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Abstract: We present a scrutiny on the state of the art and applicability of predictive methods for
additive manufacturing (AM) of metals, alloys, and compositionally complex metallic materials, to
provide insights from the computational models for AM process optimization. Our work emphasizes
the importance of manufacturing parameters on the thermal profiles evinced during processing, and
the fundamental insights offered by the models used to simulate metal AM mechanisms. We discuss
the methods and assumptions necessary for an educated tradeoff between the efficacy and accuracy
of the computational approaches that incorporate multi-physics required to mimic the associated
fluid flow phenomena as well as the resulting microstructures. Finally, the current challenges in the
existing approaches are summarized and future scopes identified.

Keywords: additive manufacturing; microstructure simulation; thermal transport; melt pool; process
parameter optimization

1. Introduction

With the emergence of additive manufacturing (AM) as one of the promising platforms
to realize the needs for digital manufacturing, the deployment of AM a.k.a. 3D printing
has experienced a consistent growth across industries from healthcare to energy to defense,
to name a few. In AM, a material is fused layer-by-layer in accord with a computer-aided
design (CAD) model to achieve a near net-shaped specimen [1-10]. Amongst the several
benefits over the conventional manufacturing processes (such as casting, forging, machin-
ing, etc.), AM eliminates the need for tools or dyes and, in a few cases, assembly to make a
component [3,11-14]. AM is generally classified into several techniques, viz., stereolithogra-
phy (SLA), powder bed fusion (PBF), direct energy deposition (DED), and material jetting,
to list a few. Amongst them, metal AM techniques are particularly intriguing owing to
their capabilities in fabricating multicomponent alloy parts; on the other hand, metal AM
does need to overcome deep technical challenges associated with the complex solidification
cycles and the resultant residual stresses. Nonetheless, products resulting from certain AM
processes have demonstrated superior mechanical properties compared to their conven-
tionally processed counterparts [15]. The two most widely employed metal AM approaches
include PBF (such as selective laser melting, i.e., SLM) and the directed energy deposition
(DED) [15,16]. PBF spreads a thin layer of powder on the substrate followed by a focused
heat source (laser or electron beam) that selectively melts and solidifies the powder to
create a part. In laser-powder bed fusion (L-PBF) the laser is used as heat source whereas,
in the electron beam melting (EBM) process, an electron beam is used as heat source [15,17].
In contrast, the DED mechanism, such as Laser Metal Deposition (LMD), involves focusing
the heat source (laser/electron beam/metal arc) to melt the substrate at a precise location
and deposit the feed stock (wire/powder) in the melt pool. Salient feature details of these
processes and the corresponding (dis)advantages and process variables are illustrated in

Materials 2023, 16, 5680. https:/ /doi.org/10.3390/mal6165680

https:/ /www.mdpi.com/journal /materials


https://doi.org/10.3390/ma16165680
https://doi.org/10.3390/ma16165680
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0002-8877-9973
https://doi.org/10.3390/ma16165680
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma16165680?type=check_update&version=1

Materials 2023, 16, 5680 2 of 26

Figure 1 [18], and typical qualities of the specimens realized by the respective processes are
listed in Table 1.
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Figure 1. Overview of metal AM processes. (a,b) Illustration of powder bed fusion process.
(c,d) Iustration of directed energy deposition process [18].

Table 1. Build rates and surface roughness of AM processes illustrated in Figure 1 [1,12].

AM Technique Build Rate (cm3/h) Surface Roughness (um)
Selective Laser Melting (SLM) [19] ~70 4-11
Laser Metal Deposition (LMD) [20] ~300 10-200

The highly concentrated heat source, along with the rapid melting and solidification
in metal AM processes, exert cooling rates ranging from 10 to 10° K/s, resulting in thermal
gradients of the order ~10® K/m [1,21]. A high thermal gradient can enable enhanced
melting of the alloying elements to produce dense parts with notable mechanical proper-
ties [22]. However, with significantly steep thermal gradients, the alloying metals start to
vaporize that can generate porosities and cracks in the printed part as the metal vapors are
entrapped within, degrading the quality of the component [2,7,12,19,23-25]. Reflecting on
these challenges, a fundamental understanding of material behavior, typically weldabil-
ity, during manufacture enables the fabrication of high-quality deposits using metal AM
techniques [1]. Also, the need for high-quality feedstock material (powder/wire) devoid
of impregnated gases and air pockets poses another challenge for AM. Certified powders
for several commercial alloys, viz., nickel-based super alloys, tool steel (H13), stainless
steel (316L), and Ti alloys (Ti-6Al-4V), are commercially available; however, acquiring high
quality and large volumes of powders for complex and multicomponent alloys, such as
high entropy alloys (HEAs), is arduous and expensive. This challenge limits the exploration
of the process-design space. Consequently, the process optimization in metal AM becomes
time and resource intensive [1,26-30]. Complementary to experiments, computational
techniques using the finite element (FE) and finite volume (FV) methods have emerged as
viable alternatives to predict the quality of parts and map process parameters to mechanical
performance during fabrication [7,31-36]. In addition to a comprehensive analysis on the
state-of-the-art computational methods applicable to metal AM processes, we address the
progress in the Al domain as applicable to the gamut of metal AM techniques. Recent
advancements in data science and artificial intelligence promote the application of machine-
learning methods (ML) to optimize the AM process [37], assisting in multi-dimensional
mapping of process parameters to the product quality. ML algorithms are integrated
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in three stages of additive manufacturing: (1) geometry design, (2) process parameters
optimization, and (3) in situ anomaly detection [38].

2. Computational Approaches

Traditionally, numerical modeling to predict the temperature distribution, thermal
stress and deformation in AM processes has been analogous to multi-pass welding [39].
However, an associated higher degree of complexity in AM arises from the multi-physics
phenomena such as the irradiation of the laser beam on the material, heat transfer, melt-
pool fluid dynamics, evaporation, and Marangoni effects [40—47], as elaborated below in
detail. In this review, we have categorized the computational models into four types. First,
three types are based on the scale of modeling. We discuss continuum-scale approaches,
which consists of several techniques such as the thermo-physical model, heat-source model,
melt-pool model, and structural model, while multi-physics models are constructed by
combining these techniques. We present a brief overview of the geometry design and
model discretization with different methods (such as FEM and FVM). We note that the
optimization of the process parameters is the key objective to realize a smart, efficient,
and low-cost AM process. Next, we review microscopic models employed to predict the
grain growth and microstructural evolution in the final part. The third category is the
multi-scale model where macro-, meso-, and micro-scale models are integrated to predict
the overall physics behind the AM process. Finally, the fourth category is based on data
driven strategies; recent advances in artificial intelligence (Al) methods enable fast and
robust predictions. We discuss machine-learning (ML) process models used in AM.

2.1. Macro Scale Modeling

In continuum-scale modeling, we discuss the modeling of the macro parameters
such as stress field, temperature field, and flow field in molten pool. Several models are
discussed such as the thermo-physical model, heat-source model, melt pool model, and
structural model. Combining these models, multi-physics models are developed. The first
step of the modeling is to create the geometry of the model and this geometry needs to be
discretized. Different methods such as FEM and FVM are widely used to simulate these
models. The aim of these simulations is to find a relation between the process parameters
with the quality of the final printed part. Optimization of the process parameters is the
major challenge in the AM process to have an accurate product with no defects.

2.1.1. Part Geometry, Discretization, and Boundary and Initial Condition

A numerical model initiates with a discretized (viz., elements) mathematical equivalent
of a geometric (CAD) model called “mesh”. First, a desired geometry is created with
CAD software (such as DesignModeler, spaceclaim, SOLIDWORKS, PTC Creo, CATIA,
AutoCAD, etc.). Then the geometry is discretized by creating proper mesh. The elements
embodying the mesh assume several geometric shapes, such as, a triangle or a rectangle
in two dimensions, with tetrahedrons, hexahedrons etc., subdomains in 3D. However,
rectangles and their sub-domain hexahedrons are preferred wherever possible to accurately
represent the solution with an enhanced computational efficiency. Stresses enacting on
these elements are evaluated from the forces acting on the nodes, which are integrated over
the entire geometry to predict the dynamics of a part under specified loading conditions.
It is important to incorporate a finer mesh to increase the accuracy of calculations, albeit
at a substantial computational cost. The choice of coarse/fine elements typically depends
on the diverse features of the part geometry, as illustrated in Figure 2. The finer regions
in the figure represent the powder particles that are spread across the substrate of coarser
elements. In other words, the mesh employed to discretize the part depends on the physical
properties such as the shape, but also on the underlying physics being replicated. For
instance, when moving a heat source over the surface of an object, we do not implement a
fine mesh throughout the geometry, but only for the path of the heat source with the rest of
the geometry represented by coarser mesh. Employing finer elements for powder particles
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alongside coarser elements for the substrate improves the computational efficiency and
permits capturing the accurate temperature fields in the laser irradiated zones (points of
interest). Therefore, an optimization scheme to include a collective (non-uniform/adaptive)
of coarse (large elements) and fine (small elements) mesh during discretization is crucial
for computationally efficient and accurate predictive methods [7,22,48-51]. For instance,
an adaptive mesh refinement (AMR) scheme leverages finer mesh in stress concentration
zones, with the residual areas discretized into coarser elements crafting a computationally
efficient model. Extending further, AMR can be classified into two techniques, viz., static
and dynamic AMR, whence a dynamic AMR adapts to changing part geometries in real
(simulation) time [51,52]. A comparison of the computing times between fine and coarse
mesh schemes reveals that a coarse adaptive mesh is notably efficient with predictions
resembling the ground truth (details listed in Table 2). Hajializadeh and Ince, 2018 [51],
simulated an 18-layer L-shape part by using adaptive mesh coarsening and compared the
computation time with a conventional fine uniform mesh model in a FEM-based DMD
process. An ideal implementation of these techniques in AM simulations requires an
AMR scheme with the finer mesh dynamically adapting to the shape of the melt pool, and
subsequently moving with the heat source [53]. Besides melt pool, it is important to refine
the areas with high thermal gradients and stresses, generally near the heat sinks.

Figure 2. A mathematical equivalent of a geometric (CAD) model with bimodal discretization
representing coarse and fine elements for a face of a cuboid.

Table 2. Comparison of runtime between adaptive mesh and fine mesh [51].

Mesh Scheme Layer Number/ Total Runtime (h)
Runtime (h)
Adaptive mesh 1-3 4-6 7-9 10-12 13-15 16-18 20:10 + 2:00
(coarsening approach) 1:50 2:35 3:20 3:50 4:10 4:20 (extra 2 h for mapping)
. h 1-18 58:30
Fine mes 58:30 (no mapping required)

To simulate the model accurately, the most important thing is to set the boundary and
initial conditions properly. Boundary conditions specify the environmental constraints
and their associated heat transfer mechanisms when modeling an AM process [54]. While
conduction through substrate and the previously solidified layers is the dominant heat-
transfer mechanism for any AM process, dissipation of a fraction of the total energy through
convection and radiation to the surrounding environment is inevitable [7,35].
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The governing equation of heat transfer for isotropic solid material with temperature
independent properties is given in Equation (1) [7].

a2 Tz ez

oT k(azT 92T 82T> 1 9Qy )

* o ot
where, k is the thermal conductivity, ¢ is specific heat, p is density, and Q, is consumed
thermal energy per unit volume (due to the heat source).

A simple thermal transport model incorporating all modes of heat transfer for an AM
process models the laser-irradiated surface being subjected to a condition presented in
Equation (2), and assumes no heat transfer to the bottom surface [44,55,56].

—kg% = he(T — To) + 890(T4 - T;}) )
where, k is the thermal conductivity, 3—5 is the temperature gradient, /. is the convection
coefficient, T is the room temperature, ¢ is the emissivity, and o is the Stefan-Boltzmann
constant. Typically, to limit modeling complexity, convection and surface radiation are
ignored with only minimal loss in the predictive accuracy for modeling of melt pool.

From the literature, it is observed that thermo-mechanical simulation and inherent
strain method-based (discussed later in the structural model section) simulation are mainly
carried out using the finite element method (FEM) model. This thermo-mechanical FEM
model is used to couple the thermal and mechanical conditions of the AM process to
enable an accurate prediction of thermal stress and deformation induced in the printed
part [35,57,58]. On the other hand, thermo-fluid dynamics phenomena involved in AM
is generally modeled using the finite volume method (FVM) model [59-61]. This model
incorporates many thermo-fluid characteristics such as conductivity, melt-pool convection
flow, wettability, thermo-capillary forces, etc., which makes it much more complicated, and
subsequently computer intensive. Moreover, micro-scale models have gained attention
due to their ability to accurately predict the local deformation and instabilities within the
printed part. For microstructure simulations the commonly used approaches are Lattice
Boltzmann-cellular automata and Phase field (PF) models, and more recently using a hybrid
FEM/FVM model [62-67].

2.1.2. Process Parameters

AM machine variables such as the power of the heat source, scan speed, hatch dis-
tance, and powder flow rate, to list a few, are crucial to obtaining crack- and defect-free
dense deposits [7,44,68]. Table 3 catalogues the crucial parameters that are required to be
optimized for a PBF process. Optimal selection of the parameters to construct a process
workspace for producing a certifiable specimen requires design of experiments (DoE), as
illustrated in Figure 3a [18], with the process variables in the design matrix. Design of
experiment matrix demonstrates that a high scan speed coupled with low power results in
a low-quality deposit typically with incomplete melting of the material; a low speed with a
high power produces a low-efficiency space contributing to over heating or melting the
material. Thus, identifying an optimal design space (process parameter window) is vital to
achieve high-density parts [18]. While DoE may mandate several iterations [15,34,44,69,70],
the availability of multiple metal AM processes, advocates normalizing these parameters
to achieve material-specific properties, eliminating machine-to-machine variability. Such
standardizing results in global variables, viz., energy deposition density (E) and powder de-
position density (P) derived from laser power (L), scan speed (V), layer thickness (f.), and
beam (d},) and nozzle (d,) diameters [1,18]. The correlations provided in Gorsse et al. [1]
are listed as Equations (3) and (4). Here, m is powder flow rate (g/min), which is the
process-specific parameter describing the powder supplied to the melt pool per unit time
and applicable only for DED processes. While these normalized variables could be used as
a material-specific property when porting between processes, we note that only E could be
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adopted from DED to PBF; an additional variable P should be determined when translating
from PBF to DED. While the expression of E in PBF is akin to DED, the beam diameter
(dp) is to be replaced by hatch spacing (h). Cross-utilization of these parameters mandate
additional DOEs, and can only offer predictive estimates and not a direct correlation due to
machine-specific constraints.

_ m d,\?/ gm
b= deM(d) (1) (forDED) 3)
_ Lp J . Lp J
E= Vdy <1 (mm3> (forDED); E = VX h i <mm3> (forPBF) (4)

Table 3. Key parameters required to simulate PBF process [7].

Process Parameters Type/Unit

Heat source type Goldak’s Ellipsoidal/Gaussian distribution

Power input Watt
Deposition layer thickness Micron (um)
Hatch spacing um
Each layer printing time Second (s)
Idle time between two layers s
Scanning pattern type Uni/bi/cross-directional, island, helix
Scanning laser speed mm/s
Ambient/Pre-heat temperature Celsius/Kelvin

V (mm/s) Low 300
(a) »  Quality (b)
Space 150
| T
S 200
s = ;
2 - =157}
a wn
= g
! " - & 100 — 1680 mm/s
L — 1540 mm/s
ow ° 50
— 1400
Efficiency ¢ Optimal Design Space ==
Space °
Third Dimension; Powder flow 0 0.2 0.4 0.6 0.8

rate m (g/min) Strain (%)

Figure 3. (a) Design of experiment matrix [18]. (b) Increasing the speeds beyond the optimal design
speed results in incomplete melting of powders, thus reducing the density and consequently being
detrimental to the mechanical properties of the fabricated component [71].

Besides process parameters, scanning strategies influence the induced thermal stress
and temperature gradient (scanning pattern, scanning direction, and scanning vector
length) [15,36,72-75]. In addition, lower scan speeds lead to longer interaction times for
the laser with the metal and consequently increase the density of the material improving
the mechanical properties (Figure 3b [71]). However, with much lower scanning speeds,
the alloying elements start to vaporize resulting in the formation of keyholes and porosities
in the printed part [76]. The distribution of absorbed thermal energy varies based on
the powder bed’s relative density and reflectivity in the successive powder layers [77].
The processing challenge intensifies due to the metal powders” high thermal conductivity,
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surface tension, and laser reflectivity [78]. Additionally, the SLM process for AlSijpMg
powder is particularly challenging to control, given its high reflectivity and thermal con-
ductivity. This complexity stands in contrast to the production of other metal powders
such as stainless steels or titanium alloys [79]. While SLM has proven its versatility across
various materials, encompassing metals, polymers, and ceramics, the intricate processing
of materials featuring elevated thermal conductivities and high melting points, such as
pure copper, faces notable challenges. Besides the rapid heat dissipation problems, the
reflectivity of copper to conventional laser light near infrared is very high, resulting in low
deposition of laser energy in the materials during melting. In order to impart higher laser
energy density for manufacturing dense copper parts, an enhanced laser output power
with reduced scanning speed, layer thickness, and hatch spacing are needed [80].

The absorption efficiency and surface emissivity govern the energy entering and
exiting the AM platform [27]. Since the heat source acts on the powder layers in PBF systems,
both the effective heat conduction inside the layer as well as the laser absorption should be
considered in the models [81]. During AM, the laser beam’s absorption by the workpiece is
influenced by factors such as the powder-particle size distribution, feed rate, laser beam
wavelength, and power density distribution. Given the significant number of variables
that govern the interactions between the laser beam and the workpiece, constructing an
exhaustive model that encompasses all possible powder feeding scenarios in AM is limited
in accurately replicating the intricate physical processes at play. Therefore, a specific model
is employed to address this problem [82]. The choice of process parameters also has a
marked impact on the intermediate dimensions, such as layer height and width of the
build, that is nontrivial for complicated geometries.

Porosities form one of the predominant challenges in metal AM, specifically the PBF;
as powder is distributed on the bed prior to melting the substrate, the substrate is irradiated
to the laser through the powder particles, creating a few pores during solidification and
resulting in an utmost ~99.8% dense components post process-parameter optimization [83].
This outcome is due to the inherent technology limitation, where the powder is laid on the
build plate and the laser must pass through the powder into the previous layers to deposit
material. With the high scan speeds employed, part densification persists to be a challenge.
In addition, spherical powder particles used in the process to enhance flowability, the
packing factor and the powder morphology contribute significantly towards densification
of the printed component. Such defects compromise the build rate by employing lower
layer heights to achieve optimal mechanical properties [83]. In contrast, DED directs
a focused heat source and subsequently deposits the feedstock, producing parts with
relatively higher densities and build rates. On occasion, it may be possible to achieve
densities >99.8% in PBF, but only in highly ideal conditions and may not be reproducible
in terms of structural/functional properties/features. Besides porosities, a lack of fusion
is another major defect found in AM parts [84]. Such defects occur mainly due to three
reasons. First, the use of very high energy deposition in keyhole-mode melting in the AM
process. These keyholes might form and collapse repeatedly and result in the formation of
porosities in the deposited layer [85]. Second, during powder atomization process, gases
might become entrapped within the powder particles, which may lead to a porous and
defective final part [86]. Third, if the melt pool fails to penetrate across the layers deposited
on the substrate, a lack of fusion can be seen in the printed part [86,87]. Mukherjee et al. [88]
propose a relation between the melt-pool geometry and the lack of fusion. The “lack of
fusion index” (LF) is given by the Equation (5).

LF = Melt pool depth/Layer thickness ®)

For a higher LF value, the lack of fusion voids decreases, and the LF value can be
increased by incorporating a larger melt pool, which results in the proper bonding between
the successive deposited layers [88].

The other defects observed in the selective laser sintering (SLS) AM process are balling
(lump formation of powder), tearing (propagation of crack due to thermal stress), rough
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surfaces, and poor cohesion, which leads to the printing of faulty components. The effect on
the part properties include shrinkage, porosity, and dimensional inaccuracy [66,69,89-92].

From the experiments on SLM with SS316L, Miranda et al. [29] observed that presence
of porosity is higher for lower laser power. Increasing the power to 90 W, reduced the poros-
ity and increased the density and mechanical properties. However, for higher scanning
speed the part became more defective with lower hardness and lower shear strength [29,93].
Moreover, high scan spacing leads to lower shear strength and lower density. For large
scan spacing, adjacent lines of powder do not bond well with each other. Scan spacing
also affects the microstructural growth, with coarser structures observed for higher scan
spacing [29].

Likewise, inaccurate process parameters during fabrication can lead to several defects
such as lack of fusion, key holes, balling, etc. For instance, an inadequate laser power
(<80 W) during SS316 printing contributes to improper fusion effecting in ~50% reduction in
strength [71,94]. On the other hand, employing high laser power in complicated geometries
containing overhangs can promote warping of material due to the instabilities in the melt
pool [95]. Thus, the optimization of process parameters is extremely important to achieve
high-quality deposits. Surface finish for AM fabricated parts is another concern due to
the layered fabrication strategy. A transient temperature field simulation in PBF of copper
powder suggests a better surface finish can be achieved with high scanning speeds with
multi-layer sintering [96].

2.1.3. Thermophysical Models

Variation of thermophysical properties like thermal conductivity, latent heat, and
specific heat capacity are important to consider during processing as they associate density,
microstructural features, and the resultant material properties (e.g., porosity and residual
stress) on the fabricated component [2,6,7,22,34,44,49,58,79,97-106]. The rapid heating and
cooling in AM lead to disparate melting and solidification cycles resulting in accelerated
phase changes (powder to liquid to solid), which affect the porosity and density in the
specimen. Therefore, understanding the evolution of density during printing can shed light
on the thermal conductivity and laser absorptivity (of powder material) as a function of
density or porosity [50,73,107-109].

Conduction through bulk material is the primary mode of heat transfer in AM and
variations in thermal conductivity as a function of density influence the microstructures that
are produced [73,109,110]. The effective thermal conductivity of a material as a function of
conductivity of the solid material ks (T) and porosity f§ is presented in Equation (6) [50].

kofs = ks(T) x (1 —028— 1.7352) ©6)

Akin to porosities in a bulk material, the extremely small contact areas in the feedstock
material limit the thermal conductivity in the powder and consequently retard the cooling
rates [49,73]. Also, particle size and powder packing influence the heat conduction in
PBEF [111], with the conductivity in the solid particles. Incorporating the amount of energy
released or gained during phase change (viz., latent heat) can further improve the model
and provide a quantitative understanding on the variation of thermal conductivity and
specific heat capacity. These approaches can assist in mapping process parameters to the
structural properties.

Enthalpy methods model the liquid-to-solid phase change by tracking the enthalpy
of the system instead of temperature, thus enabling the calculation of latent heat during
the phase change. Implementation of this model in FEM is relatively straightforward by
employing the enthalpy equations instead of heat-transfer equations [81,112]. These meth-
ods facilitate, also known as the enthalpy-porosity technique, the modeling of solid-liquid
mushy zones by considering the mushy zone as a porous medium with the liquid vol-
ume fraction considered as the porosity of the porous medium [113,114]. In addition, an
equivalent specific heat can be introduced by considering the effect of latent heat on temper-
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ature field, enhancing the accuracy of the model, however at an increased computational
expense [115].

2.1.4. Heat Source Model

Physically, the intensity distribution of the laser on the material conforms to a Gaussian
model (as reproduced in Figure 4a [89]), with the highest intensity of the laser and conse-
quently the peak temperature recorded at the center of the focal point (Figure 4b [116]),
exponentially reducing in the radial direction [6,117,118]. The heat flux can be expressed as
a function of space and time (Equation (7)) to construct a resulting molten-pool (Goldak)
model [103,119,120].

q(r) = qmaxekrz( ) ) @)

mm?s

103.8 pm

~
&

—
50

(b)

400

185.578
= 304.321
=l 423.065
- 541.808
EGGO.SSI
779.295

300

200

Power density [W/mm?]

100

Figure 4. (a) A Gaussian model: the intensity of laser beam is at its highest in the center (0,0) of
the focal point, while retarding along the radial direction [89]. (b) The temperature profile varies
according to the intensity of laser (Gaussian function) [116].

Here, gyyax is the maximum heat flux (J/ mm?-s), k is concentration factor (1/mm?2), with
r being the distance between a point and center of the heat source (mm). The geometry of the
melt pool is highly dependent on the scan speed and its length increases with the increasing
scanning speed, with a notable decrease in depth and width [49]. Extending this method,
Irwin and Michaleris [121] introduced a line-based heat input model to accurately predict
the heat distribution in the PBF process without compromising computational efficacy.

For a volumetric moving heat source in the powder bed, Goldak’s double ellipsoidal
heat source model can be used, given in the Equation (8).

_op)2  (y—oyt)? 2
6v/3Q e_3((x ;’2"” +y;2y +2)

q(x,y,z) = pry— (8)

where, g, b, and c represent the semi-axis of the ellipsoidal heat source along x, y, and z
directions, respectively, in the powder bed.

2.1.5. Melt-Pool Models

The melt pool is the region of the alloy where a phase change to liquid state occurs as
a consequence of irradiation by the heat source, often with a comet tail profile (displayed
in Figure 5a) [34,89,122]. The different heat sources (laser/electron beam) often result in
a diverse beam. For instance, using an electron beam as a heat source produces a melt
pool with diameters ~10% larger than that of laser processes [102]. The length-to-depth
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)

ratio of the melt pool increases with increasing power (Figure 5b [79]). However, the
directional and concentrated nature of any heat source limits the melt pools to <5 mm
in diameter. This results in rapid heating and cooling cycles lasting a few milliseconds,
and are controlled by the process parameters, specifically the power and the scan speed
employed. For example, a higher scan speed can result in a longer tail in the melt pool,
with the depth and width reduced [49], and vice-versa [56,123]. The areas preceding the
melt pool realize a higher temperature gradient relative to the areas following the melt
pool; hence, understanding the fundamentals of melt-pool formation and the associated
dynamics elucidate the grain-growth mechanisms and the properties of the fabricated
parts [61,98,124].
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Figure 5. (a) lllustration of the comet tail profile of the melt pool [89]. (b) Relation between power
and length (I mm)-to-depth (d mm) ratio suggests that I/d increases with increasing power offering
recommendations for the layer height to be employed during deposition [79].

The size and the compactness of the powder bed influence the thermal conductivity
through the substrate underneath, which also triggers the melt-pool characteristics. An
ideal model to predict the melt-pool features should consider the fluid dynamics effects
including Marangoni and buoyancy [125]. The Marangoni effect [82,126,127] is the mass
flow mechanism due to surface tension gradient caused by the temperature gradient on the
surface. The Marangoni effect becomes prominent as the melt-pool size and depth increase
because of high-energy deposition, leading to a higher tangential velocity at the top surface.
The mathematical model (Equation (9)) for the Marangoni effect includes the surface shear

stress of the melt pool [127].
_ (% Z (9 (oL
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Here, T, is the surface tension (N/m?), (g—}’) is the surface tension gradient (N/m-K),

and %—f is the temperature gradient along the melt pool surface (K/m). Collectively, these

effects exert rapid cooling and heating cycles generating a compressive stress within the
melt pool when cooling, followed by a tensile stress near the solid-liquid interface to bal-
ance the force and momentum. Considering the Marangoni effect yields a relation between
the energy density of the laser and the melt-pool depth and size, aiding in optimizing the
laser parameters [127].

The study of melt pool includes a large number of thermo-fluidic phenomena such
as fluid flow, radiation, vaporization, and variable material properties [34,128], which
should be included in the finite volume model. Commercial software available for such
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simulations include Flow-3D, Fluent, etc. [89]. The powder-scale model incorporates the
multi-physics phenomena using the ALE3D, Open-FOAM, and the LBM (Lattice Boltz-
mann method), and it also incorporate thermo-fluid code with mass-momentum energy in
transient form [129]. Temperature-dependent properties have been simulated for Ti-6Al-4V,
IN718, and AlSijpMg. Korner et al. [130] used in-house code by using the Lattice Boltz-
mann method (LBM) to study the effect of beam power, beam velocity, and layer thickness
on the wall formation. Likewise, in Los Alamos National Laboratory, Truchas code was
developed to solve the point heat-source scan strategy for IN718 in PBF-EB [74,131]. They
have modeled solidification with a non-isothermal phase change in the mushy zone and
simulated for various process parameters to study the variation of temperature gradients.
Ahmadi et al. [71] studied the properties of SS316L printed using the SLM process using
the cohesive zone model (CZM) to predict the interaction between the pool boundaries. It
was observed that defects generally start to occur in the pool boundaries as they are much
weaker than the grain boundaries. These predictions agree well with the experimental data,
but the computational cost is the major challenge for scaling up these models. Hence, more
efficient models are required that can continue to improve the accuracy of the simulations
within reasonable computational demands. Other FEM-based commercial software that
are often employed to replicate such physical phenomena include ANSYS, MSC Marc,
COMSOL Multiphysics, and Abaqus [89].

2.1.6. Structural Model

Process parameters employed during metal AM drive the thermal profiles and sub-
sequently induce residual stresses, warping, inaccuracies in geometric shape, etc. [24].
Residual stress generated inside an AM printed part mainly arises from three underlying
mechanisms. First is the spatial temperature gradient generated from the repeated heating
and cooling by the moving heat source. Second, thermal expansion and contraction due
to rapid cooling and heating; and third is the nonuniform distribution of inelastic strains,
force equilibrium, and stress—strain constitutive behavior [84]. However, the residual stress
can be minimized by pre-heating the base plate [132]. Residual stress may cause bending
in the printed part, which can be avoided by using a thicker base plate [133]. The residual
stress is also responsible for delamination and cracking in high-stress areas. Part geometry,
energy deposition methods, material properties, and process parameters are responsible
for generation of residual stresses in the printed part [44,57,89,99]. In general, the residual
stress is recorded to be very high at the edge where the printed part joins the base plate.
When the residual stress exceeds the yield strength, delamination and cracking may occur
in the build [89]. The accuracy of the model can be enhanced by incorporating the effects of
residual stress relaxation.

Yakout et al. [134,135] investigated the influence of the thermal properties on residual
stress of Invar 36 and SS 316L produced using the SLM process. They have examined the
microscopic residual stress generated inside the printed part using the X-ray diffraction
(XRD) method. Using this method, stress tensor is measured based on the lattice strain
measurement. Gusarov et al. [136] reported that residual stress is higher in the scanning
direction as compared to the transverse scan direction. Nowadays, inherent strain (IS)
methods are widely used to simulate the thermal stress [137,138]. This method, which
was created for a welding simulation, is now modified to be adopted to the PBF process
simulation. Here, the thermal stress is simulated to the component scale with inherent
strain (residual plastic strain) tensor, which activates in the discrete hatching region of
the mechanical model layer-by-layer. Keller et al. [137] coupled this IS method to a mul-
tiscale model. From the results, the value of residual distortion was very close to the
experimental measurement.

Table 4 lists some of these properties and their effects on the final part, which result
from shrinkage and stress-induced deflection and can be controlled by optimizing the
process parameters [139,140]. Predicting these effects employing quasi-static elastoplastic
models prior to fabrication facilitates a reduction in the above-mentioned artifacts to
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achieve a high-quality part [2,28,141]. Quasi-static elastoplastic models in general constitute
a twofold process and can be categorized into (a) coupled and (b) weakly/uncoupled
methods [35,90,103,117]. A coupled analysis considers the effects of thermal expansion on
the mechanical properties within the model, while the weakly coupled model assumes
them to be independent and requires the user to serve as a middleman. This approach
showcases the weakly coupled method as an inexpensive and preferential option [99,142].
Equation (10) through (13) represent the governing mechanisms for deriving the stress
tensor from the thermal profiles [115].

Vo =0 (10)

where ¢ refers to a second-order stress tensor and is calculated from the thermal strains
and the elastoplastic behavior. (Equation (11)) with C and &’ being the 4th order material
stiffness tensor and the second-order elastic stain tensor, respectively.

o= Ce (11)

Table 4. Effects of various impact factors on the fabricated AM component [7].

Impact Factors Effects

Geometry of the base plate [132] The residual stress is uniform and lower for thick base plate.

Base plate and build chamber pre-heating [132,143]

Residual stress can be decreased by using preheated build chamber,
which reduces temperature gradient.

Orientation of the build part [144,145] Residual stress is minimum for particular build orientation
Support structure for build part [49] Distortion can be reduced by using proper support.
Scanning sequence [102] Residual stress reduced by applying proper fabrication sequence.

Scanning pattern [28,102,146]

In case of fractal, spiral, and small-piece scanning patterns, the
stress reduced.

Scanning power and speed [102,146] Rate of change in strain is higher for higher energy density.

Scanning length (direction) [102,146]

Higher residual stress is generated for long scanning vector as it causes
large temperature gradient.

Addition of layers [132] Residual stress increases for higher number of layers.

Layer of the geometry [146]

Residual stress varies with different geometry shape and
their accumulation.

Deposition layer thickness [117] High stress and deformation are generated in case of thin layer.

Temperature gradient [146]

High residual stress is generated due to high temperature gradient and
higher cooling rate.

Further, the total strain tensor € (Equation (12)) considers the elastic strain ¢°, the plastic
strain &”, and the thermal strain &’ [27] with the thermal strain as displayed in Equation (13)
with T and Ty being the current (at time t) and the initial temperatures, respectively. Few
complexities in these models include estimating the final distortions without the base plate
and the supports [49].

e=¢ +ef ¢ (12)

el = a(T - Tp) (13)

These are the basic driving equations for deriving more complex equations. While
most of the studies are limited to single layer-single track depositions, these methods
have proven important to understand the associated complexities revealing the samples
processed using the EBM technique assume a relatively low residual stresses than the
SLM as a consequence of varying cooling rates [7]. However, many commercial software
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(e.g., Simufact, Amphyon, GeonX etc.) are now available for the residual stress distortion
simulation [57].

2.1.7. Multi-Physics Modeling

Efficiency and accuracy of metal AM processes can be maximized by optimizing the
process parameters. Predicting the defect formation and instabilities are the major research
thrusts to optimize the process parameters [31,47]. The different combinations of process
parameters are integrated with micro-scale models to predict the in situ defects as well as
large-scale anomalies and instabilities (such as porosity, balling, and spatter) generated in
the final product [42,57,130]. The AM process consists of thermo-fluidic phenomena such
as irradiation of the laser beam on the material, plasma plume recoil pressure, heat transfer,
metal phase change, melt-pool fluid dynamics, evaporation, wettability, Marangoni effect,
thermo-capillary forces, etc. [31,47,57]. Simulating, calibrating, and optimizing the model
consisting of all these multi-physics phenomena with different sets of process parameters
requires significant computational power.

Thermal and mechanical features in the AM process can be coupled using a thermo-
mechanical FEM model. Residual stress and deformation can be determined accurately by
employing accurate thermo-mechanical properties in the model. Furthermore, viscous dis-
sipation phenomena can be considered through this coupled model [57]. Hussein et al. [49]
simulated a FEM model for the successive deposited layers to study the temperature and
stress field in SLM. The authors consider powder properties to couple the effect of process
parameters on the temperature field distribution with the melt-pool size and the induced
thermal stresses.

Leitz et al. [47] used the COMSOL package to simulate the multi-physics FE model for
SLM-AM technique. The model includes multi-physics phenomena such as absorption of
laser radiation on the surface, conductive and convective heat transfer in the product and
the ambient atmosphere, melting, solidification, evaporation, and condensation. Results
are validated against experimental data for SLM of steel and molybdenum. A smaller melt
pool was observed for molybdenum as it has a higher thermal conductivity than steel.

Li et al. [31] introduced a novel Comprehensive Modeling Framework (CMF) to study
the multi-physics problem in laser PBE. This model integrates thermo-fluid and thermo-
mechanical models and validated against the additive manufacture of Ti6Al4V. It was
found that the thermal-stress concentration was higher near the pores, cavity, and the
melt pool. Figure 6 shows the simulated metal surface with different physical phenomena
incorporated into the model [147].

Convection
Radiation

Evaporative cooling

Laser absorption

Multiple reflections

Figure 6. Representative snapshot of the simulation using the Comprehensive Modeling Framework
that incorporates within the model different physical phenomena on the metal surface [147].
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The complexity of these models necessitates leveraging extensive computational
resources to simulate the different aspects of the thermo-mechanical process. Therefore,
results from large-scale simulations of this kind are limited, and rather such models find
greater scope in mimicking the AM process in extremely small domains (mm?) and time
scales (ms) to render results in a reasonable time [57,130,148].

2.2. Microstructural Models

Understanding the grain-growth mechanism by analyzing the temperature profiles
enables microstructure control to tailor the mechanical properties or produce directionally
solidified (DS) and single-crystal (SX) components [93]. Formation of a new surface during
solidification requires a significant energy change accompanied by the time for the phase
transformation. However, the rapid cooling (often through the substrate and the previously
deposited layers) during printing denies both conditions favoring heterogenous nucleation,
with the grains originating from the nucleation sites beneath the solid-liquid interface of
the melt pool. Post nucleation, grains grow in the direction opposite to the heat transfer
driven by the thermal gradient (G) and the solidification rate (R) [149]. A high G/R ratio
advocates the formation of columnar growth, noted in the melt-pool core, while a reduced
G/R favors equiaxed grains at the top of the melt pool, as displayed in Figure 7 [150]. The
cooling rate is defined as G x R and is responsible for grain size, suggesting finer grains
are observed for higher cooling rates [62]. However, areas of the melt pool exposed to the
atmosphere realize equiaxed grains due to convection and radiation from the surroundings.
Moreover, scan patterns for PBF and DED are reported to exert a great influence on the
grain structures [151].
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Figure 7. Analysis of the thermal gradient (G) as a function of the solidification rate (R) [150].

Recent models describing the microstructures in AM that include elementary cellular
automata-finite element (CA-FE) [63] and Lattice Boltzmann-cellular automata [64] are pri-
marily used to predict the solidification front with limited effects from subsequent reheating
and re-melting. The CA model was developed for the casting process and has been applied
to study the microstructural growth (dendrite formation) in AM processes. The stochastic
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CA approach incorporates nucleation, growth, and diffusion of constituent elements and
phases to predict the grain orientations originating in the melt pool. Pauza et al. [152]
included the crystallographic orientation information in a Monte-Carlo Potts model for
microstructure evolution in a PBF process. Phase field (PF) models, on the other hand, pre-
dict the 2D crystal growth dynamics (microstructure evolution) during solidification [62].
The simulation of microstructure evolution in AM has been carried out using the cellular-
automata (CA) method and phase-field (PF) methods. The PF method is a very powerful
tool to simulate the microstructure evolution in the AM process. Liu et al. [153] studied the
effects of process parameters on the morphologies of the melt pool and grain-growth in
the PBF-AM process and developed a 2D phase-field model. Further, they modified the
model into a 3D PF model and nucleation phenomena was integrated with it to study the
columnar to equiaxed transition (CET) in a single-track PBF process. Liquid—solid phase
change and grain nucleation, growth, and coarsening in solid regions were included in the
PF model to simulate the grain growth during the PBF process. The thermal fluid flow
(TFF) [154] model was coupled with the PF model for the temperature profile. Sahoo and
Chou [93] developed a PF model to predict the microstructure evolution of Ti-6Al-4V in
electron beam AM. They observed in the simulation that the spacing between the columnar
dendrites and the width of the dendrites is lower for higher temperature gradient and the
electron-beam scanning speed. Nevertheless, limited methods have been developed to
replicate the fine-scale microstructural details across a sufficiently large scale to predict
the microstructure over many passes and layers [149]. Table 5 lists the parameters and
identifies the advantages of several existing models. For predicting the resultant phases
post solidification, thermodynamic models like calculation of phase diagrams (CALPHAD)
coupled with Scheil-based solidification simulations have proven useful to determine the
potential phases that are observed in AM fabricated alloys. Fostering rapid alloy discovery
through AM, CALPHAD simulations can assist in forecasting the plausible phase space to
design new alloys with limited experiments [155]. The main challenge is the availability
of diverse alloy materials for AM. Moreover, novel strategies are adopted to design new
alloys to overcome this limitation. By integrating microstructural refinement (MR) and
eutectic solidification (ES) in an alloy design strategy, one can circumvent the issue across
the various solidification stages. Such integrated MR and ES alloy design strategies enable
widening of the alloy-processing window as well as activation of several deformation mech-
anisms, e.g., back-stress strengthening and work hardening, which produce alloys that
exhibit a remarkable synergy between printability and performance. Additionally, by using
Olson’s systems approach, one can devise an effective means to integrate the computational
material-engineering framework into alloy design for laser-powder bed-fusion AM [156].

Table 5. Advantages and disadvantages of different AM microstructure simulation methods [149].

Methods

Advantages Disadvantages

Empirical microstructure
modeling [157]

Microstructural attributes for large builds can
be predicted.
It allows extension of pre-existing thermal
models. The computational cost is low if
thermal results exist, otherwise medium.

Microstructure for further investigation is
not provided.
The thermal environment estimation is
required for analysis.

Monte Carlo [158]

With hundreds of heat source passes, it can
predict entire 3D microstructures. In the
course of solidification and solid-state grain
evolution, it can provide an approximation of
micro-structure. Without the requirement to
parameterize for distinct material systems, it
uses idealized molten zones.
Open-source SPPARKS Monte Carlo suite
includes it.

Direct coupling of thermal and
microstructural models cannot be
completed. It does not currently take
material texture or anisotropy
into account.
Computational cost is medium.
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Cellular Automata—Lattice evolution cannot be simulated after

Boltzmann [64]

same lattice.
The crystallographic texture is
incorporated here.

solidification. Only a few passes of a heat
source can be used. The computational

cost is high.
Coupled prediction of thermal behavior and Solid-state grain evolution cannot be
Cellular Automata—Finite Element microstructure can be achieved. Moreover, simulated after solidification. Also, here,

(CAFE) [63,159]

the crystallographic texture is incorporated ~ only a few passes of a heat source can be
here also. used. It has high computational cost.

2.3. Multi-Scale Model

AM is a multi-physical as well as multi-scale process, which involves macro-scale man-
ufacturing and microstructure evolution. In the AM process, stress field and temperature
field models are based on the macro scale, flow field models on the melt pool are based on
the meso scale, and the material microstructure evolution are based on micro-scale [62,160].
In micro and meso scales, the time scale is in the order of microseconds, but the associ-
ated simulations are computer intensive [57]. Moreover, the time and length domains for
the processing and microstructure transformation being orders of magnitude displaced,
coupling across material and manufacturing scales is a major challenge [57,77,89].

Chen et al. [161] used a molecular-dynamics (MD) simulation to study the forma-
tion of a medium entropy alloy at the atomic scale in the selective laser melting process.
Li et al. [79] studied the effect of scanning speed and laser power on the thermal behavior
in SLM and observed that the process parameters exert a significant impact on the tempera-
ture distribution, size of melt pool, and microstructure [128,162]. However, the evolution
of SLM deposited material has not been examined on the nanoscale that could offer more
insight on the structure transformation [163].

Nie et al. [164] developed a multi-scale model by coupling the FEM model with
stochastic analysis for IN718 where the temperature field was modeled using FEM and
stochastic analysis was employed to evaluate microstructure evolution during solidification.
The simulation results were in agreement with the experimentally reported results.

2.4. Machine Learning in AM

AM holds promise for fabrication of multi-functional multi-material components with
complex geometries, but its reach is restricted due to challenges such as incompatible
properties of materials, non-uniformity, and imperfections in the build part [165-167]. To
eliminate these challenges, machine-learning (ML) algorithms are being employed to detect
the anomaly and optimize the process parameters. ML methods are implemented mainly
in three stages of the AM process, viz., design of the product geometry, modulation of
the process parameters, and in situ anomaly detection [168]. The main aim of using ML
methods in AM is to transform the manufacturing process to be more advanced, efficient,
and cost effective.

The AM process starts with designing the geometry of the product by using computer-
aided design (CAD) software. This CAD model is then fed into the 3D printer to fabricate
the product. During part printing, the process parameters need to be set appropriately
to obtain the desired product features and properties. Generally, these parameters are
controlled manually as per the design and condition of the part, which leads to various
defects in the final product [168]. Significant research has been carried out to resolve
these issues by optimizing the AM process with the help of simulation and ML methods.
Simulations and numerical models are used in AM to explore and examine the effects of
combining different process parameters [43,169], while ML methods aid in studying the
effect of process parameters on the quality of the final product [170,171].
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ML methods use previous input dataset to generate rules and learning principles to
correlate the processing-structure property of the printed part. Mainly three types of ML
algorithms are employed, viz., supervised learning, unsupervised learning, and reinforce-
ment learning (RL) [38,168]. In supervised learning, labeled training data are used to con-
struct the model; examples include support vector machines (SVM) and Gaussian processes
(GP). These methods are most suited for classification and regression problems [172,173].
The most widely used models are artificial neural networks (ANNSs) inspired from the
human neural networks to learn and improve their accuracy over time from the training
dataset [174]. On the other hand, unsupervised learning is useful in cases where no labeled
dataset is available, with clustering and self-organizing maps (SOMs) being two of the
popular methods [175]. RL is based on the outcome of an action in the state of the sur-
roundings to achieve the desired outcome. This method is generally used in robotic cars
and self-driving vehicles [176].

The AM process workflow starts with designing the part, which needs to be optimized
to minimize the number of overhang structures. The latter need support structures during
fabrication to restrain the part in place, and after fabrication those support structures are
removed manually, a tedious and time-consuming process [168]. Topology optimization
(TO) is implemented in AM to efficiently design the desired part with given constraint
across length scales [177,178]. AM has capabilities to build a complex lattice structure,
which can be represented as a digital (twin) material (DM). This concept is used to represent
the complex lattice structure, where the DM is a group of voxels (a lattice of a material
element) [179]. The DM is integrated with ML to predict the toughness, strength, and
deformation of the material where the voxels of the DM is used as an input dataset to ML
to enable an efficient and cost-effective design.

The most important step to print a part by AM is to set the process parameters pre-
cisely to obtain the desired defect-limited product. A large number of process parameters
are associated with AM; the combination of these parameters needs optimization. A com-
binatorial process-parameter optimization by experiments is time and resource intensive;
computational models can be material and product scale-specific and depending on the
complexity may be computationally demanding or infeasible. Data-driven ML methods
can help in alleviating these limitations to enable efficient, faster, and accurate predictions.
Convolution Neural Network (CNN) has been used to predict the print quality in FFF
(fused filament fabrication) for various parameters such as print speed, fan speed, and
extrusion multiplier [170]. NNs were also used to determine the geometrical inaccuracies
in the part generated by the residual stress. Kappes et al. [180] introduced a ML model
by which porosity in the part could be determined based on the print orientation. The
consequence of part position, print orientation on the keyhole formation, and lack of fusion
can be determined using ML models. However, to detect in situ defects, a continuous and
synchronous monitoring system is required that leverage image processing and ML. In
FFF, a DIC (digital image correlation) camera is installed to monitor the surface geometry.
From the stereoscopic image, the surface geometry is reconstructed using a random sample
consensus (RANSAC) algorithm [181]. This method is used for alignment of the parts
and is useful for porosity detection. The training data for CNN models are also used to
detect the in-situ anomaly from the images and reconstruct the geometry by varying the
process parameters. The accuracy of the printed part is noted to increase significantly by
integration of ML.

Computer vision is emerging as the next-generation tool to predict and control quality
of AM parts, and to enhance production planning in cloud-based AM platforms. Through
deep learning and integration of visual features, this approach aims to optimize produc-
tion processes, ensuring efficient resource allocation and improved manufacturing out-
comes [182]. During the powder deposition stage of the process, an automated computer
vision algorithm is employed for the detection and categorization of anomalies. This toolkit
involves the application of an unsupervised machine-learning algorithm on a moderately
sized training dataset of image patches to enable effective anomaly detection and in situ
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optimization [183]. Moreover, computer-vision approaches can be used for quality control
of parts fabricated using AM [184], as well as to predict the powder flowability in metal
AM [185]. Different ML algorithmes, listed in Table 6, can be implemented at various stages
of AM guided by the adaptability of the predictive techniques.

Table 6. List of ML algorithms used in AM processes [168].

AM Processes ML Algorithms

Optimization of geometry

Clustering, Neural Networks (NN) and Support Vector Machines
(SVM) [186,187]

Design of material Convolutional Neural Network (CNN) and Decision trees [186,187]
Determination of process parameter Neural Networks (NN) and Principal component analysis (PCA) [188]

Defects identification

Quality assessment

Clustering, Convolutional Neural Network (CNN), and Support Vector
Machines (SVM) [171,172]
Convolutional Neural Network (CNN), Self-organizing map (SOM),
and Gaussian processes (GP) [173,189]

3. Outlook

With process parameters being predominantly responsible for the undesired artifacts
such as porosities, key holes, balling, residual stresses, and cracks, there is a need to under-
stand the effects of these process variables on the resultant quality of the AM fabricated
parts. However, experimental investigations to interrogate these effects are resource and
time intensive, necessitating the ever-increasing role of digital experiments via accurate
numerical models. Nevertheless, the computational cost and the associated degree of
complexity that can be examined through predictive models for a mimicry of the physi-
cal processing, continues to be a challenge. Complications in the models range from the
adoption of complex discretization techniques to the inclusion of fluid-flow effects like
the Marangoni phenomenon within the melt pool. For instance, a typical practice for dis-
cretization of geometry considers finer elements to describe areas under high stress (points
of interest), and modeling the areas away from the points of interest with coarser grids.
Notably, model complexities also increase the computational costs. Apart from transport
mechanisms, i.e., heat transfer and fluid flow, material properties, viz., microstructures,
residual stresses, dislocation, and grain boundaries, can also be represented via various lev-
els of fidelities, necessitating an intelligent selection based on a tradeoff between computer
time and accuracy.

Over the last decade, machine-learning (ML) models and computer vision have
emerged as viable tools to assist in the choice of the appropriate computational mod-
els and more recently, offering predictability for AM processes. Although ML for AM can
guide the initial processing parameter window for optimal and certifiable AM parts, these
models rely on the data available for their training, thus establishing a stronger case for
AM data curation, storage, and dissemination for re-use. Given that AM is an inherently
stochastic process with appreciable associated uncertainties in material properties, man-
ufacturing conditions and environmental variables, repeatability, and reproducibility of
part production requires performing extensive experiments for statistical averaging. To
account for such challenges, uncertainty quantification (UQ) can offer valuable insights on
the effects of processing parameters on the part geometry, temperature profiles, properties
realized, and provide information on the selection of processing parameters to achieve
targeted component specifications.

Scalable AM-based fabrication poses an even greater challenge. Scaled-up simulations
at the increased length and time scales are uber computer intensive and may even require
longer computational wall times than an actual experiment. However, given the material,
equipment, and personnel costs associated with scaled-up powder AM platforms, efficient
predictive models with minimal compromise in accuracy are imminent to determine fea-
tures such as residual stresses and material properties, and to implement an optimal and
economic AM process control.
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For AM components to deliver mission-critical performance, the parts must exhibit
the desired microstructure; this in turn is highly dependent on the nature, severity, and
concentration of processing related defects. Consequently, AM process qualification and
part certification, for defect-formation control, including that due to instrument sensitivity,
is imperative. Specially, the following challenges persist: (a) given that AM for engineer-
ing applications needs to produce fail-safe components, full-load condition testing, even
for conservative builds, is expensive; and (b) certification based on allowable processing
metrics to manufacture parts within threshold defect criteria require testing and microstruc-
tural characterization of coupons that may take months to complete. Hence, a model
centric paradigm is inevitable to overcome these drawbacks and realize the promise that
AM holds.

In the realm of rapid predictive certification for AM, the goal of future efforts should
be to construct a high-throughput and data-informed qualification paradigm for defect
detection at the instance of occurrence such that suitable mitigation or cessation of the AM
process can be implemented on demand. To realize this goal, the research objectives can be
two-fold: fundamentally, understand what the root causes for a defect during AM of metals and
alloys are, and identify processing parameter windows, portable across machines, to prevent and min-
imize anomalies. The objectives can be achieved through a synergy of (1) robust data analytics
of exhaustive and varied in situ process characterizations, (2) high-throughput evaluations
to validate materials-process-structure-property predictions derived from multiscale com-
putational toolkits, and (3) rigorous UQ of models and Bayesian calibration of parameters
from in situ and property measurements for fabricating defect-limited and performance-
safe parts. Critically, future efforts should capitalize on industrial partnerships for scalable
part manufacture and testing to validate model-centric standardization frameworks. An
in-situ data guided paradigm will not only expedite and cheapen AM part fabrication but
will additionally streamline environmental testing under operational conditions.
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