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Abstract
Whole-genome sequencing data allow survey of variation from across the genome, 
reducing the constraint of balancing genome sub-sampling with estimating recom-
bination rates and linkage between sampled markers and target loci. As sequencing 
costs decrease, low-coverage whole-genome sequencing of pooled or indexed-indi-
vidual samples is commonly utilized to identify loci associated with phenotypes or en-
vironmental axes in non-model organisms. There are, however, relatively few publicly 
available bioinformatic pipelines designed explicitly to analyse these types of data, 
and fewer still that process the raw sequencing data, provide useful metrics of quality 
control and then execute analyses. Here, we present an updated version of a bioin-
formatics pipeline called PoolParty2 that can effectively handle either pooled or in-
dexed DNA samples and includes new features to improve computational efficiency. 
Using simulated data, we demonstrate the ability of our pipeline to recover segregat-
ing variants, estimate their allele frequencies accurately, and identify genomic regions 
harbouring loci under selection. Based on the simulated data set, we benchmark the 
efficacy of our pipeline with another bioinformatic suite, angsd, and illustrate the com-
patibility and complementarity of these suites using angsd to generate genotype likeli-
hoods as input for identifying linkage outlier regions using alignment files and variants 
provided by PoolParty2. Finally, we apply our updated pipeline to an empirical data-
set of low-coverage whole genomic data from population samples of Columbia River 
steelhead trout (Oncorhynchus mykiss), results from which demonstrate the genomic 
impacts of decades of artificial selection in a prominent hatchery stock. Thus, we 
not only demonstrate the utility of PoolParty2 for genomic studies that combine se-
quencing data from multiple individuals, but also illustrate how it compliments other 
bioinformatics resources such as angsd.
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1  |  INTRODUC TION

A primary goal of molecular ecology is to understand the genetic basis 
of diversity, such as targets of divergent selection or loci underlying 
heritable life history variations or ecotypes. Critical to this endeavour 
is the ability to survey the genome to discover genetic variants asso-
ciated with phenotypic differences or environmental axes (Günther & 
Coop, 2013; Hoban et al., 2016; Paril et al., 2022). Massively parallel 
or ‘next-generation’ sequencing has dramatically decreased the cost 
of surveying genetic variation across statistically meaningful numbers 
of individuals and has made these kinds of investigations accessible 
for researchers working with limited budgets on non-model organisms. 
However, despite the rapid decrease in per-base sequencing costs, se-
quencing the complete genome of each surveyed individual at high 
coverage is often not practical, in part because, as the cost of sequenc-
ing has decreased, demands for statistically robust sample sizes have 
become more ardent (Schlötterer et al., 2014). As a result, geneticists 
are still faced with the task of determining the appropriate compromise 
between the number of reads devoted to surveying each individual, 
which in many cases determines the extent of the genome that can be 
observed, and the number of individuals surveyed (Lou et al., 2021).

This compromise has been addressed in a number of ways de-
pending on the goals of the individual project. Many researchers have 
opted to survey only a fraction of the genome at higher coverage, cre-
ating ‘reduced representation’ libraries wherein sequencing coverage 
is spread across reproducible subsets of loci (e.g. Baird et al., 2008). 
With careful tuning of library preparation and sequencing methods, 
the coverage at each locus may be sufficient to confidently infer gen-
otypes across nearly all individuals at hundreds to tens of thousands 
of variable loci (Andrews et al., 2016; Puritz et al., 2014). For analyses 
where individual genotypes are important but high genomic density of 
loci is not critical, such as determining relatedness or migration among 
recently diverged populations, these reduced representation tech-
niques can produce data cost effectively for hundreds of individuals 
(e.g. Willis et al., 2022). However, while these techniques provide data 
on many more loci than what was historically accessible, only a frac-
tion of the genome is ultimately surveyed, meaning that for species for 
which linkage blocks are typically less than 100 kb, many linkage blocks 
may not be surveyed. As a result, except in cases of regions of high 
linkage disequilibrium such as inversions or strong selective sweeps, 
investigations that only survey a few thousand linkage groups may fail 
to identify loci strongly associated with selection or heritable pheno-
typic variation (Lowry et al., 2017; Tiffin & Ross-Ibarra, 2014).

In contrast, many studies rely largely on methods that utilize al-
lele frequencies rather than individual genotypes to address primary 
questions. Because of sampling variance, sampling more individuals 
at low coverage provides more accurate estimates of phenotype or 
population allele frequencies than sequencing fewer individuals at 
high coverage (Futschik & Schlötterer, 2010; Günther & Coop, 2013; 
Schlötterer et al., 2014; Zhu et al., 2012). Many analyses, including 
those that compare allele frequencies between phenotypic vari-
ants or populations situated along an environmental gradient and 
depend on high-density sampling across linkage groups to discover 

the regions of highest divergence, may thus be performed more 
effectively with low-coverage whole-genome sequencing (lcWGS; 
Lamichhaney et al., 2012; Lou et al., 2021; Schlötterer et al., 2014; 
Therkildsen & Palumbi, 2017). Moreover, there have been a prolif-
eration of analyses that are able to account for uncertainty in the 
genotype of each individual (likelihoods), even with data sequenced 
with 1–2× coverage per individual (Lou et al., 2021). This low-cover-
age sequencing approach provides compromise among the portion 
of the genome surveyed, accurate allele frequency estimates, and 
in many cases analyses that require individual genotype data (Lou 
et al., 2021; Therkildsen & Palumbi, 2017). However, while lcWGS 
data may be highly appropriate for these types of investigations and 
the toolkit for analysing allele frequency and genotype probability 
data is expanding, there remain few user-friendly pipelines specifi-
cally designed to take unmapped lcWGS reads and convey the data 
through quality control and bioinformatic analyses.

To address that need, an integrated, modular bioinformatic pipe-
line, PoolParty, was developed that facilitates the use of lcWGS data 
to search for genomic regions showing strong divergence between 
samples with discrete phenotypic differences or other group-wise 
characteristics (Micheletti & Narum, 2018). This pipeline has been 
applied to detect genome-wide genetic association across multiple 
species (e.g. Aguirre-Ramirez et  al.,  2021; Horn et  al.,  2020; Lyu 
et al., 2021; Ren et al., 2021). Although most published applications 
have utilized data from libraries of pooled DNA, the pipeline can also 
utilize data from individuals sequenced in multiplex using indexed or 
barcoded libraries, which allows a normalization procedure that cor-
rects for uneven contribution to group allele frequencies across indi-
viduals. This normalization is a pseudo-genotyping method wherein 
each individual, regardless of total reads, is allowed to contribute at 
most two alleles per locus to allele frequencies, depending on that 
individual's depth of coverage and the ratio of major and minor al-
leles (>10:1 is considered a homozygote; Figure 1). PoolParty shares 
this goal of managing uneven contribution among individuals when 
estimating allele frequency with another bioinformatic suite de-
signed for use with lcWGS data, angsd, which also generates individ-
ual genotype likelihood or posterior probabilities from lcWGS data 
(Korneliussen et al., 2014). angsd requires mapped read alignments 
produced by other tools as input, while PoolParty takes sequence 
read files as input, performs sequence cleaning and mapping to a ref-
erence genome, and produces numerous assurance reports regard-
ing sequence and mapping quality. PoolParty also facilitates several 
analyses to identify regions of significant genomic divergence be-
tween samples, making PoolParty and angsd complementary bioin-
formatic tools for lcWGS data analyses.

To demonstrate various utilities and upgrades of the PoolParty2 
pipeline and compatibility with angsd, we apply it to two lcWGS data-
sets, one simulated and one empirical, that reflect the type of ques-
tions to which PoolParty2 may be routinely applied. We utilize data 
that were simulated to reflect different demographic contexts and de-
grees of sequence coverage to show the relative strengths, accuracy 
and complementarity of PoolParty2 and angsd to identify segregating 
loci, estimate their allele frequencies, and identify outlier loci and the 
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    |  3WILLIS et al.

boundaries regions affected by selection. Then, in an empirical exam-
ple using barcoded lcWGS data from natural and hatchery populations 
of steelhead trout (anadromous Oncorhynchus mykiss), we demonstrate 
the potential of integrated application of these bioinformatic suites to 
identify regions under selection in landscape-level population samples.

2  |  METHODS

2.1  |  The bioinformatic pipeline: PoolParty2

PoolParty2 is an updated suite of scripts written in the BASH and 
R computer languages that create and manipulate text files, in-
cluding sequence read files, and call freely distributed programs to 

efficiently operate on the data as needed. After installation of de-
pendencies in a Linux computing environment, for which we pro-
vide explicit instructions on our Github page (https://​github.​com/​
stuar​twill​is/​poolp​arty) and most of which are available using the 
Conda package and environment management system (Anaconda 
Software Distribution), users need only provide sequence read 
files and haploid genome assembly, a text file listing sequence 
read files with their group or population affiliation, and tailored 
configuration files for each of the three modules as appropriate. 
We distribute two tutorials that with the scripts that help ensure 
that dependencies are accessible and illustrate the main features 
of the pipeline. We additionally provide example code to assist 
users in conveying output from the PoolParty2 modules into angsd 
and associated utilities.

F I G U R E  1  Graphical representation of normalization variance in read depth for allele frequency calculation implemented by PoolParty2, 
provided barcoded individual samples. Here, sampled reads are shown on the left, with each colour representing a different barcoded 
individual, and A or T representing the nucleotide variant in each read. For each individual, the true genotype, pre-and post-normalization 
contribution to allele frequencies is shown in the right three columns, respectively, and beneath each, the calculated allele frequency. The 
threshold for heterozygotes is set as a minimum ratio of 10:1 alternate alleles for a given SNP (e.g. individual #2).
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4  |    WILLIS et al.

The three main modules of the pipeline focus on distinct aspects 
of the bioinformatics process. The PPalign module calls dependency 
packages (i.e. BWA mem) for quality trimming, mapping and filtering, 
and SNP calling functions to create read alignments to the genome as-
sembly, identify genetic variants and their frequencies, and produce 
input files for the other modules. The PPstats module utilizes output 
from the first module and reports a number of useful statistics about 
the sample groups, such as genomic extent at candidate depths or 
coverage variation among chromosomes, and allows the user to con-
firm that sufficient and similar coverage has been achieved across 
samples. The PPanalyze module utilizes and subsets allele summary 
data from the first module and performs user-specified analyses, 
such as principal components, sliding window FST and Fisher's exact 
tests (FETs), to resolve population structure and identify regions of 
significant genetic divergence between groups. Additional modules 
are provided that run further statistical tests that utilize replicate 
sample pairs (Cochran, 1954; Mantel & Haenszel, 1959), which take 
into account background variance and linkage (local score; Fariello 
et  al.,  2017), or account for population structure (Lewontin and 
Krakauer test with kinship, or FLK; Bonhomme et al., 2010), as well 
as one for plotting results from these analyses.

Computational requirements for running the pipeline will de-
pend on the size of the dataset and user-specified configuration, and 
may range from a handful of threads and tens of Gb of RAM to doz-
ens of processors and >1 Tb of RAM. Runs for each module usually 
last a few hours but could take several days for large datasets with 
limited processing and RAM resources. In the tutorials, we describe 
strategies for piecemeal runs of the different modules as data are 
generated and assembled to coordinate and combine data subsets, 
confirm quality early in the process, and reduce the overall bioinfor-
matic processing time.

2.2  |  Application 1: lcWGS data simulated from 
distinct demographic backgrounds and coverage

We employed simulated data from Lou et al. (2021) to demonstrate 
the ability of these bioinformatic suites to utilize lcWGS data to ac-
curately estimate allele frequencies and identify outlier regions at 
various coverages and sample sizes. Details of simulated data are 
included in Lou et al.  (2021), but briefly, nucleotide sequence data 
including mutation and recombination on a single 30 Mb chromo-
some were simulated for two populations exchanging genes under 
two demographic scenarios: a lower effective population size and 
lower rate of gene exchange that produced a higher background FST 
(hereafter, the ‘high background FST’ scenario) and a higher gene ex-
change and effective population size that produced a lower back-
ground FST (‘low background FST’ scenario). In both scenarios, several 
sites under selection were introduced and allowed to evolve under 
divergent selection in each population, ultimately resulting in seven 
outlier regions (Figure S1). Sequence data from the simulated chro-
mosomes, generated to reflect Illumina-style paired-end reads in-
cluding sequencing errors, reflected 8× coverage for each of several 

hundred individuals from each population to enable down-sampling 
at various coverage levels. See Lou et al. (2021) for additional details 
about simulated data.

While extensive scenarios were tested in Lou et al. (2021) with 
these simulated data, we selected four scenarios to benchmark 
PoolParty2 against angsd including: (a) high background FST & low 
sequence coverage; (b) high background FST and higher sequence 
coverage; (c) low background and low sequence coverage; (d) low 
background FST and higher sequence coverage. From the simulated 
sequence data, we randomly selected a number of individuals from 
each population to reflect sample sizes that are common for empir-
ical datasets in the literature and the dataset included in this study 
(70 and 63 from each population, from 160 each) and down-sam-
pled the simulated sequence data (from 8×) to reflect the median 
individual coverage in our empirical data (~0.33×) as well as a com-
mon sequencing target for lcWGS studies (1×). As Lou et al. (2021) 
examined the effects of depth and sample size on allele frequency 
estimation accuracy across a greater range of values, it was not our 
intent to duplicate their efforts except to compare the abilities of 
the two bioinformatic suites at these coverage depths. However, to 
additionally challenge these suites with the range of variability in 
coverage among individuals commonly reflected in empirical data, 
we fit several simple mathematical distributions to the sums of indi-
vidual coverage in our empirical data for variant positions following 
an initial set of global filters (global depth of 10 and minor allele 
frequency, MAF, of 0.005). A logistic distribution exhibited the best 
fit based on information theoretic criteria (results not shown), and 
using parameters for this distribution, we down-sampled the 8× 
simulated data. For the 1× coverage dataset, the empirical scale 
parameter for this distribution was used, but the location parame-
ter was set to 1, to produce higher coverage with similar variation. 
Individuals utilized at different coverages of the same scenario 
were not identical. This resulted in four simulated datasets (low and 
high background FST at 0.33× and 1× coverage).

For each of the four datasets, sequence data were processed 
with the PPalign module of PoolParty2, including quality trimming 
(sliding window PHRED ≥20, retained length ≥50 bp), read map-
ping (mapQ ≥20), variant scoring and filtering by global parameters 
(snpQ ≥20, global depth of 10 reads, MAF of 0.001), and estima-
tion of raw and normalized allele frequencies. Unless otherwise 
indicated, normalized allele frequencies were utilized in all anal-
yses. SNP variants and their normalized frequencies identified 
by PPalign were used as input to PPanalyze, which applied addi-
tional filters for sites observed in fewer than 10 reads per popu-
lation. PPanalyze also calculated FST for individual sites and sliding 
windows of 100 kbp windows in 5 kbp sets, as well as applying 
Fisher's exact tests (FET) for differences in allele frequency be-
tween the two populations (via PoPoolations). Significance (p) val-
ues for the latter test were used as input for the Local Score test 
(Fariello et  al.,  2017), which ‘smooths’ the background variation 
in significance to identify contiguous outlier regions depending 
on a user-specified smoothing parameter (ξ). In addition, this test 
determines the significance of putative outlier regions through 
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    |  5WILLIS et al.

accounting for linkage (autocorrelation in p-values) in a chromo-
some-specific manner. However, because each run samples differ-
ent SNPs to calculate autocorrelation and determine significance, 
individual runs may fail to identify outlier regions with borderline 
significance. Lower rates of smoothing (smaller ξ) generally retain 
more power, but are less precise in determining the boundaries 
of outlier regions, and moreover, because the landscape of back-
ground significance changes with various ξ values, and thus the 
thresholds for significance in this test, power and smoothing do 
not have a directly inverse linear relationship. For these reasons, 
multiple runs with application of different values of ξ are useful. 
We therefore ran the local score test three times for increasing 
values of ξ representing the 70th, 80th, 90th, 95th and 99th quan-
tiles of significance values from the Exact tests of each dataset, 
and tallied how often each simulated outlier region was recovered 
as well as the width estimated for each region.

Using the filtered BAM files produced by PPalign as input, 
we applied angsd to all four simulated datasets in two manners. 
First, we ran angsd undirected by any variant identification from 
PoolParty2, relying on angsd's filters to identify and screen variant 
sites. We applied filters to several runs of each dataset (similar to 
PPalign: mapQ ≥20, snpQ ≥20, global depth≥20, MAF ≥0.001) but 
with varying significance thresholds for variant discovery: none, 
0.01 and 0.001. We ran this configuration to compare angsd's 
ability to detect true variants and discover outlier regions to 
PoolParty2. Subsequently, specifying for angsd to consider only 
variants it discovered with the most stringent significance thresh-
old (p ≤ .001), we ran angsd on data from each simulated popula-
tion separately in order to generate site frequency spectra and 
calculate FST using angsd's realSFS utility. We only retained sites 
observed in more than 10 reads and three individuals in each 
population, and then directed ANGSD to run association tests on 
these sites (-doAssoc 1, 2 and 5) to identify outliers, specifying 
population membership of each individual. Second, we directed 
angsd to consider only sites discovered by PPalign and subse-
quently retained by filtering with PPanalyze (‘PoolParty2 to angsd’), 
and we utilized allele frequencies estimated from these runs to 
compare the ability of PoolParty2 and angsd to recover the known 
allele frequencies accurately. Subsequently, genotype likelihoods 
inferred by angsd from these runs were used as input for estima-
tion of linkage using ngsLD (Fox et al., 2019), and we constrained 
linkage estimation to sites ≤100 kbp from one another. Using these 
linkage estimates, we calculated mean LD in 100 kbp windows in 
5 kbp steps in R, and identified outlier regions as contiguous series 
of ≥10 windows exceeding 2× the interquartile range (2 × IQR) for 
mean windowed LD.

2.3  |  Application 2: Barcoded individuals in 
population samples of steelhead

Hatcheries have an important but controversial role in supple-
menting dwindling fish stocks in the Columbia River basin (Busby 

et al., 2000), including, in a few cases, selection for particular traits 
in hatchery stocks that differ from the stocks into which they 
are outplanted or stray (disperse to non-natal areas). One of the 
most abundant and widely outplanted hatchery stocks of steel-
head trout in the Columbia Basin comes from Skamania Hatchery 
(Washougal, WA). The Skamania stock has a long history of delib-
erate selection for earlier spawning and larger fish (Ayerst, 1976), 
which has resulted in the evolution of fish that migrate notably 
earlier than conspecifics and almost exclusively after two or 
more years ocean duration (Hess et  al.,  2021). Without choos-
ing individuals with known phenotypes, but rather undirectedly 
sampling individuals from the Skamania hatchery stock as well 
as individuals from two nearby natural origin stocks (Lewis River 
and Eagle Creek-Willamette River) in the same steelhead lineage 
(Coastal), we tested if genomic regions previously associated with 
these traits or others would appear strongly differentiated in the 
Skamania stock.

Library preparation followed the individual barcoding proto-
col from Horn et al. (2020) and sequencing was done separately 
for each population on the Illumina NextSeq 550 with 150-bp 
paired-end reads. The number of individuals per pool ranged 
from 60 to 78. Data were processed with PoolParty2, including 
discarding of reads if trimmed below 50 bp from sliding windows 
with a minimum mean PHRED quality of 20, and filtering SNPs 
if they were below a PHRED quality of 20, three or fewer bases 
from an insertion–deletion position, observed in fewer than 10 
reads in each sample pool or more than 1500 globally, if the 
number of individuals surveyed per population was fewer than 
three of if the global minor allele frequency was less than 0.005. 
The allele frequency data were normalized in PPalign to medi-
ate non-uniform read contribution among individuals. Using the 
PPstats module, we assessed data coverage distributions, propor-
tion of the genome covered at specified depths, and evenness 
of coverage across chromosomes. Normalized allele frequencies 
were filtered and analysed with PPanalyze including calculation of 
FST, sliding window FST (100 kbp windows in 5 kbp steps), and FET. 
Significance values from the Exact tests were used in local score 
analyses, using three replicate runs with ξ representing the 80th, 
90th, 95th and 99th quantiles of significance values (the 70th 
quantile did not produce a mean local score distribution below 
zero). Filtered read alignment files (BAMs) created by PPalign 
were used as input for angsd, which was directed to consider the 
variants filtered by PPanalyze, and from which we utilized the gen-
otype likelihoods provided by angsd as input to estimate linkage 
with ngsLD for three chromosomes with the most significant and 
consistent outlier regions in the Local Score results, considering 
only sites ≤100 kbp from one another. As above, we calculated 
mean LD in 100 kbp windows in 5 kbp steps in R, but identified 
outlier regions as contiguous series of ≥20 windows exceeding 
2× the interquartile range (2×IQR) for mean windowed LD. When 
multiple contiguous outlier window series were present in the 
range identified by the lowest Local Score quantile, we report all 
those series.
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6  |    WILLIS et al.

3  |  RESULTS

3.1  |  Application 1: lcWGS data simulated from 
distinct demographic backgrounds and sequencing 
coverage

Down-sampling, trimming and mapping of simulated data results in 
100% of the simulated chromosome being covered at ≥10 reads per 
population in the 0.33× coverage datasets and at ≥40 reads for the 
1× coverage datasets. The two demographic scenarios simulated by 
Lou et al. (2021) resulted in notably different numbers of segregat-
ing variants: 158,746 variants with MAF ≥0.001 (of 245,412 total 
variants) in the high background FST scenario and 789,423 variants 
with MAF ≥0.001 (1,209,625 total) in the low background FST sce-
nario. PoolParty2 and angsd differed considerably in the dynamics 

of variant discovery, particularly identification of false-positive and 
false-negative simulated variants. Both PoolParty2 and angsd recov-
ered a larger number of sites in the datasets with greater coverage 
(all of which must have MAF ≥0.001), but while the proportion of 
false positives was similar across coverages for PoolParty2 (≤1%), 
this value changed with coverage for angsd (Table 1). In addition, only 
at the highest significance thresholds did angsd recover sites with 
similar false-positive proportions to PoolParty2, but then in lower 
absolute numbers. The rates of false-positive and false-negative loci 
for angsd were similar for higher MAF loci, but angsd still recovered 
lower absolute numbers of ‘real’ loci than PoolParty2 (Table 1).

Across coverage depths, allele frequencies estimated by PPalign 
were equivalent or modestly more accurate than those estimated 
by angsd (Figure 2, Figure S2). Allele frequency estimates generally 
improved with depth for both PoolParty2 and angsd, though most 

TA B L E  1  Results of SNP calling and filtering by PoolParty2 and angsd with different modules and filtering thresholds in two different 
demographic scenarios (high and low background FST) and coverage levels (0.33× and 1×). SNPs were filtered at two minor allele frequencies 
(MAF) and tallied, and the percentage of each that were false positives (loci not simulated) and false negatives (simulated loci ≥MAF not 
recovered) is reported.

Poolparty ANGSD

PPaligna PPanalyzeb No p filter p < .01c p < .001c Population filteringd

High—0.33× MAF ≥0.001 70,067 68,292 527,762 94,104 57,027 56,060

% false positive 0.54 0.54 82.83 30.43 1.26 1.28

% false negative 56.1 57.2 42.9 58.8 64.5 65.1

MAF ≥0.05 65,479 63,505 56,729 55,727 52,418 51,451

% false positive 0.17 0.20 1.07 0.89 0.35 0.35

% false negative 1.4 4.4 15.4 16.7 21.2 22.7

High—1× MAF ≥0.001 91,509 86,036 920,208 209,617 127,423 127,415

% false positive 0.22 0.22 87.95 56.51 32.49 32.49

% false negative 42.5 45.9 30.1 42.6 45.8 45.8

MAF ≥0.05 66,733 62,323 57,475 57,473 57,472 57,464

% false positive 0.02 0.02 0.03 0.03 0.02 0.02

% false negative 0.0 6.0 13.4 13.4 13.4 13.4

Low—0.33× MAF ≥0.001 345,223 334,664 864,530 344,606 275,355 271,175

% false positive 0.23 0.23 48.55 7.41 0.21 0.20

% false negative 56.4 57.7 43.6 59.6 65.2 65.7

MAF ≥0.05 3,22,926 3,11,366 2,74,274 2,69,762 2,55,028 2,50,861

% false positive 0.09 0.09 0.20 0.17 0.11 0.11

% false negative 1.5 5.0 16.4 17.8 22.2 23.5

Low—1× MAF ≥0.001 452,827 422,029 1,323,894 411,213 373,603 373,473

% false positive 0.22 0.21 58.89 1.86 0.39 0.39

% false negative 42.8 46.6 31.0 48.9 52.9 52.9

MAF ≥0.05 3,30,525 3,05,110 2,81,546 2,81,527 2,81,343 2,81,216

% false positive 0.08 0.08 0.09 0.09 0.09 0.09

% false negative 0.0 6.9 14.1 14.1 14.2 14.2

aMin. 20 global reads.
bInitial sites specified by PPalign; min. 3 ind + 10 reads each pop.
cMin. 20 global reads.
dInitial specified by ANGSD p < .001; min. 3 ind + 10 reads each pop.
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notably for angsd when depth was estimated by angsd rather than 
PoolParty2. Indeed, angsd and PoolParty2 disagreed consider-
ably about depth (correlation in depth estimates decreased as the 
threshold for depth increased, but only when depth was reported 
by PoolParty2), implying that angsd's read filter is more stringent 
than PoolParty2, even with apparently similar parameter values. 
Moreover, while angsd and PoolParty2 both exhibited strong linear 
correlations for true and estimated allele frequency as well as error 
magnitudes that remained similar across minor allele frequencies, 
the marginally higher error rate for angsd appeared to be tied to this 
program's divergent perception of coverage (Figure S3). Indeed, the 
difference in error between PoolParty2 and angsd was more closely 
tied to the proportion of depth that PoolParty2 reported that angsd 
corroborated (Spearman's rho −0.55) than the total depth angsd re-
ported (Spearman's rho −0.33) across sites. Nonetheless, correlation 
values for estimated and true allele frequencies for both analytical 
suites ranged from approximately 80%–90% for the lower coverage 
datasets and 90%–95% for the higher coverage datasets. We note 
that some diminishment in accuracy was expected due to sampling 
variance (the ‘true’ allele frequencies reflect the population frequen-
cies before individual sampling and sequence read simulation), as 
these determine the truly estimable allele frequencies regardless 
of the fidelity of each analysis. This is corroborated by the obser-
vation that correlations between allele frequencies estimated by 
PoolParty2 and angsd were always higher with each other than with 
the ‘true’ allele frequencies in each case (87%–98%; data not shown).

Both analytical suites were able to provide results which allowed 
visual identification of most if not all of the simulated outlier regions, 
particularly in the sliding window FST, Local Score, and linkage outlier 
results (Figure 3). Results provide by PoolParty2 and angsd for FST, 
sliding window FST, and FET (PoolParty2) or frequency test (angsd 

-doAssoc 1) were roughly equivalent (Figures S4–S7). The score and 
hybrid latent-score tests from angsd (-doAssoc 2 and 5) failed to pro-
duce any significant results. Both PoolParty2 and angsd had more 
difficulty in providing results that unambiguously identified outlier 
regions for the high background FST scenario at lower coverage, al-
though even at higher coverage, outliers were less obvious than in 
either of the low background FST scenario datasets. The analyses 
that were designed to provide less ambiguous identification of out-
lier regions, Local Score and linkage outliers identified above twice 
the IQR, also exhibited efficacy moderated by demography and cov-
erage (Table 2). In the case of Local Score, while peaks correspond-
ing to the outlier regions were clearly visible in plots of smoothed 
FET significance, it was more difficult to determine significance 
thresholds that effectively identified the outlier regions with high 
background FST, though this test did not appear to be constrained 
significantly by coverage for the low background FST scenario. 
Moreover, in the high background FST scenario, there was no obvi-
ous inverse relationship between smoothing value (ξ) and power, as 
some replicates with higher ξ values identified more outlier regions 
at p ≤ .05, though an inverse relationship was apparent in the low 
background FST scenario. Moreover, the precision of identified re-
gions narrowed with increasing ξ values, as expected. In contrast, 
our identification of outliers using linkage was more constrained by 
coverage, with lower efficacy in lower coverage datasets regard-
less of background FST. Notably, the width of the region affected by 
hitchhiking was smaller with lower coverage in both scenarios, with 
similarly smaller outlier regions estimated by the Local Score analy-
ses across ξ values at lower coverage in the low background FST sce-
nario. Importantly, none of the analyses that considered broad range 
divergence or significance (windowed FST, Local Score, windowed 
linkage) identified any false-positive outlier regions.

F I G U R E  2  Comparing estimated allele frequencies with true allele frequencies across depth cut-offs for data simulated with high 
background FST and low coverage (0.33×). Left axis: The red and blue lines show correlation for PoolParty2 estimated frequencies for 
each population for normalized (solid) and non-normalized (dashed) data. Orange and green lines show correlation with angsd estimated 
frequencies. Black line shows correlation in depths estimated by angsd and PoolParty2. Right axis: thick purple line shows number of sites 
passing depth thresholds. Left and right panels shows depths reported by PoolParty2 and angsd, respectively.
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    |  9WILLIS et al.

3.2  |  Application 2: Barcoded individuals in 
population samples of steelhead

After trimming, mapping, and quality filtering, PPalign provided 
287–405 million mapped reads per sample, which allowed between 
67.2% and 70.8% sampling of the genome at the minimum num-
ber of reads per sample (10), as revealed by PPstats (Figure S8). The 
distribution of genomic extent across chromosomes was similar 
to other lcWGS analyses of the O. mykiss genome (e.g. Micheletti 
et al., 2018), indicating this pattern is a function of the library prep-
aration technique used for all these samples or idiosyncrasy of this 
genome. Sequencing of indexed individuals allowed us to estimate 
that the mean coverage per individual ranged from 0 to 2.3 (median 

0.23), to confirm that it was similar across populations (median 0.23, 
0.26, 0.23 and standard deviation 0.39, 0.28 and 0.28 for Willamette 
River, Lewis River and Skamania Hatchery, respectively), and to re-
duce bias in allele frequency estimates introduced by sampling vari-
ance across samples (normalize). After population-specific filters, 
PPanalyze examined 22,934,298 variants (22,832,805 [99.5%] in 
the chromosome scaffolds) with a suite of analyses. Density plots 
revealed that variants were sampled from across the genome, with 
a handful of areas of notable density. A principal components analy-
sis made with loci with a maximum difference in allele frequencies 
below 0.9 (thus excluding the most divergent outlier loci), while un-
remarkable, confirmed that the primary axis, which explained ~86% 
of the variance in the data, did not segregate the Skamania hatchery 

TA B L E  2  Outlier regions identified from simulated data using windowed mean linkage and regions identified with Local Score analysis 
of significance from Fisher's exact tests. For each outlier region identified, the width in kbp is reported. For windowed linkage analysis, 
the mean and maximum windowed mean of linkage is listed, while for Local Score analyses across quantiles of significance as smoothing 
parameter values, ξ, the number of replicates out of three in which a region was significant are listed.

Background FST Coverage Outlier (Mbp)

Linkage disequilibrium 
windows

Local score ξ quantiles

70 80 90 95 99

Width LD mean (max) Width (observation across replicates)

High 0.33× 2.5 245 0.103 (0.116) — — — 93 (1) —

5 275 0.097 (0.112) — — — — —

7.5 — — — — — — —

15 195 0.088 (0.093) — — — — —

17.5 203 0.090 (0.097) — — — — —

22.5 194 0.089 (0.092) — 648 (3) 249 (2) 74 (1) —

25 169 0.089 (0.092) — — — — —

High 1× 2.5 420 0.078 (0.108) — — — 134 (1) 52 (1)

5 490 0.073 (0.101) — — — — —

7.5 224 0.063 (0.065) — — — — —

15 434 0.067 (0.074) — — — — —

17.5 408 0.069 (0.082) — — — — —

22.5 314 0.071 (0.083) — — — — —

25 305 0.070 (0.077) — — — — —

Low 0.33× 2.5 220 0.073 (0.076) 547 (3) 196 (3) 81 (3) 22 (1) —

5 — — — 61 (3) — 5 (1) —

7.5 180 0.071 (0.073) 558 (3) 165 (3) 69 (3) 32 (3) 13 (3)

10 — — 472 (3) 134 (3) — — —

17.5 160 0.071 (0.071) 450 (3) 118 (3) 48 (2) 29 (1) —

22.5 — — 380 (3) 99 (3) 46 (3) 25 (1) —

25 — — 360 (3) 99 (3) 54 (1) 27 (1) —

Low 1× 2.5 275 0.051 (0.058) 1025 (3) 323 (3) 134 (3) 66 (3) 10 (3)

5 200 0.048 (0.049) 779 (3) — 39 (2) — —

7.5 195 0.050 (0.051) 752 (3) 243 (3) 101 (3) 55 (3) 31 (3)

10 225 0.049 (0.051) 579 (3) 175 (3) 63 (2) — —

17.5 215 0.048 (0.050) 960 (3) 219 (3) 71 (3) — —

22.5 250 0.049 (0.052) 745 (3) 158 (3) 73 (3) 35 (3) 20 (3)

25 200 0.049 (0.051) 771 (3) 193 (3) 80 (3) — —
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10  |    WILLIS et al.

sample from the natural origin samples, implying that outlier re-
gions related to the main contrast (hatchery vs. natural) would not 
be confounded by background population structure. Raw PPanalyze 
output revealed many small regions of strong genomic divergence, 
while 51 separate regions were identified as significant at p ≤ .05 
across ξ values and replicates in Local Score analyses (Figure  4, 
Table  3, Table  S1). The two most significant (highest local score) 
regions were the region of chr. 28 containing the genes GREB1L and 
ROCK1 and the region of chr. 25 containing the gene SIX6, which 
have been previously found associated with migration timing and 
age at maturity in steelhead and other salmonids, respectively 
(e.g. Willis et  al.,  2020). There were also many additional regions 
whose potential association with migration phenology, age at ma-
turity, or domestication (adaptation to hatchery production) could 
be explored further. For example, a region of chromosome 20 that 

was consistently recovered in the Local Score analyses contained 
two protein coding genes: ATP-citrate lysase (synthase), or ACLY, 
and, dnaJ homologue subfamily C member 7 or DNAJC7. ACLY is a 
ubiquitous cytosolic enzyme positioned at the intersection of nu-
trients catabolism and cholesterol and fatty acid biosynthesis, and 
DNAJC7 is a member of the heat shock protein 40 family and acts 
as co-chaperone regulating the molecular chaperones HSP70 and 
HSP90 in folding of steroid receptors, such as the glucocorticoid 
receptor and the progesterone receptor. Notably, identification of 
linkage outliers for these three chromosomes identified the same 
regions, but in the case of chromosomes 25 and 28, also identified 
other regions that Local Score did not, presumably because, while 
they exhibit strong linkage across all samples, these regions were 
not consistently divergent between the hatchery and natural origin 
samples.

F I G U R E  4  Manhattan plots of divergence and linkage among hatchery and natural origin population samples of steelhead. (a) Individual 
site FST corrected for sample size (red line indicates FST of 0.5). (b) Mean FST in sliding windows of 100 kb across the genome. (c) −log 10 
significance (p) values from individual site Fisher's exact tests. (d–g) Local score analysis of significance values from Fisher's exact tests for 
the 80th, 90th, 95th and 99th quantile of significance values as ξ (red line indicates FDR of 0.05). (h–j) Mean linkage in 100 kbp windows for 
chromosomes 20, 25 and 28 (red dots indicate series of 20+ windows of mean linkage above 2× the interquartile range).
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    |  11WILLIS et al.

4  |  DISCUSSION

4.1  |  Bioinformatic suites for low-coverage 
whole-genome sequencing data

PoolParty2 is a bioinformatic pipeline that was designed for the 
utilization of pooled or individually barcoded lcWGS data with a 
high-quality reference genome to perform genome-wide genetic 
association analysis with discrete phenotypic traits or environ-
mental variables. Since its original presentation, it has seen nu-
merous updates, though most of these will be invisible to the user 
since their effect is to provide greater efficiency or stability. For 
example, the scripts that implement the Local Score analysis of 
Fariello et al. (2017) have been improved to make them more ro-
bust to variations in SNP and allele frequency count and distri-
bution and provide more accurate reports with respect to outlier 
region margins. The major workhorse of the pipeline, the PPalign 
module, has received the most updates since the pipeline's first 
presentation. Notably, this module is now able to call variants in 
parallel across multiple computational threads by dividing chro-
mosomes and scaffolds into groups based on a user-specified 
number of threads, which substantially reduces processing time 
for large datasets. Another notable update includes the user's abil-
ity to limit the number of individuals to normalize simultaneously, 
which reduces RAM memory requirements in memory-limited or 
shared computing environments, with the proviso that this also 
causes the duration of processing time for normalization to in-
crease linearly.

The analyses available through the PPanalyze module of 
PoolParty2 have most often been applied for the discovery of one or 
a few genomic regions with large, independent or simple-interaction 

effects on traits (e.g. direct epistasis), though, as results from our 
empirical data portray, these analyses, with appropriate corrobora-
tion, may identify many loci with smaller effects on polygenic traits. 
These analyses rely on allele frequency data, which are most effec-
tively estimated by sampling larger numbers of individuals, even at 
lower coverage, and as such are best suited for investigations into 
discrete phenotypes with high heritability and penetrance or en-
vironmental conditions with distinct contrast, such that individu-
als can be grouped into classes that capture the relevant variation. 
Loci contributing to polygenic traits with continuous variation or 
complex interactions, however, will be challenging to discover with 
analyses that rely mainly on allele frequency. Discovery of these loci 
will likely depend on identifying combinatorial associations among 
non-contiguous genotypes from individual-level rather than group-
level data, for which genotype likelihoods are better suited. angsd, 
which requires read alignments such as those produced by PPalign 
as input, can estimate individual genotype likelihoods or posterior 
probabilities useful for such analyses. As we demonstrate here, gen-
otype likelihoods also allow the estimation of linkage disequilibrium 
in specified windows to corroborate outlier regions, even from very 
low-coverage data, making PoolParty2 and angsd effective comple-
ments. It should be noted, however, that genotype likelihoods may 
only be sufficiently informative for some analyses if coverage per 
individual is sufficiently high, and the decision as to how to multiplex 
individuals for a given total number of sequencing reads must be 
made with respect to the types of analyses that will be needed for 
the known phenotypic/environmental variation and hypothesized 
genetic architecture (Lou et al., 2021; Paril et al., 2022).

Using simulated data, we demonstrated that angsd and 
PoolParty2 both provide precise estimates of allele frequency con-
sidering the constraint of individual sequence coverage and variation 

Start 
(Mbp)

End 
(Mbp)

Width 
(kbp)

LD mean 
(max)

Omy 20 LS quantile (ξ) 80 16.07 22.98 6907 —

90 17.34 19.50 2166 —

95 18.83 19.05 211.8 —

99 18.91 18.92 6.3 —

LD outliers 17.70 18.70 1100 0.087 (0.327)

18.72 19.33 701.9 0.155 (0.261)

Omy 25 LS quantile (ξ) 80 22.31 31.58 9272 —

90 22.87 23.66 797.1 —

95 22.89 23.21 317.7 —

99 22.92 22.98 51.2 —

LD outliers 22.31 22.44 224.9 0.086 (0.095)

22.80 23.05 354.9 0.091 (0.116)

Omy 28 LS quantile (ξ) 80 1.69 42.93 41,243 —

90 11.90 15.50 3608 —

95 12.02 13.17 1158 —

99 12.03 12.46 432.6 —

LD outliers 11.94 12.12 284.8 0.137 (0.206)

TA B L E  3  Outlier regions identified 
in select chromosomes from empirical 
steelhead trout data using windowed 
mean linkage and regions identified with 
Local Score analysis of significance from 
Fisher's exact tests. For each outlier 
region identified, the beginning and end 
of the regions (Mbp), width (kbp), and, 
for regions identified with windowed 
linkage analysis, the mean and maximum 
windowed mean of linkage, are reported. 
Local score results are reported across 
quantiles of significance as smoothing 
parameter values, ξ.
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12  |    WILLIS et al.

with which they were challenged. Both bioinformatic suites also pro-
duce very low rates of false-positive outliers, at least when data are 
examined on a site-aggregate (windowed or serial) basis. A number 
of the per-site divergence analyses are roughly equivalent between 
bioinformatic suites, including estimates of FST, sliding window FST, 
and basic tests of allele frequency proportions, though we note that 
to estimate site frequency spectra for calculating FST with angsd, 
each population must be analysed separately, and if the user desires 
to utilize the empirical major/minor alleles rather than reference/al-
ternate, a prior run with all data must be made. Beyond these, how-
ever, the Local Score analyses (Fariello et al., 2017) and estimates of 
linkage outliers from ngsLD (Fox et al., 2019) provide powerful and 
complementary means to identify true outlier regions that can be 
run in simultaneously. We provide the code demonstrating this for 
our simulated and empirical data (File S1).

Results from the analysis of simulated data also indicate that, 
while both angsd and PoolParty2 are effective at identifying segregat-
ing variants, estimating allele frequencies, and identifying outlier loci 
using lcWGS data, the particular evolutionary context and genomic 
environment of putatively adaptive loci may constrain the efficacy 
of any bioinformatic suite at a given depth of coverage. For example, 
we observed that while both analytical suites provided results that 
correctly portrayed the presence and location of outlier loci in each 
of the simulated datasets, peaks in the higher background divergence 
scenarios were more difficult to discern visually. Further, an analy-
sis designed to objectively discriminate outlier loci from background 
rates of variation, Local Score, identified fewer significant regions 
in this scenario. While outlier identification using linkage was more 
effective in high background divergence scenarios, and coordination 
of this approach with the other analyses increases flexibility of the 
combined toolkit, this analysis was less effective with lower coverage 
regardless of evolutionary context. Moreover, while linkage disequi-
librium may reflect regions subject to divergent selection, as our em-
pirical results portray, it may also result from non-selective processes, 
such as position within the chromosome, admixture or inbreeding, 
and effectively discriminating high LD regions associated with selec-
tion will rely on corroboration with other analyses. Although we did 
not investigate it directly here because of the nature of the simu-
lated data, one strategy to increase power in challenging scenarios 
is through the use of paired sample replicates, that is, samples of the 
same phenotype or across the same environmental axes from mul-
tiple populations (e.g. Lotterhos & Whitlock,  2015). Analyses that 
emphasize repeated differences across these replicates, such as the 
Cochran–Mantel–Haenszel test available in PoolParty2, increase the 
power to identify regions associated with the focal contrasts while 
minimizing the influence of background variation (Cochran,  1954; 
Mantel & Haenszel, 1959). Our recommendation based on these ob-
servations is for researchers to consider existing information about 
the demographic and genetic context of the traits and populations 
under study, and to carefully arrange experimental design to maxi-
mize power for any given scenario (Lou et al., 2021).

One underappreciated phenomenon in lcWGS are technical ar-
tefacts commonly known as batch effects (Leek et al., 2010; Lou & 

Therkildsen, 2022). These occur when idiosyncrasies of the library 
and sequencing process introduce artefacts for samples processed 
together that are later misinterpreted as true biological differences 
between groups under analysis, and may have a number of contrib-
uting causes in lcWGS data (Lou & Therkildsen, 2022). While batch 
effects are certainly not exclusive to lcWGS, barcoded and especially 
pooled lcWGS data that are prepared group-wise may be subject to 
them. Importantly, both PoolParty2 and angsd have a number of util-
ities included that help eliminate some batch effects, including read 
trimming, mapping and SNP quality filtering, minor allele frequency 
thresholds, and read and individual observation minima. Moreover, 
with any bioinformatic suite it is wise that users conduct tests to de-
termine if results are sensitive to various trimming and filtering pa-
rameters. The alignment filtering utilities provided with angsd appear 
to be more stringent, even with the same parameters, than what is 
currently applied in PoolParty2, as evidenced by diminished correla-
tion in allele frequencies for sites with higher depth as estimated by 
PoolParty2 but not for angsd. Additional variant filters are accessible 
in angsd, including those that examine strand balance, and though 
not built-in, these same filters can be applied to the variants dis-
covered by PoolParty2 through VCF filtering tools such as bcftools 
or vcflib (Danecek et al., 2021; Garrison et al., 2021), as described 
in our tutorials. Aside from these filters, one important means of 
controlling batch effects is to distribute barcoded samples from dif-
ferent analytical groups (e.g. populations) among sequencing runs, 
and ideally library preparation groups, since this reduces the chance 
that technical artefacts will be identified as group-wise differences 
(O'Leary et al., 2018). In addition, another strategy to minimize the 
influence of batch effects and other false positives is through the 
use of paired sample replicates as described above: analyses that uti-
lize paired replicates reduce the chance that artefacts owing to any 
technical pair will be identified as consistent, significant differences 
(Cochran, 1954; Mantel & Haenszel, 1959).

4.2  |  Discovery of large effect loci 
in non-model organisms

We successfully applied our integrated pipeline to a common data 
arrangement of lcWGS data from steelhead trout (O. mykiss) to 
identify loci strongly divergent among populations with distinct 
histories and putatively of strong effect on traits under selection 
in these groups. This species exhibits an impressive array of life his-
tory diversity even among salmonids, including notable and impor-
tant variation in migration phenology (run timing), age at maturity 
(age at first reproduction), propensity for residency or anadromy, 
precocial sexual maturation and iteroparity (repeat spawning; Busby 
et al., 2000; Carlson & Seamons, 2008; Quinn et al., 2011). Many 
of these traits are highly variable both among and within phylogeo-
graphic lineages and local populations (Busby et al., 2000), are part 
of the portfolio of life history diversity that assist populations in per-
sisting through natural and anthropogenic environmental challenges 
(Quinn et  al.,  2016), and are among the outward physical traits 
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used by managers to estimate the contribution of distinct stocks to 
mixed-stock fisheries (Hess et al., 2021).

The diversity of life history ensembles among regional and local 
stocks of steelhead reflects a multifaceted history of selection, and 
upon these effects anthropogenic forces have applied new chal-
lenges. One of the most direct human impacts on steelhead are use 
of hatcheries to mitigate for the loss of fish from dams, overfish-
ing, habitat degradation, and other human actions. While hatcheries 
have begun to shift towards inclusion of natural origin (NOR) returns 
in broodstock recruitment to avoid ‘domestication’ selection, these 
are still the minority, and indeed some operations have taken the 
opposite approach, actively choosing hatchery returns with charac-
teristics desirable for hatchery managers or fishers, with many con-
sequences to genomic variation. While the typical application of our 
pipeline for discovering loci under selection relies upon groups with 
known phenotypic differences, discrete phenotypes with heritable 
bases may be overall uncommon in non-model organisms, at least 
relative to opportunities for examining populations arrayed across 
replicate environmental axes (e.g. Lotterhos & Whitlock, 2015). To 
reflect this, we chose to examine genomic divergence in a hatchery 
stock with a notable history of hatchery selection without a priori 
designation other than group membership, as would be the case 
for most landscape-level genome scans. However, in this case the 
Skamania Hatchery stock is well known for its phenotypic ensemble, 
its history of hatchery origin recruitment and artificial selection, and 
the extent to which this stock has been outplanted or strayed into 
numerous Columbia Basin tributaries. Not surprisingly, we observed 
strong divergence in two regions known to be associated with early 
migration timing and age at maturity (ocean duration) on chromo-
somes 28 and 25, respectively. However, we also saw significant di-
vergences in regions that contained several dozen additional genes, 
including a prominent region on chromosome 20 containing two 
genes important in metabolism and cellular signalling. This region on 
chromosome 20 is also known to harbour a structural inversion in 
this species (Pearse et al., 2019), which may have been involved in 
artificial selection of the hatchery stock. Importantly, these regions 
were emphasized as outliers both by the analyses we applied that 
considered only global linkage patterns as well as the analyses that 
considered contrast-specific divergence while controlling for link-
age. However, the linkage-only analysis identified additional regions 
that did not appear to exhibit strong divergence across our contrast 
of interest (hatchery vs. natural origin), demonstrating the impor-
tance of corroborating outliers identified from any single analysis. 
While we decline to hypothesize how these additional genes may 
be involved in domestication, these results demonstrate the utility 
of applying our pipeline to landscape-level samples and the efficacy 
and complementarity of the PoolParty and angsd pipelines for ana-
lysing lcWGS data.
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