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A B S T R A C T   

Multi-principal element alloys (MPEAs) continue to gain research prominence due to their promising high- 
temperature microstructural and mechanical properties. Recently, machine learning (ML) and materials infor-
matics have been used extensively for screening MPEAs, however, most of these efforts were focused on con-
structing classification and regression models for predicting phase stability and mechanical properties of known 
compositions. These approaches may accelerate the screening process but optimizing new compositions with 
desirable properties within a practical time frame from an infinitely large design space of MPEA systems remains 
a grand challenge. To tackle this composition optimization challenge, a generative adversarial network coupled 
with a neural-network ML model was utilized to design MPEAs by filtering compositions that have high hardness. 
Even in a high-dimensional space with 18 elements as descriptors, the ML model was able to generate optimized 
compositions from which one composition was found to have 10% higher hardness (941 HV) than the maximum 
in the training data (857 HV). Density-functional theory was used to provide thermodynamic and electronic 
insights to higher hardness of the new MPEA found. The present work can optimize compositions from a wide 
design space of 18 elements (including W, Ta and Nb) that presents an opportunity to synthesize new compo-
sitions for applications ranging from corrosion-resistant alloys to nuclear materials. The findings suggest that 
generative ML can greatly accelerate materials discovery by identifying novel compositions, which can serve as a 
data-informed tool to guide experiments.   

1. Introduction 

The concept of high-entropy alloys (HEAs), first conceived in 2004 
primarily by two groups [1,2], was originally defined as an amalgam-
ation of 5 or more elements in 5–35% atomic concentrations. Since its 
inception, HEAs have transformed the alloy research with an exponen-
tial rise in the number of related papers in the last decade. This can be 
attributed to their outstanding structural properties, such as excellent 
hardness [3], high-temperature strength [4], high elastic moduli [5] and 
corrosion resistance [6,7] that take place due to the core effects [1] like 
high entropy [1], sluggish diffusion [8,9], lattice distortion [10] and 
alloying. However, now this field has branched into a number of sub-
groups, the major ones being multi-principal-element alloys (MPEAs) 

[11] and complex concentrated alloys (CCAs) [12] that include mate-
rials with just 3 elements and in concentrations more than 35 atomic 
percent. A previous report [13] mentions that considering the 75 stable 
elements in the periodic table, if every 10% concentration change yields 
a new MPEA, then with 3–6 principal elements, over 592 billion new 
MPEAs can be made. This is an overwhelming number to deal with using 
Edisonian approaches via experimentation or even computations[9, 
14–18]. Such a scenario calls for the use of modern data-centric tech-
niques to explore the entire compositional landscape of MPEAs. 

Given the cosmically large search space of unexplored alloy bases, 
experimentation and simulations alone cannot span the possible 
compositional space. Even though the field is two decades old, the 
number of alloys explored are only in the order of 1000 [19]. Under such 

* Corresponding author at: Pacific Northwest National Laboratory, Richland, WA 99354, USA. 
E-mail address: ankit.roy@pnnl.gov (A. Roy).  

Contents lists available at ScienceDirect 

Acta Materialia 

journal homepage: www.elsevier.com/locate/actamat 

https://doi.org/10.1016/j.actamat.2023.119177 
Received 19 October 2022; Received in revised form 17 July 2023; Accepted 21 July 2023   

mailto:ankit.roy@pnnl.gov
www.sciencedirect.com/science/journal/13596454
https://www.elsevier.com/locate/actamat
https://doi.org/10.1016/j.actamat.2023.119177
https://doi.org/10.1016/j.actamat.2023.119177
https://doi.org/10.1016/j.actamat.2023.119177


Acta Materialia 257 (2023) 119177

2

a circumstance, use of data-driven machine-learning (ML) techniques, 
becomes compelling to facilitate a swift discovery of MPEAs. The use of 
ML for surfing through MPEA compositions began by the second half of 
the last decade with a notable work by Islam et al. [20] being the first to 
convert Hume-Rothery rules into numerical descriptors. In the subse-
quent years, there was a steep ascent in ML efforts for exploring new 
MPEAs that include interesting works like [20–28]. While ML has been 
successfully used in prediction/interpolation problems with higher ac-
curacy when tested within the limits of the training set, most ML models 
lose accuracy when tested with datapoints that fall outside the bounds of 
training set. Although there are over a 100 works related to ML in 
MPEAs, most models have mainly focused on constructing regressor 
algorithms for either classifying phases or predicting mechanical prop-
erties, like hardness, yield stress or elastic modulus [24–26,29–31] while 
very few [32,33] have focused on the generation and optimization of 
new MPEA composition. 

Considering the problem described above, a generator-regressor 
combination was adopted to find novel MPEAs with high hardness. 
Generative adversarial networks (GANs), proposed by Goodfellow et al. 
[34], have been used for medical image generation [35] and astro-
physical image painting [36]. The specialty of GANs lies in its ability to 
learn from descriptors of existing MPEAs and produce statistically 
congruent compositions, similar to training data. 

GANs have been employed here to predict new MPEA compositions 
by using an initial dataset of alloy compositions and hardness as input. 
An extensive search using GAN on 18-dimensional design space of Co- 
Fe-Ni-Si-Al-Cr-Mo-Ti-Nb-V-Zr-Mn-Cu-Sn-Ta-Hf-W-Zn MPEAs was per-
formed. The new compositions synthesized by GAN become the search 
space from which the compositions with highest hardness were down- 
selected using a neural network (NN) regressor. This search resulted in 
the identification of two compositions with significantly higher hardness 
(>900 HV), which are better than known MPEAs rich in 3d transition 
metals. In validation, the predictions showed good agreement with 
Vickers microhardness measurements. Thermodynamic and electronic- 
structure analysis was performed on two candidate alloys with the 
highest hardness using density-functional theory (DFT) to gain elec-
tronic insights. The microstructural and microchemical characterization 
of the same was also done to understand the microstructural origin of 
exceptional mechanical response. 

The methodology adopted in the present work differs considerably 
from the past works of similar nature. Ref. [32] found new compositions 
based on AlCoCrFeMnNi alloys by using a simulated annealing (SA) 
algorithm where the concentration of every element was limited be-
tween 5 and 35%. Authors discovered new compositions, but the highest 
predicted hardness was 650 HV that was limited by the upper bound to 
Al-Co-Cr-Fe-Mn-Ni family of alloys. In contrast, the present work in-
cludes a higher descriptor dimension of 18 elements with predicted 
hardness of 941 HV, which is 50% higher than known alloys in the 
training set or previously known works. Inverse projection (IP) is 
another approach that was applied into Fisher model to identify a 
high-performance zone in the Fisher plot that reverse calculated the 
features in the original space [37]. This approach predicted some 
compositions that would yield the high value of target properties, e.g., 
hardness. Then the authors [34] designed virtual compositions of 
Al-Co-Cr-Cu-Fe-Ni (and derivates) family of alloys by varying the 
elemental concentration between 5 and 35% and identified HEAs that lie 
in the high-performance zone of the Fisher plot. Their primary focus was 
on vanadium containing HEAs and the alloy with highest hardness was 
Co-Cr-Fe-Ni-V based. Ref. [38] developed an XGBoost model to predict 
hardness and studied the effect of Ta addition by increasing the Ta 
content in virtually formulated Ti-Zr-Nb-Ta alloys. They concluded that 
with addition of Ta the hardness should increase until a peak value and 
then decrease on further Ta addition. Ref. [39] and ref. [40] both built 
hardness screening models using neural network and genetic algorithms, 
respectively, with primary focus on Al-Co-Cr-Cu-Fe-Ni HEAs and their 
sub-groups. Another noteworthy work [33] that successfully found 

novel high hardness compositions used a support-vector regression 
model with a Radial Basis Kernel as the screening model and self 
developed an algorithm for formulating new compositions. Their algo-
rithm generated AlxCoyCrzCuuFevNiw compositions by keeping the limits 
as: 15.0 < x < 47.0, 5.0 < y < 22.0, 6.0 < z < 34.0, 5.0 < u < 16.0, 5.0 <
v < 31.0 and 5.0 < w < 22.0 at.%. The new compositions were then 
passed into the support-vector regression screening model and 35 new 
compositions were found with a higher hardness than the maximum in 
the training set. Very recently, Bayesian techniques have been leveraged 
for optimizing multiple constraints like solidus temperature, solidifica-
tion range, thermal conductivity, density, ductility and yield strength 
[41]. The authors connected Bayesian classification with Bayesian 
optimization loops and identified a set of 21 compositions based on 
Mo-Nb-Ti-V-W alloy family that satisfied the strength-ductility objec-
tive. Further experimental investigation of these alloys was recom-
mended serving as a swift tool for guided experiments to discover novel 
materials for gas turbine engine blade applications [41]. Another 
multi-objective constraint satisfaction framework that is agnostic of the 
composition was developed recently [42] to identify alloys with multi-
ple optimized properties like hardness and strength [43]. 

Despite several previous efforts in predicting hardness, it may be 
emphasized that this work stands out for two primary reasons. First, the 
descriptor space encompasses a total of 18 elements (Co-Fe-Ni-Si-Al-Cr- 
Mo-Ti-Nb-V-Zr-Mn-Cu-Sn-Ta-Hf-W-Zn) of the periodic table which 
spans a larger composition space than all previous works. The possible 
new composition is not limited to Al-Co-Cr-Cu-Fe-Ni family of HEAs. 
Second, the power of ML is harnessed to generate new compositions by 
utilizing the statistical capabilities of GAN. The algorithm replicates the 
patterns existing in the training set to predict new compositions. The 
previous works either manually formulated the compositions or used 
mathematical algorithms to vary the elemental concentration in steps of 
1–5 at.% to predict new ones. Along with above outlined reasons, the 
present approach is more time efficient in terms of computational effi-
cacy, as it bypasses the need to exhaustively check compositions which 
have a low probability of showing high hardness. Moreover, the 
approach used here is fully autonomous with minimal to no human 
interference, as needed for stepwise-composition search algorithms. 
This makes artificial intelligence (AI) driven GAN approach more 
capable of improvement as AI capabilities improve in the future. 

1.1. Methodology 

1.1.1. Data generation by GANs 
The basic principle of GANs are derived from the Nash Equilibrium 

[44] in game theory with two main competitive networks comprising of 
the generator G and the discriminator D. A point in latent space serves as 
input for the G which then uses it to produce an output data subject to 
the distribution of the original real data. Therefore, now there are two 
categories for the dataset: the real data (x) and the generated data. 
Following this, the competitive network D is trained such that it dis-
tinguishes between the generated data and the real data by assigning the 
numeric value 1 to real data and 0 to the data generated from G [45]. 
Simultaneously, G is trained such that it can generate data that would be 
most likely be classified with numeric value 1 by the D. With an 
objective of winning the game, the two networks constantly optimize 
themselves to make their generation and discrimination abilities more 
accurate, until Nash equilibrium is established between the two 
networks. 

The flowchart in Fig. 3 shows the structure and working of GAN. The 
generator takes random variables (y) as input and generates new sam-
ples G(y) mimicking a similar distribution as in the real data. Both real 
data x, and generated data G(y) serve as input to the discriminator D, 
which should classify real data to be true and label it with value 1 while 
generated data is labeled false with value 0 [46]. D is trained such that 
the probability of classifying generated data G(y) from real data is 
maximized. On the other hand, the generator is trained such that it 
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minimizes the probability of a generated data being labeled with zero, i. 
e., minimize the function log (1 – D(G(z))). 

1.1.2. Learning and training methodology 
The training of the discriminator involves the optimization of an 

objective function expressed as follows [45,46]: 

ObjD(θD, θG) = −1
2Ex∼pdata(x)[logD(x)] − 1

2Ez∼pz(z)[log(1−D(g(z)))] (1) 

Where ObjD(θD, θG) is the objective function, θD and θG are the two 
terms on the right-hand side of the equation respectively, D (x) denotes 
the probability of x sampled from the real data instead of generated data, 
and E represents the expectation. Since the training data consists of real 
data distribution (pdata(x)) and generated data distribution (pg(x)), it is 
required to minimize the objective function of the generator given in Eq. 
(1). To do so, Eq. (1) is rewritten as [45,46] 

ObjD(θD, θG) = −1
2

∫

x
pdata(x)log(D(x)dx − 1

2

∫

z
pz(z)log(1−D(g(z))dz  

= −1
2

∫

x
pdata(x)log(D(x))dx− 1

2

∫

z
pg(x)log(1−D(x))dx. (2) 

Here pg (x) denotes the distribution of generated data. For form −
a log(f)− b log(1 − f), the minimum occurs at f = a

a+b. By analogy, Eq. 
(2) achieves its minimum at [45–47] 

D∗
G(x) =

pdata(x)
pdata(x) + pg(x)

. (3) 

D∗
G(x) is the optimal solution of discriminator D. Putting D* from (3) 

into (2) is a problem of finding the minimum of Jensen-Shannon 
divergence (JSD) between pdata(x) and pg(x) and the JSD achieves a 
minimum when the two are equal [47]. Simply put, Eq. (3) reaches a 
minimum when pdata(x) = pg(x), which signifies that the generative 
model perfectly replicates the real data distribution in the generation 
process. 

1.1.3. Hardness prediction by neural networks 
Artificial neural networks are computer algorithms that replicate a 

human brain’s neuron network [48]. They consist of an input layer, 

output layer and several hidden layers. Each node is like a neuron which 
is linked to other neurons. Each neuron has a certain threshold and 
weight. Below a fixed threshold the neuron remains inactive, but it is 
activated beyond the threshold input it starts transferring data to the 
next layer. The hardness prediction is done by a regression NN the ar-
chitecture of which is depicted in Fig. 1. The hyperparameters of the NN 
need to be optimized for the highest predictive accuracy and, after 
iterating the training in a range of hyperparameters, the best ones were 
found to be as follows: batch size = 32, learning rate = 0.5, number of 
hidden layers = 4, maximum number of nodes in the hidden layer = 32. 

A major limitation associated with any ML model is the variability of 
model output with the change in model parameters like the learning rate 
and number of layers. Ref. [29] discussed the variation in accuracy of 
phase classification with different combination and number of features. 
However, the change became insignificant beyond four descriptors, 
therefore, they selected a four-descriptor model with highest accuracy to 
conclude their findings. This process is often defined as parameter 
optimization (as described above) that is a widely accepted approach in 
the material design community. 

The implementation of NN requires the specification of an activation 
function which is basically a mathematical function that converts a 
given input into the required form of output within some bounds. This 
output is the total weight with a bias added to it and its value determines 
whether the neuron is to be activated or not. The goal of the activation 
function is to introduce non-linearity to the neuron’s output which 
would have otherwise behaved like a linear regression model with a 
significantly low learning power. The two most popular activation 
functions are the Rectified Linear Unit (ReLU) [49] activation function 
and the Scaled Exponential Linear Units (SELU) [50]. The ReLU is 
expressed as f(x) = max(0, x), which means it outputs the input as is 
when the input is positive and outputs a value of 0 otherwise. Whereas 
the SELU [50] is expressed as 

f (x) = λx if x > 0 (4)  

f (x) = λα(ex − 1) if x ≤ 0 (5) 

Here, λ = 1.5 and α = 1.67. Although both ReLU and SELU were 
tried in this work, a better prediction accuracy was obtained with SELU 
and hence SELU was adopted for the final model. SELU has been found 

Fig. 1. Architecture of the NN regressor used for predicting the hardness values. The +x notations at the bottom represent the additional nodes that are not shown in 
the schematic. 
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to be more accurate in other prior works where NN was used to predict 
phases of HEAs [51]. 

The number of input nodes is equal to the number of descriptors (14) 
and there is only one output node, which is the hardness value. Note that 
11 out of the 14 descriptors are adopted from our previous work on 
Young’s modulus predictions [25], where the new descriptors added 
here are Pauling’s electronegativity, difference in shear moduli, and 
average shear moduli. To explain the significance of the inclusion of 
shear modulus (G), we refer to the relations between hardness and G that 
were established previously [10]. Under an externally applied strain, the 
hardness (H) represents the tendency of a material to resist local plastic 
deformation, before gliding takes place [52,53]. In the presence of a 
solute atom with a different atomic radius than the host species, a stress 
field is induced due to the resulting local compression or expansion of 
the lattice. These stress fields interact with the dislocations giving rise to 
a dislocation interaction energy denoted by Usize that is positive when 
the solute is larger than the host and is expressed as Usize = 4(1+ν)Gbr3εbsinθ

3(1−ν)R 

[54], where G is shear modulus, b is the magnitude of the Burger’s 
vector, R is the distance between the dislocation core and solute atom, θ 
is the angle between the slip direction and the line connecting the 
dislocation core and solute atom, r is the radius of solvent atomic and r 
(1+εb) is the solute atom radius where εb = 1

a
da
dc, a being the lattice 

constant, c being the solute concentration and ν is Poisson’s ratio. Hence, 
to integrate the ML model with the physics that underlies the hardness of 
a material, the shear modulus (G) descriptors are included along with 
the other set of descriptors, as shown in Table 1. 

An initial data analysis is performed by quantifying the existing 
correlations between any given pair of descriptors. This is done by 
calculating the Pearson correlation coefficient P, where P = 1 and P=–1 
denote a strong positive and negative correlation respectively. The heat 
map in Fig. 2 shows that all pairs have low correlation except average 
lattice constant (am) with the difference in lattice constants (Δam) that 
have a high correlation of 0.9. However, none of these were excluded 
from analysis as there was no full correlation. In the present study, it will 
be revealed later using Shapley Additive exPlanations (SHAP) [55] that 
both features contribute unequally to model performance. Additionally, 
since the average lattice constant (am) and the difference in lattice 
constants (Δam) have different mathematical expressions, they might 
have a lower correlation coefficient if the composition space is varied 
significantly. To avoid the risk of rendering the model agnostic of a 
significant and relevant feature in the event of an updated composition 

space, both average lattice constant (am) and the difference in lattice 
constants (Δam) have been included. Thus, a priori elimination of any 
feature can be detrimental to predictive power. 

The dataset of 241 alloys was divided into 200 for training and 41 for 
testing. This procedure was iterated four times to distill four different 
and random test sets and check for the variability in mean absolute error 
(MAE) and mean squared error (R2) of predicted versus experimental 
hardness data. One random case from these iterative cycles was chosen 
and the predictions versus the experimental values of hardness were 
plotted to visualize the accuracy of predictions in the results section. The 
MAE varied between 36 and 40 HV and R2 varied between 0.95 and 0.99 
for these iterations, showing that model training is stable and does not 
vary largely when the training and testing sets are randomly distributed 
in each iteration from the original dataset. 

1.1.4. Density functional theory (DFT) calculations 
The DFT-based Korringa-Kohn-Rostoker (KKR) Green’s function 

method combined with the coherent potential approximation (CPA) was 
used to calculate phase stability, bulk moduli, and electronic structure of 
predicted MPEAs [56,57]. The DFT-KKR-CPA performs configurational 
averaging simultaneously with DFT charge self-consistency, which 
properly includes alloy-induced Friedel impurity-charge screening. The 
core electrons were treated fully relativistically (includes spin-orbit 
coupling) and the semi-core/valence electrons were treated scalar 
relativistically (i.e., neglecting spin-orbit coupling). The self-consistent 
charge density was obtained from the Green’s function using a 
complex-energy contour integration and Gauss-Laguerre quadrature 
[56]. The Perdew-Burke-Ernzerhof (PBE) exchange-correlation func-
tional was used in all calculations [58]. A site-centered spher-
ical-harmonic basis including s, p, d, and f-orbital symmetries (i.e., 
Lmax = 3) with equally spaced k-space mesh (18 × 18 × 18) was used 
for Brillouin zone integrations. 

1.1.5. Experimental validation 
Four GAN predicted alloys with highest hardness values were syn-

thesized by arc melting compressed pellets in an inert argon atmosphere 
with required ratios of high purity powders (>99.95%) of Co, Fe, Ni, Al, 
Cr, Mo, Ti, Zr Ta and W from Sigma-Aldrich. To ensure composition 
homogeneity each sample was overturned and re-melted five times. The 
melted sample was cut from center and polished with 1200 grit paper 
followed by diamond and fine silica to prepare sample for Vickers 
microhardness and SEM imaging. Vickers microhardness was performed 
using LECO LM248 with 100 gmf load, the final values calculated from 
the mean of 10 independent measurements per sample. Hitachi 4300SE/ 
N Scanning Electron Microscope (SEM) equipped with energy-dispersive 
spectroscopy (EDS) comprising of an Octane Elect Plus Silicon Drift 
Detector and TSL High speed Hakari EBSD camera, was utilized for 
microstructure, elemental, and phase analysis. 

1.1.6. Workflow pipelines 
The integrated flowchart coupling all the individual steps is shown in 

Fig. 3. Data was collected manually from the literature for the alloy 
compositions with their hardness values, as described previously [25]. 
With the goal of generating new alloy compositions by learning the 
patterns in the existing dataset, a table was constructed with all the el-
ements (total 18) used in our dataset listed in adjacent columns. The 
atomic percent of each metal used for a given alloy was extracted and 
populated in the table as shown in step 1 of Fig. 3. The completed table is 
used as an input or the training set for the GAN which then outputs a 
similar table but with new compositions that are synthesized out of the 
same list of metals that was supplied to it. The overall mean atomic 
percent of each element in all the GAN generated alloys combined is 
somewhat close to that in the originally supplied data (training data). 
For example, if all the 241 alloys in the training data had an overall 
mean of 23% Fe in them (alloy 1 has 15% Fe, alloy 2 has 35% Fe and 
Alloy N has 20% Fe, hence all N alloys have an average 23% Fe) then the 

Table 1 
List of descriptors used for hardness prediction in this work.  

Descriptor Description 

ΔχAllen =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n

i=1Ci(χi − χ)
√

Difference in Allen electronegativity 

ΔχPauling =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n

i=1Ci(χi − χ)
√

Difference in Pauling electronegativity 

ΔSmix = − R
∑n

i=1(CilnCi) Mixing entropy 
ΔHmix =

∑n
i=1,i∕=j4HijCiCj Mixing Enthalpy 

δ =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1Ci
(
1 −

ri
r

)√ Difference in atomic radii 

Δa =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n

i=1Ci(ai − a)2
√ Difference in lattice constants 

ΔTm =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n

i=1Ci(Ti − T)2
√ Difference in melting temperatures 

λ =
ΔSmix

δ2 
A geometrical parameter 

Ω = TmΔSmix
|ΔHmix|

Parameter for predicting solid state formation. 

Tm =
∑n

i=1CiTi Average melting temp calculated by rule of mixture. 
am =

∑n
i=1Ciai Average lattice constant calculated by rule of mixture. 

V.E.C =
∑n

i=1Ci(V.E.C)i Average valence electron composition calculated by 
rule of mixture. 

ΔG =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n

i=1Ci(Gi − G)2
√ Difference in Shear moduli 

Gm =
∑n

i=1CiGi  Average Shear modulus calculated by rule of mixture.  
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new 200 alloys generated by GAN have a mean around 20–25% Fe. 
Therefore, GAN maintains the mean atomic percent integrity between 
the training data and generated data. After the generation of 200 new 
compositions, we proceed to step 2. 

In step 2, a table was constructed with the same 241 alloys used in 
step 1 and then the chemical signatures or the fingerprints were deter-
mined that govern the target property i.e., hardness. The fingerprints 
were expressed in terms of mathematical equations as shown in Table 1, 
following which an inhouse python code was developed that calculates 
all the 14 descriptors and outputs their values, by taking only the alloy 
composition as the input as shown in step 2 of Fig 3. This dataset with 
the thermodynamical, physical, and atomic descriptors was used as the 
training data for the NN regressor which is then trained to predict the 
hardness of any given unknown alloy. The dataset was split such that 
200 data are in training set and 41 in the test set. The testing accuracy is 
visualized by comparing the predicted values to experimental hardness 
of 41 alloys that were used as the test set. This NN regressor will be used 
in step 3 to predict the hardness of all the new alloys generated by the 
GAN in step 1. 

In step 3, the alloy compositions generated by GAN in step 1 are then 
supplied to our inhouse code to calculate the 14 descriptors. This dataset 
of 200 GAN generated alloys along with their 14 thermodynamic and 
atomic descriptors are then passed into the NN as a test set, which 
outputs their hardness values. Two alloys with the highest hardness are 
then filtered out from the set of 200 and lab tested for their experimental 
hardness. 

2. Results and discussion 

The mean atomic percent of every element in the training data (241 
alloys) for GAN is compared with the output or synthesized 

compositions generated by GAN. Fig. 4(a) compares the mean atomic 
percent of each element, and it was found that there is very little dif-
ference in the overall mean atomic percent of the elements between the 
training and the generated data. This shows that the GAN generates new 
alloys within the upper and lower compositional bounds of each element 
from the training data. 

In Fig. 4(a), as Si, Mn, W and Zn are some of the least occurring el-
ements in our training set, GAN does not get enough training to syn-
thesize new compositions with a significant presence of these elements. 
Therefore, the GAN synthesized data hardly contains any composition 
with these elements and hence the GAN comparison bar (Fig. 4(a)) is 
missing for these elements. Other elements like Mo, Ti, Fe and Cr have a 
significant frequency of occurrence in the training set and thus the GAN 
synthesized data also contains a similar distribution of these elements, as 
seen by similar lengths of the comparison bars for these elements. 
Further analysis, using box-and-whisker plots in Fig. 4 (b) and (c), shows 
a similar distribution for the original and GAN generated data. The el-
ements like Co, Ni, Al and Cr with a high frequency of occurrence in the 
training data have a closely replicated distribution in the GAN data as 
visible by closely matching sizes of the box and whiskers of these ele-
ments. On the contrary, elements like Mo and Ti that have a relatively 
low frequency of occurrence have considerable smaller box and whisker 
size in GAN generated data. Although GAN tried to produce Mo and Ti 
data in a way that they have outliers (data lying outside (1.5× inter-
quartile range), denoted by red +) as that in the original data. This 
shows the ability of GAN to closely replicate individual data patterns 
from original data. Only Co, Fe, Ni, Al, Cr, Mo, Ti and Cu are shown in 
the box-and-whisker plots as the occurrence and number of data points 
for the other elements was too low. 

Naturally, one would think that if the objective is to find alloys with 
high hardness, the training data should include many refractory alloys. 

Fig. 2. Heat map displaying the correlation values between the descriptors of the dataset with P = 1 denoting strong positive correlation and P = −1 denoting strong 
negative correlation. 
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The major limitation on the reliable use of ML in materials science 
community today is the sparsity of relevant data. Such is the limitation 
faced in our work too due to which it was attempted to curate the 
available alloy hardness data from the literature. It was particularly 
found that the open literature has a relatively small number of refractory 
MPEAs as compared to those containing the Cantor alloy elements (Cr, 

Mn, Fe, Co and Ni). 
The NN predicted hardness values shown in Fig. 5 are in good 

agreement with the experimental values with the line of fit y = 0.99x 
(intercept set to 0) with a MAE = 38.9 HV and R2 = 0.98, which is almost 
superimposed on the y = x line. The line in Fig. 5 is shown with intercept 
set to 0 because the ML model predictions approach 0 when the 

Fig. 3. Flowchart: Steps to generate new alloy compositions using GAN and then filtering out promising ones with high hardness using a NN model trained on 
experimental data. 
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experimental hardness approaches 0 HV. We note that the R2 value for 
the NN with RELU was 0.88 (with intercept 0), therefore the SELU was 
adopted as mentioned in the methods section. Establishing the accuracy 
of our NN regressor means that it is now well-trained and ready to 
predict hardness of the 200 new compositions generated from the GAN 
with sufficient accuracy. 

The SHAP analysis in Fig. 6(a) shows the effect of each individual 
data point and its descriptors on the model prediction. Every dot in Fig. 6 
(a) is a sample point where the ordinate denotes the descriptors used and 
the abscissa represents its SHAP value of the datapoint for that 
descriptor. The significance of a particular descriptor can be assessed by 
the horizontal spread of its data along the abscissa. The wider the spread 
of the data, the higher is the contribution of the descriptor. The overall 
feature importance is shown in Fig. 6(b) where the VEC has the highest 
importance in determining the hardness of an alloy. These predictions 
are in good agreement with previous hardness prediction [37,59], where 
the authors reasoned that while VEC plays an important role in phase 
formation [60] (FCC is promoted for VEC > 8 while BCC is preferred for 
VEC < 7) it indirectly also determines hardness because generally high 
hardness can be achieved by promoting the BCC phase. Zhang et al. [59] 
also shown that high ΔSmix and low ΔHmix are beneficial for improving 
hardness which is in line with the findings in Fig. 6(b). It was also 
noticed that Gm quite significantly effects the hardness. This observation 

can be supported by findings from our previous work [10] where it was 
found that the average shear modulus Gm is crucial in increasing the 
resistance to plastic deformation by increasing the solute 
atom-dislocation interaction energy thereby increasing the hardness. 

The final step involves the testing of the 200 GAN-generated com-
positions using NN regressor. Notably, the NN regressor is a much faster 
technique compared to other computational simulations like MD and 
DFT. The NN regressor took less than 1200 ms to output the hardness of 
all 200 alloys, which is a massive increase the speed of alloy screening as 
compared to MD and DFT. Although one caveat is that the overall task of 
data curation, code development for descriptor calculation and NN 
training may demand several weeks of person hours. The hardness 
prediction using NN shows that more than 3 of the GAN-generated alloys 
have higher hardness than any other alloy in the training set. 

Fig. 7 shows the hardness of all the 241 alloys in the training set 
(black circles) and that of the 200 GAN generated alloys arranged in the 
descending order. Note that the three GAN-generated compositions 
whose hardness were predicted to be higher than the hardest alloy (857 
HV) in the training set. This shows that ML has the capability to generate 
new compositions that can outperform the properties of the training set 
and hence can serve as an ingenious tool to discover novel compositions. 
Two of the three novel compositions (with hardness higher than training 
data), along with 2 other GAN-generated alloys with high hardness are 

Fig. 4. (a) Elemental mean atomic percent in the training data compared to that in GAN data. The highest variation is seen in Mo while the least in Zr. (b) Box-and- 
whisker diagram of select elements from the original training dataset. (c) Box-and-whisker diagram of select elements in the GAN generated data. 

A. Roy et al.                                                                                                                                                                                                                                     



Acta Materialia 257 (2023) 119177

8

listed in Table 2. These four compositions were experimentally tested. 
These four included the top two compositions and then the 5th and the 
7th from top. This selection was done to study the effect of inclusion of 
different principal elements in the alloys. As the 3rd and 4th had a 
similar composition to the 1st and 2nd, we skipped to the 5th and then 
7th. As we go down our list, the principal elements change, though all 

alloys are formulated within the domain of the 18 elements used as 
descriptors for training the GAN. 

The top-most composition exceeded the predicted hardness and thus 
demonstrates that ML can be successfully used to discover new com-
positions with properties exceeding that of the training set. Although the 
second composition fell below expectation in the experiments, it is still 
as hard as the hardest alloy in the training set (857 HV). Our inference is 
that GAN systematically generates a population of candidates with a 

Fig. 5. The predicted versus experimental hardness values for the 41 alloys in 
the test set. The trendline y = 0.99x (intercept set to 0) is denoted by solid-black 
line with a R2 value of 0.98 and MAE = 38.9 HV. When the intercept is not set 
to 0, the equation is y = 0.95x + 17.19, with a R2 value of 0.85. The y = x line 
that corresponds to ideal case, where predicted hardness is equal to experi-
mental hardness, is given by dashed-green line. 

Fig. 6. Analysis of descriptor contribution by (a) SHAP value distribution of data points, and (b) feature importance ranked by decreasing order of importance.  

Fig. 7. Hardness of 200 GAN-generated alloys as predicted by NN (red aster-
isks) compared to the experimental hardness of the 241 alloys in the training set 
(black circles). 3 of the 200 alloys generated by GAN had a higher hardness 
than any other alloy in the training set. 
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relatively high hardness representing a forced extrapolation of the 
training data. It can be seen from Table 2 that the experimental values 
are within 8% error from the predicted values. The low error margin 
shows that the method has the potential to accelerate the discovery of 
new materials with desired properties. 

The variation of principal elements and their atomic percent in the 
alloys (listed in Table 2) demonstrate that our approach allows a 
detailed analysis of the effect of small composition variations in a 
reduced parameter space containing, for example, some minor elements 
like Ti, W, Ta and Zr. When moving from the first to the second alloy in 
Table 2, Ti was added as a principal with Zr, Ta and W in minor quan-
tities. This variation caused a significant drop in hardness as predicted 
by our NN and validated by experiments. In the 3rd composition the 
effect of Co removal caused a drop in the hardness and in the 4th, the 
addition of V and removal of Ti caused a further drop. Thus, the meth-
odology serves as a guide tool for experimentalists, wherein, it is 
possible to fine tune the predictions by considering both major and 
minor compositional variations. 

A comparative analysis of compositions with high hardness found 
from prior works is shown in Fig. 8. The composition of the alloy 
numbers marked on x-axis of Fig. 8 are given in Table 3. Clearly, most 
compositions except one found in prior works have hardness under 900 
HV. The one exception being Co18Cr7Fe35Ni5V35 with hardness 1148 HV 
from Ref. [37]. In the current work, the maximum hardness found was 
941 HV which is lower than some high hardness alloys found using ML 
and mentioned in literature. But there are some striking points that are 
noteworthy in this case that are described in the subsequent paragraphs. 

Most of the efforts attempting to find new compositions using ML, 
have trained the models only by using 5–10 elements in the training set 
as elaborated in Table 3. With fewer elements as compared to that in the 
present work (18), the ML model learns sufficiently well on the training 
set and is able to optimize the compositions adequately such that the 

output composition can exceed the hardness of those in the training set. 
The model in the current work is simultaneously dealing with opti-
mizing 18 elements which drastically increases the number of variables 
and thus increases the level of complexity of the model. Additionally, the 
dataset size is limited to 241 which is similar or comparable to dataset 
sizes used in other works. Despite the large number of input descriptors, 
and small training data, the ML model is able to generate new compo-
sitions that exceed the maximum hardness of the training set by ~ 10% 
as shown in Table 3. It is acknowledged that the complications of adding 
more elements without a considerable increase in the dataset size is a 
probable cause of the model not being able optimize the composition to 
its full potential, thus only able to achieve and increase of 10% hardness 
in the optimized composition as compared to the training set. 

Although the ML-generated alloys in this work are only 10% harder 
than that in the training set, the methodology offers a wider design 
window for formulating compositions from a palette of 18 elements as 
compared to a previously achieved 10 elements. For example, the choice 
to include elements like Ti offers room to increase resistance to corrosion 
and wear [61] and also increase the yield strength [62]. Inclusion of 
elements like Mo increases the compressive strength [63] and adds to 
the corrosion resistance of the alloys [64] by forming a protective pas-
sive layer. Elements like W, Ta and V allow for the design of nuclear and 
plasma facing materials [65]. Although the number of alloys with these 
elements is low in the dataset, the ML model is not completely agnostic 
of their role and effect, and includes them in the design space, thus 
allowing for future possibilities of optimizing compositions with these 
elements when the dataset includes more entries with W, Ta and V. By 
including 18 elements as features, the design space is kept wide and 
flexible for a large possibility of outputs depending upon the alloy 
application requirement, training data and the parameters used in 
training. 

Table 2 
List of high-hardness compositions found by GAN. The hardness of the first composition exceeds the predicted hardness – harder than the hardest alloy (857 HV) in the 
training set.  

# Alloy Predicted H (HV) Experimental H (HV) 

MPEA1 Co14.86Fe14.49Ni15.18Al17.31Cr16.22Mo21.52Ti0.41 930 941 ± 13 
MPEA2 Co12.89Fe10.89Ni4.21Al2.53Cr8.31Mo25.10Ti30.23Zr4.19Ta1.09W0.38 910 858 ± 25 
MPEA3 Co0.24Fe20.94Ni19.58Al21.57Cr20.94Mo13.17Ti3.56 761 700 ± 9 
MPEA4 Co13.88Fe17.18Ni23.52Mo21.71Ti0.83V22.77 749 713 ± 13  

Fig. 8. Comparison of the compositions found in this work versus the ML obtained high hardness compositions in previous works.  
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2.1. Phase stability and electronic-structure using DFT 

To understand the electronic origin, phase stability, elastic moduli, 
and electronic structure of MPEA1 and MPEA3 with highest and lowest 
measured hardness (see Table 2) were analyzed. First, the formation 
energy (Eform) of two alloys in BCC, FCC, and HCP phases were calcu-
lated. The Eform shows that both alloys are stable in bcc phase, i.e., Eform 
(BCC-FCC) is −5.317 mRy/atom for MPEA1 while −4.93 mRy/atom for 
MPEA3. The hcp phase is not included as Eform is more positive, i.e., 
energetically not stable, compared to BCC or FCC phases. Notably, 
MPEA1 with higher hardness shows improved stability compared to 
MPEA3, i.e., Eform(MPEA1-MPEA3) =−14 mRy/atom. Furthermore, the 
comparison between DFT-calculated intrinsic strength (i.e., bulk 
moduli) and predicted/measured hardness for MPEA1 (246.3 GPa; 930/ 
941 HV) and MPEA3 (201.4 GPa; 761/730 HV) shows good correlation. 

Both formation energy and elastic moduli suggest correlation of 
electronic properties with high hardness of MPEA1. This change in 
electronic behavior is expected to reflect in electronic structure as well. 
Therefore, electronic partial density of states (PDOS) for MPEA1 and 
MPEA3 were plotted in Fig. 9. The overlapping Mo-4d, Fe/Co/Ni-3d and 
Al-3p PDOS for MPEA1 at −0.20 Ry in Fig. 9(a) shows stronger bonding. 
While reduced Co and Mo content in MPEA3 (Fig. 9(b)) significantly 
reduced the bonding of Mo-4d and Co-3d with other Fe/Ni-3d and Al-3p, 
which is also reflected through reduced energy stability and intrinsic 
strength. 

We expect two phase formation due to anti-bonding nature of Cr with 
other constituents in MPEA1. If we closely look at PDOS below EFermi, 

the Cr peaks at −0.15 Ry shows anti-bonding behavior for both MPEA1 
and MPEA3, i.e., peaks in Cr PDOS overlaps with valley in Ni/Fe PDOS 
both for MPEA1 and MPEA3, which works as phase destabilizer for 
MPEA3 [66]. Our electronic-structure analysis suggests that higher 
hardness (or strength) of MPEA1 can be attributed to improved stability 
and increased bonding (reflected in PDOS). 

2.2. Microstructural and microchemical characterization 

Following ML predictions, electronic-structure analysis and hardness 
test, detailed microstructural and microchemical characterization were 
carried out to better understand the observed plastic deformation of 
MPEA1. 

Fig. 10 shows SEM and EDS characterization of GAN-predicted 
MPEA Co14.86Fe14.49Ni15.18Al17.31Cr16.22Mo21.52Ti0.41 with higher 
hardness than other MPEAs in Table 2. The microstructure (see Fig. 10 
(a)) is hypereutectic due to high content of Mo in the alloy. The MPEA is 
a dual-phase alloy, as substantiates in Fig. 10(b). Dual phases have been 
cited to be the primary cause for improving mechanical properties like 
tensile strength [67] and hardness [68] due to finely spaced precipitate 
interfaces acting as obstructions for dislocation gliding. 

To determine the elemental chemistry of bright and dark phases EDS 
area map, line scan and electron backscattered Kikuchi pattern of bright 
and dark zones are presented in Fig. 10 (b-h) and Fig. 10 (i-j) respec-
tively. Mo and Cr show high intensity in bright region, which is deficient 
in Ni and Al. Similarly, the dark phase is abundant in Ni and Al and 
deficient in Mo and Cr. Cobalt shows only a traceable change in 

Table 3 
A list of ML obtained high hardness compositions in previous works.  

Alloy 
no. 

alloys Max hardness 
obtained (HV) 

Max hardness in 
training set (HV) 

% increase in obtained hardness 
versus training hardness 

Number of elements in 
the training data 

Refs. 

1 Al24Co18Cr35Fe10Mn7.5Ni5.5 650 ± 12 900 No increase 8 
[32] 

2 Co18Cr7Fe35Ni5V35 1148    [37] 
3 Al20Cr5Cu15Fe15Ni5Ti10V3 650 920 25 10 
4 Al21Cr27Fe29Ni5Mo18 690    
5 Al28.56Cr23.8Fe23.8Ni23.8 486 775 No increase 6 [39] 
6 Ti-Zr-Nb-Ta 525 ± ~30 536 No increase 5 

[38] 
7 Al43Co22Cr23Cu0Fe7Ni5 883 ± 47    

[33] 8 Al47Co20Cr18Cu5Fe5Ni5 883 ± 22    
9 Al43Co22Cr22Cu0Fe8Ni5 882 ± 22    
10 Al47Co19Cr19Cu05Fe5Ni5 878 ± 25    
11 Al43Co24Cr22Cu0Fe5Ni6 875 ± 58    
12 Al43Co25Cr22Cu0Fe5Ni5 868 ± 45 775 14 6 
13 Al43Co24Cr23Cu0Fe5Ni5 865 ± 39    
14 Al43Co18Cr20Cu0Fe12Ni7 864 ± 23    
15 Al43Co23Cr21Cu0Fe8Ni5 863 ± 34    
16 Al47Co14Cr20Cu5Fe9Ni5 859 ± 26    
17 Co14.86Fe14.49Ni15.18Al17.31Cr16.22Mo21.52Ti0.41 941 ± 13 857 10 18 This 

work  

Fig. 9. The partial density of states of (a) MPEA1 (Co14.86Fe14.49Ni15.18Al17.31Cr16.22Mo21.52Ti0.41), and (b) MPEA3 (Co0.24Fe20.94Ni19.58Al21.57Cr20.94Mo13.17Ti3.56) in 
bcc phase. 
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intensities in bright and dark regions. However, Fe is found to be uni-
formly distributed in the two phases. Ti with its very low concentration 
of 0.0041% is left undetected due to limitations of EDS and matrix 
effects. 

The reason behind grouping of Mo-Cr and Ni-Al can be inferred from 
the values of ΔHmix (kJ/mol) in Table 4. As Ni and Al have a more 
negative enthalpy of mixing, they tend to segregate along with Fe and Co 
in a disordered structure. On the other hand, Mo and Cr have a net zero 
enthalpy of mixing and hence support solid-solution formation. Fe has 
an equal enthalpy of mixing with Mo and Ni and hence it is found to be 
homogeneously distributed. Al and Mo due to their larger atomic radii 

Fig. 10. SEM and EDS analysis of arc-melted Co14.86Fe14.49Ni15.18Al17.31Cr16.22Mo21.52Ti0.41 MPEA. (a) Secondary-electron (SE) image, (b) Al, (c) Mo, (d) Cr, (e) Fe, 
(f) Co, (g) Ni, (h) SE image showing red line segment left to right for EDS mapping, (h) relative intensity vs distance (AB), suggests Ni-Al-rich dark phase and Mo-Cr 
rich dark phase, (i), (j) Kikuchi patterns from electron backscattered diffraction (EBSD) point analysis of bright and dark phase, respectively. The Kikuchi pattern 
shows Miller’s indices of diffracting planes and zone axis at intersection of these planes, which suggests that Mo-Cr rich bright phase has a FCC crystal structure and 
Ni-Al rich dark phase has a BCC crystal structure. (k) Low magnification SEM image of the MPEA with encircled lamellas with a interlaminar spacing of 0.35 ± 0.01 
μm. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 4 
ΔHmix (kJ/mol) of binary pairs for constituting elements of Co14.86Fe14.49-

Ni15.18Al17.31Cr16.22Mo21.52Ti0.41 MPEA taken from [71].   

Al Ti Cr Fe Co Ni 

Ti −30      
Cr −10 −7     
Fe −11 −17 −1    
Co −19 −28 −4 −1   
Ni −22 −35 −7 −2 0  
Mo −5 −4 0 −2 −5 −7  

A. Roy et al.                                                                                                                                                                                                                                     



Acta Materialia 257 (2023) 119177

12

and low number of valance electron (3 for Al and 6 for Mo) have been 
found to improve the mechanical properties of CoCrFeNi alloy system. 
Al is found to promote the formation of a hard BCC phase on the other 
hand Mo due to higher Pauling’s electronegativity (2.16) and forms 
extremely hard FCC sigma phases with Cr. The hardness of AlxCoCrFeNi 
is found to increase from 120 HV to 527 HV with x increased from 0 to 1 
[69]. The hardness of CoCrFeNiMox increases from 200 to 900 HV as x 
increases from 0 to 1 [69,70]. The effect of Al and Mo is altogether 
captured in this work by GAN model. 

The origins of high hardness in the discussed alloy are thought to be 
multifaceted, ranging from electronic phenomenon resulting in an 
increased bonding (as reflected by the PDOS in Fig. 9) to microscale 
phenomena like formation of multiple phases. The microstructure of the 
MPEA is hypereutectic hence there are fine lamellas scattered in the bulk 
(Fig. 10(k)) with higher density of MoCrFe-phase. These lamellas in-
crease the phase interface obstructing the dislocation motion and 
enhancing mechanical properties of the alloy. Supporting examples are 
found in the works of Dong et al. [72] where the high hardness of 
AlCrFeNiMo (911.5 HV) was attributed to the presence of primary 
MoCrFe phase. In alloys with similar constituents, Zhu et al. found that 
the yield stress for AlCoCrFeNiMo0.5 is 2.757 GPa, empirically this is 
equivalent to a hardness of 8.27 GPa or 898.78 HV [73]. Thus, it is 
important to note that the CoCrFeNi family of MPEAs without Al and Mo 
are found to be extremely soft per se, but the addition of Al and Mo 
induces appreciable hardness into the alloy due to their thermody-
namical and lattice effects. Although the electronic effects and phase 
separation effect may sound totally independent of one another, but, 
these phenomena are strongly dependent on each other. Ref. [74] 
investigated the effect of increasing Al content (0–20 at.%) in (CoCr-
FeMn)(1-x)Alx and noted a transformation from FCC to BCC separated by 
a thin duplex region. They pointed out that such phase transitions are 
driven by thermodynamic linear response quantified by the chemical 
short-range order. They postulated that the FCC at 0 at.% Al was formed 
due to the short-range order driven by Co-Cr pair and the BCC at 20% Al 
was formed due to the Cr-Mn pair. Al played a crucial role in the phase 
transition with the dual phase region formed due to the Cr-Al short--
range order. Their work shows that phase transition arises from elec-
tronic origins as reflected in electronic structure calculations, thereby 
evincing the dependence of phase transformation on electronic effects. 

The fact that GAN-predicted MPEA possess the strengthening effects 
of Al and Mo with microstructure effects, represents the sheer success of 
the model. The constituents in GAN-predicted MPEAs and the trends in 
mechanical properties are similar to Zhu et al. [73], however, the 
measured hardness in our case is superior indicating that the model is 
able to capture the physics driving strengthening. Although a drawback 
of our work and most ML works related to hardness predictions is that 
the predictions are made for holistic hardness of the alloy and not the 
hardness of a particular phase. Multiple latest reviews like [28,75] on 
ML on MPEAs have cited lack of inclusion of deformation mechanism, 
creep mechanism, grain size, and structure, as major drawbacks of ML 
technique. There are still no methods that can systematically quantify 
such aspects and include them as descriptors for a large and varied 
dataset. Properties like hardness and yield strength are numerically 
measurable and available for a good number of alloys which makes it 
feasible to use them in ML studies in the form a large, tabulated datasets. 
But properties like creep and deformation mechanisms or grain structure 
and sizes are generally not available for each individual alloy system. 
Therefore, most ML studies are not able to include these aspects as de-
scriptors. And because of inability to include metadata information as 
descriptors, the predictions are also made in a holistic manner for the 
entirety of the alloy composition and not with respect to individual 
phases of the alloys. 

3. Conclusions 

We presented a unique approach that leverages data analytics in 

inverse design of MPEAs with high hardness using existing literature 
data. Our approach permits a multi-dimensional exploration of 
composition space consisting of chemical, physical, thermodynamical, 
and atomic descriptors to intricately couple a generative adversarial 
network (GAN) algorithm with a regressor algorithm (NN). These ca-
pabilities were harnessed to design new MPEAs with high hardness 
using a dataset with 18 elements. More precisely, two alloys with high 
hardness (one with hardness > 941 HV and another with 858 HV) were 
discovered and were validated experimentally. The technique demon-
strates the capability of GAN to generate new optimized compositions 
even in a high dimensional space that exhibit a hardness 10% higher 
than the maximum hardness in the training set. With a large elemental 
palette there exists an opportunity to optimize compositions for 
numerous applications ranging from highly corrosion resistant materials 
to nuclear materials. 

Microstructural characterization combined with thermodynamic 
analysis was carried out in the alloy with the maximum hardness to 
analyze elemental distributions and understand the origin of improved 
mechanical response. DFT was used to gain thermodynamic and elec-
tronic insights to higher hardness. The calculation shows one-to-one 
correlation between intrinsic strength (bulk moduli) and ML predicted 
hardness, which again suggests that GAN was able to accurately capture 
the underlying physics controlling mechanical response in MPEAs. 

Another intriguing aspect to consider is the role of elements present 
in minor atomic fractions, in determining the hardness of the product 
alloy. The approach allows a detailed analysis of the impact of compo-
sitional variations on hardness and thus serves as a data guided tool for 
experimentalists to down select their choices for experimental valida-
tion of potential candidates. The measured hardness of theoretically 
predicted MPEAs could be added to the training dataset to enable 
bootstrapping of the entire workflow and enforce an extrapolation that 
could possibly lead to significant improvement in model accuracy in 
property predictions. The bootstrapping effort remains our task targeted 
for future investigation, although its success will depend more on the 
number of new data added into the training. 
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optimization with active learning of design constraints using an entropy-based 
approach, npj Comput. Mater. 9 (1) (2023) 49. 

[42] B. Vela, C. Acemi, P. Singh, T. Kirk, W. Trehern, E. Norris, D.D. Johnson, 
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