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Abstract. Progress in better understanding and modeling
Earth surface systems requires an ongoing integration of
data and numerical models. Advances are currently ham-
pered by technical barriers that inhibit finding, accessing, and
executing modeling software with related datasets. We pro-
pose a design framework for Data Components, which are
software packages that provide access to particular research
datasets or types of data. Because they use a standard inter-
face based on the Basic Model Interface (BMI), Data Com-
ponents can function as plug-and-play components within
modeling frameworks to facilitate seamless data—model in-
tegration. To illustrate the design and potential applications
of Data Components and their advantages, we present several
case studies in Earth surface processes analysis and model-
ing. The results demonstrate that the Data Component design
provides a consistent and efficient way to access heteroge-
neous datasets from multiple sources and to seamlessly in-
tegrate them with various models. This design supports the
creation of open data—model integration workflows that can
be discovered, accessed, and reproduced through online data
sharing platforms, which promotes data reuse and improves
research transparency and reproducibility.

1 Introduction

As the global population increases and infrastructure ex-
pands, the need to understand and predict processes at and
near the Earth’s surface, such as water cycling, landsliding,
flooding, permafrost thaw, and coastal change becomes in-
creasingly acute. Progress in understanding and predicting
these systems requires an ongoing integration of data and nu-
merical models. Also, given the growing importance of open
computational science (Barton et al., 2022; Hall et al., 2022;
Lamprecht et al., 2019; Wilkinson et al., 2016), there is a
need to overcome technical barriers that inhibit finding, ac-
cessing, and operating modeling software tools and related
datasets.

To address these challenges, one research focus is the de-
velopment of modeling frameworks and standards to sup-
port model coupling (Hoch et al., 2019; Hutton et al., 2020;
Kralisch et al., 2005; Moore and Tindall, 2005; Peckham
et al., 2013). These modeling technologies make it easier
to integrate diverse models that represent interrelated phys-
ical processes to simulate the complex Earth system that
drives the movement of water and shapes the planet’s sur-
face. For instance, the Earth System Modeling Framework
(ESMF) is a flexible open-source software infrastructure for
building and coupling Earth science applications (Hill et al.,
2004). The ESMF defines an architecture for composing cou-
pled modeling systems and includes data structures and util-
ities for developing individual models. Another example is
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the open World-Earth modeling framework copan:CORE,
which is focused on Earth system models with endogenous
human societies (Donges et al., 2020) to support the analysis
of Earth system dynamics in the Anthropocene (Verburg et
al., 2016).

In the past decade, efforts were also made to design model-
ing frameworks and tools that improve the reproducibility of
data—model integration workflows (Gan et al., 2020b; Hut et
al., 2022). For example, the Community Surface Dynamics
Modeling System (CSDMS) is a National Science Founda-
tion (NSF)-supported facility that supports and promotes a
community of computational modelers of the Earth’s surface
— the dynamic interface between lithosphere, hydrosphere,
cryosphere, and atmosphere. The CSDMS Workbench is a
suite of free and open-source software tools and standards
that provide a nimble plug-and-play environment for model
building, coupling, and exploration for Earth surface pro-
cesses modeling (Tucker et al., 2022). These modeling tech-
nologies enable users to write code to create reproducible
workflows for coupled model simulations and improve effi-
ciency by reducing the time researchers spend wrestling with
idiosyncratic programs and their interfaces. Another exam-
ple is CyberWater (Chen et al., 2022), a modeling framework
designed to support open-data and open-model integration
for solving environmental and water problems. CyberWa-
ter supports direct access to online datasets without tedious
work for data preparation, and it includes a generic model
agent toolkit to help easily integrate models. This system
enables users to create graphical workflows to support data
provenance and reproducible computing. The Community
Data Models for Earth Prediction Systems (CDEPS https:
//github.com/ESCOMP/CDEPS, last access: 1 March 2024)
were developed to perform the basic functions of reading ex-
ternal data files, modifying the datasets, and sending the data
for Earth system models that are coupled using ESMF. With
the development of web technologies and cloud computing,
sharing and integrating models across an open-web environ-
ment also becomes possible. Chen et al. (2020) proposed a
conceptual framework for open web-distributed integrated
modeling and simulation, which is intended to enhance the
use of existing resources and help people in different loca-
tions and from various research fields to perform compre-
hensive modeling tasks collaboratively.

In addition, there are several organizations that provide the
scientific community with online platforms for sharing re-
search datasets, models, and tools to improve the findability,
accessibility, interoperability, and reusability (the FAIR prin-
ciples) of digital research objects (Lamprecht et al., 2019;
Wilkinson et al., 2016; Chue Hong et al., 2022). For instance,
CSDMS maintain an online Model Repository (Tucker et al.,
2022) that catalogs over 400 open-source models and tools,
ranging from individual subroutines to large and sophisti-
cated integrated models. The Model Repository now includes
about 20000 references to literature describing these mod-
els and their applications, giving prospective model users

Geosci. Model Dev., 17, 2165-2185, 2024

T. Gan et al.: CSDMS Data Components

efficient access to information about how various codes
have evolved and are being used. Similarly, the Network
for Computational Modeling in Social and Ecological Sci-
ences (CoMSES Net) provides an extensive Model Library
of codes used in social and ecological sciences, together
with a curated database of over 7500 publications (Janssen
et al., 2008). For water-related sciences, HydroShare (Gan
et al., 2020a; Horsburgh et al., 2016) provides a web-based
hydrologic information system to share and publish data
and models in various formats that are created by indi-
vidual researchers and research groups. This platform en-
ables researchers to collaborate and work in an online en-
vironment to enhance research and education and improve
the reproducibility of the research results. Geoscience Cy-
berinfrastructure for Open Discovery in the Earth Sciences
(GeoCODES, https://www.earthcube.org/geocodes, last ac-
cess: 1 March 2024) is another effort aiming to improve
the discovery and access of research datasets and tools.
GeoCODES provides a data standard and a set of tools to
expose, index, and query datasets across repositories.

Although many modeling technologies and cyberinfras-
tructure are available to support open data—model integra-
tion, challenges still exist. For example, rapid advances in ob-
servational data using remote sensing and other technologies
have brought about a data revolution and with it the potential
for substantial improvement in our ability to understand and
predict a diverse array of Earth systems. However, the major-
ity of model frameworks and systems lack an effective mech-
anism to easily access datasets from a variety of sources and
couple them with the models. Although some model frame-
works and systems can use web services to access various
datasets and provide them as model inputs, the problem re-
mains that the data access and preparation methods tend to be
developed around specific models or model frameworks, and
the corresponding details are either hidden behind a graph-
ical user interface (GUI) or provided with scripts that offer
only limited options for the users. It is challenging for re-
searchers to understand or modify the data access or prepa-
ration methods for their research needs, which inhibits the
research transparency and impedes flexibility. Moreover, it is
often difficult to reuse data access methods for different mod-
eling frameworks, which leads to redundant programming ef-
forts.

To address these challenges, we present the design and de-
velopment of the CSDMS Data Components. This design
is built on the model coupling technologies from the CS-
DMS Workbench to enable data access through plug-and-
play components and thereby integrate datasets with mod-
els. This design aims to provide a consistent way of using
datasets across multiple sources to better facilitate the in-
tegration of heterogeneous datasets with models for Earth
surface processes. This design also supports creating data—
model integration workflows that can include detailed data
access and preparation steps and can be shared and executed
on cloud platforms to enable the geoscience community to
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discover, access, and reproduce computational modeling re-
search. In addition, the proposed design provides the flexi-
bility to couple Data Components under different modeling
frameworks with minimal coding effort.

In this paper, Sect. 2 presents the background for the CS-
DMS model coupling technologies and the Data Component
design. Section 3 presents case studies for Data Component
implementation and their use cases for Earth surface pro-
cesses modeling. Section 4 provides the summary and con-
clusions.

2 Methods
2.1 CSDMS Workbench

Since the Data Component design is based on the CSDMS
Workbench, we will first introduce its underlying modeling
technologies, including the Basic Model Interface (BMI),
Babelizer, Python Modeling Toolkit (pymt), and Landlab.

— BMI is an interface specification that identifies a min-
imal set of functions necessary for dynamic coupling
of data to models or models to other models. The BMI
concept was first introduced as a foundational technol-
ogy for the CSDMS model coupling framework (Peck-
ham et al., 2013). The current version of BMI updated
the original design with new functions for describing
variables and for working with structured and unstruc-
tured grids (Hutton et al., 2020; Tucker et al., 2022).
BMI is a language-neutral standard that is defined us-
ing the Scientific Interface Definition Language (SIDL)
(Epperly et al., 2011). CSDMS has defined language-
specific BMI specifications for Python, C, C + +, Java,
and Fortran, which are the most commonly used lan-
guages for Earth system models; other groups have cre-
ated specifications for additional languages such as Ju-
lia and JavaScript. BMI is designed to be framework
agnostic and to be as easy as possible for a developer to
implement. This means that a component that exposes a
BMI can be incorporated into any framework and does
not need to be modified to add any BMI-specific depen-
dencies into the component. Several modeling frame-
works that support model coupling (Hoch et al., 2019;
Hut et al., 2022) have been built upon the BMI. Two
such BMI-capable frameworks, pymt and Landlab, are
described below.

— Babelizer is a command line utility that creates a
Python-importable package to present a BMI compo-
nent as a Python class (Hutton et al., 2022). Language
interoperability is critical to a model coupling frame-
work that brings together models written in a range
of programming languages. One of the approaches to
tackle this challenge is to use a hub language, through
which other languages will communicate, and to build
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bridges from each supported language to the hub lan-
guage. CSDMS adopted this approach for the Babelizer
and chose Python as the hub language. The Babelizer
helps streamline the process of bringing a BMI compo-
nent written in C, C++, or Fortran into Python, and it
is easily extensible to support other languages.

pymt is a Python-based model coupling framework that
provides a set of utilities for running and coupling BMI
components (for both models and data) (Tucker et al.,
2022). This model coupling framework consists of three
major pieces. The first is a collection of legacy models
that represent a diverse set of environmental systems.
Models in the pymt collection are written in a variety of
languages (e.g., C, C++, and Fortran) but are wrapped
with a BMI as a common interface. The second piece
is a wrapper for BMI components that augments them
with additional capabilities, such as memory manage-
ment, unit conversion utilities, and grid mappers. The
third piece is a set of utilities for performing common
model-coupling tasks, which includes the grid interpo-
lation via the ESMF grid mapping engine (used when
models or data operate on different grids) (ESMF Joint
Specification Team, 2023); time interpolation (used
when models or data operate on different intervals);
unit conversion through the UDUNITS package (https:
//www.unidata.ucar.edu/software/udunits/, last access:
1 March 2024); and a coupling orchestrator that orga-
nizes the time-stepping of a set of components.

Landlab is a toolbox for building new components
within a Python-based (BMI compatible) modeling
framework (Hobley et al., 2017; Barnhart et al., 2020).
Landlab includes three major elements that speed up
model development and analysis. The first is a grid-
ding engine that allows model developers to create a
grid in as little as a single line of code; that provides
users with a choice of grid type (e.g., a structured rec-
tilinear grid versus an unstructured mesh). The second
piece is a growing collection of modularized compo-
nents that model single physical processes (e.g., over-
land flow or hillslope process) or perform an analy-
sis operation (e.g., calculate the downslope direction at
each grid cell in a digital elevation model). The third
element is a library of utilities for common operations
such as file input and output that includes standard for-
mats, such as NetCDF, Esri ASCII, and legacy VTK.
The Landlab library provides components that can be
brought into other frameworks and, additionally, be au-
tomatically wrapped with BMI, allowing them to oper-
ate within BMI-friendly systems such as pymt.
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2.2 Data Component design

A Data Component is a dataset that is wrapped with a BMI.
When a model is equipped with a BMI, we refer to it as
“Model Component”. Model Components make models eas-
ier to learn and to couple with other models because of the
similarity with respect to the control and query functions.
Similarly, by wrapping datasets with BMI functions, we pro-
vide a consistent way to access various types of datasets
without considering their specific file formats and making
them easier to integrate with Model Components. Thus, the
Data Component extends the application of BMI from mod-
els to datasets. With BMI, Model and Data Components use
the same functions to initialize the component; control its ex-
ecution (e.g., advance a model or dataset in time); and access
variables, grid, and/or time information. Both applications
use configuration files to specify the detailed information
needed to initialize component instances. Table 1 lists the
example BMI functions for each category. (Note that not all
BMI functions are necessarily relevant for every Data Com-
ponent. For example, for a dataset that lacks time-stamped
data, the time-related functions would not be needed and
would simply return null values).

The specifications for the Data Components are designed
to meet the following requirements:

— Access datasets from either a remote server or a lo-
cal file system. Remote servers provide web services
and/or a corresponding application programming inter-
face (API) to support programmatic data access.

— Use the same data structure to manage datasets stored in
different file formats (e.g., CSV, GeoTIFF, or NetCDF)
and grid types (e.g., 1D, 2D, or 3D array) for time series,
raster, or multidimensional space—time data.

— Use open-source tools and standards for Data Compo-
nent implementation and avoid dependencies on propri-
etary software.

— Expose a BMI so that Data Components can be used
within different modeling frameworks without the need
to modify their implementation.

The Data Component design is based on the CSDMS
Workbench and includes two major elements (Fig. 1). The
first element is the BMI component, which can be imple-
mented as a Python package to download the datasets and
wrap them with BMI functions (Table 1). This package in-
cludes an API, which can be implemented as a Python class
to access and retrieve the datasets from a remote server. The
corresponding command line interface (CLI) can also be in-
cluded, which allows users to download datasets through
shell commands. The datasets can be cached locally and
loaded as an Xarray object (Hoyer and Hamman, 2017) to
satisfy the need for using the same data structure to manage
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Modeling Framework for BMI Components

(pymt or Landlab)

Python package Python package
for Model Component ' for Data Component
Babelizer Babelizer
BMI BMmI

Model Dataset

Figure 1. Relationship between datasets, models, and the CSDMS
Workbench tools.

datasets in various formats and grid types. The second ele-
ment is a Babelized component, which is a Python package
created by the Babelizer. This Babelized component converts
the BMI component into a plug-and-play component for the
modeling frameworks (e.g., pymt). It can also help import the
BMI components that are implemented in other languages
as a Python class, so that they can communicate with each
other using the hub language (Python). For the second ele-
ment, the developer only needs to provide metadata describ-
ing the BMI component through a Tom’s Obvious, Minimal
Language (TOML) file format. The Babelizer will then use
the metadata to construct a Python package, which is almost
completely autogenerated (Hutton et al., 2022). This design
minimizes the effort of using the Data Component within
different modeling frameworks because there is no need to
change the BMI implementation, and one only needs the Ba-
belizer and the required metadata to create a component for
any relevant modeling framework. Generally, the BMI com-
ponent is the fundamental essence of the Data Component,
while the Babelized component represents the Data Compo-
nent for a specific modeling framework.

To test the Data Component design, we conducted
case studies by implementing several Data Components
and creating use cases for Earth surface processes mod-
eling and analysis. These datasets are from multiple
data providers and in various file formats and grid
types. The use cases are data—model integration work-
flows created as Jupyter Notebooks and shared in Hy-
droShare. We also installed the CSDMS Workbench tools
on the CUAHSI JupyterHub (https://help.hydroshare.org/
apps/CUAHSI-JupyterHub/, last access: 1 March 2024) and
the CSDMS JupyterHub (https://csdms.colorado.edu/wiki/
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Function category Function name

Description

initialize
update
finalize

Component control

Perform startup tasks for the component.
Advance component state by one time step.
Perform post execution tasks for the component.

Component information ~ get_component_name

get_output_names

get_output_item_count

Name of the component.
List of a component’s output variables.
Number of a component’s output variables.

Variable information get_var_grid
get_var_units
get_var_type

get_var_location

Get the grid identifier for a variable.
Get the units of a variable.

Get the data type of a variable.

Get the grid element type of a variable.

Time information get_current_time
get_time_units

get_time_step

Current time of the component.
Time units used in the component.
Time step used in the component.

Grid information get_grid_type
get_grid_shape

get_grid_spacing

Get the grid type as a string.
Get the dimensions of a computational grid.
Get the spacing between grid nodes.

Variable getter and setter ~ get_value

set_value

Get current values for a variable.
Set current values for a variable.

JupyterHub, last access: 1 March 2024). This enables users
to discover and access these use cases from HydroShare and
use the CUAHSI or CSDMS JupyterHub to reproduce the
modeling workflows without the need for software installa-
tion and data downloads on the local computers. Moreover,
users can also use the environment files which are prepared
for these use case Jupyter Notebooks to build local virtual
environments and run them. Detailed results and discussion
are presented in the next section.

3 Case studies
3.1 Data Components

We implemented multiple Data Components to demonstrate
the access to widely used datasets for Earth surface processes
modeling. To illustrate the broad applicability of Data Com-
ponents, these examples cover several domains: hydrology,
topography, soil, meteorology, and oceanography. The data
types span the categories of time series, geographic raster,
and multidimensional space—time data. Here we provide an
overview of each Data Component.

— The NWIS Data Component (Gan, 2023c) is imple-
mented to access the time series of hydrological data
from the U.S. Geological Survey’s National Water In-
formation System (NWIS https://waterdata.usgs.gov/
nwis, last access: 1 March 2024). NWIS provides a
RESTful (representational state transfer) web service
to access current and historical water resource datasets
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across the USA, such as discharge, gauge height, and
water temperature. REST web services allow users to
access data using a Uniform Resource Identifier (URI),
which distinguishes one resource from another (e.g.,
links on the web). Our NWIS Data Component can
download the time series for instantaneous and daily
values from NWIS using the dataretrieval Python pack-
age (Hodson et al., 2023), which is a Python client for
the REST web services of NWIS. This Data Component
needs a configuration file that specifies USGS site num-
ber, a start and end time, USGS variable code, and out-
put file name. Each Data Component supports storage
of the dataset in a NetCDF file, which can include time
series for multiple variables at multiple USGS sites.
The time values are stored in a format by following
the Climate and Forecast (CF) metadata conventions
(http://cfconventions.org/, last access: 1 March 2024).

— The Topography Data Component (Piper, 2023a)
fetches global terrain elevation raster data from Open-
Topography (https://opentopography.org/, last access:
1 March 2024), an NSF-supported facility that pro-
vides access to many different types of topography
data, alongside related tools and resources. OpenTopog-
raphy provides REST web services to retrieve raster
datasets such as NASA Shuttle Radar Topography Mis-
sion (SRTM) and JAXA (Japan Aerospace Exploration
Agency) Advanced Land Observing Satellite (ALOS)
global data (Tadono et al., 2014; Farr et al., 2007). These
REST web services were used to implement an API and
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a CLI in the Topography Data Component for down-
loading these datasets. Dataset type, latitude—longitude
bounding box, and the desired output file format can
be specified with arguments to this Data Component or
through a configuration file. As of this writing, users are
required to apply for an API key from OpenTopogra-
phy to be authorized for data access, which helps Open-
Topography monitor and understand the usage of the
REST web services and to provide a more stable and
secure user experience. For this Data Component, we
implemented a utility function to help access the API
key on local computers to simplify the process for data
access authorization.

— The SoilGrids Data Component (Gan, 2023d) pro-
vides access to global gridded soil data from Soil-
Grids (https://www.isric.org/explore/soilgrids, last ac-
cess: 1 March 2024), a system for global digital soil
mapping that uses machine learning methods to map
the spatial distribution of soil properties (Poggio et al.,
2021; Hengl et al., 2017). The SoilGrids system pro-
vides a web coverage service (WCS) to help users ob-
tain a subset of the soil maps as raster datasets for soil
properties such as bulk density, clay content, and soil
organic carbon content. The WCS was used to imple-
ment the API and CLI in the SoilGrids Data Component
to download the desired soil datasets and store them in
a local GeoTIFF file. This Data Component requires a
configuration file that includes the information for the
map service name, bounding box, coordinate system,
grid resolution, and other parameters. Figure 2 shows
the example scripts that use the API and the Babelized
component (e.g., pymt component) to access and visu-
alize the same soil property dataset from SoilGrids sys-
tem.

— The ERAS Data Component (Gan, 2023b) accesses
the ERAS5 climate dataset, which is available from
the Copernicus Climate Data Store (CDS, https://cds.
climate.copernicus.eu/, last access: 1 March 2024).
ERAS refers to European Centre for Medium-Range
Weather Forecasts (ECMWF) reanalysis 5, which in-
cludes multidimensional space—time datasets produced
using data assimilation and model forecasts for the
global climate and weather for the period from the
1940s to near-real time. The ERAS Data Component
downloads data using the cdsapi Python package, which
is the API for retrieving datasets from the CDS plat-
form. This Data Component requires a configuration file
that includes information for data variables, time period,
latitude—longitude bounding box, grid resolution, and
other parameters. Each ERA5 Data Component sup-
ports storing the datasets in a NetCDF file, which can
contain multiple variables for a given bounding box
area. Similar to the Topography Data Component, users
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are required to apply for API keys from the CDS plat-
form to be authorized for data access. We implemented
a utility function to help generate the API key files on
the local computers for data access authorization.

— The WAVEWATCH III Data Component (Hutton, 2023)
retrieves data from the global wave datasets (https:
/Ipolar.ncep.noaa.gov/waves/product_table.shtml,
last access: 1 March 2024) that are generated with
the WAVEWATCH III model (Booij et al., 1999).
These model outputs are multidimensional space—time
datasets for wave height, period, direction, and other
attributes. The WAVEWATCH III Data Component
includes an API and a CLI, which use web services to
download the 30-year wave hindcast (Phases 1 and 2)
and the production hindcast (single grid and multigrid)
datasets and store them as GRIB-formatted files. This
Data Component requires a configuration file that
includes the information for time, grid type, and data
source.

The Data Components for the time-varying datasets such
as NWIS and ERAS retrieve the datasets once and save them
in a file when the “initialize” method is used. If a user runs
the same Data Component with an identical configuration file
multiple times on the same machine, the data will be down-
loaded only during the first instance to prevent redundant
download processes. Aside from the Data Components pre-
sented here, we also implemented other Data Components. A
full list of them can be found at https://csdms.colorado.edu/
wiki/DataComponents (last access: 1 March 2024).

3.2 Use cases

Here we present use cases that cover a variety of topics, in-
cluding landslide susceptibility mapping, modeling of over-
land flow in a wildfire-impacted catchment, permafrost land-
scape processes, and wave power analysis (Gan, 2023a).
These use cases serve as illustrative examples for the appli-
cation of Data Components across varied domains. We will
focus on describing the modeling workflows and discussing
multiple ways of using the Data Components presented in
these use cases, rather than new research findings and anal-
ysis details. The data—model integration workflows for these
use cases can be discovered, accessed, and reproduced on the
HydroShare platform or the CSDMS web portal.

3.2.1 Landsliding

Landslides are a dominant source of sediments in mountain
regions (Broeckx et al., 2020). Landslides cause thousands
of casualties annually, together with expensive damage to
infrastructure (Haque et al., 2016; Petley, 2012). Landslides
are also point sources of sediment in riverine systems, alter-
ing stream geomorphology (Benda and Dunne, 1997), poten-
tially creating landslide dams and subsequent failures (Costa
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import matplotlib.pyplot as plt
from soilgrids import SoilGrids (a)

# get data from SoilGrids

soil_grids = SoilGrids()

data = soil_grids.get_coverage data(service_id='clay',
coverage_id='clay 0-5cm_mean',
west=-1784000, south=1356000,
east=-1140000, north=1863000,
crs='urn:ogc:def:crs:EPSG::152160"',
output='demo.tif')

# plot data

data.plot(figsize=(10,6))

plt.ylabel('Y (m)', fontsize=12)

plt.xlabel('X (m)', fontsize=12)

plt.title('Mean clay content (g/kg) at 0-5cm soil depth in Senegal')

import matplotlib.pyplot as plt
from pymt.models import SoilData

# initiate a data component
data_comp = SoilData()
data_comp.initialize('config.yaml")

# get variable and grid metadata

var_name = data_comp.output_var_names[0]
var_grid = data_comp.var_grid(var_name)
grid_shape = data_comp.grid_shape(var_grid)
grid_spacing = data_comp.grid_spacing(var_grid)
grid_origin = data_comp.grid_origin(var_grid)

# get variable data
data = data_comp.get_value(var_name)
data_2D = data.reshape(grid_shape)

# get X, Y extent for plot

min_y, min_x = grid_origin

max_y = min_y + grid_spacing[0]*(grid_shapel[0]-1)

max_x = min_x + grid_spacing[1]*(grid_shapel[1]-1)

dy = grid_spacing[0]/2

dx = grid_spacing[1]/2

extent = [min_x - dx, max_x + dx, min_y - dy, max_y + dyl

# plot data

fig, ax = plt.subplots(figsize=(10,6))

im = ax.imshow(data_2D, extent=extent)

fig.colorbar(im)

plt.ylabel('Y (m)', fontsize=12)

plt.xlabel('X (m)', fontsize=12)

plt.title('Mean clay content (g/kg) at ©-5cm soil depth in Senegal')

1e6 Mean clay content (g/kg) at 0-5cm soil depth in Senegal

X (m) ] le6
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Figure 2. Example scripts that use the API (a) and the pymt component (b) of the SoilGrids Data Component to access and visualize the soil

property dataset (c).
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and Schuster, 1988), altering ecosystem functioning (May et
al., 2009), and increasing downstream flood risk (Fan et al.,
2019). Our example use case focuses on Puerto Rico, where
a combination of steep terrain and heavy rainfall from hurri-
canes makes landslides a common occurrence. For example,
Hurricane Maria made its landfall on 20 September 2017 and
triggered more than 40 000 landslides (Bessette-Kirton et al.,
2019). In this use case, we chose a study area that had a high
concentration of landslides during Hurricane Maria. We used
several Data Components to generate landslide susceptibility
maps in this region.

We adopted the method of Strauch et al. (2018) to cal-
culate landslide susceptibility, using a factor-of-safety ap-
proach. This method requires data for soil depth, terrain
slope, and subsurface flow depth. To prepare those inputs,
we used the Topography and ERAS Data Components to
access terrain elevation, soil moisture content, and precipi-
tation datasets. We also retrieved the soil depth to bedrock
dataset from the SoilGrids system. Terrain slope was derived
by combining the Topography Data Component with a Land-
lab RasterModelGrid object to calculate the slope angle. Sub-
surface flow depth was calculated using the soil depth and
soil moisture content datasets. The precipitation data are not
used for input preparation but rather for visualization pur-
poses to show the water input conditions in the study area.
Since these datasets are in different grid resolutions, we per-
formed data regridding to interpolate the soils and precipita-
tion data to the same resolution as the SRTM terrain eleva-
tion data (~ 90 by 90 m per grid cell). Using these inputs, we
looped through 48 1 h time steps (for 20-21 September 2017,
the time period over which Hurricane Maria made landfall) to
generate hourly results. The hourly maps were used to create
an animation that shows the changes in landslide susceptibil-
ity and subsurface flow depth over the 2 d period. The time
series of mean total precipitation and soil moisture content at
four soil layers (layer 1 is 07 cm; layer 2 is 7-28 cm; layer
3 is 28-100cm; layer 4 is 100-289 cm) for the study area
are also shown in the results. Figure 3 shows the input ter-
rain elevation and slope maps, and Fig. 4 shows an example
output. When the precipitation reached its peak, soil layers
1 and 2 responded quickly and reached high soil moisture
content, while layer 3 responded with a time lag, and layer 4
kept a low value. The areas where the landslide susceptibility
increased most correspond to the areas that have high slope
angle and a greater increase in subsurface flow. Landslide
susceptibility mapping is an important approach for evaluat-
ing the likelihood of a landslide occurring in an area, which
provides critical support to reduce disaster loss. This use case
highlights the value of Data Components for recreating near-
real-time landslide susceptibility maps in regions prone to
the landslide hazards or to do first-order exploratory simula-
tions in response to a large landsliding event anywhere in the
world.

Geosci. Model Dev., 17, 2165-2185, 2024
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3.2.2 Rainfall-runoff modeling in wildfire-affected
watersheds

Storm runoff occurs when saturated soil cannot absorb addi-
tional water (saturation-excess mechanism) or when the rate
of water input on the land surface is higher than the infil-
tration rate (infiltration-excess mechanism). The generation
of runoff is mainly impacted by the intensity of rainfall and
the landscape surface characteristics, such as vegetation den-
sity (surface roughness), antecedent moisture condition, and
slope. In particular, after a destructive wildfire burns away
plants and trees and affects the soil to alter the site charac-
teristics (Shakesby and Doerr, 2006), heavy rain can cause
substantial overland flow and potentially trigger debris flows
(Malvar et al., 2011; Cannon et al., 1998). In the western
USA, wildfires are already increasing in size and frequency,
and the frequency and intensity of post-fire overland flow are
likely to increase even further in the future (Beeson et al.,
2001; Halofsky et al., 2020; Abatzoglou et al., 2021). Thus,
it is important to simulate overland flow processes to study
the hydrologic responses of burned watersheds. In this use
case, we performed a rainfall-runoff simulation for the wa-
tershed of Geer Canyon in the Colorado Front Range (USA),
northwest of the city of Boulder (Fig. 5a, b). This watershed
was impacted by the Cal-Wood fire, which occurred in 2020
and burned more than 4000 ha.

In this use case, we used the Topography Data Com-
ponent to retrieve terrain elevation data for the study area
(Fig. 5¢). We performed a watershed delineation (Fig. 5d)
by coupling this Data Component with Landlab components,
specifically Flow Accumulator and ChannelProfiler (Barnhart
et al., 2020). Then we used the watershed terrain elevation
as input for a model of rainfall and runoff, using Landlab’s
OverlandFlow component (Adams et al., 2017). The model
run time is set as 200 min, with the first 10 min assigned a
constant rainfall intensity (59.2 mm h~1), based on the mete-
orological observations on 25 June 2021, which is the sum-
mer after the Cal-Wood fire occurred. This simulation cre-
ated a discharge time series plot at the watershed outlet and
a map of the surface water depth over the watershed at each
120 s time step (Fig. 6). Finally, an animation was made to
show the overland flow process during the simulation time.
This use case demonstrates the ability to couple a Data Com-
ponent with Landlab components for post-fire overland flow
simulation and for exploring a watershed storm response af-
ter fire events. This modeling workflow can be applied to
perform experiments by adjusting the model parameters and
inputs (e.g., surface roughness, infiltration rate, and rain in-
tensity) to evaluate the impact of wildfire on hydrologic re-
sponses for watersheds more generally.

3.2.3 Permafrost thaw and hillslope diffusion

Permafrost is defined as rock or soil that remains below 0 °C
for 2 or more consecutive years. Nearly a quarter of soils
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Figure 3. The study area in Puerto Rico. Panel (a) shows the bounding box of the study area. Panel (b) shows a field photo of a landslide in the
study area after Hurricane Maria (source from NOAA weather service https://www.weather.gov/sju/maria2017, last access: 1 March 2024).
Panel (c) shows the terrain elevation data. Panel (d) shows the calculated slope angle using the Landlab RasterModelGrid component.
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Figure 4. Example result for the study area in Puerto Rico. Panels (a) and (¢) show the mean total precipitation and the mean volumetric soil
water content at four soil layers. Panels (b) and (d) show the difference in the landslide susceptibility and the subsurface flow depth between
the first (20 September 2017 at 00:00 UTC) and the current (21 September 2017 at 00:00 UTC) time step.
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Figure 5. The watershed of Geer Canyon. Panel (a) shows the bounding box of the study area. Panel (b) shows a field photo of the burned
study area in March 2021. Panel (c) shows the terrain elevation data. Panel (d) shows the watershed delineation result, using the Landlab

FlowAccumulator and ChannelProfiler components.

in the Northern Hemisphere are permafrost-affected (Zhang
et al., 2008). Due to the ongoing impact of global warm-
ing, more permafrost is thawing as temperatures rise above
freezing. This results in geologic hazards such as landslides,
ground subsidence, erosion, and other severe surface distor-
tions (Lawrence and Slater, 2005; Nelson et al., 2001; Pat-
ton et al., 2019). Research for the future transformation of
the permafrost in a changing climate becomes vital to reduce
the negative impact of thawing permafrost on, for example,
coastal erosion and infrastructure (e.g., roads and houses)
and to assess the potential for the release of soil carbon to
the atmosphere. In this use case, we applied the Kudryavtsev
model (Anisimov et al., 1997; Kudryavtsev et al., 1977) for
a study area in Alaska to evaluate the impact of the warming
climate on the thickness of the active layer of permafrost. Ad-
ditionally, we applied the Kudryavtsev model output, the ac-
tive layer thickness, as the input for a hillslope soil transport
model to predict hillslope evolution in the Eightmile Lake
area, just south of Denali National Park.

The Kudryavtsev model includes thermodynamic pro-
cesses that provide a steady-state solution under the assump-
tion of a sinusoidal air temperature forcing to predict the
annual active layer thickness and snow surface tempera-
ture. This model has been implemented as a pymt Model
Component for which the major inputs include annual mean

Geosci. Model Dev., 17, 2165-2185, 2024

temperature, amplitude of annual temperature variation, and
snow cover depth. We obtained monthly mean air tempera-
ture, snow density, and snow-water-equivalent data using the
ERAS Data Component and further processed these quan-
tities to provide model inputs. To evaluate the impact of a
warming climate, we prepared two sets of inputs — for 1980—
1989 and 2010-2019, respectively — to compare their cor-
responding model outputs. Figure 7 shows the model input
time series, and Fig. 8 shows the model output of the annual
active layer thickness. These plots show that the annual mean
temperature tends to increase while the temperature ampli-
tude and snow cover depth became lower in 2010-2019 than
in 1980-1989. However, the warming and drying climate did
not lead to a significant change in the active layer thickness.
We conducted model experiments to find out the reason. We
first calculated the 10-year average of annual mean temper-
ature, amplitude of annual temperature variation, and snow
cover depth for 1980-1989 and 2010-2019. Then we used
these inputs to conduct two model runs for those periods. The
model result for 1980-1989 will be taken as the “base” exper-
iment for comparison. We then conducted three model runs
of which each experiment used two inputs from the 10-year
average for 1980-1989 and one for 2010-2019. The results
showed that it can lead to an increase in the active layer thick-
ness by only increasing the annual temperature. But if the

https://doi.org/10.5194/gmd-17-2165-2024
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Figure 6. Example result of discharge and surface water depth from
the Landlab OverlandFlow component for the watershed of Geer
Canyon.

snow thickness decreases, its insulating capacity in mid- and
late winter will also decrease, and as a result, the active layer
will actually become thinner. Therefore, warming tempera-
ture and decreasing snow thickness can act in opposing direc-
tions and thereby minimize changes in active layer thickness.
This phenomenon was also observed with field datasets and
studied by several researchers at other study sites (Garnello
et al., 2021; Zhang, 2005).

To examine the potential impact of active layer thickening
on soil transport, we implemented a simple model of hills-
lope evolution using the Landlab DepthDependentDiffuser
component to simulate the modification of topography by
thaw-enhanced soil creep. The Topography Data Component
was used to prepare the terrain elevation input (Fig. 9), and
the active layer thickness for 2010-2019 was used as the soil
depth input to the hillslope evolution model. We performed
a model simulation representing 1000 years of geomorphic
evolution and made an animation to show the changes in ter-
rain elevation. This use case provides an example of cou-
pling Data Components with both pymt and Landlab Model
Components, which shows the flexibility of integrating Data
Components with multiple modeling frameworks to simulate
interrelated landscape surface processes.

https://doi.org/10.5194/gmd-17-2165-2024
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Figure 7. Temperature and snow inputs of the Kudryavtsev model
for the Eightmile Lake area. Panel (a) shows 1980-1989, and panel
(b) shows 2010-2019.

3.24 Wave power

Energetic waves cause shoreline erosion, change geo-
morphology, and generate renewable energy (Hansen and
Barnard, 2010; Mwasilu and Jung, 2019; Vousdoukas et al.,
2020). Globally, around 28 000 km? of otherwise-permanent
coastal land was lost from 1984 to 2015, which is double the
amount of land gained over this same period (Mentaschi et
al., 2018). Wave power can be a useful predictor of shore-
line change (e.g., beaches, Davidson et al., 2013; marshes,
Leonardi et al., 2016), with higher wave heights and longer
wave periods, leading to larger wave power. Wave power is
also used to assess feasibility of renewable energy genera-
tion (Ozkan and Mayo, 2019; Thorpe, 1999). This use case
therefore focuses on extracting and analyzing wave charac-
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Figure 9. Hillslope evolution result of the Landlab DepthDepen-
dentDiffuser component for the Eightmile Lake area.
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teristics and calculating wave power for the Louisiana Shelf
in the northern Gulf of Mexico.

The National Oceanic and Atmospheric Administration
(NOAA) runs the WAVEWATCH III model (Booij et al.,
1999) on several different grids (NOAA, 2024). The WAVE-
WATCH III Data Component increases the accessibility and
useability of model estimates and is used here to facili-
tate wave power calculations. WAVEWATCH III variables,
including significant wave height, peak wave period, peak
wave direction, and east—-west and north—south wind speeds
were downloaded using this Data Component. For the anal-
ysis, data from the Gulf of Mexico and northwest Atlantic
grid were used because of the relatively high resolution of
4 arcmin (~ 7400 m at the study site). Data for the summer
of 2005 were interpolated to a specific location (28.8°N,
276.4°E) on the Louisiana Shelf and are shown in Fig. 10.
For this figure, wave direction is given in meteorological
convention, with 0° meaning that waves are coming from
the north and 90° meaning waves are coming from the east.
Winds are also given in meteorological convention, mean-
ing positive v values are coming from the north, and pos-
itive u values are coming from the east. Wave power was
then calculated using the WAVEWATCH III estimates of
significant wave height and peak wave period for this lo-
cation. The result was visualized using a time series and a
rose diagram (Figs. 11 and 12). Results indicate that signif-
icant wave height and therefore wave power were larger in
mid-March through mid-April, compared to later portions of
spring 2005. Waves were primarily traveling northwestward,
including during the time periods with larger wave power.
This use case demonstrates how the WAVEWATCH III Data
Component can be used to analyze wave conditions that are
important for coastal shoreline change and renewable energy
generation.

3.3 Discussion

The case studies demonstrated that the Data Component de-
sign can be applied to a variety of datasets to support data—
model integration for Earth surface processes research. These
case studies also demonstrated multiple ways of using the
Data Components. For example, the landsliding use case ex-
emplifies how to use the Babelized component within the
pymt modeling framework for data analysis. In Fig. 13, both
the Topography and ERAS Data Components are imported
from the pymt module. Despite the different data sources and
file formats for those Data Components, the methods to ini-
tialize an instance and to access variables and grid informa-
tion remains the same.

The rainfall-runoff modeling use case demonstrates the
ability to combine a Data Component (the Topography Data
Component) with a Landlab grid object and a Landlab Model
Component (the FlowAccumulator) (Fig. 14). The key aspect
of this process involves defining an instance of the Raster-
ModelGrid (model_grid) based on the features of the Data

https://doi.org/10.5194/gmd-17-2165-2024
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Figure 11. Time series of wave power at 28.8° N, 276.4° E in the Gulf of Mexico.

Component (dem). Subsequently, this model grid is passed
as a parameter to create an instance of a Model Component
(fa), which links the data and the computational aspects of
the modeling process.

The permafrost thaw and hillslope diffusion use case
demonstrates pre-processing datasets using a Data Compo-
nent and feeding the resulting data as inputs to a pymt Model
Component. The example demonstrates how a simple and
compact code can retrieve time series data for a given study
area from the Data Component (era5S and era5_2) (Fig. 15a)
and use this to set up and run the Kudryavtsev model using
the prepared inputs (input_data) (Fig. 15b). Notably, within
the pymt modeling framework, the methods to create an in-
stance (initialize()), to retrieve data values from the compo-
nent (get_value()), and to update the time step (update()) re-
main consistent for both the Data and Model Components.

https://doi.org/10.5194/gmd-17-2165-2024

The wave power use case demonstrates the use of the
API available within the BMI component for data access
instead of using the Babelized component. This approach
becomes advantageous particularly when there is no need
to couple the Data and Model Components for analysis. In
Fig. 16, the API (WaveWatch3) for downloading the WAVE-
WATCH III datasets is imported from the BMI component
(bmi_wavewtch3). This API provides methods that extend
beyond the standard BMI methods. For instance, the inc
method allows users to access additional months of data
without needing to create new instances of the Data Com-
ponent for each month, which simplifies the data retrieval
process.

From the implementation and use cases of the Data Com-
ponents, we found that our design provides benefits for users
in the following aspects.

Geosci. Model Dev., 17, 2165-2185, 2024
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Figure 12. Rose diagram of wave power at 28.8° N, 276.4° E in the Gulf of Mexico. The length of each bar and the concentric circles indicate
the percentage of data points with waves coming from that direction (meteorological convention). The color indicates the wave power.

Figure 13. Scripts from the landslide use case to demonstrate using the Topography Data Component (a) and the ERAS Data Component

(b) within pymt.
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|frum pymt.models import Topography, Era5 |

# initialize Topography data component
dem = Topography ()
dem. initialize(os.path.join(config_dir, 'dem_config.yaml'))

# get DEM variable info

var_name = dem.output_var_names[0]

var_unit = dem.var_units(var_name)

var_location = dem.var_location(var_name)

var_type = dem.var_type(var_name)

var_grid = dem.var_grid(var_name)

var_itemsize = dem.var_itemsize(var_name)

var_nbytes = dem.var_nbytes(var_name)

print('variable_name: {} \nvar_unit: {} \nvar_location: {} \nvar_type: {} \nvar_grid: {} \nvar_itemsize: {}'
"\nvar_nbytes: {} \n'. format(var_name, var_unit, var_location, var_type, var_grid, var_itemsize, var_nbytes))

# get DEM grid info

dem_grid_ndim = dem.grid_ndim(var_grid)
dem_grid_type = dem.grid_type(var_grid)
dem_grid_shape = dem.grid_shape(var_grid)
dem_grid_spacing = dem.grid_spacing(var_grid)
dem_grid_origin = dem.grid_origin(var_grid)

print('grid_ndim: {} \ngrid_type: {} \ngrid_shape: {} \ngrid_spacing: {} \ngrid_origin: {}'.format(
dem_grid_ndim, dem_grid_type, dem_grid_shape, dem_grid_spacing, dem_grid_origin))

(a)

# initialize ERA5 data component
era5 = Era5()
era5.initialize(os.path.join(config_dir, 'era5_config.yaml'))

# get ERA5 variable info
for var_name in era5.output_var_names:
var_unit = era5.var_units(var_name)
var_location = era5.var_location(var_name)
var_type = era5.var_type(var_name)
var_grid = era5.var_grid(var_name)
var_itemsize = era5.var_itemsize(var_name)
var_nbytes = era5.var_nbytes(var_name)
print('variable_name: {} \nvar_unit: {} \nvar_location: {} \nvar_type: {} \nvar_grid: {} \nvar_itemsize: {}'
"\nvar_nbytes: {} \n'. format(var_name, var_unit, var_location, var_type, var_grid, var_itemsize, var_nbytes))

# get ERA5 grid info

era5_grid_ndim = era5.grid_ndim(var_grid)
era5_grid_type = era5.grid_type(var_grid)
era5_grid_shape = era5.grid_shape(var_grid)
era5_grid_spacing = era5.grid_spacing(var_grid)
era5_grid_origin = era5.grid_origin(var_grid)

print('grid_ndim: {} \ngrid_type: {} \ngrid_shape: {} \ngrid_spacing: {} \ngrid_origin: {}'.format(
era5_grid_ndim, era5_grid_type, era5_grid_shape, era5_grid_spacing, era5_grid_origin))

®)
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# get DEM variable data
dem_data = dem.get_value(var_name)

# set up raster model grid
model_grid = RasterModelGrid(dem_grid_shape, xy_spacing=30)

# add topographic elevation data field

# calculate the flow accumulation

fa=FlowAccumulator( model_grid, method='Steepest’,
flow_director='FlowDirectorSteepest',
depression_finder="'LakeMapperBarnes"',
redirect_flow_steepest_descent=True,
reaccumulate_flow=True)

fa.run_one_step()

dem_field = model_grid.add_field("topographic__elevation", dem_data.astype('float'))

Figure 14. Scripts from the rainfall-runoff modeling use case to demonstrate coupling the Topography Data Component with Flow Accumu-

lator component from Landlab.

# create dataframe to store time series data
time_steps = 12x10 # 10 years of monthly data

for data_comp in [era5, era5_2]:

for i in range(0, time_steps):
# get values

# add new row to dataframe

# update to next time step
data_comp.update()

era5_df = era5_df.set_index('time"')

era5_df = pd.DataFrame(columns = ['temp','swe','dens','time'])

temp = data_comp.get_value('2 metre temperature')

swe = data_comp.get_value('Snow depth')
dens = data_comp.get_value('Snow density"')
time = cftime.num2pydate(data_comp.time, data_comp.time_units)

era5_df.loc[len(era5_df)]=[temp[0], swel@], dens[@], time]

(@)

# setup model
ku = Ku()

ku.initialize(x*args)

# run model

for index, row in input_data.iterrows():
ku.set_value("snowpack__depth", row['snow_h'])

ku.update()

# store result

args = ku.setup(start_year=start, end_year=end, lat=63.88, lon=-149.25)

ku.set_value("atmosphere_bottom_air__temperature", row['temp_mean'])
ku.set_value("atmosphere_bottom_air__temperature_amplitude", rowl['temp_amp'])

active_layer.loc[index] = ku.get_value('soil__active_layer_thickness') [@]

)

Figure 15. Scripts from the permafrost thaw and hillslope diffusion use case.

Component; panel (b) shows the Kudryavtsev model simulation.

1. Usability. Since the datasets are wrapped with BMI, the
methods to get metadata and data values are the same,
regardless of their file formats or the grid types. This
feature can be seen in the four use cases, where the code
for retrieving the variable and grid information is the
same across a wide range of data types and file formats.
This simplifies the process of learning about new Data

https://doi.org/10.5194/gmd-17-2165-2024

Panel (a) shows retrieving time series data from ERAS Data

Components for users who are already familiar with the
basic design. Additionally, because the Model Compo-
nents also adopt the BMI methods, it becomes intuitive
for users to know how to couple the Data and Model
Components together.

Geosci. Model Dev., 17, 2165-2185, 2024
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# Load in the bmi-wavewatch3 data component
from bmi_wavewatch3 import WaveWatch3

# Starting month
start_month = "2005-03-01"

# Number of months after to pull
num_months = 3

# Start date (specific date to start data)
start_date = "2005-03-17"

# End date (specific date to end data)
end_date = "2005-06-22"

# Specify the grid

# Specify the lat lon we want (the one point)
lat = 28.8 # degrees
lon = 267.4 # degrees

ww3 = WaveWatch3(start_month, grid=grid)

# Save the data to a list
months = [ww3.datal

# Print info about the data
ww3.data

# Add on the additional months

for _ in range(num_months):
ww3.inc()
months.append(ww3.data)

# Specify the time period and the coordinates of interest

grid = "at_4m' # 'at_4m' = Atlantic grid at 4 arcminute resolution; see figure in background section

# Fetch the data for the time period we want (to start at) and the grid we want

Figure 16. Scripts from the wave power use case to demonstrate using the API in the BMI component for data access.

2. Reproducibility. Data Components are implemented as
open-source Python packages, which enables users to
document the data—model integration workflows in the
Jupyter Notebooks for tracking and sharing computa-
tional analysis. Compared with the modeling frame-
works that allow users to create modeling workflows
via GUIs, the Data Component design helps to provide
detailed information for data access and preparation be-
hind the scenes.

3. Flexibility. The design provides a flexible way of using
Data Components. Users can either use the API directly
for data analysis when there is no need to couple data
with models (as with the wave power use case) or use
the Babelized component under the modeling frame-
work (as exemplified by the rainfall-runoff modeling
use case), which can make it easier to write efficient
code for different situations. In addition, this design pro-
vides the flexibility to make the Data Components work
within any modeling frameworks or tools that support,
or are compatible with, the BMI standard (e.g., Landlab)
without making additional changes to the Data Compo-
nents.

While developing the use cases, we also identified the lim-
itations of the existing BMI methods in representing the fea-
tures of datasets. For instance, there is a need to add new
methods to access the spatial reference information of the

Geosci. Model Dev., 17, 2165-2185, 2024

datasets, which can facilitate data reprojection and regrid-
ding to convert heterogeneous datasets to the same grid res-
olution and coordinate system. Moreover, the existing BMI
methods mainly support wrapping datasets with spatial and
time dimensions, and it becomes challenging to deal with
datasets that include dimensions representing other variables.
Take the ERAS datasets as an example; there are ensemble
model simulation results that include dimensions represent-
ing the ensemble number and/or the pressure levels. The ex-
isting BMI methods do not support accessing the information
for those types of dimensions, so the current implementation
of the ERAS Data Component mainly supports datasets that
only include spatial and time dimensions. This highlights a
need for extensions to the core BMI standard that can ac-
commodate these needs and enhance the usability of the Data
Components.

Currently, new Data Component and use cases are also un-
der development. One example is the Regional Ocean Mod-
eling System (ROMS) Data Component designed to access
the model outputs of ROMS (Haidvogel et al., 2008). The
ROMS Data Component will be coupled with the Landlab
and pymt Model Components to help explore the fate of par-
ticulate organic carbon in the Arctic, including its release via
permafrost thaw, transport, and oxidation in the fluvial and
coastal systems and its burial in offshore sediments. Data
Components are designed to serve as open resources by and
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for the science community, and we highly encourage readers
to develop and share their own Data Components.

4 Conclusions

The integration of data and numerical models plays a vital
role in advancing the understanding of the complex processes
of Earth systems. However, with the increasing number of
datasets available on the internet and the growing trend of
reproducible computational research, there is a need to pro-
vide a convenient and standardized way to access a variety
of datasets and easily couple them with diverse models to
improve the efficiency and reproducibility of the data—model
integration workflows.

This paper presents an approach that uses open-source
software and standards from the CSDMS Workbench to cre-
ate Data Components that support open data—model integra-
tion for Earth surface processes modeling. A Data Compo-
nent is a dataset wrapped with BMI functions. To evaluate
and illustrate our approach, we implemented several Data
Components for datasets in various file formats and grid
types and then applied them in research demonstrations re-
lated to landsliding, overland flow, permafrost, and ocean
waves. The results demonstrated that the Data Component
design provides a consistent way to access and use online
datasets from multiple sources and to easily couple data with
models, which increases the accessibility and reusability of
research datasets.

Another advantage of the Data Component design is that it
enables researchers to document the data—model integration
workflow in a Jupyter Notebook or similar “literate program-
ming” format (Knuth, 1984), which helps other researchers
to discover, access, operate, and reuse computational re-
search through online platforms. This approach can help im-
prove research transparency and workflow reproducibility
to encourage collaboration. Moreover, our use cases can be
adapted and applied to other study sites so that researchers
can rapidly set up modeling studies after or during a geophys-
ical event to have a quick exploration or initial assessment of
the associated hazards. Although our case studies are cen-
tered on Earth surface processes and natural hazard impacts,
the core concepts of the Data Component design are extensi-
ble to datasets in other scientific domains.

In the future, we will focus on developing new Data Com-
ponents and extending BMI to support a wider range of
datasets. We will also provide educational materials to en-
courage the geoscience community to apply existing, or im-
plement new, Data Components to create reproducible data—
model integration workflows.
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Code and data availability.
— NWIS Data Component:

— BMI component is available at https://doi.org/10.5281/
zenodo.10368806 (Gan, 2023c¢).

— pymt plugin is available at https://doi.org/10.5281/zenodo.
10368876 (Gan, 2023e).

— Topography Data Component:

— BMI component is available at https://doi.org/10.5281/
zenodo.8327417 (Piper, 2023a).

— pymt plugin is available at https://doi.org/10.5281/zenodo.
10308417 (Piper, 2023b).

— SoilGrids Data Component:

— BMI component is available at https://doi.org/10.5281/
zenodo.10368883 (Gan, 2023d).

— pymt plugin is available at https://doi.org/10.5281/zenodo.
10368885 (Gan, 2023f).

— ERAS Data Component

— BMI component is available at https://doi.org/10.5281/
zenodo.10368879 (Gan, 2023Db).

— pymt plugin is available at https://doi.org/10.5281/zenodo.
10368881 (Gan, 2023g),

- WAVEWATCH III Data Component BMI component is
available at https://doi.org/10.5281/zenodo.8326599 (Hutton,
2023).

— Use case Jupyter Notebooks are available at https://doi.org/10.
4211/hs.28af99c09ee4423dbffef28bf32837e0 (Gan, 2023a).
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