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ABSTRACT

Resonances are fundamentally important in the field of nano-photonics and optics. Thus, it is of great interest to know what are the limits to
which they can be tuned. The bandwidth of the resonances in materials is an important feature, which is commonly characterized by using
the Q-factor. We present tight bounds correlating the peak absorption with the Q-factor of two-phase quasi-static metamaterials and plas-
monic resonators evaluated at a given peak frequency by introducing an alternative definition for the Q-factor in terms of the complex effec-
tive permittivity of the composite material. This composite may consist of well-separated clusters of plasmonic particles, and, thus, we obtain
bounds on the response of a single cluster as governed by the polarizability. Optimal metamaterial microstructure designs achieving points
on the bounds are presented. The most interesting optimal microstructure is a limiting case of doubly coated ellipsoids that attains points on
the lower bound. We also obtain bounds on Q for three dimensional, isotropic, and fixed volume fraction two-phase quasi-static metamateri-
als and particle clusters with an isotropic polarizability. Some almost optimal isotropic microstructure geometries are identified.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0155092

The explosion of interest in metamaterials has been driven by the
realization that their properties can break expected limits. These limits,
or bounds, are based on assumptions that do not hold for the metama-
terials in question. Naturally, one wants to know what these bounds
are, and here, we focus on a fundamental problem: finding bounds
that correlate the absorption at a peak with the metamaterial quality
factor (Q-factor) in the quasi-static limit.

At the nanoscale, local plasmon resonances in metal particle clus-
ters are of great interest due to their unique properties.”” Resonances
in materials have led to many exciting properties in nano-photonics
and optics. A famous example is the “Lycurgus cup,” a fourth century
Roman drinking cup made of glass with suspended fine particles of
gold. The gold particle resonances at optical wavelengths cause it to
appear either red or green depending on where the light shines.

A number of definitions for Q are found in the literature.”® The
two most common definitions of Q-factor in use are: one, the ratio of
energy stored to energy radiated or dissipated; and, two, the ratio of
center (resonance) frequency to frequency-bandwidth. Using the first
definition of Q-factor, various bounds on the Q-factor of antennas
have been proposed.” '

The results of Bergman'~ and Milton'® obtained independently
in 1980 naturally imply bounds on the imaginary part of the dielectric
constant of a quasistatic two-phase composite and, hence, on the
absorption of the composite at fixed frequency. The question then
arises as to how sharply peaked can be the absorption: can one obtain
bounds that correlate the magnitude of the peak absorption with the
bandwidth of frequencies where the absorption is at half height or
with an alternate Q-factor?

There is an affiliated question for single or clusters of metal par-
ticles, of arbitrary shape but occupying a given volume. Bounds on the
absorption, at fixed quasistatic frequencies, were obtained in 2014 by
Miller et al'” In fact, however, bounds on the quasistatic complex
polarizability of arbitrary shaped objects or clusters of them, and by
inference the absorption, were obtained as far back as 1981: see Fig. 3
in Ref. 20. The bounds are corollary of the bounds of Bergman and
Milton. The key observation is to consider a composite of a dilute sus-
pension of the particle clusters. To first order in the volume fraction,
the effective permittivity is determined by the complex polarizability
so bounds on the first imply bounds on the second: see, in particular,
Ref. 21. Similarly, bounds that correlate the peak absorption and
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Q-factor in composites naturally imply bounds that correlate the peak
absorption and Q-factor in resonating metal particle clusters. These
bounds are also applicable when the particles themselves are micro-
structured, containing a composite of the metallic and void phases.

In this work, we find bounds that correlate an appropriate Q-
factor with peak-loss in lossy two-phase quasi-static metamaterial res-
onators and identify microgeometries that achieve those bounds. We
consider two-phase metamaterials with complex relative permittivity
€1(w) of one isotropic phase given, for example, by a Drude model or
a Lorentz model, and with relative permittivity e, (w) = €, of the other
isotropic phase taken to be a real constant. The effective permittivity
of the metamaterial is some complex-valued function of the permittiv-
ities of the pure phases: e () = e (€1(w), ;). Without loss of gen-
erality, we can rescale the dimensions and set the permittivity of the
constant phase as”” ¢; = 1. Considering the ambiguity associated with
defining the energy stored in a lossy material,”” ** we adopt the second
definition for Q, i.e, Q = wr/Aw, where wg is the center frequency
and Aw is the bandwidth at half-height of the peak-absorption value,
and refer to this definition as the conventional Q-factor, Q.. However,
to proceed with finding the bounds on Q in two-phase metamaterials,
it is desirable to have an expression for Q in terms of the effective
material parameters at the center frequency.

Assume that the response of a material permittivity is given by a
Lorentz model,

602

F (1)

e=l4+ G0,
w§ — w? — 1wy

where @, g, and y are the plasma frequency, natural frequency, and
damping coefficient, respectively. We show analytically, that in the limit
o/ > 1 (see, Sec. S1 and Fig. S1 for details), y ~ Aw, ie., the band-
width is narrow compared to the center frequency, and the center fre-
quency wy approaches the natural frequency wq (wr = ). Then, the
expression for Q, at an absorption peak can be approximated alternatively
by defining a new Q-factor (Qpey) in terms of the material parameters

o)

Q% Qoo = =5 [Im(s(wR»rlRe( @)

w=wg

Here, Re(-) and Im(-) denote the real and imaginary parts. Similarly,
for clusters of metal particles, Quew is given by Quew
=% [Im(oc(coR))]flRe(doét}“)) lo)—er> Where o is the polarizability. In
the case of local plasmon resonances in metal particle clusters, a some-
what similar expression for Q was obtained by Wang and Shen,”
except while ours involves the effective dielectric constant, theirs
involves the dielectric constant of metal particles, and, importantly,
with this substitution theirs has the opposite sign. Our Qyey is still pos-
itive because of the anomalous dispersion at the absorption peak.
Theirs involved the ratio of stored to absorbed energies, the first only
known when the metal has very low absorption. Moreover, we allow
for peaks generated by more than one, or even a continuum, of reso-
nances, whereas they implicitly assume that Im(e) is less than the sep-
aration between resonances.

Expression (2) is also similar to ones for antennas with known
impedance.” An expression for the Q-factor in systems with loss-less
and high-loss components was obtained by Figotin and Welters."
Figure 1 illustrates the good agreement between Q. and Qe for
different Lorentz models with varying values of y and w, even for
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FIG. 1. Q; (circle marker) vs Qney (cross marker) comparison for Lorentz models
with varying values of the damping coefficient y and resonant frequency . In the
limits @wq/7 > 1 and wo/Aw > 1, we see good agreement between Q; and
Qnew- The inset shows the discrepancy between Q; and Qqey near the origin where
the approximation no longer holds.

moderately large values of wg /7. The zoomed inset shows that close to
origin, where @, is comparable to y and we are well outside the validity
of the approximation, Q. and Qpe, differ significantly.

The main idea to obtain bounds on Qe in two-phase metama-
terials at a given peak center frequency (wp) is to correlate, at w = w,

the quantities Re(dsji"‘—(ff’)) and Im(é.r(®)) when Im(‘kz“—(f)‘")) =0, the
latter being a necessary condition for absorption peak at wg. Note that
the effective permittivity is a function of €; (@) and €, = 1. The deriva-
tive with respect to frequency of the effective permittivity can be

rewritten as

dSeff (a))
dw

_ (asea(el(w), 1) del(w))

861 dw ’ (3)

w=wmpg

w=wmpg

where dcéif)) is a known quantity as €; (@) is known. This reduces the

problem to correlating the quantities Oeef(e;(w),1)/0¢; and
Im(eeg (€1 (), 1)) at @ = wpg. To obtain this correlation, we formulate
the following problem: Given a fixed realizable value of
Im(ee(€1(w), 1)) at @ = wg, what are the bounds on the values of

Re(Deeii(€1(w), 1)/Dep), with the constraint that Im(%ﬂwzw
= 0, which is associated with absorption peak at @ = wr? We solve
this problem numerically by using the bounds of Milton et al.'******
(see, Chap. 27 in Milton™’) (for details, see supplementary material Sec.
S2). In fact, in a broader mathematical context outside the theory of
composites, there is a long history of such bounds.”* From the bounds,
we then easily obtain constraints on Qe for any possible value of
Im(eeg (€1 (wg), 1)).

First, we present our results with €;(w) given by the Drude
model,

a(w) =1+ wp /(0 +10) (4)

with, w, =5, 7 = 0.1. Plots for bounds on the effective complex per-
mittivity &e(cgr) and for the corresponding range of de.g /dw in this

Appl. Phys. Lett. 123, 081703 (2023); doi: 10.1063/5.0155092
Published under an exclusive license by AIP Publishing

123, 081703-2

1G'€0:LC ¥20T Uote 9L


pubs.aip.org/aip/apl

Applied Physics Letters

30 m o mmm m mmm ] fr mmw w mww
25 A
20

15 1

Qnew

01 e DCE1

-10

Im(&err)

FIG. 2. Quew Vs Im(zefr) for two-phase metamaterial quasi-static absorption peaks
with € (w) given by the Drude model. Bounds on Quey (solid black curve) are
shown as the value of Im(ee(wg)) at a center frequency of wg = 3 is varied
within the range of & (wg). Metamaterial geometries achieving all points on these
bounds are shown: Coated ellipsoids (CE1: yellow squares) attain values on the
upper bound for Qney as the eccentricities and volume fractions of the core phase
are varied; laminate geometry (L: green triangle) attains the point on extreme right;
points on the lower bound are achieved by doubly coated ellipsoids (DCE1: red
circles). Specific points on the bounds are highlighted as A, B, C, D, and E, and
more information on the microstructure geometries at these points is given in Fig. 3.

case are shown in the supplementary material (Sec. S2). Figure 2 shows
the wedge-shaped bounds on Qe (shown by the solid black curve) as
the absorption peak value of Im(é) varies within the range pre-
scribed by &g (wg). Our bounds on Qpe, allow for Re(de.g(w)/dw)
at w = wg to be positive. From (2), we then see that negative values of
Quew are allowed by the bounds as in Fig. 2. Negative Q-factor values
are irrelevant for our study, and as such they must be ignored in our
bounds.

Furthermore, we find the optimal metamaterial microstructures
that achieve these bounds. Specifically, points on the upper horizontal
bound are achieved by assemblages of confocal coated ellipsoids (CE1)
with the core phase given by €;(w) (4). The effective permittivity of
the coated ellipsoid (CE1) has two free parameters:” the depolariza-
tion factor and the volume fraction. The depolarization factor is used
to tune the resonance, and the volume fraction can be varied within
limits to trace points on the upper bound. In Fig. 2, the yellow square
markers denote the values from CEl. Simple laminate geometries (L),
with the volume fraction tuned to get absorption peak at the desired
frequency, attain only the extreme right point on the bounds (green
triangle), when the layers of the laminate are normal to the direction
of the electric field. When the electric field is parallel to the layers, the
laminate effective permittivity is an arithmetic mean of ¢ (®) and
€, = 1, and consequently, there is no resonance observed at any fre-
quency. The lower bound in Fig. 2 is traced by assemblages of highly
sensitive doubly coated ellipsoids (DCE1, shown by red circles) where
the innermost and outermost phases are the same and given by €; (o).
The inner coated ellipsoid and outer coated ellipsoid are not restricted
to have the same eccentricities and, hence, are more general than con-
focal doubly coated ellipsoids. Doing so provides us with four
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parameters: the depolarization factor of the inner coated ellipsoid,
depolarization factor of the outer coated ellipsoid, volume fraction of
the Drude phase, and volume fraction of the core phase. These param-
eters can be varied so that the resulting effective permittivity function
e (€1, 1) matches any formula that defines the bounds (see, Sec. 18.5
in Milton™"). As such, the assemblages of doubly coated ellipsoids nec-
essarily attain values on the bound.

In Fig. 3, we present schematic drawings of the optimal metama-
terial designs corresponding to three specific points A, B, and C on the
bounds in Fig. 2. In each of the subfigures, €;(w) is shown in pink
color, and the constant phase €; = 1 is shown in gray color. Point A
corresponds to a coated ellipsoid assemblage depicted in Fig. 3(a).
Point B corresponds to a material with laminate geometry, which is
shown in Fig. 3(b). Most interesting is point C that corresponds to a
limiting case of doubly coated ellipsoid geometry as described before,
with the following parameters: depolarization factors of the inner and
outer coated ellipsoid are 0.5614 and 1, respectively, the volume frac-
tion of the outermost phase = 0.4374, and volume fraction of the core
phase = 0.000 236 3. Thus, the ellipsoidal inclusions only occupy an
extremely small volume fraction, but are significant due to resonance
effects. The schematic drawing seen in Fig. 3(c) depicts this laminate
geometry, common to the points C, D, and E, with the constant phase
(outermost layer of DCE1) forming one of the laminates, and the sec-
ond laminate being formed from a very dilute assemblage of coated
ellipsoids (inner coated ellipsoid of DCE1).

For each microgeometry, Qpe, values attaining the bounds are
obtained when the electric field is applied in the direction of the blue
arrows.

Next, we obtain the response of & () with respect to o for the
specific geometries indicated by the points A (CE1), B (L), C (DCEL1),
D (DCE1), and E (DCEI) in Fig. 2. Figures 4(a) and 4(b) show the
plots for Im(ees) vs @ and Re(eer) vs o, respectively, for three

FIG. 3. Optimal two-phase metamaterial microstructure designs: The pure phase
with permittivity given by the Drude model is shown in pink, and the pure phase
with constant permittivity is shown in gray. (a) Coated ellipsoid (CE1) assemblage
corresponding to point A in Fig. 2. (b) Laminate geometry (L), corresponding to
point B in Fig. 2. (c) Doubly coated ellipsoid (DCE1) assemblage (points C, D, and
E in Fig. 2). In each of the designs, the optimal Qney is obtained in the direction of
the applied electric field (seen in blue).
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FIG. 4. Plots of & Vs @, associated with the optimal metamaterial designs. (a) Im(ee) Vs @, and (b) Re(&efr) vs , for the points A (coated ellipsoid, CE1, shown here by yel-
low line), B (laminate, L, shown by green line), and C (doubly coated ellipsoid, DCE1, shown by red line) from Fig. 2. (c) and (d) Plots for Im(eef) Vs @, and Re(ee) Vs o,
respectively, for three different doubly coated ellipsoid geometries that achieve the points C, D, and E on the bounds in Fig. 2. Note that the behavior of Im(&f) in (c), where
we can see a small local minimum for D and E (blue and cyan colored curves, respectively) at wg = 3. For these cases, the value of Im(ef) at the center frequency is not

quite the overall peak height.

different geometries given by points A, B, and C. Despite the large
difference in the Im(é) values of points A (CEL, seen in yellow)
and B (L, seen in green), they have the same Q. Figures 4(c) and
4(d) show a similar comparison, but for three similar doubly coated
ellipsoid geometries that attain points C, D, and E on the lower
bound. Interestingly, we observe that as we move from point C
toward point E, the values of Im(e.f) at center frequency undergo a
transition and exhibit a small local minimum at the center frequency
of the bandwidth [shown by blue and cyan colored curves in
Fig. 4(c)]. This, and even the peak in C, is due to two resonances
contributing to the peak. If one wishes to only consider peaks with-
out such local minima, we could improve the bounds by adding the
additional constraint that dzIm(Seff) /dw?* < 0. This can be done but
would further complicate the analysis.

Similarly, bounds on Qe can be obtained for the case when the
permittivity of the pure phase €; (@) is given by a Lorentz model. In the
supplementary material Sec. S3, we present plots for Qpey vs Im(eeqr) for
three different frequencies: one, at the resonance frequency of the pure
phase; two, near the resonance of the pure phase; and, three, at a fre-
quency away from the resonance of the pure phase. These results show
that the region enclosed by the Qpe,y bounds can be non-convex.

We now obtain bounds on Qpe,, when the two-phase metamate-
rials are three-dimensional (3D), isotropic, and have fixed volume
fraction f; for the pure phase €, (w), given by the Drude model, and
€, = 1. To obtain bounds including the volume fraction and isotropy
of the microstructure, we let , =1 — fi, be the volume fraction of
phase 2, and introduce the function,”’

fif(a - )
2[f161 +f262 - Eeff] ’

(related to the so-called Y transform;™ see, Chaps. 19 and 20 in Ref.
27) that has basically the same analytic properties and, hence, is subject
to basically the same bounds, as & (€1, €2). In the case of metal parti-
cle clusters with overall isotropic polarizability o, (5) reduces to

N 1 1
8eff(61752) = —Efz€1 — Efﬁz + (5)

~ 1 6 —6)
Eef(€1,6) = — =€ + (@ 2)

2@ — ) — v ©)

where V is the volume of the particle clusters. Thus, for example,
Zef = € for a sphere with polarizability o =3Vey(e; — )/
(€1 + 2¢;). In the isotropic case, bounds on & with known volume
fraction were first obtained by Bergman and Milton'*”***"" and were
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FIG. 5. Bounds on Quey for 3D, isotropic, and fixed volume fraction two-phase quasi-static metamaterial resonators at the center frequency wg = 3 with e1(w) given by the
Drude model. (a) Qnew bounds for volume fractions f; = 0.1 (blue line), f; = 0.25 (dashed green line), f; = 0.5 (red line), fi = 0.75 (yellow line) are superposed for compari-
son with the volume fraction independent bounds (solid black curve). (b) Qnew Vvalues obtained from Schulgasser laminates of doubly coated ellipsoids with the outer coated
ellipsoid forming a prolate spheroid are plotted (green circles). The solid red line in (b) denotes the bounds for f; = 0.5. Some of the doubly coated ellipsoid geometries are

found to be almost optimal.

gec?n)tly improved by Kern et al.”" We seek bounds that also involve
e (0

=4, (see supplementary material Sec. S4 for more explanation).

Bounds on Qe for all possible values of Im(e.) are obtained
for four different volume fractions, f; = 0.1, 0.25,0.5, and 0.75, for a
center frequency of wgr = 3. Figure 5(a) shows all the 3D, isotropic,
fixed volume fraction bounds superposed on top of the bounds shown
in Fig. 2 for comparison, as they are all evaluated at the same fre-
quency wg = 3. The plots show that the area of the region occupied
by the bounds does not monotonically increase as the volume fraction
is increased, which is clear since the bounds for fi = 0.5 (solid red
curve) occupies a larger region than the bounds for f; = 0.75 (solid
yellow curve), and the bounds for f; = 0.25 (dashed green curve). Not
surprisingly, the bounds at fixed volume fraction correlating Qyey With
Im(o), when Im(%) = 0, are qualitatively similar to those correlat-
ing Qneyw with Im(eefr), when Im(dgfgi(ff“)) =0 as in Fig. 5(b). For this
reason, the polarizability bounds are presented in the supplementary
material rather than here.

Here too, we find some optimal isotropic, fixed volume fraction
metamaterial designs that attain certain points on the bounds by using
the Schulgasser’” lamination technique to construct the isotropic effec-
tive permittivities. Given an anisotropic effective tensor &, he showed
that one could obtain an isotropic material with permittivity
Tl’(Seff) / 3.

The almost optimal geometries are Schulgasser laminates of
assemblages of doubly coated ellipsoids with the outer coated ellipsoid
forming a prolate spheroid, while there is no special form of the inner
coated ellipsoid (see the supplementary material for parameter values).
Figure 5(b) shows the Qpey values (green dots) obtained by doubly
coated ellipsoids with outer coated ellipsoid taken to be prolate sphe-
roids for a volume fraction of f; = 0.5, with some microstructures
apparently attaining points on the bound.

Similarly, bounds on Qpe, can be obtained for 3D, isotropic, fixed
volume fraction materials using the Lorentz model for €;(w). The
associated results are presented in the supplementary material, Fig. 8.
Note that, when phase 1 is Lorentzian, ¢ may have absorption peaks

due to both resonance of the pure Lorentzian phase and resonances
due to the composite microgeometry. Instead, if the phase 1 is given
by the Drude model (4) and €; = 1, then & has absorption peaks due
to microstructure geometry only.

In conclusion, our work provides bounds in quasi-statics correlat-
ing a newly defined Q-factor with the peak absorption in two-phase
composites and clusters of particles. It allows for peaks generated by
more than one resonance. Such peaks are important in nano-photonics
and optics. Optimal metamaterial microstructures have been identified
that achieve these limits. It will be interesting to see how these theoreti-
cal and numerical results compare against any experiments in the quasi-
static regime or invalidate them at higher frequencies.

See the supplementary material for additional details related to
this work.
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