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ORTHOGONAL REALIZATIONS OF RANDOM SIGN PATTERNS AND OTHER
APPLICATIONS OF THE SIPP*
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Abstract. A sign pattern is an array with entries in {4+, —,0}. A real matrix Q is row orthogonal if QQT = I. The
Strong Inner Product Property (SIPP), introduced in [B.A. Curtis and B.L. Shader, Sign patterns of orthogonal matrices and
the strong inner product property, Linear Algebra Appl. 592: 228-259, 2020], is an important tool when determining whether
a sign pattern allows row orthogonality because it guarantees there is a nearby matrix with the same property, allowing zero
entries to be perturbed to nonzero entries, while preserving the sign of every nonzero entry. This paper uses the SIPP to initiate
the study of conditions under which random sign patterns allow row orthogonality with high probability. Building on prior
work, 5 X n nowhere zero sign patterns that minimally allow orthogonality are determined. Conditions on zero entries in a sign
pattern are established that guarantee any row orthogonal matrix with such a sign pattern has the SIPP.
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1. Introduction. A sign pattern is an array with entries coming from the set {4, —,0}. The entries of
sign patterns encode qualitative properties of real matrices. Sign patterns were introduced in applications
where the entries of the matrix may be known only approximately (or not at all), but the signs of the entries
are known. A matrix @ is row orthogonal provided QQT = I. The problem of determining whether an
m X n sign pattern allows row orthogonality has been studied for many years [7, 10, 6, 5]. Recently, the
strong inner product property (SIPP) was introduced by Curtis and Shader in [6] to study sign patterns of
row orthogonal matrices. This paper relies heavily on the SIPP to build on prior work (e.g., classifying small
patterns that minimally allow orthogonality) and initiate the study of conditions under which random sign
patterns allow row orthogonality with high probability.

Finding a certificate that a sign pattern allows row orthogonality is often difficult. By applying a variant
of Gram-Schmidt orthogonalization to a nowhere zero nearly row orthogonal matrix, we obtain conditions
that guarantee the existence of a nearby row orthogonal matrix with the same sign pattern (see Section 2).
In Section 3, we apply the SIPP to develop new tools to show that a sign pattern allows row orthogonality
and use these tools (and the results from Section 2) to determine 5 x n nowhere zero sign patterns that
minimally allow orthogonality. We also establish conditions on zero entries in a sign pattern that guarantee
any row orthogonal matrix with such a sign pattern has the SIPP. One of our main results, Theorem 4.8,
utilizes the SIPP to obtain a lower bound h(m) such that the probability of a random m x n sign pattern
allowing row orthogonality goes to 1 as m tends toward oo for n > h(m) (here random means + and — are
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equally likely and the probability of 0 is given). The remainder of this introduction defines terminology and
notation (Section 1.1) and lists known results we will use (Section 1.2).

1.1. Definitions and notation. In the study of sign patterns, sometimes the distinction between zero
and nonzero is more important than the sign. An zero-nonzero pattern or znz pattern is an array with entries
coming from the set {*,0}. We use the term pattern to mean a sign pattern or a zero-nonzero pattern. Given
a real number a,

+ ifa>0 if a0

x ifa
sgn(a) =< — ifa<0 and mz(a) = {O fa0
0 ifa=0 '

The sign pattern and zero-nonzero pattern of a real matrix A = [a;;] are sgn(A) = [sgn(a;;)] and znz(A) =
[znz(a;;)], respectively. The qualitative class of an m X n sign pattern S is the set

Q(S) ={A e R™" :sgn(A) = S},
and the qualitative class of an m X n znz pattern Z = [z;,] is the set
Q(Z)={AeR™" :mz(A) = Z}.

A matrix in the qualitative class Q(P) is called a realization of the pattern P. For a sign pattern S, Cgs
denotes the unique (1, —1,0)-matrix that is a realization of the sign pattern S. Similarly, Cz is the unique
(1,0)-matrix that is a realization of the zero-nonzero pattern Z. A superpattern of a sign pattern S = [s;;]
is a sign pattern R = [r;;] of the same dimensions such that r;; = s;; whenever s;; € {4+, —}; if s;; = 0 then
Tij € {+, —,O}.

A matrix with orthogonal rows is not necessarily row orthogonal; for us, the rows of a row orthogonal
matrix have unit length. The set of m X n row orthogonal matrices is denoted by O(m,n), and we write
O(m) as shorthand for O(m,m). Note that every matrix Q € O(m) is orthogonal, i.e., QTQ = QQT = I.
The set of m x m real symmetric matrices is denoted by sym(m).

A zero matriz O € R™*™ or zero vector 0 € R™ has every entry equal to zero. An m X n matrix or
pattern is wide if m < n. A wide matrix has full rank if its rank equals its number of rows, i.e., it has linearly
independent rows. A row orthogonal matrix is necessarily wide. Let A € R™*"™ be a wide matrix with full
rank. Then, A has the strong inner product property (SIPP) provided X = O is the only symmetric matrix
satisfying (XA) o A = O [5]. The strong inner product property is one of a number of strong properties
of matrices that guarantee there is a nearby matrix with the same property, allowing zero entries to be
perturbed to nonzero entries, while preserving the sign of every nonzero entry [8, Part 2].

An m x n sign pattern S allows row orthogonality if there is a row orthogonal matrix @ € Q(S)
(equivalently, O(m,n) N Q(S) # 0). An m X n sign pattern S allows o-SIPP if there is a row orthogonal
matrix @ € Q(S) that has the SIPP. Since scaling a matrix with a positive constant does not change its
pattern, no pattern requires row orthogonality. A sign pattern S requires o-SIPP if every Q € Q(S)NO(m,n)
has the SIPP and Q(S) N O(m,n) # 0. Without the assumption that Q(S) N O(m,n) # 0, the all zeros
pattern would vacuously require o-SIPP.

A m x n rectangular sign pattern S is row potentially pairwise-orthogonal or row PPO if no row is a
zero vector and for each pair (i,k) with 1 <4 < k < m, there are realizations of row ¢ and row k that are
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orthogonal. The term column PPO is defined analogously. A pair of rows ¢ and k in a m X n rectangular
sign pattern S = [s;;] has a negative 4-cycle if there are two columns j and ¢ such that s;;s; = + and
Skjsk = —, where multiplication on the set {0,+,—} is defined in the obvious way that conforms to real
arithmetic. A pair of rows ¢ and k in an m x n matrix or pattern P = [p;;] is combinatorially orthogonal if
pij 7 0 implies p; = 0 for every j =1,...,n.

A signed permutation matriz is a square (1, —1,0)-matrix with exactly one nonzero entry in each row and
column. Matrices A, B € R™*"™ are sign equivalent if A = PyBP,, where P; and P, are signed permutation
matrices. Two sign patterns S and S’ are sign equivalent if C's and Cs are sign equivalent.

For a vector v € R™, the support of v, denoted by supp(v), is the set of indices of nonzero entries of v.
Let [n] ={1,...,n}.

1.2. Known results. In the remainder of this introduction, we provide some known results about the
SIPP that we will use. The primary motivation for developing the SIPP is given by the next theorem of
Curtis and Shader.! We provide a slightly stronger result in Theorem 3.8.

THEOREM 1.1. [6] If Q € O(m,n) has the SIPP and sgn(Q) = S, then every superpattern of S allows
0-SIPP.

Theorem 1.1 has many consequences. Here we list some that we use. A matrix with the SIPP or a sign
pattern that allows the SIPP can be padded with additional zero columns and retain that property.

LEMMA 1.2. [6] Let A € R™*™ and p > n. Then, A has the SIPP if and only if the m x p matrix
B = [A | O] has the SIPP.

COROLLARY 1.3. [6] If Q € O(m,n) has the SIPP and sgn(Q) = S, then [S | O] allows o-SIPP.

The next two results show that sign equivalence preserves having the SIPP, as does taking the transpose
for (square) orthogonal matrices.

PROPOSITION 1.4. [6] Let A, B € R™*"™ be sign equivalent. Then, A has the SIPP if and only if B has
the SIPP.

PROPOSITION 1.5. [6] Let Q € O(m). Then Q has the SIPP if and only if QT has the SIPP.

The previous results provide some sufficient conditions for a sign pattern to allow row orthogonality.
The next result provides a way to show a sign pattern does not allow row orthogonality.

THEOREM 1.6. [10] Let S be an m x n nowhere zero sign pattern and let R be an r X s submatriz of S.
Ifr+s>n+2 and rank Cr = 1, then S does not allow row orthogonality.

2. From approximate orthogonality to exact orthogonality. In this section, we establish a result
that gives conditions under which a collection of “nearly” orthogonal vectors necessarily implies the existence
of a “nearby” collection of truly orthogonal vectors. Such a result is similar in spirit to the effective implicit
function theorems used by, e.g., Cohn, Kumar and Minton [4] to derive the existence of an exact code from
an approximate one. However, instead of using an implicit function theorem, we simply rely on the Gram—
Schmidt process. Although the perturbations here are created by a different mechanism, we also point out

ITheorem 4.5 in [6] actually says that every superpattern of S allows row orthogonality, but the proof shows it allows
o-SIPP.
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that the idea of perturbing one solution to obtain another desired solution is a fundamental idea underlying
strong properties. First, we define the function r,,(€) used to quantify the notion of “nearby.”

1
m—1’

B 1+e —_
rm(€) = \/(1 — (m —2)e)(1 — (m — 1)) '

where § is interpreted as 0o, so r1(€) =0 for all € > 0.

DEFINITION 2.1. For an integer m > 1 and a real number 0 < e <

For simplicity, we have defined the functions r,,(¢) in closed form. In order to use these functions for
the results of this section, we need a recursive approach, which is given in the next lemma.

LEMMA 2.2. Given r1(€) =0, r,(€) can be computed recursively for all m > 2 and all 0 < e < ﬁ by

0= ) )

Proof. 1t is easy to verify the result for m = 2. For m > 3,

B 1+e€
Tm(€) = \/(1_(m_2)6)(1 (m — 1)e) -
\F¢ —90 919 1
1—¢ 1—¢) 6)(1—6 m —2)e)
e T »
L—e\l (1= (m- 316)(1—( -2)1%)
1+e¢ €
16(Tm1<1 >+1>—1. 0

The next lemma provides the key step to go from approximately to exactly orthogonal.

LEMMA 2.3. Let m be a positive integer, let 0 < e < ﬁ and fiz any inner product space (Q, (-, -)).

Additionally, let ||-|| be any norm on Q (possibly unrelated to (-,-)). If x1,...,Xm € Q satisfy

1. (x;,%x;) =1 for all i € [m], and
2. [(x2,%,)] < ¢ for alli £ € m],
then there exists X1, ..., Xy € span{Xy, ..., X, satisfying
1. {X1,...,Xm} is orthonormal with respect to (-,-), and
2. ||x; — Xi|| < rm(e)||xi|| for all i € [m].

Proof. We prove the result by induction on m. The case m = 1 is immediate by taking X; = x;. Let
m > 2 be a positive integer and suppose the statement holds for m — 1.

Without loss of generality, I%m|l < |Ix:i|| for all i € {1,...,m}. Fori € {1,...,m — 1}, let x!! =
(xi, xm>xm and x; = x; — x!'; then (x;*,%,,) = 0. Since |(x;,%,,)| < € and (X, %,,) = 1, we know that
0 < (x!',x!") < €2. Therefore, the Pythagorean Theorem allows us to conclude that

(2.1) (X,%;) = <xH XH> + (xl XL> = 1> (xL xl> > 1 — €.
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Since € < 1, we know that x;- is nonzero. Let X;i- denote the unit vector in the direction of x;, i..,

Sl _ 1 L
T et
Since x| = (X, X)X, we see that ||x)'|| < €[|xm|| < €||xi]|. Then, the triangle inequality applied to

X; = x; + (—x]") implies that ||x;"|| < (1 + €)||x;||. Together with (2.1), we have

1+e€ ]| = 1+
\/7 i

~ €
(2.2) %51 < Tl

In particular,

e = 3 <l I+l = %500 = Il + ( i |

23) <l + (e = 1) @ 9l = (41— 1) el

where the second inequality follows by combining (2.1) and [|x;-| < (1 + €)||x]-

Now, for any other j € {1,...,m — 1} with j # 4, we have

(xi", X]l> = (Xiy X5) — (X, X)) (X X;)
= |(x;" ) X LY <e+é?

:>‘ AJ_|< eJre <e+62: €

J_ 1y 1—€2 1—¢€
Vo X6

Therefore, since Xi,...,X;_, are unit vectors by construction, we may apply the induction hypothesis
to find an orthonormal set {X1,...,X;,_1} C span{Xi,...,X%_;} such that

~ ~ € ~
I =%l < s (15 ) IR

for each i € {1,...,m — 1}. By invoking additionally (2.2) and (2.3), we bound

~ ~ “l o~ 1+e € =
I = %ol < s = R+ R =5l < (4 7 = 1)l + e (15 JIRE

1+e€ 1+e€ €
< (VrEs -ty (1) il = e
for all i € {1,...,m — 1} where the last equality follows from Lemma 2.2.
Finally, let X,, = X,,. Then, Xi,...,X,, satisfy the claim, because Xi,...,X,,_1 € span{Xj,...,
XLt 1} Cspan{xy,...,X,,} by construction, and the former subspace is orthogonal to x,, = X,,. d

Observe that the process used to create the vectors X; is a reordering of the modified Gram-Schmit
process. We stated Lemma 2.3 very generally in the hopes that other researchers will find it useful; for our
uses, we specialize to the standard Euclidean inner product and the co-norm to attain a result related to
row orthogonal realizations.
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We apply Lemma 2.3 to obtain Theorem 2.5, which will be used in Section 3.3 to characterize 5 x n
nowhere zero sign patterns that minimally allow orthogonality. Essentially this result says that for any
matrix that is close to being row orthogonal, there exists a nearby matrix that is row orthogonal and has
the same sign pattern.

DEFINITION 2.4. For a nonzero vector x = [z1,...,2,]T € R, define
5(x) = min;ep, |4 _ min, ey, |24
max;e ) [2;] [B]P
THEOREM 2.5. Let X1,...,X;m € R™ be any nonzero vectors and let € = max;-; |<H:71H2’ ||:7]H2>” where
i j

(-,+) is the standard Euclidean inner product. If

1. e< ﬁ, and
2. 7m(€) < mingepy, 6(x:),

then there exists an orthogonal set {X1,...,Xm} C R" satisfying sgn(x;) = sgu(x;) for all i € [m].

Proof. We apply Lemma 2.3 to the vectors mxi, specializing to the Euclidean inner product and the

oo-norm, to locate an orthonormal set {X},...,x],} € R™ such that
X; - X; ~
I =% smZ]| = e R < @l
[ oo 1|2 [] o
for all ¢ € [m]. In particular, setting X; = ||x;||2X}; for each i € [m], we know that {X;,...,X,;,} is an

orthogonal set and that

I = il < on€) o < 80 o = i )51
Since |z —y| < |z|] = sgn(z) = sgn(y) for any z,y € R, we conclude that sgn(x;) = sgn(x;) for all ¢ € [m].0

One particularly useful feature of Theorem 2.5 is that it can be used to present reasonable certificates
of the existence of row orthogonal realizations; in fact, it implies that integer-valued certificates can always
be found. We illustrate this in the following example (which will be used in Section 3.3).

ExaMpPLE 2.6. Consider the sign pattern

- - - + + +
+ + - + 4+ 4+
S=1+ + + - - +
+ + + + + -
+ + + + + o+

Explicitly writing down a row orthogonal realization of S would be difficult since this requires exact arith-
metic. Despite this, it is not too difficult for a computer to find realizations of .S that are row orthogonal up
to floating-point error. For example, the following matrix is such a realization for S:

—0.0743294 —0.668965 —0.222988 0.371647  0.0743294  0.594635
0.118415 0.59468  —0.665382 0.0360018  0.195624  0.387344

A= 0511869  0.0620542  0.206774 —0.259068 —0.646593  0.454076
0.665978  0.0389929 0.0396191  0.681063  0.0657504 —0.291912

0.02319 0.264691 0.660817  0.0611589  0.541388  0.442585
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Of course, A’ is not actually a row orthogonal matrix and so it does not directly demonstrate that S has
a row orthogonal realization; however, A’ does satisfy the hypotheses of Theorem 2.5. In fact, by scaling
and truncating A’ appropriately, we find the following integer-valued matrix which satisfies the hypotheses

of Theorem 2.5 as well:
-8 74 =25 41 8 65

13 65 —-73 4 22 43

A= |56 7 23 =28 =71 50
73 4 4 75 7T =32

3 29 73 7 60 49

Here and in similar examples, we use ¢ to denote min,c,,) 6(r;) where the r; are the rows of the matrix.

To apply Theorem 2.5 to the matrix A, observe that the value § = 73—3 > .004 is obtained from row 5 of A
— 71

and the value € = JT1633596%

r5(€) < 15(0.006) < 0.03 < §. We may therefore apply Theorem 2.5 to conclude that there exists a row

orthogonal matrix with the same sign pattern as A.

< 0.006 is obtained from rows 1 and 4. Since rj is increasing on its domain,

We will use these same basic ideas in Section 3.3 to write down reasonable certificates for the existence
of row orthogonal realizations for other sign patterns.

3. Results on the SIPP. In this section, we present results related to the SIPP and orthogonality.
Section 3.1 contains some useful tools for studying matrices that have the SIPP. Of particular interest is
Theorem 3.8 which extends Theorem 1.1. In Section 3.2, we investigate sign patterns that require o-SIPP.
Section 3.3 utilizes the SIPP to provide a complete characterization of nowhere zero m x n sign patterns
that minimally allow orthogonality for m < 5.

3.1. Tools. Recall that a wide m x n matrix A with full rank has the SIPP provided O is the only
symmetric matrix X satisfying (X A)o A = O. Tt is often much easier to construct a matrix with orthogonal
rows as opposed to a row orthogonal matrix. The next lemma allows us to study row orthogonal matrices
with the SIPP without first normalizing the rows.

LEMMA 3.1. Suppose @ is an m X n full rank matrix with orthogonal rows that has the SIPP and D is
any m X m diagonal matriz with every diagonal entry nonzero. Then, DQ has the SIPP. Furthermore, D
can be chosen so that DQ is row orthogonal.

Proof. Let X € sym(m) such that (XDQ) o (DQ) = O. By algebraic manipulation,
O =(XDQ)o(DQ)=(DXD)Q o Q.
Since DX D € sym(m) and @ has the SIPP, it follows that DX D = O, which implies X = O. Thus, DQ has
the SIPP. Let r! denote the ith row of Q. Define D = diag (m, . #) and @ = DQ, so @ € O(m,n).0

el

The next three lemmas showcase additional hypotheses on A that imply various entries in X are 0.

LEMMA 3.2. Let A € R™*"™ be a wide matriz with full rank and let X € R™*™. Suppose that every entry
of row k of A is nonzero. If (XA)o A= O, then every entry of row k of X is zero.

Proof. Suppose (XA)o A= 0. Let T, ... vl denote the rows of X. Then, (XA)o A = O implies that

rZ A =07 Since A has full rank, there exists a matrix B such that AB =1 and so 0T =rfAB=rl. O

LEMMA 3.3. Suppose @ € O(m,n), X € sym(m) and (XQ)oQ = O. Then, o X = O.

Proof. Let Y = XQ and write Y = [y;;], X = [x;], and Q = [g;5]. Since Q is row orthogonal, X = Y QT
The condition that (X@) o @ = O implies that y;; = 0 if g;; # 0. Therefore,
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zi = (YQ )y = ZyijQij =0.
j=1
In other words, 1 o X = O. 0

LEMMA 3.4. Let Q = [g;5] € O(m,n) and X = [z;;] € sym(m) satisfy the equation (XQ)o Q = O.
Suppose that the only two nonzero entries in column j of Q are q;; and qi;. Then, x;, = xp; = 0.
Proof. Since (XQ)oQ = O,
m
0=((XQ)oQ)iy = <Z xw%) Gij = (Tiiij + TinQrj)2j -
=1

Since g;; # 0, ©i¢i; + Tikqr; = 0. By Lemma 3.3, z;; = 0, so ;rqr; = 0. Since gi; # 0, 2, = 0. 0

The next result extends one direction of [6, Proposition 3.9].

LEMMA 3.5. Suppose A is a wide matrix partitioned as a 2 X 2 block matrizx A = j; ji with
Az, Ay both nowhere zero (or vacuous). If A1 has the SIPP and A is full rank, then A has the SIPP.
Proof. Let X = [ ))((; ;z ] be a symmetric matrix such that (XA4) o A = O. By Lemma 3.2,
2
[ xT ‘ Xu ] = O. Therefore, X = )él o | The equation (X A)o A = O implies that (X1A41)0A; = O.
Since X7 is symmetric and A; has the SIPP, X; = O and A has the SIPP. 0

Manifold theory, and in particular having manifolds intersect transversally, plays a fundamental role in
strong properties, including the SIPP; see [8] for more information. Smooth manifolds M and N, both in
R?, intersect transversally at a point x if x € M NN and the intersection of the normal spaces of M at x
and of NV at x contains only the zero vector. As the next result shows, a matrix @ € O(m,n) having the
SIPP is equivalent to Q(sgn(Q)) and O(m,n) intersecting transversally at Q.

THEOREM 3.6. [6, Theorem 4.5] Let Q € O(m,n) have sign pattern S. The manifolds Q(S) and O(m,n)
intersect transversally at Q if and only if Q has the SIPP. If Q has the SIPP, then every superpattern of S
allows o-SIPP.

Theorem 3.8 improves the previous result by allowing us to control the relative magnitudes of the
formerly zero entries in () when applying the SIPP. This requires the following theorem of van der Holst,
Lovasz, and Schrijver.

THEOREM 3.7. [9] Let My(s) and Ma(t) be smooth families of manifolds in R, and assume that M1 (0)
and M3(0) intersect transversally at yo. Then, there is a neighborhood W C R? of the origin and a
continuous function f: W — R? such that f(0,0) = yo and for each ¢ = (e1,€2) € W, My(e1) and Ma(ea)
intersect transversally at f(€).

Note that the statement of Theorem 3.7 applies to a more general setting than we require. For our
purposes, one of the smooth families of manifolds is replaced with a manifold. In such a setting, we may
think of f as a continuous function of one variable from an interval about the origin to R
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THEOREM 3.8. Let Q € O(m,n) have sign pattern S. If Q has the SIPP, then for all A € R™*™ with
Ao Q = O, for every e sufficiently small there is a matriz M. € Q(S) such that M, + ¢A € O(m,n).
Moreover, M. + €A has the SIPP.

Proof. Suppose that @ = [g;;] has the SIPP and let A = [a;;] € R™*" satisfy Ao @ = O. Define the
smooth family of manifolds M 4(t) by

MA(t) = {B = [bij] S Rmxn : sgn(bij) = sgn(qij) if qij 7é 0, and bij = Cli]‘t if qij = O}

for ¢ € (—1,1). Since @ has the SIPP, O(m,n) and M 4(0) = Q(S) intersect transversally at ) by Theorem
3.6. By Theorem 3.7, there exists a continuous function f : (—1,1) — R™*" such that f(0) = @ and the
manifolds M 4(e) and O(m,n) intersect transversally at f(e) for each ¢ > 0 sufficiently small. Since f is
continuous, we may choose e small enough so that M, := f(e) o Cz € Q(S), where Z is the zero-nonzero
pattern of @ and C is the unique (1, 0)-matrix in Q(Z). To complete the proof, observe that f(e) = M.+e€A.
Moreover, f(e) has the SIPP by Theorem 3.6 since M 4(e) and O(m,n) intersect transversally at f(e). 0O

We apply the previous theorem to prove the next result.

PROPOSITION 3.9. Let
Si1] O

S:
S3 | Sy

be a sign pattern that allows row orthogonality, and let S} be a submatriz of Sq with the same number of
rows as Sy. If S} allows o-SIPP, then
o [ Sl o

S5 | St

allows row orthogonality.

Proof. Let @ be a row orthogonal realization of S. Then

g R
Qs | Q4
where the partition is consistent with that of S. Assume that S} allows o-SIPP. Then there exists a row
orthogonal realization @) of S with the STPP. Then, [ O ‘ Q4 } is row orthogonal and, by Lemma 1.2, has

the SIPP. By Theorem 3.8, there exists an € > 0 and a matrix M/ such that [ €Qs ‘ M! ] is row orthogonal
and sgn(Q)) = sgn(M!). Since Q is row orthogonal, Q1Q% = O. Therefore,

r_ Ql 0
Q _[GQS M

is row orthogonal and sgn(Q’) = 5. 0

3.2. Sign patterns requiring o-SIPP. In this section, we present results concerning sign patterns
that require o-SIPP. As we shall see, both the number of zero entries and the location of the zero entries in
a sign pattern S play an important role in determining whether S requires o-SIPP.

While sign patterns that require o-SIPP have not been previously studied, there are some known results
that are closely related to requiring o-SIPP. For example, consider the n x n lower Hessenberg matrix
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1 -1 0 0
-2
H= 0 ,
: —(n-1)
IR 1 ]

which has orthogonal rows. The proof of Corollary 5.2 in [6] implies that any sign pattern that has the same
zero-nonzero pattern as H and allows orthogonality requires o-SIPP.

The next lemma provides an example of a structural property that guarantees a matrix has the SIPP
and is used to establish Corollary 3.11, which is a slightly more general result than [6, Corollary 5.2]. For
any integer k = 1 —m,...,n — 1, the k-th diagonal of an m x n matrix A = [a;;] is the list of entries a;;
such that j —¢ = k. The k-th diagonal terminology is also applied to sign patterns.

LEMMA 3.10. Let A = [a;;] € R™*™ be a wide matriz with full rank. Suppose that there is an integer k
such that 0 < k <mn—1, each entry of A on the r-th diagonal is nonzero for 1 —m <r <k, and each entry
of A on the r-th diagonal is zero for k <r <n —1. Then A has the SIPP.

Proof. Note that if K =n — 1, then A is nowhere zero and hence has the SIPP. Suppose that £ <n — 1.
Let c=min{n—k—1,m} and A, = A[{1,...,¢},{1,...,£+k+1} for £ =1,...,c. We begin by successively
showing that each A, has the SIPP. Since A; contains a nonzero entry, Lemma 3.5 implies A; has the SIPP.
Suppose that A; has the SIPP for some i € {1,...,¢—1}. Then Lemma 3.5 and Lemma 1.2 imply that A,

C
———1, where

has the SIPP. If ¢ = m, then A = [ A ‘ 0] ] has the SIPP by Lemma 1.2. Otherwise, A = B

B is nowhere zero. By Lemma 3.5, A has the SIPP.

COROLLARY 3.11. Let S be an m x n wide sign pattern. Suppose that there is an integer k such that
0<k<n-—1, each entry of S on the r-th diagonal is nonzero for 1 —m < r < k, and each entry of S on
the r-th diagonal is zero for k <r <mn —1. If S allows row orthogonality, then S requires o-SIPP.

For sign equivalent matrices A and B, A € O(m,n) implies B € O(m, n) and A has the SIPP implies B
has the SIPP. Thus the analogous statement with the upper part nonzero is also true.

COROLLARY 3.12. Let S be a wide m X n sign pattern. Suppose that there is an integer k such that
1—m <k <n—m, each entry of S on the r-th diagonal is nonzero for k <r <n —1, and each entry of S
on the r-th diagonal is zero for 1 —m < r < k. If S allows row orthogonality, then S requires o-SIPP.

In this paper, a nonzero hollow matrix (respectively, sign pattern) is a square matrix (respectively, sign
pattern) with zeros along the main diagonal and nonzero entries everywhere else. Recall that a signature
matriz is a diagonal matrix with diagonal entries equal to +1. Matrices A and B are signature equivalent
if there exist signature matrices Dy and Ds such that Dy ADy = B. Similarly, sign patterns S and R are
signature equivalent if there exist signature matrices D; and Dy such that DCsDs = Cr. Theorem 5.7 in
[6] states that a nonzero hollow matrix @ € O(n) has the SIPP if and only if @ is not signature equivalent
to a symmetric hollow matrix. The following corollary is an immediate consequence.

COROLLARY 3.13. Let S be a nonzero hollow sign pattern that allows orthogonality. If S is not signature
equivalent to a symmetric hollow sign pattern, then S requires o-SIPP. If S is signature equivalent to a
symmetric hollow sign pattern, then S does not allow 0-SIPP.
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As an example, consider

0 + + +
g_ |+ 0 -+
+ + 0 -
+ - 4+ 0

It is not difficult to verify that C's has orthogonal rows, and hence, S allows orthogonality. Further, .S is not
signature equivalent to a symmetric sign pattern. Thus, S requires o-SIPP.

Let G be a graph with vertex set V(G) = {v1,...,vn} and edge set E(G) = {e1,...,e¢}. The (vertex-
edge) incidence matrix R = [r;;] of G is the m x £ matrix that has r;; = 1 if v; € e; and r;; = 0 otherwise.
An orientation G of G is the assignment of a direction to each edge. That is, the edge e; = {v;,vx} is
replaced by exactly one of the two arcs (v;, v) or (vk,v;); the arc associated with e; is denoted by é€;. The
incidence matrix Rz = [r;;] of an orientation G of G is the m x £ matrix that has ri; = —1if & = (v, vg),
ri; = Lif € = (vg,v;), and r;; = 0 otherwise.

Considerﬂthe complete graph K, and an orientation KT" For m > 2, define the m x 2(7;) ma-
trix R(Km,Ky) = [Rk,|Rg ] and its sign pattern S(Kp,, Kn) = sgn(R(Km, Kp,)). The sign pattern
S(Kpm, K,,) was shown to have a row orthogonal realization with the SIPP in [5]. We now show that
S(Kpm, I?m) requires o-SIPP. We note that this sign pattern will be instrumental in Section 4 for studying
random sign patterns that allow row orthogonality.

THEOREM 3.14. For m > 2 and any orientation K, of K, the sign pattern S(Km,I?m) requires o-
SIPP.

Proof. For brevity, let S = S(K,,, I_('m) It is not difficult to verify that Cs has orthogonal rows and
hence S allows row orthogonality. Let Q € Q(S) be row orthogonal and suppose X = [z;;] € sym(m) satisfies
(XQ)oQ = O. By Lemma 3.3, z;; = 0 for ¢ = 1,...,m. For i # k, there is a unique edge e; = {v;, vy}
Then applying Lemma 3.4 to column j gives that xz;; = 0. Thus X = O and @ has the SIPP. ]

Let Q € O(m,n). It is an immediate consequence of Theorem 1.1 that if @ has a pair of combinatorially
orthogonal rows, then ) does not have the SIPP. Similarly, if m = n and @ has a pair of combinatorially
orthogonal columns, then ) does not have the SIPP. Thus, when studying sign patterns that require o-SIPP,
it is natural to assume that the rows (and in the square case the columns) are not cominbatorially orthogonal.
Note that it is possible for a wide sign pattern to have combinatorially orthogonal columns and still require
o-SIPP. For example, consider

+ 0 + + 1 0 1 1
S=10 4+ + - and A=]10 1 1 -1
0o - 4+ - 0 -2 1 -1

Observe that A has orthogonal rows. As we shall see, Corollary 3.17 implies S requires o-SIPP.

The remainder of this section investigates how restricting the location and number of zero entries affects
whether or not a sign pattern requires o-SIPP. Let A € R™*™ be a wide matrix. It is not difficult to
verify that if A is nowhere zero, then A has the SIPP. Thus every nowhere zero sign pattern that allows
row orthogonality requires o-SIPP. For each additional 0 entry in A, the equation (XA) o A = O imposes
one fewer linear equation on the entries of X. This suggests that the more 0 entries A has, the larger the
solution space to (XA) o A = O is going to be, reducing the likelihood that A has the SIPP. In fact, this
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is the intuition behind the next theorem, which bounds the number of zero entries a matrix with the SIPP
can have.

THEOREM 3.15. [6] Let @ € O(m,n) have the SIPP. Then the number of zero entries in Q is at most
nm — tm(m+1).

The location of 0 entries in a sign pattern S also play an important role in determining if S requires
o-SIPP.

THEOREM 3.16. Let Q = [g;;] € O(m,n). Suppose that the zero entries of Q) are contained in at most
three rows of @ and that no pair of rows is combinatorially orthogonal. Then, @ has the SIPP.

Proof. Begin by assuming that the zero entries of ) are contained in at most 1 row. Without loss of
generality, the zero entries of ) are contained in the first row and the (1,1)-entry of @ is nonzero. By
Lemma 3.5, @ has the SIPP.

Now assume that exactly k rows of @ contain a zero, where k € {2,3}. Without loss of generality, the
first k rows each contain a zero. Let X € sym(m) and suppose (X@Q)oQ = O. By Lemma 3.2, X =Y & O,
where Y € sym(k). Observe that (YQ) ) Q = O, where Q is the submatrix of @) formed from the first &
rows. Also, note that Lemma 3.3 implies Y o I = O.

First, consider the case k = 2. Since the rows of Q are not combinatorially orthogonal, Q has a nowhere
zero column. Since (YQ) 0@ = O, Lemma 3.4 implies that the off-diagonal entries of Y are zero. This,
together with Y o I = O, implies Y = O.

Now consider the case k = 3. Suppose first that an off-diagonal entry of Y, without loss of generality

0 0 wn
the (1,2)-entry, is zero,so Y = | 0 0 1y | . Since the rows of Q are not combinatorially orthogonal,
v1oy2 0

@ has a column with nonzero entries in the first and third rows. Then, (Y@) o Q) = O implies y1 = 0;
similarly yo = 0. So suppose that Y is a nonzero hollow matrix. Then by Lemma 3.4, and the preceding
argument, no column of Q has exactly one zero entry. This, along with the fact that no pair of rows of Q are
combinatorially orthogonal, implies Q has a nowhere zero column q;. Observe that (YQ) ) Q = O implies
Yq; = 0. This is impossible since rank(Y") = 3. Thus, ¥ = O and @ has the SIPP. 0

COROLLARY 3.17. Suppose S is an m X n sign pattern that allows row orthogonality such that the zero
entries of S are contained in at most three rows of S and that no pair of rows are combinatorially orthogonal.
Then, S requires o-SIPP.

As the next example illustrates, Corollary 3.17 cannot be extended to 4 or more rows.

EXAMPLE 3.18. Let n > 4 and define the n x (n + 1) matrix

0 Vn—=2|3-n 1 1 % %

0 vn=2| 1 3-n 1 % %

A= 0 vn—2| 1 1 3—n % %
0 Vn—=2| 1 1 1 3—7; 3—7;

Vn —2 0 1 1 1 % %
_—\/n—2 0 1 1 1 % % ]
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Observe that the rows of A are orthogonal. It can be verified that

0 -~ 0 1 -1
1 -~ 1 0 O
-1 -+ -1 0 0

satisfies (XA) o A = O. Since X = X7 and rank A = n, it follows that A does not have the SIPP.

Even if we also prohibit combinatorially orthogonal columns, there are examples of sign patterns with
the zero entries restricted to the first four rows that do not require o-SIPP, as seen in the next example,
which utilizes a construction method in [5].

EXAMPLE 3.19. Consider

[ -9 9 0 0 V2 —6v2 6v2 ]
9 -9 0 0 3V2  —6v2 62

0 0 -9 9 —6v2 3v2 6V2 8 8 1 j
Q= 0 0 9 -9 —6v2 3v2 6v2 and X = L1 0 0 ® 0.
32 3WV2  —6v2 —6v2 8 8 4 L1 0 o

—6vV2 —6v2 3v2 3V2 8 8 4
6vV2  6vV2  6V2 62 4 4 2

It is readily verified that the rows of @ are orthogonal and (XQ)o@Q = O. Thus, sgn(Q) allows orthogonality
but does not require o-SIPP.

By restricting the number of zero entries, we obtain the following result.

PROPOSITION 3.20. Let Q € O(m,n) have at most four zero entries. Suppose that no pair of rows and
no pair of columns of Q are combinatorially orthogonal. Then Q) has the SIPP.

Proof. Observe that if the zero entries of () = [g;;] are contained in at most three rows, then Theorem 3.16
implies @) has the SIPP. So, suppose that each zero entry of @) is contained in a unique row.

Assume first that m = n = 4. If @ has a nowhere zero column, then Proposition 1.5 and Theorem 3.16
imply @ has the SIPP. Otherwise, without loss of generality, ) is a nonzero hollow matrix. Theorem 3.2 in
[2] guarantees that @ is not symmetric. Thus, Corollary 3.13 implies @ has the SIPP.

Now assume that n > 5 (and m > 4). Without loss of generality, @) has the form

| Q1| Q2
Q_[Qs Q4]7

where all four zero entries of () are contained in ()1 such that each column and each row of (Q; contains a
zero entry. Note that ()1 has four rows, ()2 is nowhere zero, and @3 and @4 may be vacuous. We proceed
via cases.

We first resolve the case where @)1 has exactly one column, i.e., @1 = 0. Then, Q2 € O(4,n — 1) is
nowhere zero. Thus, @2 has the SIPP and, by Lemma 3.5, @) has the SIPP.
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Suppose that Q1 has at least two columns. Let X € sym(m) and suppose (X@)o@ = O. By Lemma 3.2,
X =Y @ O, where Y is symmetric and has four rows. Further, Lemma 3.3 implies Y o I = O, i.e., Y has
the form
0 w1 v2 ys
v | 0 vy
y2 ya 0 yg
Ys ys Y O

We now consider the case where @); has a column c with exactly one zero entry. Without loss of
generality, the zero appears in the last entry of c¢. Then, (Y¢) oc = 0 implies y1 = yo = y4 = 0. It now
follows from (Y @2) o Q2 = O that y3 = y5 = y¢ = 0. Thus, Y = O and @ has the SIPP.

For the final case, assume that 1 has exactly two columns that contain exactly two zero entries each.
Since the first two columns cannot be combinatorially orthogonal, there must be at least five rows. Then,
without loss of generality,

From (Y Q1) 0 Q1 = O, it follows that y; =y = 0. If y; = 0 for i € {2,3,4,5}, then (YQ2) 0 Q2 = O implies
Y = O. Suppose this is not the case, i.e., y; # 0 for all i € {2,3,4,5}. Then, (YQ2) o Q2 = O implies
yovl +y4vl = 07, and thus, vy = av; for some nonzero value a. Since @ is row orthogonal

0 = q12go2 + Vi V2 = q12ga2 + a(1 — i),
0 = go2gs2 + V3 W = ga2q52 + avi w, and

0= q12952 + ViFW-

From the last two equations, a = ¢a2/¢12. Substituting this into the first equation implies g22 = 0, a
contradiction. Thus, Y = O and @ has the SIPP. 0

It is possible to show that if @ € O(m,n) has at most five zero entries, no pair of rows and no pair
of columns of @) are combinatorially orthogonal, then @ has the SIPP. However, with the available tools,
the argument is not illuminating and does not warrant the space that would be required. As the next
example illustrates, it is possible for a sign pattern with six zero entries to allow row orthogonality, not have
combinatorially orthogonal rows or columns, and not require o-SIPP.

ExampPLE 3.21. Consider the sign pattern

0 + + + + +
+ 0 + - + -
g_ |t 0+ = -
+ - + 0 +
+ + - - 0 +
L+ - - 4 0|




Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society I I

Volume 39, pp. 434-459, August 2023.

Zachary Brennan et al. 448

Observe that Cg is a conference matrix, i.e., Cg is hollow, every off-diagonal entry is 1 or —1, and CECS =
(n —1)I. Hence, S allows orthogonality. By Corollary 3.13, S does not require o-SIPP. In fact, it is not
difficult to see that C's does not have the SIPP since the symmetric matrix X = Cg satisfies (XCg)oCg = O.

3.3. Nowhere zero sign patterns that minimally allow orthogonality. In this section, we deter-
mine the nowhere zero sign patterns with at most five rows that minimally allow orthogonality. These and
previously known results are summarized in Table 3.1 at the end of this section, which lists a representative
of each equivalence class of m x n nowhere zero sign patterns that minimally allow orthogonality for m < 5.
Recall that a sign pattern S minimally allows orthogonality provided S allows row orthogonality and every
sign pattern obtained from S by deleting one or more columns does not allow row orthogonality.

A complete characterization of nowhere zero sign patterns with at most 4 rows that minimally allow
orthogonality was presented in [5]. We summarize these results in the following theorem.

THEOREM 3.22. [5, Section 5.2] Let S be an mXn nowhere zero sign pattern. If m < 3, then S minimally
allows orthogonality if and only if n =3 and S is row and column PPO. If m = 4, then S minimally allows
orthogonality if and only if n =4 and S is row and column PPO, or S is sign equivalent to

- - + + +
+ + - - 4+
+ + + + -
+ + + 4+ +

We now determine all 5 x n nowhere zero sign patterns that minimally allow orthogonality. The next
theorem establishes the square case.

THEOREM 3.23. [5, Theorem 7.9] Let S be a 5x5 nowhere zero sign pattern. Then, S allows orthogonality
if and only if S is row and column PPO.

LEMMA 3.24. Let S be a 5 x 4 nowhere zero sign pattern. Then, S is sign equivalent to a sign pattern
with at most 5 negative entries.

Proof. By scaling the rows and columns of S, we can obtain the sign patterns

+ |4+ + + -+ + +
+ +

S| = d Sy, =

1 + R an 2 + R
+ +
+ +

If R contains at most 5 negative entries, then the proof is complete. So, suppose that R has at least 6
negative entries.

First consider the case where R has exactly 6 negative entries. If a row (or column) of R has 3 negatives,
then negating the corresponding row (or column) of S; reduces the total number of negative entries to at
most 5. Otherwise R has two rows r; and ro, each containing exactly 2 negative entries, and a third row
that contains a negative entry; let j denote the column index of this entry. Observe that negating the rows
of S7 corresponding to r; and ry does not change the total number of negative entries. Thus, we can scale
the rows of S; so that column j has 3 negative entries. Negating column j now reduces the total number of
negatives to at most 5.
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TABLE 3.1
One representative of each sign-equivalence class of m X n nowhere zero sign patterns that minimally allow orthogonality
form <5

Rows | Unique sign patterns (up to sign equivalence)
v
2 oo
+ +
[+ - +
3 + + -
o+ o+
[+ - + 4+ + - - + -+ + 4+ -+ + 4+ +
4 + + - 4+ + + - 4+ + - 4+ + + -+ - 4+
+ + + -]+ + 4+ -1+ + -+ |+ + - + =
|+ + + + + + + + + + + - + + 4+ + 4+
[+ - - + +] [- -+ + +][- - + + +]
+ + - -+ + - - + + + - - 4+ +
e T e [ e e o
+ + + + - + o+ + - + + + - 4+
|+ + + + + ] L+ + + + +] |+ + + + -]
[ - - + + +] [- -+ + +] [+ - - + +]
+ - - 4+ + + - - + + + 4+ - 4+ +
+ + + - - ||+ + 4+ -+ +++ - -1
+ + + + - + o+ - + + + + -
|+ + + + +] [+ + + + +] |+ + + + + ]
5 - - - - - -
- - + + + - + + + + + - + + +
+ - 4+ 4+ + + - + + + + + - 4+ +
+ + -+ F - -
+ + + -+ + + + -+ + + + + -
|+ + + + -] [+ + + + -] [+ + + + +
[ - - + + + + - - - + + + - -+ + + +
+ + - - 4+ 4+ + + - + + + + - + + + +
+ 4+ + + -+ |+ ++ - - +]|+ + - -+ +
+ + + + + - + + + + + - + + + + - -
|+ + + + + F + + + + + + + + o+
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Now suppose that R has at least 7 negative entries. Then, S5 has at most 6 negative entries. As before,
we can reduce the total number of negative entries to at most 5 if a row (or column) of —R contains at least
3 negative entries, or if —R has two rows that each contain exactly 2 negative entries. Thus, we may assume
—R has 1 row with exactly 2 negative entries and 2 columns with exactly 2 negative entries. Without loss
of generality S5 is of the form

Negate columns 2 and 3, and rows 1 and 3 in the first case. Negate row 2 and column 4 in the second case.O

The next example uses the ideas illustrated in Example 2.6.

ExaMPLE 3.25. We can apply Theorem 2.5 to the matrices

—424 =297 42 382 424 212 —246 —-246 369 123 369 123

290 48 —578 =70 247 392 494 =254 7 127 7 314

A = 126 32 2 536 —490 310 and Ap = 174 230 —11 —421 396 75
466 4 39 404 305  —407 284 107 414 56 —41  —392

49 579 384 12 255 301 2 477 51 367 69 231

to obtain row orthogonal matrices with the same sign patterns: For A;, the value § = Wls > .003 is obtained

_ 400 . .
from row 3 of A; and the value ¢ = 109890553973/ 109590555973 < 0.0007 is obtained from rows 1 and 2.

Thus, € < 5. Since r5 is increasing on its domain, r5(e) < 75(0.0007) < 0.003 < §. For Aj, the value
2 1

=1 > .004 is obtained from row 5 of A, and the value € = 39550 VIEE < 0.0009 is obtained from rows

1 and 2. Thus, € < =15 and r5(e) < r5(0.0009) < 0.004 < 4.

THEOREM 3.26. Let S be a 5 X n nowhere zero sign pattern. Then, S minimally allows orthogonality if
and only if n =5 and S is row and column PPO, or S is sign equivalent to

- -+ 4+ + 4+ - - - 4+ + 4+ - -+ 4+ + +
+ + - - + + + + - + + + + - 4+ + + +
Si=|+ + + + - + |, %=+ 4+ + - — 4+ |,orSs=|+ + - - + +
+ + + + + - + + + + + - + + + + - -
+ + + + + + + 4+ + + + + + + + + + +

Proof. Observe that each of the three patterns 57,53, and S5 allows row orthogonality by Examples
2.6 and 3.25. Removing a column from one of S, 52 or S5 results in a 5 X 5 sign pattern with a duplicate
column, and such a sign pattern is not column PPO. So by Theorem 3.23, removing a column from one
of S1,55 and S3 results in a sign pattern that does not allow orthogonality. Thus, each of S7,S: and S3
minimally allows row orthogonality.

Assume that S minimally allows orthogonality. Without loss of generality, the first row and first column
of S have all positive entries. Suppose that S has d distinct columns cq,...,cq. It is easy to see that d > 4:
If S had at most 3 distinct columns, then S would have at most 4 distinct rows, contradicting the fact that
S is row PPO.



Electronic Journal of Linear Algebra, ISSN 1081-3810

A publication of the International Linear Algebra Society I L
Volume 39, pp. 434-459, August 2023.
451 Orthogonal Realizations of Random Sign Patterns and other Applications of the SIPP

First consider the case where S has d = 5 distinct columns. Since S is row PPO,
R:[Cl‘CQ‘C3‘C4‘C5}

is row PPO. Observe that R is column PPO since ci,...,c5 are distinct. By Theorem 3.23, R allows
orthogonality. Since S minimally allows orthogonality, S = R.

Now suppose that d > 5 and let
R:[Cl‘CQ‘Cg‘C4‘C5].

As before, if R is row PPO, then R allows orthogonality. Since S minimally allows orthogonality, it follows
from the preceding argument that R is not row PPO. Without loss of generality

- + + - - + -

Either R contains a column with exactly one negative entry or every column of R has at least two negative
entries. Observe that in the latter case, negating the last three rows of R results in a column with all positive
entries and a column with exactly one negative entry. Thus, we may assume

+ |+ + +
+ 4+ |+ + +
R=|+ +|+ — =
+ |- x
+ — | *x % %

Since S allows row orthogonality, ¢; = (+, —, *, *, ¥)T for some j > 6. Observe that
[Cl‘CQ‘C?,‘C;l‘Cj]

is row and column PPO and hence allows orthogonality by Theorem 3.23. This is a contradiction since S
minimally allows orthogonality. Thus, d < 5.

Finally, we consider the case where S has exactly d = 4 distinct columns. Let R = [ cy ‘ Cy ‘ c3 ‘ Cy ]
By Lemma 3.24, we may assume that R has at most 5 negative entries. Observe that at least 4 rows of R
contain a negative entry since S is row PPO.

Suppose R has exactly 4 negative entries. Then, R is sign equivalent to

-+ + 4+
+ - + +
+ o+ - 4+
+ o+ o+ -
+ + + o+
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and we assume R has this form. Observe that S can be obtained from R by duplicating some of the columns.
By Theorem 1.6, we must duplicate at least 2 distinct columns of R to obtain S. It follows that, up to sign
equivalence, S contains the submatrix

- - 4+ + + +
+ + - - 4+ +
Si=|+ + + + - +
+ + + + + -
+ + + + 4+ +

Suppose that R has 5 negatives. Observe that R cannot have exactly 1 negative per row, as this would
contradict S being row PPO. Further, at most 1 row of R has 2 negatives, otherwise we have 2 positive rows,
which violates row PPO. By these considerations, R is sign equivalent to

- - 4+ 4+
+ -+ +
+ + - +
+ + + -
+ o+ o+ o+

and we assume R has this form. As before, S can be obtained from R by duplicating at least 2 distinct
columns of R. Observe that duplicating only columns 1 and 2 of R violates Theorem 1.6. Duplicating
columns 1 and 3 is sign equivalent to duplicating columns 1 and 4. Duplicating columns 2 and 3 is sign
equivalent to duplicating columns 2 and 4. Thus, up to sign equivalence, .S contains one of

- - - + + + - - + + 4+ +
+ + - + + + + - + + + +
So=|+ + + - — 4+ |, S3=|+ + - - + +
+ + + + + - + + + + - -
+ + + + + + + 4+ + + + +
or
- - - + 4+ +
+ - - + + +
Se=|+ + + - — +
+ + + + + -
+ + + + + +

as a submatrix. Observe that Sy is sign equivalent to So (negate rows 1,2, and 5, and negate columns 4, 5,
and 6; then appropriately permute rows and columns). By Examples 2.6 and 3.25, S1,S2, and S5 allow row
orthogonality. Since S minimally allows orthogonality, S is sign equivalent to S, .Sz, or Ss. O

REMARK 3.27. Characterizing all 6 X n sign patterns that minimally allow orthogonality may require
a new approach. However, in doing so, we may learn a great deal about sign patterns that allow row
orthogonality. Consider the 6 x 8 sign pattern
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+ + + + + + + +
+ 4+ + - - - 4+ 4+
g |t A+t -
+ + + - - - - -
+ + + + + + + -
l+ + + - = = + -]

Deleting any number of columns will contradict Theorem 1.6, so if S allows row orthogonality, then it
minimally allows orthogonality. Using the techniques described in Example 2.6, we were unable to find
a row orthogonal realization of S. It would be very interesting if this sign pattern does not allow row
orthogonality. It is not too difficult to verify that S satisfies the conditions of Theorem 1.6, so this would
unveil a new necessary condition for sign patterns to allow row orthogonality.

4. Likelihood a random sign pattern allows row orthogonality. The question of finding the
probability that m vectors sampled from {£1}" are linearly independent has attracted recent attention
in the literature. This problem can equivalently be stated as asking for the probability that a random
matrix in {£1}™*™ has rank m (the literature is most interested in the case when m = n). In particular,
Tikhomirov [12] answered this question in a strong form by showing that this probability is bounded below
by 1 — (% + o(l))m whenever n > m; in particular, when n > m the probability tends toward 1 as m tends
toward oco.

In this section, we consider the adjacent problem of determining the threshold ¢(m) such that a random
matrix in {4, —}"*" with n > t(m) allows row orthogonality with probability tending toward 1 as m tends
toward oo.

Let f(n) and g(n) be functions from the non-negative integers to the reals. Then, f(n) = o(g(n)) if
lim, o0 f(n)/g(n) = 0, and f(n) = w(g(n)) if g(n) = o(f(n)). An event E = E(n) happens with high
probability as n — oo if Pr[E] = 1 —o0(1). The union bound is the fact that the probability that at least one
of a set of the events happens is at most the sum of the probabilities of the events.

For a probability distribution p on a set €2, we write = ~ p to mean that x is distributed according to u.
If © is a finite set, then we write x ~ {2 to mean that x is chosen uniformly from 2. We write z1,...,z, ~ p
to indicate that x1,...,x, are distributed according to p and are mutually independent from one another.
For a positive integer n, u™ denotes the product distribution on Q" where each entry is drawn independently
from p. Similarly, for positive integers m and n, p™*™ denotes the product distribution on ™*" where each
entry is drawn independently from u. For an index set «a, let Q2% denote the set of vectors with entries in €2
indexed by a. We write u® to mean the product distribution on 2% where each entry is drawn independently
from pu.

We will need two forms of the Chernoff bound, which we state here.

THEOREM 4.1. [1, Corollary A.1.2] Let X;, 1 < i < n, be mutually independent random variables with
PrX; =1]=Pr[X; =-1] =3 and X = X1 + -+ X,,. Let a > 0. Then

Pr[|X]| > a] < 2e= /21,

THEOREM 4.2. [11, Remark 9.2] Suppose X1,...,X, are independent random variables taking values
from the set {0,1}. Let X = X7 +---+ X,,. Then for any 6 >0

Pr[X < (1 — §)E[X]] < exp(~d2E[X]/2).
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For a fixed 0 < p < 1/2, let p, denote the distribution on {0,+1} where u,(1) = pp(—1) = p and
tp(0) = 1 — 2p. The main result of this section, Theorem 4.8, implies that for any fixed 0 < p < 1/2,
there is a constant C' = C(p) such that if A ~ u,™*™ where n > m? + Cmlogm, then sgn(A) allows row
orthogonality with high probability as m — oco. Before proving Theorem 4.8, we use Theorem 2.5 to obtain
a slightly weaker result for nowhere zero sign patterns. We include this result since the proof is relatively
short and highlights a substantially different approach from Theorem 4.8.

THEOREM 4.3. If A ~ {£1}™*" with n > 17m?logm, then sgn(A) allows row orthogonality with high
probability as m — oo.

Proof. Let x; denote the ith row of A, so x1,...,X;, ~ {£1}". Observe that ||x;||2 = +/n and that

d(x;) =1 for each i € [m]. Set
[17
1
N ogm,
n

and observe that 0 < e < ﬁ since n > 17m?2 logm and so

(o) = 1+e€ B 1—0—% o m(m+1/2) B
m()_\/(1—(m—2)e)(1—(m—1)6) 1<\/(1_m2)(1_ml) =2 s meny T h

2m 2m

Thus, if |(x;,x;)| < en for all ¢ # j € [m], then we may apply Theorem 2.5 to locate a set of orthogonal
vectors Xi,...,X;, such that sgn(X;) = sgn(x;). Thus, in order to conclude the proof, it suffices to show
that |(x;,x;)| < en for all ¢ # j € [m] with high probability as m — oo.

Since X1, ...,Xm ~ {£1}" are independent, we may apply the Chernoff bound in Theorem 4.1 to bound
Pr[|(x;, x;)| > en] < 2¢~ ¢ /2

for any ¢ # j € {1,...,m}. By the union bound,

Pr([(xi,x;)| Sen, Vi jem] 21— Y Prll{xix;)| > en] =1~ (7721)26_6%/2
i<j€[m]

>1—mPe 2 =1—m /8 =1-0(1). 0

We now show how to improve Theorem 4.3 by using the SIPP. Recall that Theorem 3.14 states that
the sign pattern S(K,,, Km) requires o-SIPP. We say that a pair of negative 4-cycles are column-disjoint
if the column indices of the negative 4-cycles are all distinct. Observe that any sign pattern that has a
collection of column-disjoint negative 4-cycles between every pair of rows is sign equivalent to a superpattern
of | S(Kp, I?m) ‘ (0] ] So by Theorem 1.1 and Theorem 1.3, we have the following observation.

OBSERVATION 4.4. Let S be an m x n sign pattern. If S has a collection of column-disjoint negative
4-cycles between every pair of rows, then S allows row orthogonality.

In the following proofs, we must condition on the outcome of a stochastic process. For those readers
unfamiliar with these ideas, we recommend consulting [13, Chapter 9].

LEMMA 4.5. Fiz any 0 < p < 1/2. If xq,...,Xm ~ ty, then the probability that we can find distinct
integers i1, j1,42, 2, - - - yim, Jm € [n] such that (xi);, =1 and (xg)j, = —1 for all k € [m] is at least

1
177 17pn72m+1
p( )
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Proof. We employ the following greedy algorithm to find the required set W,,, = {i1,41,.--,%m,Jm} Of
indices:
Initialize Uy = [n] and Wy = (). At time ¢t = 1,...,m, do the following:
1. Reveal x;.

2. Attempt to locate some 4y, j; € Up—1 for which (x;);, = 1 and (x¢);, = —1. If such i, j; are found,
then set Uy = Uy_1 \ {i, ji: } and Wy = Wy_q U {i, ji }. If no such i, j; exist, then exit with failure.

If the above algorithm succeeds, then we have located the desired W,,.

Let 7 be the round on which the algorithm fails, setting 7 = m 4+ 1 if the algorithm succeeds. In order
to complete the proof, we show that

Pr[r <m] < =(1 — p)"~2m+L,

Fix any ¢t € [m] and consider conditioning on the event {r > t}. Since 7 > ¢ if and only if the
algorithm has succeeded locating the set U;_1, we may condition on such an outcome. Now, conditioned on
the algorithm locating U;_1, we observe that 7 = ¢ if and only if x;[U;_1] is non-negative or nonpositive.
Furthermore, before the ¢th loop, no information is known about the vector x; and so x;[U;_1] ~ upUtfl.
We may therefore bound

Pr(r =t | Up_1] = Pr[x;[Us_1] € {0, 1}V U {0, -1}V | Upq] <2(1 = p)V—tl = 2(1 — p)n =201,
Since this bound is independent of U;_1, we may bound
Prlr =t] <Prlr=t| 7>t <2(1—p)n 21,

We therefore conclude that

m m—1
7_ < m ZPr Z 2 n 2(t 1) 2 (1 7p)n72m+2+2k:
t=1 k=0
_ 2(1 — p)n 2m+42 __ (1 — p)n+2 2 (1 p)n—2m+2 < }(1 p)n 2m+17
2-pp PR p
where the final inequality follows from the fact that 2—p < % 0

We now use the above lemma to locate collections of column-disjoint negative 4-cycles.

xT

A

sgn(B) contains column-disjoint negative 4-cycles between its first row and all other rows with probability at

LEMMA 4.6. Fiz any x € {£1}" and any 0 < p < 1/2. Assume A ~ p"™™ and set B = . Then,

least 1
1— 7(1 _ p)n72m+1.
p

Proof. Let D be the diagonal matrix whose ith diagonal entry is the ith entry of x. Observe that sgn(B)
1 - 1
is sign equivalent to sgn(BD) = sgn (lAD] ) Since p,(1) = pp(—1) and x € {£1}", AD ~ p?*".

Thus, sgn(B) contains column-disjoint negative 4-cycles between its first row and row k if and only if we can
locate distinct i1, ...,%m,J1,-..,Jm € [n] so that (wg);, = 1 and (wg);, = —1, where wy, is row k of BD.
As such, the conclusion follows from Lemma 4.5. 0
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LEMMA 4.7. Fiz a number 0 < p < 1/2. Assume A ~ p**", where n > m? + mr + 27'” for some
r € {0,...,m}. Then, the probability that sgn(A) contains a collection of column-disjoint negative 4-cycles

between every pair of rows is bounded below by

1—me ™8 — m(1 —p)".
p
Proof. In order to locate a collection of negative 4-cycles between every pair of rows of sgn(A), we employ

the following greedy algorithm:
Suppose that the rows of A are x1,...,X,,. Initialize Uy = [n]. At time ¢t = 1,...,m—1 do the following;:

1. Reveal x;[U;_1].

2. Find some W; C supp(x¢[U;—1]) with |[W| = 2(m —t) + r and set Uy = U;_1 \ W;. If no such W;
exists, then fail.

3. Reveal A[{t+1,...,m}, W]

4. Locate column-disjoint negative 4-cycles in sgn(A) between row t and all rows k > ¢, all of whose
columns reside within W;. If such negative 4-cycles cannot be found, then fail.

If the above algorithm succeeds, then sgn(A) contains a collection of column-disjoint negative 4-cycles be-
tween every pair of rows.

Let 7 denote the first round on which the algorithm fails, setting 7 = m if the algorithm succeeds. In
order to prove the claim, we argue that

Prlr <m—1] < me ™8 + %(1 -p).

Fix any t € [m — 1]. Let S; denote the event that the algorithm fails at step 2 on the tth loop, and let
Fi denote the event that the algorithm fails at step 4 on the tth loop. Certainly {7 =t} = S; U F;. We
begin by bounding the probability of S;.

Consider conditioning on the event {r > t}. Of course, if 7 > ¢, then the algorithm has succeeded in
locating the set U;_;. Furthermore, conditioned on {7 > t} and U;_1, observe that prior to the tth loop

of the algorithm, no entries within A[{¢,...,m},U;—1] have been revealed; therefore A[{t,...,m}, Ui_1] ~
;L,{)t"'" Uit 1 particular, x4 [Us_1] ~ py*~*. Now, W, cannot be located if and only if [supp(x¢[Us_1])| <
2(m —t) 4+ r. Additionally,
t—1 P .
|Us—1]| :an(Q(mfj) +7)>m® +rm+ — fZ(Q(mfj)Jrr)
i=1 L
2m 2m

:?-I—m +rm—(t—1)(2m—t)—(t—1)r2?.

We can therefore fix a subset U C U;_; with |U| = LQT’"J From the earlier observation, we know that
x¢[U] ~ pf and so we may bound
Pr[S; | {r > t},Ui—1] = Pr[|supp(x¢[Up—1])| < 2(m —t) +7r | {7 >t},Ui_1]
< Pr[|supp(x¢[U])| < 2(m —t) +r | {7 >1t},U;_1]
= Pr [|suppx|<2(m—t)+7]

2m
XN#;E /p]

< Pr J Hsuppx\ <3m — 1],

xrop 2P
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where the final inequality follows from the fact that ¢ > 1 and r < m.

Next, we note that if x ~ M}f’”/’”, then E[|supp x|] = 2p L%"J >4m —2p > 4m — 1 and so

Pr  [lsuppx| <3m—1] < Pr [|suppx| < E[[suppx|] — m]

gt p2m/7) 527
m
= b {|SUPPX < <1 - E[sux|]> E[|supp XH]
xopil pp

2 2
<exp(—— ) —exp(——" ) < e m/8,
< 2E]| supp x|] 4p {2;% =

where the second inequality follows from the Chernoff bound in Theorem 4.2. Since this bound is independent
of U;_1, we have argued that

(4.4) Pr[S; | 7> 1] < e ™8,

Next, we bound the probability of F;. In order for F; to hold, it must be the case that 7 > ¢ and that S;
does not hold; in particular, the algorithm must have succeeded in locating the set W;. By construction, just

after locating W%, no entries within A[{t+1,...,m}, W;] have been revealed; therefore A[{t+1,...,m}, W] ~

uétﬂ"“’m}xw‘. Since Pr[F; | Wy is equal to the probability of not finding a collection of column-disjoint

negative 4-cycles between the first row of A[{t + 1,...,m}, W;] and the remaining rows, we may appeal to

Lemma 4.6 to bound )
5(]_ _p)‘Wt|—2(m—t)+1 < (1 _p)’!‘

1
Pr[}'t ‘Wt]g 75

Since this bound is independent of W;, we have shown that

(4.5) PriF [ {7 >t},&] < -(1-p)",

1

p
where S; denotes the event that S; does not occur.
Combining (4.4) and (4.5) we have shown that

Prir=t|<Prlr=t|7>2¢t|=Pr[S: | 7 > ]+ Pr[F: | 7 > ]

— 1
<Pr[S | 7>t +Pr[F | {r>},8] <e ™8+ };(1 —p),

where the first equality holds since §; and F; partition {7 = t}.
Using this inequality, we finally bound

m—1 m—1
1
Pr[r<m-—1]= g Prjr=t] < g (em/s—i—(l—p)T) §me*m/8+m(l—p)”,
b p
t=1 t=1

as needed. 0

THEOREM 4.8. For any fited 0 <p <1/2, if A~ P and
n = m’ 4 mlogy oy m+w(m),

then sgn(A) allows row orthogonality with high probability as m — oo.
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Proof. Suppose that
n>m?+ mlogy (1_p m+ f(m),

where f(m) = w(m). Without loss of generality, we may additionally suppose that f(m) = o(m?). Set
r=logy 1_pym+ ! (77:) — % which is certainly bounded above by m for all sufficiently large m since f(m) =
o(m?). Furthermore, by decreasing f(m) by some amount no more than m, we may ensure that r is an
integer, the lower bound on n remains true, f(m) = w(m), and f(m) = o(m?). Now, since f(m) = w(m)

and 0 < p < 1/2 is fixed, we have that

2
n > m? +mlogy,q_pym+ f(m) > m? + mr + ?m

for all sufficiently large m. Thus, we may apply Lemma 4.7 to learn that sgn(A) contains a collection of
column-disjoint negative 4-cycles between every pair of rows (and hence has a row orthogonal realization)
with probability at least

(m 1 (m)
lfme*m/sfm(lfp)r =1—me ™8~ T(lfp)_log“—r’)m(lfp)fm)_% =1—me ™"~ f(lfp)fm _%,
p b
which tends to 1 as m — oo since f(m) = w(m) and 0 < p < 1/2. 0

We suspect that Theorem 4.8 is not best possible.

QUESTION 4.9. Determine the threshold t(m) such that if S ~ {4, =}"™*" with n > t(m), then S has a
row orthogonal realization with high probability as m — oo.

Theorem 4.8 implies that t(m) < m? + mlogy m +w(m). Observe that ¢(m) > m and it is possible that
this is the correct answer. As shown in the next theorem, the best known obstruction (see Theorem 1.6)
does not block t(m) = m.

THEOREM 4.10. Let X ~ {£1}™*™. Then, with high probability as m — oo the matriz X does not
contain an r X s submatriz'Y such thatr +s=m+ 2 and rankY = 1.

Proof. Let Q denote the set of pairs (x,y), where x € {£1}", y € {£1}® and the first entry of x is 1.
Observe that the map (x,y) — xy” is a bijection between Q and the set of rank 1 matrices in {£1}"*.
Thus the probability that Y ~ {£1}7** has rank 1 is precisely 2~ (=D (s=1),

The number of r X s submatrices of X is (') (). By the union bound, the probability that X contains
an r X s submatrix Y such that r + s =m + 2 and rankY = 1 is at most

m m—1
m m m m
27(r71)(m+177") — 27k(m7k).
§<r>(m+2—r) kz::l E+1)\m+1—-k

We show that this sum tends toward 0 as m — oo by showing that

m m 2k(mfk)
<k+1> <m+1—k) R

for all 1 <k <m — 1, provided m is sufficiently large. If £ <2 or k > m — 2, then for m sufficiently large

m m <m4<2k(m’k)
k+1)\m+1—-k) — m2
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For 3 <k <m — 3, we have

m m - 22m _ 23(m—3) - 2k(m—k)
E+1)\m+1-k) — m2 = m2 O
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