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Abstract

Whole-genome sequencing data allow survey of variation from across the genome,
reducing the constraint of balancing genome sub-sampling with estimating recom-
bination rates and linkage between sampled markers and target loci. As sequencing
costs decrease, low-coverage whole-genome sequencing of pooled or indexed-indi-
vidual samples is commonly utilized to identify loci associated with phenotypes or en-
vironmental axes in non-model organisms. There are, however, relatively few publicly
available bioinformatic pipelines designed explicitly to analyse these types of data,
and fewer still that process the raw sequencing data, provide useful metrics of quality
control and then execute analyses. Here, we present an updated version of a bioin-
formatics pipeline called PooLPArTY2 that can effectively handle either pooled or in-
dexed DNA samples and includes new features to improve computational efficiency.
Using simulated data, we demonstrate the ability of our pipeline to recover segregat-
ing variants, estimate their allele frequencies accurately, and identify genomic regions
harbouring loci under selection. Based on the simulated data set, we benchmark the
efficacy of our pipeline with another bioinformatic suite, ANGsb, and illustrate the com-
patibility and complementarity of these suites using ANGsD to generate genotype likeli-
hoods as input for identifying linkage outlier regions using alignment files and variants
provided by PooLParTY2. Finally, we apply our updated pipeline to an empirical data-
set of low-coverage whole genomic data from population samples of Columbia River
steelhead trout (Oncorhynchus mykiss), results from which demonstrate the genomic
impacts of decades of artificial selection in a prominent hatchery stock. Thus, we
not only demonstrate the utility of PooLPArTY2 for genomic studies that combine se-
quencing data from multiple individuals, but also illustrate how it compliments other

bioinformatics resources such as ANGsD.
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1 | INTRODUCTION

A primary goal of molecular ecology is to understand the genetic basis
of diversity, such as targets of divergent selection or loci underlying
heritable life history variations or ecotypes. Critical to this endeavour
is the ability to survey the genome to discover genetic variants asso-
ciated with phenotypic differences or environmental axes (Gunther &
Coop, 2013; Hoban et al., 2016; Paril et al., 2022). Massively parallel
or ‘next-generation’ sequencing has dramatically decreased the cost
of surveying genetic variation across statistically meaningful numbers
of individuals and has made these kinds of investigations accessible
for researchers working with limited budgets on non-model organisms.
However, despite the rapid decrease in per-base sequencing costs, se-
guencing the complete genome of each surveyed individual at high
coverage is often not practical, in part because, as the cost of sequenc-
ing has decreased, demands for statistically robust sample sizes have
become more ardent (Schl6tterer et al., 2014). As a result, geneticists
are still faced with the task of determining the appropriate compromise
between the number of reads devoted to surveying each individual,
which in many cases determines the extent of the genome that can be
observed, and the number of individuals surveyed (Lou et al., 2021).

This compromise has been addressed in a number of ways de-
pending on the goals of the individual project. Many researchers have
opted to survey only a fraction of the genome at higher coverage, cre-
ating ‘reduced representation’ libraries wherein sequencing coverage
is spread across reproducible subsets of loci (e.g. Baird et al., 2008).
With careful tuning of library preparation and sequencing methods,
the coverage at each locus may be sufficient to confidently infer gen-
otypes across nearly all individuals at hundreds to tens of thousands
of variable loci (Andrews et al., 2016; Puritz et al., 2014). For analyses
where individual genotypes are important but high genomic density of
loci is not critical, such as determining relatedness or migration among
recently diverged populations, these reduced representation tech-
niques can produce data cost effectively for hundreds of individuals
(e.g. Willis et al., 2022). However, while these techniques provide data
on many more loci than what was historically accessible, only a frac-
tion of the genome is ultimately surveyed, meaning that for species for
which linkage blocks are typically less than 100kb, many linkage blocks
may not be surveyed. As a result, except in cases of regions of high
linkage disequilibrium such as inversions or strong selective sweeps,
investigations that only survey a few thousand linkage groups may fail
to identify loci strongly associated with selection or heritable pheno-
typic variation (Lowry et al., 2017; Tiffin & Ross-lbarra, 2014).

In contrast, many studies rely largely on methods that utilize al-
lele frequencies rather than individual genotypes to address primary
questions. Because of sampling variance, sampling more individuals
at low coverage provides more accurate estimates of phenotype or
population allele frequencies than sequencing fewer individuals at
high coverage (Futschik & Schlétterer, 2010; Glinther & Coop, 2013;
Schlotterer et al., 2014; Zhu et al., 2012). Many analyses, including
those that compare allele frequencies between phenotypic vari-
ants or populations situated along an environmental gradient and
depend on high-density sampling across linkage groups to discover

the regions of highest divergence, may thus be performed more
effectively with low-coverage whole-genome sequencing (IcCWGS;
Lamichhaney et al., 2012; Lou et al., 2021; Schiétterer et al., 2014;
Therkildsen & Palumbi, 2017). Moreover, there have been a prolif-
eration of analyses that are able to account for uncertainty in the
genotype of each individual (likelihoods), even with data sequenced
with 1-2x coverage per individual (Lou et al., 2021). This low-cover-
age sequencing approach provides compromise among the portion
of the genome surveyed, accurate allele frequency estimates, and
in many cases analyses that require individual genotype data (Lou
et al.,, 2021; Therkildsen & Palumbi, 2017). However, while [cWGS
data may be highly appropriate for these types of investigations and
the toolkit for analysing allele frequency and genotype probability
data is expanding, there remain few user-friendly pipelines specifi-
cally designed to take unmapped IcWGS reads and convey the data
through quality control and bioinformatic analyses.

To address that need, an integrated, modular bioinformatic pipe-
line, PooLParTY, was developed that facilitates the use of IcCWGS data
to search for genomic regions showing strong divergence between
samples with discrete phenotypic differences or other group-wise
characteristics (Micheletti & Narum, 2018). This pipeline has been
applied to detect genome-wide genetic association across multiple
species (e.g. Aguirre-Ramirez et al.,, 2021; Horn et al., 2020; Lyu
et al., 2021; Ren et al., 2021). Although most published applications
have utilized data from libraries of pooled DNA, the pipeline can also
utilize data from individuals sequenced in multiplex using indexed or
barcoded libraries, which allows a normalization procedure that cor-
rects for uneven contribution to group allele frequencies across indi-
viduals. This normalization is a pseudo-genotyping method wherein
each individual, regardless of total reads, is allowed to contribute at
most two alleles per locus to allele frequencies, depending on that
individual's depth of coverage and the ratio of major and minor al-
leles (>10:1 is considered a homozygote; Figure 1). PooLParTY shares
this goal of managing uneven contribution among individuals when
estimating allele frequency with another bioinformatic suite de-
signed for use with IcWGS data, AnGsb, which also generates individ-
ual genotype likelihood or posterior probabilities from IcWGS data
(Korneliussen et al., 2014). anGsp requires mapped read alignments
produced by other tools as input, while PooLParTY takes sequence
read files as input, performs sequence cleaning and mapping to a ref-
erence genome, and produces numerous assurance reports regard-
ing sequence and mapping quality. PooLPArTY also facilitates several
analyses to identify regions of significant genomic divergence be-
tween samples, making PooLPARTY and ANGsD complementary bioin-
formatic tools for IcCWGS data analyses.

To demonstrate various utilities and upgrades of the PooLParTY2
pipeline and compatibility with ancsp, we apply it to two IcWGS data-
sets, one simulated and one empirical, that reflect the type of ques-
tions to which PooLPArRTY2 may be routinely applied. We utilize data
that were simulated to reflect different demographic contexts and de-
grees of sequence coverage to show the relative strengths, accuracy
and complementarity of PooLParTY2 and AnGsD to identify segregating
loci, estimate their allele frequencies, and identify outlier loci and the
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Inferred Allele Frequency:

RESOURCES

True Raw Normalized

Genotype | Contribution | Contribution
AT 6/4 1/1
A/A 14/1 2/0
A/T 3/1 1/1
AT 1/2 1/1
/T 0/2 0/2
AT 1/0 1/0

0.5/0.5 0.71/0.29 0.54 /0.46

FIGURE 1 Graphical representation of normalization variance in read depth for allele frequency calculation implemented by PooLParTY2,
provided barcoded individual samples. Here, sampled reads are shown on the left, with each colour representing a different barcoded
individual, and A or T representing the nucleotide variant in each read. For each individual, the true genotype, pre-and post-normalization
contribution to allele frequencies is shown in the right three columns, respectively, and beneath each, the calculated allele frequency. The
threshold for heterozygotes is set as a minimum ratio of 10:1 alternate alleles for a given SNP (e.g. individual #2).

boundaries regions affected by selection. Then, in an empirical exam-
ple using barcoded IcWGS data from natural and hatchery populations
of steelhead trout (anadromous Oncorhynchus mykiss), we demonstrate
the potential of integrated application of these bioinformatic suites to

identify regions under selection in landscape-level population samples.

2 | METHODS
2.1 | The bioinformatic pipeline: PooLPaArTY2
PooLPArTY2 is an updated suite of scripts written in the BASH and

R computer languages that create and manipulate text files, in-
cluding sequence read files, and call freely distributed programs to

efficiently operate on the data as needed. After installation of de-
pendencies in a Linux computing environment, for which we pro-
vide explicit instructions on our Github page (https://github.com/
stuartwillis/poolparty) and most of which are available using the
CoNpa package and environment management system (Anaconda
Software Distribution), users need only provide sequence read
files and haploid genome assembly, a text file listing sequence
read files with their group or population affiliation, and tailored
configuration files for each of the three modules as appropriate.
We distribute two tutorials that with the scripts that help ensure
that dependencies are accessible and illustrate the main features
of the pipeline. We additionally provide example code to assist
users in conveying output from the PooLPArRTY2 modules into ANGsD

and associated utilities.
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The three main modules of the pipeline focus on distinct aspects
of the bioinformatics process. The PPaLiGN module calls dependency
packages (i.e. BWA mMem) for quality trimming, mapping and filtering,
and SNP calling functions to create read alignments to the genome as-
sembly, identify genetic variants and their frequencies, and produce
input files for the other modules. The PPsTats module utilizes output
from the first module and reports a number of useful statistics about
the sample groups, such as genomic extent at candidate depths or
coverage variation among chromosomes, and allows the user to con-
firm that sufficient and similar coverage has been achieved across
samples. The PPanaLyze module utilizes and subsets allele summary
data from the first module and performs user-specified analyses,
such as principal components, sliding window F; and Fisher's exact
tests (FETs), to resolve population structure and identify regions of
significant genetic divergence between groups. Additional modules
are provided that run further statistical tests that utilize replicate
sample pairs (Cochran, 1954; Mantel & Haenszel, 1959), which take
into account background variance and linkage (local score; Fariello
et al., 2017), or account for population structure (Lewontin and
Krakauer test with kinship, or FLK; Bonhomme et al., 2010), as well
as one for plotting results from these analyses.

Computational requirements for running the pipeline will de-
pend on the size of the dataset and user-specified configuration, and
may range from a handful of threads and tens of Gb of RAM to doz-
ens of processors and >1Tb of RAM. Runs for each module usually
last a few hours but could take several days for large datasets with
limited processing and RAM resources. In the tutorials, we describe
strategies for piecemeal runs of the different modules as data are
generated and assembled to coordinate and combine data subsets,
confirm quality early in the process, and reduce the overall bioinfor-

matic processing time.

2.2 | Application 1: IcWGS data simulated from
distinct demographic backgrounds and coverage

We employed simulated data from Lou et al. (2021) to demonstrate
the ability of these bioinformatic suites to utilize IcWGS data to ac-
curately estimate allele frequencies and identify outlier regions at
various coverages and sample sizes. Details of simulated data are
included in Lou et al. (2021), but briefly, nucleotide sequence data
including mutation and recombination on a single 30Mb chromo-
some were simulated for two populations exchanging genes under
two demographic scenarios: a lower effective population size and
lower rate of gene exchange that produced a higher background F;
(hereafter, the ‘high background F¢;’ scenario) and a higher gene ex-
change and effective population size that produced a lower back-
ground F¢ (low background F¢;’ scenario). In both scenarios, several
sites under selection were introduced and allowed to evolve under
divergent selection in each population, ultimately resulting in seven
outlier regions (Figure S1). Sequence data from the simulated chro-
mosomes, generated to reflect Illumina-style paired-end reads in-
cluding sequencing errors, reflected 8x coverage for each of several

hundred individuals from each population to enable down-sampling
at various coverage levels. See Lou et al. (2021) for additional details
about simulated data.

While extensive scenarios were tested in Lou et al. (2021) with
these simulated data, we selected four scenarios to benchmark
PooLPARTY2 against anGsp including: (a) high background Fg; & low
sequence coverage; (b) high background F¢; and higher sequence
coverage; (c) low background and low sequence coverage; (d) low
background F¢; and higher sequence coverage. From the simulated
sequence data, we randomly selected a number of individuals from
each population to reflect sample sizes that are common for empir-
ical datasets in the literature and the dataset included in this study
(70 and 63 from each population, from 160 each) and down-sam-
pled the simulated sequence data (from 8x) to reflect the median
individual coverage in our empirical data (~0.33x) as well as a com-
mon sequencing target for IcWGS studies (1x). As Lou et al. (2021)
examined the effects of depth and sample size on allele frequency
estimation accuracy across a greater range of values, it was not our
intent to duplicate their efforts except to compare the abilities of
the two bioinformatic suites at these coverage depths. However, to
additionally challenge these suites with the range of variability in
coverage among individuals commonly reflected in empirical data,
we fit several simple mathematical distributions to the sums of indi-
vidual coverage in our empirical data for variant positions following
an initial set of global filters (global depth of 10 and minor allele
frequency, MAF, of 0.005). A logistic distribution exhibited the best
fit based on information theoretic criteria (results not shown), and
using parameters for this distribution, we down-sampled the 8x
simulated data. For the 1x coverage dataset, the empirical scale
parameter for this distribution was used, but the location parame-
ter was set to 1, to produce higher coverage with similar variation.
Individuals utilized at different coverages of the same scenario
were not identical. This resulted in four simulated datasets (low and
high background Fg; at 0.33x and 1x coverage).

For each of the four datasets, sequence data were processed
with the PPaLicN module of PooLPARTY2, including quality trimming
(sliding window PHRED =20, retained length 250bp), read map-
ping (mapQ 220), variant scoring and filtering by global parameters
(snpQ 220, global depth of 10 reads, MAF of 0.001), and estima-
tion of raw and normalized allele frequencies. Unless otherwise
indicated, normalized allele frequencies were utilized in all anal-
yses. SNP variants and their normalized frequencies identified
by PPaLiGN were used as input to PPanaLyze, which applied addi-
tional filters for sites observed in fewer than 10 reads per popu-
lation. PPaNALYZE also calculated F; for individual sites and sliding
windows of 100kbp windows in 5kbp sets, as well as applying
Fisher's exact tests (FET) for differences in allele frequency be-
tween the two populations (via PoPoolations). Significance (p) val-
ues for the latter test were used as input for the Local Score test
(Fariello et al., 2017), which ‘smooths’ the background variation
in significance to identify contiguous outlier regions depending
on a user-specified smoothing parameter (&). In addition, this test
determines the significance of putative outlier regions through
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accounting for linkage (autocorrelation in p-values) in a chromo-
some-specific manner. However, because each run samples differ-
ent SNPs to calculate autocorrelation and determine significance,
individual runs may fail to identify outlier regions with borderline
significance. Lower rates of smoothing (smaller &) generally retain
more power, but are less precise in determining the boundaries
of outlier regions, and moreover, because the landscape of back-
ground significance changes with various ¢ values, and thus the
thresholds for significance in this test, power and smoothing do
not have a directly inverse linear relationship. For these reasons,
multiple runs with application of different values of & are useful.
We therefore ran the local score test three times for increasing
values of & representing the 70th, 80th, 90th, 95th and 99th quan-
tiles of significance values from the Exact tests of each dataset,
and tallied how often each simulated outlier region was recovered
as well as the width estimated for each region.

Using the filtered BAM files produced by PPaLiGN as input,
we applied ancsp to all four simulated datasets in two manners.
First, we ran anGsb undirected by any variant identification from
PooLPArTY2, relying on anGsD's filters to identify and screen variant
sites. We applied filters to several runs of each dataset (similar to
PPaLiGN: mapQ 220, snpQ 220, global depth=20, MAF 20.001) but
with varying significance thresholds for variant discovery: none,
0.01 and 0.001. We ran this configuration to compare ANGsD's
ability to detect true variants and discover outlier regions to
PoolParTY2. Subsequently, specifying for angsD to consider only
variants it discovered with the most stringent significance thresh-
old (p=.001), we ran anGsp on data from each simulated popula-
tion separately in order to generate site frequency spectra and
calculate F¢; using ancsp's ReaLSFS utility. We only retained sites
observed in more than 10 reads and three individuals in each
population, and then directed ANGSD to run association tests on
these sites (-doAssoc 1, 2 and 5) to identify outliers, specifying
population membership of each individual. Second, we directed
ANGSD to consider only sites discovered by PPaLiGNn and subse-
quently retained by filtering with PPanaLyze (‘PooLPARTY2 to ANGsD'),
and we utilized allele frequencies estimated from these runs to
compare the ability of PooLPArTY2 and aNGsD to recover the known
allele frequencies accurately. Subsequently, genotype likelihoods
inferred by Ancsp from these runs were used as input for estima-
tion of linkage using NGsLD (Fox et al., 2019), and we constrained
linkage estimation to sites <100 kbp from one another. Using these
linkage estimates, we calculated mean LD in 100kbp windows in
5kbp steps in R, and identified outlier regions as contiguous series
of 210 windows exceeding 2x the interquartile range (2 xIQR) for

mean windowed LD.
2.3 | Application 2: Barcoded individuals in
population samples of steelhead

Hatcheries have an important but controversial role in supple-
menting dwindling fish stocks in the Columbia River basin (Busby
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etal., 2000), including, in a few cases, selection for particular traits
in hatchery stocks that differ from the stocks into which they
are outplanted or stray (disperse to non-natal areas). One of the
most abundant and widely outplanted hatchery stocks of steel-
head trout in the Columbia Basin comes from Skamania Hatchery
(Washougal, WA). The Skamania stock has a long history of delib-
erate selection for earlier spawning and larger fish (Ayerst, 1976),
which has resulted in the evolution of fish that migrate notably
earlier than conspecifics and almost exclusively after two or
more years ocean duration (Hess et al., 2021). Without choos-
ing individuals with known phenotypes, but rather undirectedly
sampling individuals from the Skamania hatchery stock as well
as individuals from two nearby natural origin stocks (Lewis River
and Eagle Creek-Willamette River) in the same steelhead lineage
(Coastal), we tested if genomic regions previously associated with
these traits or others would appear strongly differentiated in the
Skamania stock.

Library preparation followed the individual barcoding proto-
col from Horn et al. (2020) and sequencing was done separately
for each population on the Illumina NextSeq 550 with 150-bp
paired-end reads. The number of individuals per pool ranged
from 60 to 78. Data were processed with PooLParTY2, including
discarding of reads if trimmed below 50bp from sliding windows
with a minimum mean PHRED quality of 20, and filtering SNPs
if they were below a PHRED quality of 20, three or fewer bases
from an insertion-deletion position, observed in fewer than 10
reads in each sample pool or more than 1500 globally, if the
number of individuals surveyed per population was fewer than
three of if the global minor allele frequency was less than 0.005.
The allele frequency data were normalized in PPaLGN to medi-
ate non-uniform read contribution among individuals. Using the
PPstats module, we assessed data coverage distributions, propor-
tion of the genome covered at specified depths, and evenness
of coverage across chromosomes. Normalized allele frequencies
were filtered and analysed with PPanALYzE including calculation of
F¢r. sliding window Fg; (100 kbp windows in 5kbp steps), and FET.
Significance values from the Exact tests were used in local score
analyses, using three replicate runs with & representing the 80th,
90th, 95th and 99th quantiles of significance values (the 70th
quantile did not produce a mean local score distribution below
zero). Filtered read alignment files (BAMs) created by PPaLiGN
were used as input for anGsp, which was directed to consider the
variants filtered by PPanaLyzg, and from which we utilized the gen-
otype likelihoods provided by ANGsD as input to estimate linkage
with NGsLD for three chromosomes with the most significant and
consistent outlier regions in the Local Score results, considering
only sites <100kbp from one another. As above, we calculated
mean LD in 100kbp windows in 5kbp steps in R, but identified
outlier regions as contiguous series of 220 windows exceeding
2x the interquartile range (2xIQR) for mean windowed LD. When
multiple contiguous outlier window series were present in the
range identified by the lowest Local Score quantile, we report all
those series.
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3 | RESULTS

3.1 | Application 1: IcWGS data simulated from
distinct demographic backgrounds and sequencing
coverage

Down-sampling, trimming and mapping of simulated data results in
100% of the simulated chromosome being covered at 210 reads per
population in the 0.33x coverage datasets and at 240 reads for the
1x coverage datasets. The two demographic scenarios simulated by
Lou et al. (2021) resulted in notably different numbers of segregat-
ing variants: 158,746 variants with MAF 20.001 (of 245,412 total
variants) in the high background F¢; scenario and 789,423 variants
with MAF 20.001 (1,209,625 total) in the low background F¢; sce-

nario. PooLPArTY2 and ancsp differed considerably in the dynamics

of variant discovery, particularly identification of false-positive and
false-negative simulated variants. Both PooLPArTY2 and ANGsD recov-
ered a larger number of sites in the datasets with greater coverage
(all of which must have MAF >0.001), but while the proportion of
false positives was similar across coverages for PooLPARTY2 (<1%),
this value changed with coverage for anGsp (Table 1). In addition, only
at the highest significance thresholds did AnGsD recover sites with
similar false-positive proportions to PooLParTY2, but then in lower
absolute numbers. The rates of false-positive and false-negative loci
for anGsp were similar for higher MAF loci, but ancsp still recovered
lower absolute numbers of ‘real’ loci than PooLParTv2 (Table 1).
Across coverage depths, allele frequencies estimated by PPaLiGN
were equivalent or modestly more accurate than those estimated
by ancsp (Figure 2, Figure S2). Allele frequency estimates generally

improved with depth for both PooLPArTY2 and anGsD, though most

TABLE 1 Results of SNP calling and filtering by PooLPArRTY2 and ancGsb with different modules and filtering thresholds in two different
demographic scenarios (high and low background F¢;) and coverage levels (0.33x and 1x). SNPs were filtered at two minor allele frequencies
(MAF) and tallied, and the percentage of each that were false positives (loci not simulated) and false negatives (simulated loci >MAF not
recovered) is reported.

Poolparty ANGSD
PPalign® PPanalyze” No p filter p<.01°¢ p<.001¢ Population filtering®

High—0.33x MAF 20.001 70,067 68,292 527,762 94,104 57,027 56,060

% false positive 0.54 0.54 82.83 30.43 1.26 1.28

% false negative 56.1 57.2 429 58.8 64.5 65.1

MAF 20.05 65,479 63,505 56,729 55,727 52,418 51,451

% false positive 0.17 0.20 1.07 0.89 0.35 0.35

% false negative 1.4 4.4 15.4 16.7 21.2 22.7
High—1x MAF 20.001 91,509 86,036 920,208 209,617 127,423 127,415

% false positive 0.22 0.22 87.95 56.51 32.49 32.49

% false negative 42.5 45.9 30.1 42.6 45.8 45.8

MAF 20.05 66,733 62,323 57,475 57,473 57,472 57,464

% false positive 0.02 0.02 0.03 0.03 0.02 0.02

% false negative 0.0 6.0 13.4 134 13.4 13.4
Low—0.33x% MAF 20.001 345,223 334,664 864,530 344,606 275,355 271,175

% false positive 0.23 0.23 48.55 7.41 0.21 0.20

% false negative 56.4 57.7 43.6 59.6 65.2 65.7

MAF 20.05 3,22,926 3,11,366 2,74,274 2,69,762 2,55,028 2,50,861

% false positive 0.09 0.09 0.20 0.17 0.11 0.11

% false negative 1.5 5.0 16.4 17.8 22.2 23.5
Low—1x MAF 20.001 452,827 422,029 1,323,894 411,213 373,603 373,473

% false positive 0.22 0.21 58.89 1.86 0.39 0.39

% false negative 42.8 46.6 31.0 48.9 52.9 52.9

MAF 20.05 3,30,525 3,05,110 2,81,546 2,81,527 2,81,343 2,81,216

% false positive 0.08 0.08 0.09 0.09 0.09 0.09

% false negative 0.0 6.9 14.1 141 14.2 14.2

#Min. 20 global reads.
PInitial sites specified by PPalign; min. 3 ind + 10 reads each pop.
“Min. 20 global reads.
9Initial specified by ANGSD p <.001; min. 3 ind + 10 reads each pop.
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FIGURE 2 Comparing estimated allele frequencies with true allele frequencies across depth cut-offs for data simulated with high
background F¢; and low coverage (0.33x). Left axis: The red and blue lines show correlation for PooLParTY2 estimated frequencies for
each population for normalized (solid) and non-normalized (dashed) data. Orange and green lines show correlation with anGsp estimated
frequencies. Black line shows correlation in depths estimated by aAnGsp and PooLParTY2. Right axis: thick purple line shows number of sites
passing depth thresholds. Left and right panels shows depths reported by PooLPArRTY2 and aNGsD, respectively.

notably for angsb when depth was estimated by ancsp rather than
PooLParTY2. Indeed, aNcsD and PoolPaArTY2 disagreed consider-
ably about depth (correlation in depth estimates decreased as the
threshold for depth increased, but only when depth was reported
by PooLParTY2), implying that anGsD's read filter is more stringent
than PoolLPArTY2, even with apparently similar parameter values.
Moreover, while anGsD and PooLPARrTY2 both exhibited strong linear
correlations for true and estimated allele frequency as well as error
magnitudes that remained similar across minor allele frequencies,
the marginally higher error rate for AnGsD appeared to be tied to this
program's divergent perception of coverage (Figure S3). Indeed, the
difference in error between PooLPARTY2 and ANGsD was more closely
tied to the proportion of depth that PooLPARTY2 reported that ANGsD
corroborated (Spearman's rho -0.55) than the total depth anGsp re-
ported (Spearman's rho —0.33) across sites. Nonetheless, correlation
values for estimated and true allele frequencies for both analytical
suites ranged from approximately 80%-90% for the lower coverage
datasets and 90%-95% for the higher coverage datasets. We note
that some diminishment in accuracy was expected due to sampling
variance (the ‘true’ allele frequencies reflect the population frequen-
cies before individual sampling and sequence read simulation), as
these determine the truly estimable allele frequencies regardless
of the fidelity of each analysis. This is corroborated by the obser-
vation that correlations between allele frequencies estimated by
PooLParTY2 and anGsD were always higher with each other than with
the ‘true’ allele frequencies in each case (87%-98%; data not shown).

Both analytical suites were able to provide results which allowed
visual identification of most if not all of the simulated outlier regions,
particularly in the sliding window F, Local Score, and linkage outlier
results (Figure 3). Results provide by PooLParTY2 and anGsp for Fr,
sliding window Fg;, and FET (PooLPArTY2) or frequency test (anGsp

-doAssoc 1) were roughly equivalent (Figures S4-S7). The score and
hybrid latent-score tests from anGsp (-doAssoc 2 and 5) failed to pro-
duce any significant results. Both PooLParTY2 and anGsp had more
difficulty in providing results that unambiguously identified outlier
regions for the high background F¢; scenario at lower coverage, al-
though even at higher coverage, outliers were less obvious than in
either of the low background F¢; scenario datasets. The analyses
that were designed to provide less ambiguous identification of out-
lier regions, Local Score and linkage outliers identified above twice
the IQR, also exhibited efficacy moderated by demography and cov-
erage (Table 2). In the case of Local Score, while peaks correspond-
ing to the outlier regions were clearly visible in plots of smoothed
FET significance, it was more difficult to determine significance
thresholds that effectively identified the outlier regions with high
background F¢, though this test did not appear to be constrained
significantly by coverage for the low background F¢; scenario.
Moreover, in the high background F¢; scenario, there was no obvi-
ous inverse relationship between smoothing value (¢) and power, as
some replicates with higher & values identified more outlier regions
at p<.05, though an inverse relationship was apparent in the low
background F¢; scenario. Moreover, the precision of identified re-
gions narrowed with increasing ¢ values, as expected. In contrast,
our identification of outliers using linkage was more constrained by
coverage, with lower efficacy in lower coverage datasets regard-
less of background Fg;. Notably, the width of the region affected by
hitchhiking was smaller with lower coverage in both scenarios, with
similarly smaller outlier regions estimated by the Local Score analy-
ses across & values at lower coverage in the low background Fq; sce-
nario. Importantly, none of the analyses that considered broad range
divergence or significance (windowed FST, Local Score, windowed
linkage) identified any false-positive outlier regions.
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TABLE 2 Outlier regions identified from simulated data using windowed mean linkage and regions identified with Local Score analysis
of significance from Fisher's exact tests. For each outlier region identified, the width in kbp is reported. For windowed linkage analysis,
the mean and maximum windowed mean of linkage is listed, while for Local Score analyses across quantiles of significance as smoothing
parameter values, & the number of replicates out of three in which a region was significant are listed.

Linkage disequilibrium

Local score € quantiles

windows 70 80 90 95 99
Background Fy; Coverage Outlier (Mbp) Width LD mean (max) Width (observation across replicates)
High 0.33x 2.5 245 0.103 (0.11¢) - - — 93(1) —
5 275 0.097 (0.112) - - - - -
7.5 - — - - — — —
15 195 0.088 (0.093) - - - - -
17.5 203 0.090 (0.097) - - — — —
22.5 194 0.089 (0.092) - 648 (3) 249 (2) 74 (1) -
25 169 0.089 (0.092) - - — — —
High 1x 2.5 420 0.078 (0.108) = = = 134 (1) 52 (1)
5 490 0.073(0.101) = = = = =
7.5 224 0.063 (0.065) = = = = =
15 434 0.067 (0.074) = = = = =
17.5 408 0.069 (0.082) = = = = =
22.5 314 0.071 (0.083) = = = = =
25 305 0.070 (0.077) = = = = =
Low 0.33x 2.5 220 0.073(0.076) 547 (3) 196 (3) 81(3) 22(1) —
5 - - - 61 (3) - 5(1) -
7.5 180 0.071(0.073) 558 (3) 165 (3) 69 (3) 32(3) 13(3)
10 - - 472 (3) 134 (3) - - -
17.5 160 0.071(0.071) 450 (3) 118 (3) 48 (2) 29 (1) —
22.5 - - 380 (3) 99 (3) 46 (3) 25(1) -
25 - - 360 (3) 99 (3) 54 (1) 27 (1) -
Low 1x 2.5 275 0.051 (0.058) 1025 (3) 323 (3) 134 (3) 66 (3) 10 (3)
5 200 0.048 (0.049) 779 (3) = 39(2) = =
7.5 195 0.050 (0.051) 752 (3) 243 (3) 101 (3) 55(3) 31(3)
10 225 0.049 (0.051) 579 (3) 175 (3) 63(2) = =
17.5 215 0.048 (0.050) 960 (3) 219 (3) 71(3) = =
22.5 250 0.049 (0.052) 745 (3) 158 (3) 73(3) 35(3) 20 (3)
25 200 0.049 (0.051) 771 (3) 193 (3) 80 (3) = =

3.2 | Application 2: Barcoded individuals in
population samples of steelhead

After trimming, mapping, and quality filtering, PPaLiGN provided
287-405 million mapped reads per sample, which allowed between
67.2% and 70.8% sampling of the genome at the minimum num-
ber of reads per sample (10), as revealed by PPstaTs (Figure S8). The
distribution of genomic extent across chromosomes was similar
to other [cCWGS analyses of the O. mykiss genome (e.g. Micheletti
et al., 2018), indicating this pattern is a function of the library prep-
aration technique used for all these samples or idiosyncrasy of this
genome. Sequencing of indexed individuals allowed us to estimate
that the mean coverage per individual ranged from O to 2.3 (median

0.23), to confirm that it was similar across populations (median 0.23,
0.26,0.23 and standard deviation 0.39,0.28 and 0.28 for Willamette
River, Lewis River and Skamania Hatchery, respectively), and to re-
duce bias in allele frequency estimates introduced by sampling vari-
ance across samples (normalize). After population-specific filters,
PPaNALYzE examined 22,934,298 variants (22,832,805 [99.5%] in
the chromosome scaffolds) with a suite of analyses. Density plots
revealed that variants were sampled from across the genome, with
a handful of areas of notable density. A principal components analy-
sis made with loci with a maximum difference in allele frequencies
below 0.9 (thus excluding the most divergent outlier loci), while un-
remarkable, confirmed that the primary axis, which explained ~86%
of the variance in the data, did not segregate the Skamania hatchery
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FIGURE 4 Manhattan plots of divergence and linkage among hatchery and natural origin population samples of steelhead. (a) Individual
site F¢; corrected for sample size (red line indicates F¢; of 0.5). (b) Mean F¢ in sliding windows of 100kb across the genome. (c) -log 10
significance (p) values from individual site Fisher's exact tests. (d-g) Local score analysis of significance values from Fisher's exact tests for
the 80th, 90th, 95th and 99th quantile of significance values as & (red line indicates FDR of 0.05). (h-j) Mean linkage in 100kbp windows for
chromosomes 20, 25 and 28 (red dots indicate series of 20+ windows of mean linkage above 2x the interquartile range).

sample from the natural origin samples, implying that outlier re-
gions related to the main contrast (hatchery vs. natural) would not
be confounded by background population structure. Raw PPaNALYZE
output revealed many small regions of strong genomic divergence,
while 51 separate regions were identified as significant at p<.05
across ¢ values and replicates in Local Score analyses (Figure 4,
Table 3, Table S1). The two most significant (highest local score)
regions were the region of chr. 28 containing the genes GREB1L and
ROCK1 and the region of chr. 25 containing the gene SIX6, which
have been previously found associated with migration timing and
age at maturity in steelhead and other salmonids, respectively
(e.g. Willis et al., 2020). There were also many additional regions
whose potential association with migration phenology, age at ma-
turity, or domestication (adaptation to hatchery production) could
be explored further. For example, a region of chromosome 20 that

was consistently recovered in the Local Score analyses contained
two protein coding genes: ATP-citrate lysase (synthase), or ACLY,
and, dnaJ homologue subfamily C member 7 or DNAJC7. ACLY is a
ubiquitous cytosolic enzyme positioned at the intersection of nu-
trients catabolism and cholesterol and fatty acid biosynthesis, and
DNAJC7 is a member of the heat shock protein 40 family and acts
as co-chaperone regulating the molecular chaperones HSP70 and
HSP90 in folding of steroid receptors, such as the glucocorticoid
receptor and the progesterone receptor. Notably, identification of
linkage outliers for these three chromosomes identified the same
regions, but in the case of chromosomes 25 and 28, also identified
other regions that Local Score did not, presumably because, while
they exhibit strong linkage across all samples, these regions were
not consistently divergent between the hatchery and natural origin
samples.
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TABLE 3 Outlier regions identified

MOLECULAR ECOLOGY |
RESOURCES __ IMAAI DA%

in select chromosomes from empirical il i ACL LD mean
Mb Mb kb
steelhead trout data using windowed (Mbp) (Mbp) (kbp) (max)
mean linkage and regions identified with Omy 20 LS quantile (&) 80 16.07 22.98 6907 —
Local Score analysis of significance from 90 17.34 19.50 2166 -
Fisher's exact tests. For each outlier
. e Lo 95 18.83 19.05 211.8 —
region identified, the beginning and end
of the regions (Mbp), width (kbp), and, 99 18.91 18.92 6.3 -
for regions identified with windowed LD outliers 17.70 18.70 1100 0.087 (0.327)
linkage analysis, the mean and maximum 18.72 19.33 701.9 0.155 (0.261)
windowed mean of linkage, are reported. .
Local score results are reported across Sy 22 LS quantile (¢) s 2L S (e -
quantiles of significance as smoothing 90 22.87 23.66 7971 -
parameter values, &. 95 22.89 23.21 317.7 -
99 22.92 22.98 51.2 -
LD outliers 22.31 22.44 224.9 0.086 (0.095)
22.80 23.05 354.9 0.091 (0.11¢)
Omy 28 LS quantile (¢) 80 1.69 42.93 41,243 -
90 11.90 15.50 3608 -
95 12.02 13.17 1158 -
99 12.03 12.46 432.6 -
LD outliers 11.94 12.12 284.8 0.137(0.206)
4 | DISCUSSION effects on traits (e.g. direct epistasis), though, as results from our
empirical data portray, these analyses, with appropriate corrobora-
4.1 | Bioinformatic suites for low-coverage tion, may identify many loci with smaller effects on polygenic traits.

whole-genome sequencing data

PooLPArRTY2 is a bioinformatic pipeline that was designed for the
utilization of pooled or individually barcoded IcWGS data with a
high-quality reference genome to perform genome-wide genetic
association analysis with discrete phenotypic traits or environ-
mental variables. Since its original presentation, it has seen nu-
merous updates, though most of these will be invisible to the user
since their effect is to provide greater efficiency or stability. For
example, the scripts that implement the Local Score analysis of
Fariello et al. (2017) have been improved to make them more ro-
bust to variations in SNP and allele frequency count and distri-
bution and provide more accurate reports with respect to outlier
region margins. The major workhorse of the pipeline, the PPaLiGN
module, has received the most updates since the pipeline's first
presentation. Notably, this module is now able to call variants in
parallel across multiple computational threads by dividing chro-
mosomes and scaffolds into groups based on a user-specified
number of threads, which substantially reduces processing time
for large datasets. Another notable update includes the user's abil-
ity to limit the number of individuals to normalize simultaneously,
which reduces RAM memory requirements in memory-limited or
shared computing environments, with the proviso that this also
causes the duration of processing time for normalization to in-
crease linearly.

The analyses available through the PPanalyze module of
PooLParTY2 have most often been applied for the discovery of one or
a few genomic regions with large, independent or simple-interaction

These analyses rely on allele frequency data, which are most effec-
tively estimated by sampling larger numbers of individuals, even at
lower coverage, and as such are best suited for investigations into
discrete phenotypes with high heritability and penetrance or en-
vironmental conditions with distinct contrast, such that individu-
als can be grouped into classes that capture the relevant variation.
Loci contributing to polygenic traits with continuous variation or
complex interactions, however, will be challenging to discover with
analyses that rely mainly on allele frequency. Discovery of these loci
will likely depend on identifying combinatorial associations among
non-contiguous genotypes from individual-level rather than group-
level data, for which genotype likelihoods are better suited. AnGsD,
which requires read alignments such as those produced by PPaLicN
as input, can estimate individual genotype likelihoods or posterior
probabilities useful for such analyses. As we demonstrate here, gen-
otype likelihoods also allow the estimation of linkage disequilibrium
in specified windows to corroborate outlier regions, even from very
low-coverage data, making PooLPARTY2 and anGsD effective comple-
ments. It should be noted, however, that genotype likelihoods may
only be sufficiently informative for some analyses if coverage per
individual is sufficiently high, and the decision as to how to multiplex
individuals for a given total number of sequencing reads must be
made with respect to the types of analyses that will be needed for
the known phenotypic/environmental variation and hypothesized
genetic architecture (Lou et al., 2021; Paril et al., 2022).

Using simulated data, we demonstrated that ancsD and
PooLPArTY2 both provide precise estimates of allele frequency con-
sidering the constraint of individual sequence coverage and variation
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with which they were challenged. Both bioinformatic suites also pro-
duce very low rates of false-positive outliers, at least when data are
examined on a site-aggregate (windowed or serial) basis. A number
of the per-site divergence analyses are roughly equivalent between
bioinformatic suites, including estimates of F, sliding window Fg,
and basic tests of allele frequency proportions, though we note that
to estimate site frequency spectra for calculating Fg; with ancsp,
each population must be analysed separately, and if the user desires
to utilize the empirical major/minor alleles rather than reference/al-
ternate, a prior run with all data must be made. Beyond these, how-
ever, the Local Score analyses (Fariello et al., 2017) and estimates of
linkage outliers from nesLD (Fox et al., 2019) provide powerful and
complementary means to identify true outlier regions that can be
run in simultaneously. We provide the code demonstrating this for
our simulated and empirical data (File S1).

Results from the analysis of simulated data also indicate that,
while both anGsD and PooLPARTY2 are effective at identifying segregat-
ing variants, estimating allele frequencies, and identifying outlier loci
using IcWGS data, the particular evolutionary context and genomic
environment of putatively adaptive loci may constrain the efficacy
of any bioinformatic suite at a given depth of coverage. For example,
we observed that while both analytical suites provided results that
correctly portrayed the presence and location of outlier loci in each
of the simulated datasets, peaks in the higher background divergence
scenarios were more difficult to discern visually. Further, an analy-
sis designed to objectively discriminate outlier loci from background
rates of variation, Local Score, identified fewer significant regions
in this scenario. While outlier identification using linkage was more
effective in high background divergence scenarios, and coordination
of this approach with the other analyses increases flexibility of the
combined toolkit, this analysis was less effective with lower coverage
regardless of evolutionary context. Moreover, while linkage disequi-
librium may reflect regions subject to divergent selection, as our em-
pirical results portray, it may also result from non-selective processes,
such as position within the chromosome, admixture or inbreeding,
and effectively discriminating high LD regions associated with selec-
tion will rely on corroboration with other analyses. Although we did
not investigate it directly here because of the nature of the simu-
lated data, one strategy to increase power in challenging scenarios
is through the use of paired sample replicates, that is, samples of the
same phenotype or across the same environmental axes from mul-
tiple populations (e.g. Lotterhos & Whitlock, 2015). Analyses that
emphasize repeated differences across these replicates, such as the
Cochran-Mantel-Haenszel test available in PooLPArTY2, increase the
power to identify regions associated with the focal contrasts while
minimizing the influence of background variation (Cochran, 1954;
Mantel & Haenszel, 1959). Our recommendation based on these ob-
servations is for researchers to consider existing information about
the demographic and genetic context of the traits and populations
under study, and to carefully arrange experimental design to maxi-
mize power for any given scenario (Lou et al., 2021).

One underappreciated phenomenon in IcCWGS are technical ar-
tefacts commonly known as batch effects (Leek et al., 2010; Lou &

Therkildsen, 2022). These occur when idiosyncrasies of the library
and sequencing process introduce artefacts for samples processed
together that are later misinterpreted as true biological differences
between groups under analysis, and may have a number of contrib-
uting causes in IcWGS data (Lou & Therkildsen, 2022). While batch
effects are certainly not exclusive to IcWGS, barcoded and especially
pooled IcWGS data that are prepared group-wise may be subject to
them. Importantly, both PooLPArTY2 and ANGsD have a number of util-
ities included that help eliminate some batch effects, including read
trimming, mapping and SNP quality filtering, minor allele frequency
thresholds, and read and individual observation minima. Moreover,
with any bioinformatic suite it is wise that users conduct tests to de-
termine if results are sensitive to various trimming and filtering pa-
rameters. The alignment filtering utilities provided with AnGsp appear
to be more stringent, even with the same parameters, than what is
currently applied in PooLPARTY2, as evidenced by diminished correla-
tion in allele frequencies for sites with higher depth as estimated by
PooLParTY2 but not for anGsp. Additional variant filters are accessible
in ANGsD, including those that examine strand balance, and though
not built-in, these same filters can be applied to the variants dis-
covered by PooLPArTY2 through VCF filtering tools such as BcrrooLs
or verue (Danecek et al., 2021; Garrison et al., 2021), as described
in our tutorials. Aside from these filters, one important means of
controlling batch effects is to distribute barcoded samples from dif-
ferent analytical groups (e.g. populations) among sequencing runs,
and ideally library preparation groups, since this reduces the chance
that technical artefacts will be identified as group-wise differences
(O'Leary et al., 2018). In addition, another strategy to minimize the
influence of batch effects and other false positives is through the
use of paired sample replicates as described above: analyses that uti-
lize paired replicates reduce the chance that artefacts owing to any
technical pair will be identified as consistent, significant differences
(Cochran, 1954; Mantel & Haenszel, 1959).

4.2 | Discovery of large effect loci
in non-model organisms

We successfully applied our integrated pipeline to a common data
arrangement of IcWGS data from steelhead trout (O. mykiss) to
identify loci strongly divergent among populations with distinct
histories and putatively of strong effect on traits under selection
in these groups. This species exhibits an impressive array of life his-
tory diversity even among salmonids, including notable and impor-
tant variation in migration phenology (run timing), age at maturity
(age at first reproduction), propensity for residency or anadromy,
precocial sexual maturation and iteroparity (repeat spawning; Busby
et al., 2000; Carlson & Seamons, 2008; Quinn et al., 2011). Many
of these traits are highly variable both among and within phylogeo-
graphic lineages and local populations (Busby et al., 2000), are part
of the portfolio of life history diversity that assist populations in per-
sisting through natural and anthropogenic environmental challenges
(Quinn et al., 2016), and are among the outward physical traits
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used by managers to estimate the contribution of distinct stocks to
mixed-stock fisheries (Hess et al., 2021).

The diversity of life history ensembles among regional and local
stocks of steelhead reflects a multifaceted history of selection, and
upon these effects anthropogenic forces have applied new chal-
lenges. One of the most direct human impacts on steelhead are use
of hatcheries to mitigate for the loss of fish from dams, overfish-
ing, habitat degradation, and other human actions. While hatcheries
have begun to shift towards inclusion of natural origin (NOR) returns
in broodstock recruitment to avoid ‘domestication’ selection, these
are still the minority, and indeed some operations have taken the
opposite approach, actively choosing hatchery returns with charac-
teristics desirable for hatchery managers or fishers, with many con-
sequences to genomic variation. While the typical application of our
pipeline for discovering loci under selection relies upon groups with
known phenotypic differences, discrete phenotypes with heritable
bases may be overall uncommon in non-model organisms, at least
relative to opportunities for examining populations arrayed across
replicate environmental axes (e.g. Lotterhos & Whitlock, 2015). To
reflect this, we chose to examine genomic divergence in a hatchery
stock with a notable history of hatchery selection without a priori
designation other than group membership, as would be the case
for most landscape-level genome scans. However, in this case the
Skamania Hatchery stock is well known for its phenotypic ensemble,
its history of hatchery origin recruitment and artificial selection, and
the extent to which this stock has been outplanted or strayed into
numerous Columbia Basin tributaries. Not surprisingly, we observed
strong divergence in two regions known to be associated with early
migration timing and age at maturity (ocean duration) on chromo-
somes 28 and 25, respectively. However, we also saw significant di-
vergences in regions that contained several dozen additional genes,
including a prominent region on chromosome 20 containing two
genes important in metabolism and cellular signalling. This region on
chromosome 20 is also known to harbour a structural inversion in
this species (Pearse et al., 2019), which may have been involved in
artificial selection of the hatchery stock. Importantly, these regions
were emphasized as outliers both by the analyses we applied that
considered only global linkage patterns as well as the analyses that
considered contrast-specific divergence while controlling for link-
age. However, the linkage-only analysis identified additional regions
that did not appear to exhibit strong divergence across our contrast
of interest (hatchery vs. natural origin), demonstrating the impor-
tance of corroborating outliers identified from any single analysis.
While we decline to hypothesize how these additional genes may
be involved in domestication, these results demonstrate the utility
of applying our pipeline to landscape-level samples and the efficacy
and complementarity of the PooLPARTY and aAnGsD pipelines for ana-
lysing IcCWGS data.
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