturing interesting closed manifolds by imitat-
ing the construction of graph-like 3-manifolds has appeared in many different contexts. In
particular, the idea of doubling real-hyperbolic manifolds with cusps has been extensively
studied, see for example [2,15,25]. Recently, Frigerio–Lafont–Sisto in [12] have identified
and studied a large class of higher dimensional manifolds which nicely generalizes many of
the 3-dimensional constructions. They call these manifolds extended graph manifolds, see
Definition 0.2 in [12]. Roughly speaking, they are decomposed into finitely many pieces (the
vertices), each vertex is a manifold with boundary tori (the edges) and the various pieces are
glued together via affine diffeomorphisms. Moreover, the interior of each vertex is diffeo-
morphic either to a finite volume real-hyperbolic manifold with toral cusps (the pure pieces),
or to the product of a standard torus with a lower dimensional finite volume real-hyperbolic
manifold with toral cusps (the product or Seifert-like pieces). The goal of this paper is to
show that the non-existence result for Einstein metrics on 3-manifolds with a non-trivial
graph-like structure carries over to dimension four.

Theorem 1 Closed extended graph 4-manifolds do not support Einstein metrics.

Recall that in real dimension four an Einstein metric need not have constant sectional
curvature, and we know a great deal concerning the existence, non-existence, and uniqueness
of Einstein metrics. As in this paper we are concerned with obstructions to the existence of
Einstein metrics, we simply refer to [1,3] and the very recent [11] for some of the beautiful
and highly non-trivial examples of Einstein metrics with non-constant sectional curvature.

Regarding obstructions to the existence of such metrics, recall that the theory of Chern
and Weil can be applied to derive the elegant Hitchin–Thorpe inequality [16], which gives a
necessary condition for the existence of an Einstein metric on a closed 4-manifold. LeBrun
later pioneered the study of Einstein metrics on 4-manifolds via the Seiberg–Witten equa-
tions, and among other things he was able to produce infinitely many closed 4-manifolds
(even simply connected) which satisfy the Hitchin–Thorpe inequality but nevertheless can-
not support Einstein metrics [18]. This line of research has been extremely fruitful and even
led to the computation of the Yamabe invariant of most complex surfaces [19], and to some
extent it was also generalized to the non-compact finite-volume setting [5,8,9,28].

Another refinement of the Hitchin-Thorpe inequality was suggested earlier by Gromov
in [13] using the notion of simplicial volume. Sambusetti [29], building up on results of
Besson–Gallot–Curtois [4], extended Gromov’s obstruction and proved, among other things,
that given any pair of integers (k, t) such that k − t ∈ 2Z, then there exists an oriented
4-manifolds M with Euler characteristic χ(M) = k and signature τ(M) = t that cannot
support an Einstein metric (see Theorem 4.4 in [29]). For a related circle of ideas we also
refer to the work of Kotschick [17].

Thus, our main result adds to the vast array of known classes of manifolds which do not
support Einstein metrics in dimension four. The proof employs some recent volume entropy
estimates of Connell–Suárez–Serrato [7] for extended graph manifolds, and it is therefore
a natural generalization of Sambusetti’s work which uses the celebrated volume entropy
estimate of Besson–Curtois–Gallot [4] for negatively curved locally symmetric spaces. With
that said, we also crucially rely on a lemma of LeBrun (Lemma 8.1. in [20]) specialized to
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Extended graph 4-manifolds, and Einstein metrics 271

oriented Einstein 4-manifolds with zero signature and negative cosmological constant. We
refer to Sect. 2 for the details of the proof.

Remark 2 Connell and Suárez-Serrato define a class of graph-like manifolds which they
call higher graph manifolds, see Definition 1 in [7]. The class of higher graph manifolds
contains as a sub-class the extended graph manifolds defined by Frigerio, Lafont, and Sisto,
see Remark 1 in [7].

Remark 3 For more information regarding the circle of ideas around the volume entropy
estimates in [7], we refer to Souto’s Ph.D. thesis [30]. Finally, for a very detailed treatment of
the three-dimensional case the interested reader may also refer to Pieroni’s Ph.D. thesis [27]
(written under the supervision of Sambusetti), where the volume entropy of non-irreducible
3-manifolds is also studied.

Despite the considerable efforts, the study of Einstein metrics on manifolds of dimension
n ≥ 5 remains rather obscure when compared to dimension n = 4. In fact, no uniqueness or
non-existence results are currently known! As graph-like manifolds carry over their aversion
to Einstein metrics from dimension three to dimension four, one may wonder whether or not
this extends to dimension n = 5 as well. More generally, we may ask the following.

Question 4 Do extended graph n-manifolds with n ≥ 5 support Einstein metrics?

We note that the volume entropy estimate of Connell–Suárez–Serrato [7] holds for
extended graph manifolds not necessarily of dimension n = 4, but unfortunately the other
parts of the proof of Theorem 1 are special to this dimension.

2 Proof of themain theorem

In this section, we give the details of the proof of Theorem 1. We follow the notation and
curvature normalization adopted in LeBrun’s paper [20]. We also refer to [20] as a reference
for the necessary background on the interplay between the geometry and topology of 4-
manifolds and Einstein metrics.

Recall the Gauss–Bonnet formula for the Euler characteristic of a closed (oriented) 4-
manifold (M, g) is given by

χ(M) = 1

8π2

∫
M

(
|W+|2g + |W−|2g + s2g

24
− | ◦

Ric|2g
2

)
dμg,

whereW± are the self-dual and anti-self-dual Weyl curvatures, sg is the scalar curvature, and
◦

Ric is the trace-free part of the Ricci tensor. Moreover, because of the Hirzebruch signature
theorem we can also express the signature of (M, g) as a curvature integral as follows

τ(M) = 1

12π2

∫
M

(|W+|2g − |W−|2g
)
dμg.

Next, we define several minimal volumes associated to a closed Riemannian manifolds.
These were originally inspired by the definition of minimal volume in [13], see Section 8 in
[20] for more details. Given a closed Riemannian manifold (M, g), we denote by secg its
sectional curvature, and by Ricg its Ricci tensor.

Definition 5 Let Mn be a closed smooth manifold. Define the minimal volumes
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• VolSec(Mn) := infg
{
Volg(M) | secg ≥ −1

}
;

• VolRic(Mn) := infg
{
Volg(M) | Ricg ≥ −(n − 1)g

}
;

• VolScal(Mn) := infg
{
Volg(M) | sg ≥ −n(n − 1)

}
.

Finally, we define the (Gromov) minimal volume of M to be

MinVol(M) := inf
g

{
Volg(M) | |secg| ≤ 1

}
.

Remark 6 By definition, we have the chain of inequalities

MinVol(M) ≥ VolSec(M) ≥ VolRic(M) ≥ VolScal(M) ≥ 0.

The next lemma is a useful strengthening of the original Hitchin-Thorpe inequality with
the addition of a minimal Ricci volume term VolRic. This lemma was observed in [20], and
the only addition here is an extra rigidity result under the assumption that the underlying
4-manifold has zero signature and that the sign of the scalar curvature is negative.

Lemma 7 (cf. Lemma 8.1. in [20]) Let (M, g) be a 4-dimensional closed Einstein manifold
with negative scalar curvature. We then have

2χ(M) − 3|τ(M)| ≥ 3

2π2 VolRic(M),

with equality if andonly if g is half-conformally flat and it realizes theminimalRicci volumeup
to rescaling. Moreover if τ(M) = 0 and the equality is achieved, then M is a real-hyperbolic
4-manifold.

Proof By using the Gauss–Bonnet and signature formulae, we know that

2χ(M) − 3|τ(M)| = 1

4π2

∫
M

(
2|W∓|2g + s2g

24

)
dμg,

with ∓ depending on whether τ(M) is positive or negative. If τ(M) = 0, then there is no
difference in selecting the self-dual or anti-self-dual Weyl curvature in the integrand. Next,
we rescale the Einstein metric so that

Rigg = −3g �⇒ sg = −12.

Thus, we have

2χ(M) − 3|τ(M)| ≥ 3

2π2 Volg(M) ≥ 3

2π2 VolRic(M),

with equality if and only if g is half-conformally flat and it realizes theminimal Ricci volume.
Finally, if τ(M) = 0 and if g is Einstein and half-conformally flat, then g is real-hyperbolic.

	

We now study the Euler characteristic and signature of extended graph 4-manifolds. We

start by considering the case where there are no pure real-hyperbolic pieces, and then we
study the case where pure pieces are allowed.

Lemma 8 Let M be a closed extended graph 4-manifold without pure pieces. We have
χ(M) = τ(M) = 0. If M has real-hyperbolic pieces, we have τ(M) = 0 and χ(M) > 0.
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Extended graph 4-manifolds, and Einstein metrics 273

Proof If M has no pure pieces, by Theorem 1 in [7] we know that

MinVol(M) = 0.

Let {g j } be a sequence of metrics on M such that

lim
j→∞ Volg j (M) = 0, |secg j | ≤ 1.

By using the Hirzebruch signature formula we conclude

τ(M) = lim
j→∞

1

12π2

∫
M

(|W+|2g j
− |W−|2g j

)
dμg j = 0,

and by Gauss–Bonnet

χ(M) = lim
j→∞

1

8π2

∫
M

(
|W+|2g j

+ |W−|2g j
+ s2g j

24
− | ◦

Ric|2g j

2

)
dμg j = 0.

This shows that χ(M) = τ(M) = 0 when M does not contain pure pieces.
Next, let M have k ≥ 1 real-hyperbolic pieces say {(Vi , g−1)}ki=1. By Theorem 4 in [7],

we know that

MinVol(M) =
k∑

i=1

Volg−1(Vi ) = lim
j→∞ Volg j (M),

where the sequence of metrics {g j } is collapsing with bounded curvature the non-pure pieces
and the gluing regions, while being identically hyperbolic on larger and larger regions of
the real-hyperbolic parts. For the explicit construction of the sequence of metrics {g j }, we
refer to the proofs of Theorem 3 and Theorem 4 in [7]. Now the real-hyperbolic metric has
vanishing Weyl curvature, and as a result we conclude that

lim
j→∞

1

12π2

∫
M

(|W+|2g j
− |W−|2g j

)
dμg j = 0,

and

lim
j→∞

1

8π2

∫
M

(
|W+|2g j

+ |W−|2g j
+ s2g j

24
− | ◦

Ric|2g j

2

)
dμg j = 3

4π2

k∑
i=1

Volg−1(Vi ) > 0.

The proof of the lemma is complete. 	


Next, we observe that we can explicitly compute the minimal Ricci volume of an extended
graph manifold with pure real-hyperbolic pieces.

Lemma 9 Let M be an extended graph 4-manifold with k ≥ 1 pure real-hyperbolic pieces,
say {(Vi , g−1)}ki=1. We then have

VolRic(M) =
k∑

i=1

Volg−1(Vi ).
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Proof Consider an extended graph 4-manifold M with k ≥ 1 pure real-hyperbolic pieces
{(Vi , g−1)}ki=1, and let g be a smooth Riemannian metric on M normalized so that Ricg ≥
−3g. Given (M, g), we define the volume entropy to be

h(g) := lim
R→∞

log Volg̃(BR(p))

R
, (10)

where BR(p) is a ball in the Riemannian universal cover (M̃, g̃). As shown by Manning in
[23], the limit in Eq. (10) exists and it is independent of the point p ∈ M̃ . Now any compact
Riemannian 4-manifold with Ricg ≥ −3g has volume entropy

h(g) ≤ 3,

as follows from Bishop–Gromov volume comparison (see for example Chapter 7 in [26]).
By Proposition 12 in [7], given any such (M, g) we have

h(g)Volg(M)
1
4 ≥ 3(MinVol(M))

1
4 , (11)

where because of Theorem 4 in [7] we have

MinVol(M) =
k∑

i=1

Volg−1(Vi ),

and where {(Vi , g−1)}ki=1 are the pure real-hyperbolic pieces of M , i.e., finite-volume real-
hyperbolic 4-manifolds with toral cusps equipped with the real-hyperbolic metric whose
sectional curvature is normalized to be −1. Now the left-hand side in Eq. (11) is scale
invariant, so that for any g with Ricg ≥ −3g, we have that

Volg(M) ≥ MinVol(M) �⇒ VolRic(M) = MinVol(M),

see Remark 6. 	


We can now prove a non-existence result for Einstein metrics on extended graph 4-
manifolds (cf. Theorem 1 in the Introduction).

Theorem 12 Let M be a closed extended graph 4-manifold. Then M cannot admit an Einstein
metric.

Proof Consider first an extended graph 4-manifoldM with k ≥ 1 pure real-hyperbolic pieces
say {(Vi , g−1)}ki=1. ByLemma9,we know that theminimalRicci volumeofM is equal to sum
of the real-hyperbolic volumes of the pure pieces whose sectional curvature is normalized to
be −1

VolRic(M) =
k∑

i=1

Volg−1(Vi ). (13)

By using the finite-volume generalization of the Gauss–Bonnet formula (cf. Harder [14] and
Cheeger–Gromov [6]), we know that for any real-hyperbolic piece (Vi , g−1)

χ(Vi ) = 1

8π2

∫
Vi

s2g−1

24
dμg−1 = 3

4π2 Volg−1(Vi ). (14)
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Next, a Mayer–Vietoris argument yields

χ(M) =
k∑

i=1

χ(Vi ), (15)

so that by using Eqs. (13), (14), and (15) we have

2χ(M) = 3

2π2

k∑
i=1

Volg−1(Vi )

= 3

2π2 VolRic(M).

NowbycombiningLemmas7 and8, anEinsteinmetric g onM (rescaled so that Ricg = −3g)
realizes the minimal Ricci volume and it is then real-hyperbolic. The fundamental group of
any extended graph 4-manifold with more than one vertex and with at least one pure real-
hyperbolic piece contains an abelian subgroup isomorphic to Z

3. To see this, recall that the
cusps of a pure piece of real-hyperbolic type are toral andπ1-injective inπ1(Vi ). Now,π1(M)

can be represented as a graph of groups of its pieces, and as such π1(Vi ) injects in π1(M).
For the construction of π1(M) as a graph of groups we refer to Section 2.3. in [12]. Thus, by
Preissmann theorem (see for example Chapter 12 in [10]) we have that M cannot support a
real-hyperbolic metric, and this concludes the proof in the case when M has pure pieces of
real-hyperbolic type.

Finally if M has no pure pieces, by Lemma 8 we know that

χ(M) = τ(M) = 0.

Thus if (M, g) is Einstein, it then saturates the Hitchin–Thorpe inequality

2χ(M) ≥ 3|τ(M)|,
and as observed by Hitchin in [16] this forces the pull-back of g to some finite cover of M
to be either a Ricci-flat Kähler metric on a K3 surface or a flat metric on a 4-torus. By a
well-known observation of Milnor (see Theorem 1 in [24]), the growth of π1(M) is then
polynomial. On the other hand, the fundamental group of an extended graph manifold grows
exponentially, see Proposition 6.16 in [12]. The proof is complete. 	
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