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Multi-principal element alloys (MPEAs) continue to gain research prominence due to their promising high-
temperature microstructural and mechanical properties. Recently, machine learning (ML) and materials infor-
matics have been used extensively for screening MPEAs, however, most of these efforts were focused on con-
structing classification and regression models for predicting phase stability and mechanical properties of known

Hardness o, , L. . R
DFT compositions. These approaches may accelerate the screening process but optimizing new compositions with
Experimentation desirable properties within a practical time frame from an infinitely large design space of MPEA systems remains

a grand challenge. To tackle this composition optimization challenge, a generative adversarial network coupled
with a neural-network ML model was utilized to design MPEAs by filtering compositions that have high hardness.
Even in a high-dimensional space with 18 elements as descriptors, the ML model was able to generate optimized
compositions from which one composition was found to have 10% higher hardness (941 HV) than the maximum
in the training data (857 HV). Density-functional theory was used to provide thermodynamic and electronic
insights to higher hardness of the new MPEA found. The present work can optimize compositions from a wide
design space of 18 elements (including W, Ta and Nb) that presents an opportunity to synthesize new compo-
sitions for applications ranging from corrosion-resistant alloys to nuclear materials. The findings suggest that
generative ML can greatly accelerate materials discovery by identifying novel compositions, which can serve as a
data-informed tool to guide experiments.

1. Introduction

The concept of high-entropy alloys (HEAs), first conceived in 2004
primarily by two groups [1,2], was originally defined as an amalgam-
ation of 5 or more elements in 5-35% atomic concentrations. Since its
inception, HEAs have transformed the alloy research with an exponen-
tial rise in the number of related papers in the last decade. This can be
attributed to their outstanding structural properties, such as excellent
hardness [3], high-temperature strength [4], high elastic moduli [5] and
corrosion resistance [6,7] that take place due to the core effects [1] like
high entropy [1], sluggish diffusion [8,9], lattice distortion [10] and
alloying. However, now this field has branched into a number of sub-
groups, the major ones being multi-principal-element alloys (MPEAs)

[11] and complex concentrated alloys (CCAs) [12] that include mate-
rials with just 3 elements and in concentrations more than 35 atomic
percent. A previous report [13] mentions that considering the 75 stable
elements in the periodic table, if every 10% concentration change yields
a new MPEA, then with 3-6 principal elements, over 592 billion new
MPEAs can be made. This is an overwhelming number to deal with using
Edisonian approaches via experimentation or even computations[9,
14-18]. Such a scenario calls for the use of modern data-centric tech-
niques to explore the entire compositional landscape of MPEAs.

Given the cosmically large search space of unexplored alloy bases,
experimentation and simulations alone cannot span the possible
compositional space. Even though the field is two decades old, the
number of alloys explored are only in the order of 1000 [19]. Under such
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a circumstance, use of data-driven machine-learning (ML) techniques,
becomes compelling to facilitate a swift discovery of MPEAs. The use of
ML for surfing through MPEA compositions began by the second half of
the last decade with a notable work by Islam et al. [20] being the first to
convert Hume-Rothery rules into numerical descriptors. In the subse-
quent years, there was a steep ascent in ML efforts for exploring new
MPEAs that include interesting works like [20-28]. While ML has been
successfully used in prediction/interpolation problems with higher ac-
curacy when tested within the limits of the training set, most ML models
lose accuracy when tested with datapoints that fall outside the bounds of
training set. Although there are over a 100 works related to ML in
MPEAs, most models have mainly focused on constructing regressor
algorithms for either classifying phases or predicting mechanical prop-
erties, like hardness, yield stress or elastic modulus [24-26,29-31] while
very few [32,33] have focused on the generation and optimization of
new MPEA composition.

Considering the problem described above, a generator-regressor
combination was adopted to find novel MPEAs with high hardness.
Generative adversarial networks (GANs), proposed by Goodfellow et al.
[34], have been used for medical image generation [35] and astro-
physical image painting [36]. The specialty of GANs lies in its ability to
learn from descriptors of existing MPEAs and produce statistically
congruent compositions, similar to training data.

GANs have been employed here to predict new MPEA compositions
by using an initial dataset of alloy compositions and hardness as input.
An extensive search using GAN on 18-dimensional design space of Co-
Fe-Ni-Si-Al-Cr-Mo-Ti-Nb-V-Zr-Mn-Cu-Sn-Ta-Hf-W-Zn MPEAs was per-
formed. The new compositions synthesized by GAN become the search
space from which the compositions with highest hardness were down-
selected using a neural network (NN) regressor. This search resulted in
the identification of two compositions with significantly higher hardness
(>900 HV), which are better than known MPEAs rich in 3d transition
metals. In validation, the predictions showed good agreement with
Vickers microhardness measurements. Thermodynamic and electronic-
structure analysis was performed on two candidate alloys with the
highest hardness using density-functional theory (DFT) to gain elec-
tronic insights. The microstructural and microchemical characterization
of the same was also done to understand the microstructural origin of
exceptional mechanical response.

The methodology adopted in the present work differs considerably
from the past works of similar nature. Ref. [32] found new compositions
based on AlCoCrFeMnNi alloys by using a simulated annealing (SA)
algorithm where the concentration of every element was limited be-
tween 5 and 35%. Authors discovered new compositions, but the highest
predicted hardness was 650 HV that was limited by the upper bound to
Al-Co-Cr-Fe-Mn-Ni family of alloys. In contrast, the present work in-
cludes a higher descriptor dimension of 18 elements with predicted
hardness of 941 HV, which is 50% higher than known alloys in the
training set or previously known works. Inverse projection (IP) is
another approach that was applied into Fisher model to identify a
high-performance zone in the Fisher plot that reverse calculated the
features in the original space [37]. This approach predicted some
compositions that would yield the high value of target properties, e.g.,
hardness. Then the authors [34] designed virtual compositions of
Al-Co-Cr-Cu-Fe-Ni (and derivates) family of alloys by varying the
elemental concentration between 5 and 35% and identified HEAs that lie
in the high-performance zone of the Fisher plot. Their primary focus was
on vanadium containing HEAs and the alloy with highest hardness was
Co-Cr-Fe-Ni-V based. Ref. [38] developed an XGBoost model to predict
hardness and studied the effect of Ta addition by increasing the Ta
content in virtually formulated Ti-Zr-Nb-Ta alloys. They concluded that
with addition of Ta the hardness should increase until a peak value and
then decrease on further Ta addition. Ref. [39] and ref. [40] both built
hardness screening models using neural network and genetic algorithms,
respectively, with primary focus on Al-Co-Cr-Cu-Fe-Ni HEAs and their
sub-groups. Another noteworthy work [33] that successfully found
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novel high hardness compositions used a support-vector regression
model with a Radial Basis Kernel as the screening model and self
developed an algorithm for formulating new compositions. Their algo-
rithm generated AlyCoyCr,CuyFe,Niy compositions by keeping the limits
as:15.0<x<47.0,5.0<y <22.0,6.0<2<34.0,5.0<u<16.0,5.0<
v < 31.0 and 5.0 < w < 22.0 at.%. The new compositions were then
passed into the support-vector regression screening model and 35 new
compositions were found with a higher hardness than the maximum in
the training set. Very recently, Bayesian techniques have been leveraged
for optimizing multiple constraints like solidus temperature, solidifica-
tion range, thermal conductivity, density, ductility and yield strength
[41]. The authors connected Bayesian classification with Bayesian
optimization loops and identified a set of 21 compositions based on
Mo-Nb-Ti-V-W alloy family that satisfied the strength-ductility objec-
tive. Further experimental investigation of these alloys was recom-
mended serving as a swift tool for guided experiments to discover novel
materials for gas turbine engine blade applications [41]. Another
multi-objective constraint satisfaction framework that is agnostic of the
composition was developed recently [42] to identify alloys with multi-
ple optimized properties like hardness and strength [43].

Despite several previous efforts in predicting hardness, it may be
emphasized that this work stands out for two primary reasons. First, the
descriptor space encompasses a total of 18 elements (Co-Fe-Ni-Si-Al-Cr-
Mo-Ti-Nb-V-Zr-Mn-Cu-Sn-Ta-Hf-W-Zn) of the periodic table which
spans a larger composition space than all previous works. The possible
new composition is not limited to Al-Co-Cr-Cu-Fe-Ni family of HEAs.
Second, the power of ML is harnessed to generate new compositions by
utilizing the statistical capabilities of GAN. The algorithm replicates the
patterns existing in the training set to predict new compositions. The
previous works either manually formulated the compositions or used
mathematical algorithms to vary the elemental concentration in steps of
1-5 at.% to predict new ones. Along with above outlined reasons, the
present approach is more time efficient in terms of computational effi-
cacy, as it bypasses the need to exhaustively check compositions which
have a low probability of showing high hardness. Moreover, the
approach used here is fully autonomous with minimal to no human
interference, as needed for stepwise-composition search algorithms.
This makes artificial intelligence (AI) driven GAN approach more
capable of improvement as Al capabilities improve in the future.

1.1. Methodology

1.1.1. Data generation by GANs

The basic principle of GANs are derived from the Nash Equilibrium
[44] in game theory with two main competitive networks comprising of
the generator G and the discriminator D. A point in latent space serves as
input for the G which then uses it to produce an output data subject to
the distribution of the original real data. Therefore, now there are two
categories for the dataset: the real data (x) and the generated data.
Following this, the competitive network D is trained such that it dis-
tinguishes between the generated data and the real data by assigning the
numeric value 1 to real data and O to the data generated from G [45].
Simultaneously, G is trained such that it can generate data that would be
most likely be classified with numeric value 1 by the D. With an
objective of winning the game, the two networks constantly optimize
themselves to make their generation and discrimination abilities more
accurate, until Nash equilibrium is established between the two
networks.

The flowchart in Fig. 3 shows the structure and working of GAN. The
generator takes random variables (y) as input and generates new sam-
ples G(y) mimicking a similar distribution as in the real data. Both real
data x, and generated data G(y) serve as input to the discriminator D,
which should classify real data to be true and label it with value 1 while
generated data is labeled false with value O [46]. D is trained such that
the probability of classifying generated data G(y) from real data is
maximized. On the other hand, the generator is trained such that it
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minimizes the probability of a generated data being labeled with zero, i.
e., minimize the function log (1 — D(G(2))).

1.1.2. Learning and training methodology
The training of the discriminator involves the optimization of an
objective function expressed as follows [45,46]:

1 1
Obj0(907 06) = _EEXNI)dum<X) [IOgD(x)] - EE:~pz(Z) [IOg(l - D(g(z)))] (l)

Where Obj°(0p,0;) is the objective function, 6, and 0; are the two
terms on the right-hand side of the equation respectively, D (x) denotes
the probability of x sampled from the real data instead of generated data,
and E represents the expectation. Since the training data consists of real
data distribution (pgata(x)) and generated data distribution (pg(x)), it is
required to minimize the objective function of the generator given in Eq.
(1). To do so, Eq. (1) is rewritten as [45,46]

01 (00.06) = =5 [ Pass 00D} 5 [ p.(1og(1 - Dlg(o)d

= =3 PaasNogD)s— 5 [, hox(1 - D) @

Here pg (x) denotes the distribution of generated data. For form —
a log(f) — b log(1 — f), the minimum occurs at f = ;4. By analogy, Eq.
(2) achieves its minimum at [45-47]

* o Pdata (x )
Do) =) 1 peo)

D, (x) is the optimal solution of discriminator D. Putting D* from (3)
into (2) is a problem of finding the minimum of Jensen-Shannon
divergence (JSD) between pgara(x) and pg(x) and the JSD achieves a
minimum when the two are equal [47]. Simply put, Eq. (3) reaches a
minimum when pgata(X) = pg(x), which signifies that the generative
model perfectly replicates the real data distribution in the generation
process.

3

1.1.3. Hardness prediction by neural networks
Artificial neural networks are computer algorithms that replicate a
human brain’s neuron network [48]. They consist of an input layer,
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output layer and several hidden layers. Each node is like a neuron which
is linked to other neurons. Each neuron has a certain threshold and
weight. Below a fixed threshold the neuron remains inactive, but it is
activated beyond the threshold input it starts transferring data to the
next layer. The hardness prediction is done by a regression NN the ar-
chitecture of which is depicted in Fig. 1. The hyperparameters of the NN
need to be optimized for the highest predictive accuracy and, after
iterating the training in a range of hyperparameters, the best ones were
found to be as follows: batch size = 32, learning rate = 0.5, number of
hidden layers = 4, maximum number of nodes in the hidden layer = 32.

A major limitation associated with any ML model is the variability of
model output with the change in model parameters like the learning rate
and number of layers. Ref. [29] discussed the variation in accuracy of
phase classification with different combination and number of features.
However, the change became insignificant beyond four descriptors,
therefore, they selected a four-descriptor model with highest accuracy to
conclude their findings. This process is often defined as parameter
optimization (as described above) that is a widely accepted approach in
the material design community.

The implementation of NN requires the specification of an activation
function which is basically a mathematical function that converts a
given input into the required form of output within some bounds. This
output is the total weight with a bias added to it and its value determines
whether the neuron is to be activated or not. The goal of the activation
function is to introduce non-linearity to the neuron’s output which
would have otherwise behaved like a linear regression model with a
significantly low learning power. The two most popular activation
functions are the Rectified Linear Unit (ReLU) [49] activation function
and the Scaled Exponential Linear Units (SELU) [50]. The ReLU is
expressed as f(x) = max(0, x), which means it outputs the input as is
when the input is positive and outputs a value of 0 otherwise. Whereas
the SELU [50] is expressed as

J)=Axif x>0 4

fx) =Ja(e = 1) if x<0 5)

Here, 1 =1.5 and a = 1.67. Although both ReLU and SELU were
tried in this work, a better prediction accuracy was obtained with SELU
and hence SELU was adopted for the final model. SELU has been found

Hidden
Input layers
— layel‘ [ A )
AXalllcn — 0 , & @ @
AHpix__.q - ® % ® ' ®
ASmix _— ® L ® &) Olltpllt
) o g iy \ \ 1ayer
14 . o ® o e | @
- - A A A .
mputs . ° ® o o TR
o [ ) @ @ ®
o ® @ ® ®
S o o o o
Gm —o ¢ ¢ ¢ ®

4 422 422 +22 +6

Fig. 1. Architecture of the NN regressor used for predicting the hardness values. The +x notations at the bottom represent the additional nodes that are not shown in

the schematic.
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to be more accurate in other prior works where NN was used to predict
phases of HEAs [51].

The number of input nodes is equal to the number of descriptors (14)
and there is only one output node, which is the hardness value. Note that
11 out of the 14 descriptors are adopted from our previous work on
Young’s modulus predictions [25], where the new descriptors added
here are Pauling’s electronegativity, difference in shear moduli, and
average shear moduli. To explain the significance of the inclusion of
shear modulus (G), we refer to the relations between hardness and G that
were established previously [10]. Under an externally applied strain, the
hardness (H) represents the tendency of a material to resist local plastic
deformation, before gliding takes place [52,53]. In the presence of a
solute atom with a different atomic radius than the host species, a stress
field is induced due to the resulting local compression or expansion of
the lattice. These stress fields interact with the dislocations giving rise to
a dislocation interaction energy denoted by Ug;,. that is positive when

the solute is larger than the host and is expressed as Uj;e = %ﬁf{m

[54], where G is shear modulus, b is the magnitude of the Burger’s
vector, R is the distance between the dislocation core and solute atom, 0
is the angle between the slip direction and the line connecting the
dislocation core and solute atom, r is the radius of solvent atomic and r
(1+¢p) is the solute atom radius where ¢, = %%, a being the lattice
constant, ¢ being the solute concentration and v is Poisson’s ratio. Hence,
to integrate the ML model with the physics that underlies the hardness of
a material, the shear modulus (G) descriptors are included along with
the other set of descriptors, as shown in Table 1.

An initial data analysis is performed by quantifying the existing
correlations between any given pair of descriptors. This is done by
calculating the Pearson correlation coefficient P, where P = 1 and P=-1
denote a strong positive and negative correlation respectively. The heat
map in Fig. 2 shows that all pairs have low correlation except average
lattice constant (a,,) with the difference in lattice constants (Aay,) that
have a high correlation of 0.9. However, none of these were excluded
from analysis as there was no full correlation. In the present study, it will
be revealed later using Shapley Additive exPlanations (SHAP) [55] that
both features contribute unequally to model performance. Additionally,
since the average lattice constant (ap) and the difference in lattice
constants (Aap) have different mathematical expressions, they might
have a lower correlation coefficient if the composition space is varied
significantly. To avoid the risk of rendering the model agnostic of a
significant and relevant feature in the event of an updated composition

Table 1
List of descriptors used for hardness prediction in this work.
Descriptor Description
AYptten = Difference in Allen electronegativity
Y Gl —7%)
A pauting = Difference in Pauling electronegativity
i Gl —7)

Mixing entropy
Mixing Enthalpy

ASuix = —R Y11 (GilnC;)
AHyi = Z?:lj%j“’H"ijCf

8= \/E?:lci(l *r;l)
Aa = /" Cila; —a)®

AT, = /3", Ci(T; — T)?

Difference in atomic radii

Difference in lattice constants

Difference in melting temperatures

- ASpix A geometrical parameter
52
_ T ASmix Parameter for predicting solid state formation.
|AH |
T =Y 1 1CTi Average melting temp calculated by rule of mixture.
a, =Y Cia; Average lattice constant calculated by rule of mixture.

VEC =Y} ,C(V.EC); Average valence electron composition calculated by
rule of mixture.

AG = /3", Ci(Gi — 5)2 Difference in Shear moduli

Gn =1 ,CG; Average Shear modulus calculated by rule of mixture.
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space, both average lattice constant (ay,) and the difference in lattice
constants (Aap) have been included. Thus, a priori elimination of any
feature can be detrimental to predictive power.

The dataset of 241 alloys was divided into 200 for training and 41 for
testing. This procedure was iterated four times to distill four different
and random test sets and check for the variability in mean absolute error
(MAE) and mean squared error R?) of predicted versus experimental
hardness data. One random case from these iterative cycles was chosen
and the predictions versus the experimental values of hardness were
plotted to visualize the accuracy of predictions in the results section. The
MAE varied between 36 and 40 HV and R? varied between 0.95 and 0.99
for these iterations, showing that model training is stable and does not
vary largely when the training and testing sets are randomly distributed
in each iteration from the original dataset.

1.1.4. Density functional theory (DFT) calculations

The DFT-based Korringa-Kohn-Rostoker (KKR) Green’s function
method combined with the coherent potential approximation (CPA) was
used to calculate phase stability, bulk moduli, and electronic structure of
predicted MPEAs [56,57]. The DFT-KKR-CPA performs configurational
averaging simultaneously with DFT charge self-consistency, which
properly includes alloy-induced Friedel impurity-charge screening. The
core electrons were treated fully relativistically (includes spin-orbit
coupling) and the semi-core/valence electrons were treated scalar
relativistically (i.e., neglecting spin-orbit coupling). The self-consistent
charge density was obtained from the Green’s function using a
complex-energy contour integration and Gauss-Laguerre quadrature
[56]. The Perdew-Burke-Ernzerhof (PBE) exchange-correlation func-
tional was used in all calculations [58]. A site-centered spher-
ical-harmonic basis including s, p, d, and f-orbital symmetries (i.e.,
Lmax = 3) with equally spaced k-space mesh (18 x 18 x 18) was used
for Brillouin zone integrations.

1.1.5. Experimental validation

Four GAN predicted alloys with highest hardness values were syn-
thesized by arc melting compressed pellets in an inert argon atmosphere
with required ratios of high purity powders (>99.95%) of Co, Fe, Ni, Al,
Cr, Mo, Ti, Zr Ta and W from Sigma-Aldrich. To ensure composition
homogeneity each sample was overturned and re-melted five times. The
melted sample was cut from center and polished with 1200 grit paper
followed by diamond and fine silica to prepare sample for Vickers
microhardness and SEM imaging. Vickers microhardness was performed
using LECO LM248 with 100 gmf load, the final values calculated from
the mean of 10 independent measurements per sample. Hitachi 4300SE/
N Scanning Electron Microscope (SEM) equipped with energy-dispersive
spectroscopy (EDS) comprising of an Octane Elect Plus Silicon Drift
Detector and TSL High speed Hakari EBSD camera, was utilized for
microstructure, elemental, and phase analysis.

1.1.6. Workflow pipelines

The integrated flowchart coupling all the individual steps is shown in
Fig. 3. Data was collected manually from the literature for the alloy
compositions with their hardness values, as described previously [25].
With the goal of generating new alloy compositions by learning the
patterns in the existing dataset, a table was constructed with all the el-
ements (total 18) used in our dataset listed in adjacent columns. The
atomic percent of each metal used for a given alloy was extracted and
populated in the table as shown in step 1 of Fig. 3. The completed table is
used as an input or the training set for the GAN which then outputs a
similar table but with new compositions that are synthesized out of the
same list of metals that was supplied to it. The overall mean atomic
percent of each element in all the GAN generated alloys combined is
somewhat close to that in the originally supplied data (training data).
For example, if all the 241 alloys in the training data had an overall
mean of 23% Fe in them (alloy 1 has 15% Fe, alloy 2 has 35% Fe and
Alloy N has 20% Fe, hence all N alloys have an average 23% Fe) then the
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Fig. 2. Heat map displaying the correlation values between the descriptors of the dataset with P = 1 denoting strong positive correlation and P = —1 denoting strong

negative correlation.

new 200 alloys generated by GAN have a mean around 20-25% Fe.
Therefore, GAN maintains the mean atomic percent integrity between
the training data and generated data. After the generation of 200 new
compositions, we proceed to step 2.

In step 2, a table was constructed with the same 241 alloys used in
step 1 and then the chemical signatures or the fingerprints were deter-
mined that govern the target property i.e., hardness. The fingerprints
were expressed in terms of mathematical equations as shown in Table 1,
following which an inhouse python code was developed that calculates
all the 14 descriptors and outputs their values, by taking only the alloy
composition as the input as shown in step 2 of Fig 3. This dataset with
the thermodynamical, physical, and atomic descriptors was used as the
training data for the NN regressor which is then trained to predict the
hardness of any given unknown alloy. The dataset was split such that
200 data are in training set and 41 in the test set. The testing accuracy is
visualized by comparing the predicted values to experimental hardness
of 41 alloys that were used as the test set. This NN regressor will be used
in step 3 to predict the hardness of all the new alloys generated by the
GAN in step 1.

In step 3, the alloy compositions generated by GAN in step 1 are then
supplied to our inhouse code to calculate the 14 descriptors. This dataset
of 200 GAN generated alloys along with their 14 thermodynamic and
atomic descriptors are then passed into the NN as a test set, which
outputs their hardness values. Two alloys with the highest hardness are
then filtered out from the set of 200 and lab tested for their experimental
hardness.

2. Results and discussion

The mean atomic percent of every element in the training data (241
alloys) for GAN is compared with the output or synthesized

compositions generated by GAN. Fig. 4(a) compares the mean atomic
percent of each element, and it was found that there is very little dif-
ference in the overall mean atomic percent of the elements between the
training and the generated data. This shows that the GAN generates new
alloys within the upper and lower compositional bounds of each element
from the training data.

In Fig. 4(a), as Si, Mn, W and Zn are some of the least occurring el-
ements in our training set, GAN does not get enough training to syn-
thesize new compositions with a significant presence of these elements.
Therefore, the GAN synthesized data hardly contains any composition
with these elements and hence the GAN comparison bar (Fig. 4(a)) is
missing for these elements. Other elements like Mo, Ti, Fe and Cr have a
significant frequency of occurrence in the training set and thus the GAN
synthesized data also contains a similar distribution of these elements, as
seen by similar lengths of the comparison bars for these elements.
Further analysis, using box-and-whisker plots in Fig. 4 (b) and (c), shows
a similar distribution for the original and GAN generated data. The el-
ements like Co, Ni, Al and Cr with a high frequency of occurrence in the
training data have a closely replicated distribution in the GAN data as
visible by closely matching sizes of the box and whiskers of these ele-
ments. On the contrary, elements like Mo and Ti that have a relatively
low frequency of occurrence have considerable smaller box and whisker
size in GAN generated data. Although GAN tried to produce Mo and Ti
data in a way that they have outliers (data lying outside (1.5x inter-
quartile range), denoted by red +) as that in the original data. This
shows the ability of GAN to closely replicate individual data patterns
from original data. Only Co, Fe, Ni, Al, Cr, Mo, Ti and Cu are shown in
the box-and-whisker plots as the occurrence and number of data points
for the other elements was too low.

Naturally, one would think that if the objective is to find alloys with
high hardness, the training data should include many refractory alloys.
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Step 1: GAN generates new alloy compositions
241 data collected from literature 200 new data synthesized by GAN
%Ni %Cr ... % Fe %Ni %Cr ... % Fe
Alloyl 20 40 30 Newalloyl 14 42 37
Alloy2 30 10 40 New alloy2 22 65 12
AlloyN 50 10 10 New alloy N 34 54 18
241 data Step 2: NN is trained and tested
from
literature
241 dataset with 14 descriptors
Alloy 1
& Ay ASnix . Alloy1 670
Alloy 2 0
o Alloy1l  0.03 0.04 8.6 Bl LT Alloy2 720
Alloy2  0.07 0.01 5.5 dlLlE
: Neural network .
a0 AlloyN 0.06 0.07 9.6 predicts Alloy N 675
hardness of test
set
200 new . .
data Step 3: NN predicts hardness of GAN generated compositions
synthesized
by GAN
New alloy 1 5 Ay AS 5 5 e New alloy1 850
New alloy 2 Newalloy1 (.02 0.09 9.1 E : : : : New alloy2 840
Newalloy2 (.05 0.04 8.3 v
&eu.ral.net.wo.rk
: predicts hardness of =
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Fig. 3. Flowchart: Steps to generate new alloy compositions using GAN and then filtering out promising ones with high hardness using a NN model trained on

experimental data.

The major limitation on the reliable use of ML in materials science
community today is the sparsity of relevant data. Such is the limitation
faced in our work too due to which it was attempted to curate the
available alloy hardness data from the literature. It was particularly
found that the open literature has a relatively small number of refractory
MPEAs as compared to those containing the Cantor alloy elements (Cr,

Mn, Fe, Co and Ni).

The NN predicted hardness values shown in Fig. 5 are in good
agreement with the experimental values with the line of fit y = 0.99x
(intercept set to 0) with a MAE = 38.9 HV and R%= 0.98, which is almost
superimposed on the y = x line. The line in Fig. 5 is shown with intercept
set to 0 because the ML model predictions approach 0 when the
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Fig. 4. (a) Elemental mean atomic percent in the training data compared to that in GAN data. The highest variation is seen in Mo while the least in Zr. (b) Box-and-
whisker diagram of select elements from the original training dataset. (¢) Box-and-whisker diagram of select elements in the GAN generated data.

experimental hardness approaches 0 HV. We note that the R? value for
the NN with RELU was 0.88 (with intercept 0), therefore the SELU was
adopted as mentioned in the methods section. Establishing the accuracy
of our NN regressor means that it is now well-trained and ready to
predict hardness of the 200 new compositions generated from the GAN
with sufficient accuracy.

The SHAP analysis in Fig. 6(a) shows the effect of each individual
data point and its descriptors on the model prediction. Every dot in Fig. 6
(a) is a sample point where the ordinate denotes the descriptors used and
the abscissa represents its SHAP value of the datapoint for that
descriptor. The significance of a particular descriptor can be assessed by
the horizontal spread of its data along the abscissa. The wider the spread
of the data, the higher is the contribution of the descriptor. The overall
feature importance is shown in Fig. 6(b) where the VEC has the highest
importance in determining the hardness of an alloy. These predictions
are in good agreement with previous hardness prediction [37,59], where
the authors reasoned that while VEC plays an important role in phase
formation [60] (FCC is promoted for VEC > 8 while BCC is preferred for
VEC < 7) it indirectly also determines hardness because generally high
hardness can be achieved by promoting the BCC phase. Zhang et al. [59]
also shown that high ASpx and low AHpx are beneficial for improving
hardness which is in line with the findings in Fig. 6(b). It was also
noticed that Gy, quite significantly effects the hardness. This observation

can be supported by findings from our previous work [10] where it was
found that the average shear modulus Gy, is crucial in increasing the
resistance to plastic deformation by increasing the solute
atom-dislocation interaction energy thereby increasing the hardness.

The final step involves the testing of the 200 GAN-generated com-
positions using NN regressor. Notably, the NN regressor is a much faster
technique compared to other computational simulations like MD and
DFT. The NN regressor took less than 1200 ms to output the hardness of
all 200 alloys, which is a massive increase the speed of alloy screening as
compared to MD and DFT. Although one caveat is that the overall task of
data curation, code development for descriptor calculation and NN
training may demand several weeks of person hours. The hardness
prediction using NN shows that more than 3 of the GAN-generated alloys
have higher hardness than any other alloy in the training set.

Fig. 7 shows the hardness of all the 241 alloys in the training set
(black circles) and that of the 200 GAN generated alloys arranged in the
descending order. Note that the three GAN-generated compositions
whose hardness were predicted to be higher than the hardest alloy (857
HV) in the training set. This shows that ML has the capability to generate
new compositions that can outperform the properties of the training set
and hence can serve as an ingenious tool to discover novel compositions.
Two of the three novel compositions (with hardness higher than training
data), along with 2 other GAN-generated alloys with high hardness are
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alloys are formulated within the domain of the 18 elements used as
descriptors for training the GAN.

The top-most composition exceeded the predicted hardness and thus
demonstrates that ML can be successfully used to discover new com-
positions with properties exceeding that of the training set. Although the
second composition fell below expectation in the experiments, it is still
as hard as the hardest alloy in the training set (857 HV). Our inference is
that GAN systematically generates a population of candidates with a
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that corresponds to ideal case, where predicted hardness is equal to experi-
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listed in Table 2. These four compositions were experimentally tested. Alloy number

These four included the top two compositions and then the 5th and the

7th from top. This selection was done to study the effect of inclusion of ~ Fig. 7. Hardness of 200 GAN-generated alloys as predicted by NN (red aster-
different principal elements in the alloys. As the 3rd and 4th had a isks) compared to the experimental hardness of the 241 alloys in the training set
similar composition to the 1st and 2nd, we skipped to the 5th and then (black circles). 3 of the 200 alloys generated by GAN had a higher hardness
7th. As we go down our list, the principal elements change, though all than any other alloy in the training set.
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List of high-hardness compositions found by GAN. The hardness of the first composition exceeds the predicted hardness — harder than the hardest alloy (857 HV) in the

training set.

# Alloy Predicted H (HV) Experimental H (HV)
MPEA1 Co14.86F€14.49Ni15.18A117.31Cr16.22M021 52Tio.41 930 941 + 13

MPEA2 Co12.89Fe10.89Nig 21Al2 53Crg 31M025.10Ti30.23Zr4.19Ta1.00Wo.38 910 858 + 25

MPEA3 Coo.24F€20.94Ni19.58Al21.57Cr20.94M013.17Ti3 56 761 700 +9

MPEA4 Co13.88Fe17.18Ni23 52M021 71 Tio.83V22.77 749 713 +£13

relatively high hardness representing a forced extrapolation of the
training data. It can be seen from Table 2 that the experimental values
are within 8% error from the predicted values. The low error margin
shows that the method has the potential to accelerate the discovery of
new materials with desired properties.

The variation of principal elements and their atomic percent in the
alloys (listed in Table 2) demonstrate that our approach allows a
detailed analysis of the effect of small composition variations in a
reduced parameter space containing, for example, some minor elements
like Ti, W, Ta and Zr. When moving from the first to the second alloy in
Table 2, Ti was added as a principal with Zr, Ta and W in minor quan-
tities. This variation caused a significant drop in hardness as predicted
by our NN and validated by experiments. In the 3rd composition the
effect of Co removal caused a drop in the hardness and in the 4th, the
addition of V and removal of Ti caused a further drop. Thus, the meth-
odology serves as a guide tool for experimentalists, wherein, it is
possible to fine tune the predictions by considering both major and
minor compositional variations.

A comparative analysis of compositions with high hardness found
from prior works is shown in Fig. 8. The composition of the alloy
numbers marked on x-axis of Fig. 8 are given in Table 3. Clearly, most
compositions except one found in prior works have hardness under 900
HV. The one exception being Co;3CryFe3sNisVss with hardness 1148 HV
from Ref. [37]. In the current work, the maximum hardness found was
941 HV which is lower than some high hardness alloys found using ML
and mentioned in literature. But there are some striking points that are
noteworthy in this case that are described in the subsequent paragraphs.

Most of the efforts attempting to find new compositions using ML,
have trained the models only by using 5-10 elements in the training set
as elaborated in Table 3. With fewer elements as compared to that in the
present work (18), the ML model learns sufficiently well on the training
set and is able to optimize the compositions adequately such that the

output composition can exceed the hardness of those in the training set.
The model in the current work is simultaneously dealing with opti-
mizing 18 elements which drastically increases the number of variables
and thus increases the level of complexity of the model. Additionally, the
dataset size is limited to 241 which is similar or comparable to dataset
sizes used in other works. Despite the large number of input descriptors,
and small training data, the ML model is able to generate new compo-
sitions that exceed the maximum hardness of the training set by ~ 10%
as shown in Table 3. It is acknowledged that the complications of adding
more elements without a considerable increase in the dataset size is a
probable cause of the model not being able optimize the composition to
its full potential, thus only able to achieve and increase of 10% hardness
in the optimized composition as compared to the training set.

Although the ML-generated alloys in this work are only 10% harder
than that in the training set, the methodology offers a wider design
window for formulating compositions from a palette of 18 elements as
compared to a previously achieved 10 elements. For example, the choice
to include elements like Ti offers room to increase resistance to corrosion
and wear [61] and also increase the yield strength [62]. Inclusion of
elements like Mo increases the compressive strength [63] and adds to
the corrosion resistance of the alloys [64] by forming a protective pas-
sive layer. Elements like W, Ta and V allow for the design of nuclear and
plasma facing materials [65]. Although the number of alloys with these
elements is low in the dataset, the ML model is not completely agnostic
of their role and effect, and includes them in the design space, thus
allowing for future possibilities of optimizing compositions with these
elements when the dataset includes more entries with W, Ta and V. By
including 18 elements as features, the design space is kept wide and
flexible for a large possibility of outputs depending upon the alloy
application requirement, training data and the parameters used in
training.
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Fig. 8. Comparison of the compositions found in this work versus the ML obtained high hardness compositions in previous works.
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Table 3

A list of ML obtained high hardness compositions in previous works.
Alloy alloys Max hardness Max hardness in % increase in obtained hardness ~ Number of elements in Refs.
no. obtained (HV) training set (HV) versus training hardness the training data
1 Al4Co;5Cr3sFe;oMny sNis 5 650 + 12 900 No increase 8 (32]
2 C015Cr7FessNisVas 1148 [37]
3 AlyoCrsCujsFe;sNisTijgVs 650 920 25 10
4 Al Cry;FeagNisMoig 690
5 Alyg 56Cras gFeas gNiss g 486 775 No increase 6 [39]
6 Ti-Zr-Nb-Ta 525 + ~30 536 No increase 5 (38]
7 Al43C025Cra3CugFe;Nis 883 + 47
8 Aly7C020Cr1sCusFesNis 883 + 22 (331
9 Al43C022Cra2CugFegNis 882 + 22
10 Al47C019Cr19CupsFesNis 878 + 25
11 Aly3C024CrasCuoFesNig 875 + 58
12 Al43C0,5Cra2CugFesNis 868 + 45 775 14 6
13 Al43C024Cra3CugFesNis 865 + 39
14 Aly3C015CraoCugFe; oNiy 864 + 23
15 Aly3C023Cra1 CugFegNis 863 + 34
16 Al47C014Cro0CusFegNis 859 + 26
17 C014.86F€14.49Ni1518A117.31Cr16.22MO21 52Tio.41 941 & 13 857 10 18 This

work

2.1. Phase stability and electronic-structure using DFT

To understand the electronic origin, phase stability, elastic moduli,
and electronic structure of MPEA1 and MPEA3 with highest and lowest
measured hardness (see Table 2) were analyzed. First, the formation
energy (Eform) of two alloys in BCC, FCC, and HCP phases were calcu-
lated. The Egor shows that both alloys are stable in bee phase, i.e., Eform
(BCC-FCC) is —5.317 mRy/atom for MPEA1 while —4.93 mRy/atom for
MPEAS3. The hcp phase is not included as Ef,, is more positive, i.e.,
energetically not stable, compared to BCC or FCC phases. Notably,
MPEA1 with higher hardness shows improved stability compared to
MPEAS3, i.e., Efoyy(MPEA1-MPEA3) = —14 mRy/atom. Furthermore, the
comparison between DFT-calculated intrinsic strength (i.e., bulk
moduli) and predicted/measured hardness for MPEA1 (246.3 GPa; 930/
941 HV) and MPEA3 (201.4 GPa; 761/730 HV) shows good correlation.

Both formation energy and elastic moduli suggest correlation of
electronic properties with high hardness of MPEA1. This change in
electronic behavior is expected to reflect in electronic structure as well.
Therefore, electronic partial density of states (PDOS) for MPEA1 and
MPEA3 were plotted in Fig. 9. The overlapping Mo-4d, Fe/Co/Ni-3d and
Al-3p PDOS for MPEA1 at —0.20 Ry in Fig. 9(a) shows stronger bonding.
While reduced Co and Mo content in MPEA3 (Fig. 9(b)) significantly
reduced the bonding of Mo-4d and Co-3d with other Fe/Ni-3d and Al-3p,
which is also reflected through reduced energy stability and intrinsic
strength.

We expect two phase formation due to anti-bonding nature of Cr with
other constituents in MPEA1. If we closely look at PDOS below Egermi,

—
T

[a] MPEAI

PDOS

the Cr peaks at —0.15 Ry shows anti-bonding behavior for both MPEA1
and MPEAS3, i.e., peaks in Cr PDOS overlaps with valley in Ni/Fe PDOS
both for MPEA1 and MPEA3, which works as phase destabilizer for
MPEA3 [66]. Our electronic-structure analysis suggests that higher
hardness (or strength) of MPEA1 can be attributed to improved stability
and increased bonding (reflected in PDOS).

2.2. Microstructural and microchemical characterization

Following ML predictions, electronic-structure analysis and hardness
test, detailed microstructural and microchemical characterization were
carried out to better understand the observed plastic deformation of
MPEAL.

Fig. 10 shows SEM and EDS characterization of GAN-predicted
MPEA  Co14.86Fe14.40Ni15.18A117.31Cr16.22M021 52Tip.41  with  higher
hardness than other MPEAs in Table 2. The microstructure (see Fig. 10
(a)) is hypereutectic due to high content of Mo in the alloy. The MPEA is
a dual-phase alloy, as substantiates in Fig. 10(b). Dual phases have been
cited to be the primary cause for improving mechanical properties like
tensile strength [67] and hardness [68] due to finely spaced precipitate
interfaces acting as obstructions for dislocation gliding.

To determine the elemental chemistry of bright and dark phases EDS
area map, line scan and electron backscattered Kikuchi pattern of bright
and dark zones are presented in Fig. 10 (b-h) and Fig. 10 (i-j) respec-
tively. Mo and Cr show high intensity in bright region, which is deficient
in Ni and Al. Similarly, the dark phase is abundant in Ni and Al and
deficient in Mo and Cr. Cobalt shows only a traceable change in
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Fig. 9. The partial density of states of (a) MPEA1 (Co14.gsFe14.49Ni15.18Al17.31Cr16.22M021.52Tio.41), and (b) MPEA3 (Cog 24F€20.04Ni10.58Al21.57Cr20.94M013.17Ti3.56) in
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Fig. 10. SEM and EDS analysis of arc-melted Co14 ggFe14.49Niis.18Al17.31Cr16.22M021 52Tig 41 MPEA. (a) Secondary-electron (SE) image, (b) Al, (¢) Mo, (d) Cr, (e) Fe,
(f) Co, (g) Ni, (h) SE image showing red line segment left to right for EDS mapping, (h) relative intensity vs distance (AB), suggests Ni-Al-rich dark phase and Mo-Cr
rich dark phase, (i), (j) Kikuchi patterns from electron backscattered diffraction (EBSD) point analysis of bright and dark phase, respectively. The Kikuchi pattern
shows Miller’s indices of diffracting planes and zone axis at intersection of these planes, which suggests that Mo-Cr rich bright phase has a FCC crystal structure and
Ni-Al rich dark phase has a BCC crystal structure. (k) Low magnification SEM image of the MPEA with encircled lamellas with a interlaminar spacing of 0.35 + 0.01
pm. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

intensities in bright and dark regions. However, Fe is found to be uni-
formly distributed in the two phases. Ti with its very low concentration
of 0.0041% is left undetected due to limitations of EDS and matrix
effects.

The reason behind grouping of Mo-Cr and Ni-Al can be inferred from
the values of AHpix (kJ/mol) in Table 4. As Ni and Al have a more
negative enthalpy of mixing, they tend to segregate along with Fe and Co
in a disordered structure. On the other hand, Mo and Cr have a net zero
enthalpy of mixing and hence support solid-solution formation. Fe has
an equal enthalpy of mixing with Mo and Ni and hence it is found to be
homogeneously distributed. Al and Mo due to their larger atomic radii

11

Table 4
AHpix (kJ/mol) of binary pairs for constituting elements of Co14gcFe14.49.
Ni15_18A117.31Cr16'22M021_52Ti0_41 MPEA taken from [71].

Al Ti Cr Fe Co Ni
Ti -30
Cr -10 -7
Fe -11 -17 -1
Co -19 —28 -4 -1
Ni —22 -35 -7 -2 0
Mo -5 —4 0 -2 -5 -7
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and low number of valance electron (3 for Al and 6 for Mo) have been
found to improve the mechanical properties of CoCrFeNi alloy system.
Al is found to promote the formation of a hard BCC phase on the other
hand Mo due to higher Pauling’s electronegativity (2.16) and forms
extremely hard FCC sigma phases with Cr. The hardness of Al,CoCrFeNi
is found to increase from 120 HV to 527 HV with x increased from 0 to 1
[69]. The hardness of CoCrFeNiMoy increases from 200 to 900 HV as x
increases from O to 1 [69,70]. The effect of Al and Mo is altogether
captured in this work by GAN model.

The origins of high hardness in the discussed alloy are thought to be
multifaceted, ranging from electronic phenomenon resulting in an
increased bonding (as reflected by the PDOS in Fig. 9) to microscale
phenomena like formation of multiple phases. The microstructure of the
MPEA is hypereutectic hence there are fine lamellas scattered in the bulk
(Fig. 10(k)) with higher density of MoCrFe-phase. These lamellas in-
crease the phase interface obstructing the dislocation motion and
enhancing mechanical properties of the alloy. Supporting examples are
found in the works of Dong et al. [72] where the high hardness of
AlCrFeNiMo (911.5 HV) was attributed to the presence of primary
MoCrFe phase. In alloys with similar constituents, Zhu et al. found that
the yield stress for AlCoCrFeNiMoy s is 2.757 GPa, empirically this is
equivalent to a hardness of 8.27 GPa or 898.78 HV [73]. Thus, it is
important to note that the CoCrFeNi family of MPEAs without Al and Mo
are found to be extremely soft per se, but the addition of Al and Mo
induces appreciable hardness into the alloy due to their thermody-
namical and lattice effects. Although the electronic effects and phase
separation effect may sound totally independent of one another, but,
these phenomena are strongly dependent on each other. Ref. [74]
investigated the effect of increasing Al content (0-20 at.%) in (CoCr-
FeMn)(; x)Alx and noted a transformation from FCC to BCC separated by
a thin duplex region. They pointed out that such phase transitions are
driven by thermodynamic linear response quantified by the chemical
short-range order. They postulated that the FCC at 0 at.% Al was formed
due to the short-range order driven by Co-Cr pair and the BCC at 20% Al
was formed due to the Cr-Mn pair. Al played a crucial role in the phase
transition with the dual phase region formed due to the Cr-Al short--
range order. Their work shows that phase transition arises from elec-
tronic origins as reflected in electronic structure calculations, thereby
evincing the dependence of phase transformation on electronic effects.

The fact that GAN-predicted MPEA possess the strengthening effects
of Al and Mo with microstructure effects, represents the sheer success of
the model. The constituents in GAN-predicted MPEAs and the trends in
mechanical properties are similar to Zhu et al. [73], however, the
measured hardness in our case is superior indicating that the model is
able to capture the physics driving strengthening. Although a drawback
of our work and most ML works related to hardness predictions is that
the predictions are made for holistic hardness of the alloy and not the
hardness of a particular phase. Multiple latest reviews like [28,75] on
ML on MPEAs have cited lack of inclusion of deformation mechanism,
creep mechanism, grain size, and structure, as major drawbacks of ML
technique. There are still no methods that can systematically quantify
such aspects and include them as descriptors for a large and varied
dataset. Properties like hardness and yield strength are numerically
measurable and available for a good number of alloys which makes it
feasible to use them in ML studies in the form a large, tabulated datasets.
But properties like creep and deformation mechanisms or grain structure
and sizes are generally not available for each individual alloy system.
Therefore, most ML studies are not able to include these aspects as de-
scriptors. And because of inability to include metadata information as
descriptors, the predictions are also made in a holistic manner for the
entirety of the alloy composition and not with respect to individual
phases of the alloys.

3. Conclusions

We presented a unique approach that leverages data analytics in
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inverse design of MPEAs with high hardness using existing literature
data. Our approach permits a multi-dimensional exploration of
composition space consisting of chemical, physical, thermodynamical,
and atomic descriptors to intricately couple a generative adversarial
network (GAN) algorithm with a regressor algorithm (NN). These ca-
pabilities were harnessed to design new MPEAs with high hardness
using a dataset with 18 elements. More precisely, two alloys with high
hardness (one with hardness > 941 HV and another with 858 HV) were
discovered and were validated experimentally. The technique demon-
strates the capability of GAN to generate new optimized compositions
even in a high dimensional space that exhibit a hardness 10% higher
than the maximum hardness in the training set. With a large elemental
palette there exists an opportunity to optimize compositions for
numerous applications ranging from highly corrosion resistant materials
to nuclear materials.

Microstructural characterization combined with thermodynamic
analysis was carried out in the alloy with the maximum hardness to
analyze elemental distributions and understand the origin of improved
mechanical response. DFT was used to gain thermodynamic and elec-
tronic insights to higher hardness. The calculation shows one-to-one
correlation between intrinsic strength (bulk moduli) and ML predicted
hardness, which again suggests that GAN was able to accurately capture
the underlying physics controlling mechanical response in MPEAs.

Another intriguing aspect to consider is the role of elements present
in minor atomic fractions, in determining the hardness of the product
alloy. The approach allows a detailed analysis of the impact of compo-
sitional variations on hardness and thus serves as a data guided tool for
experimentalists to down select their choices for experimental valida-
tion of potential candidates. The measured hardness of theoretically
predicted MPEAs could be added to the training dataset to enable
bootstrapping of the entire workflow and enforce an extrapolation that
could possibly lead to significant improvement in model accuracy in
property predictions. The bootstrapping effort remains our task targeted
for future investigation, although its success will depend more on the
number of new data added into the training.
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