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ABSTRACT 48 

How barriers to gene flow arise and are maintained are key questions in evolutionary 49 

biology. Speciation research has mainly focussed on barriers that occur either before mating 50 

or after zygote formation. In comparison, postmating prezygotic (PMPZ) isolation – a barrier 51 

that acts after gamete release but before zygote formation – is less frequently investigated 52 

but may hold a unique role in generating biodiversity. Here we discuss the distinctive 53 

features of PMPZ isolation, including the primary drivers and molecular mechanisms 54 

underpinning PMPZ isolation. We then present the first comprehensive survey of PMPZ 55 

isolation research, revealing that it is a widespread form of prezygotic isolation across 56 

eukaryotes. The survey also exposes obstacles in studying PMPZ isolation, in part 57 

attributable to the challenges involved in directly measuring PMPZ isolation and uncovering 58 

its causal mechanisms. Finally, we identify outstanding knowledge gaps and provide 59 

recommendations for improving future research on PMPZ isolation. This will allow us to 60 

better understand the nature of this often-neglected reproductive barrier and its 61 

contribution to speciation.  62 
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1. Introduction 63 

Understanding the origin of species requires identifying barriers to gene flow between 64 

lineages and quantifying how different barriers contribute to total reproductive isolation 65 

(Marie Curie SPECIATION Network et al., 2012; Sobel & Chen, 2014). There has been a 66 

tendency to categorise such barriers as either: i) pre- mating/pollination vs. post- 67 

mating/pollination (herein collectively called pre- or post- mating isolation (see Table 1: 68 

Glossary)) or ii) prezygotic vs. postzygotic isolation (Coyne & Orr, 2004) (Fig. 1). As a result, 69 

the terms premating and prezygotic, and postmating and postzygotic are often used 70 

interchangeably and speciation research tends to focus either on premating or postzygotic 71 

isolation (Coyne & Orr, 2004; Merrill et al., Reifova et al., Shaw et al., this volume). This 72 

framing has led to a dearth of research investigating the barriers to gene flow that act after 73 

gamete release, but before karyogamy, termed postmating prezygotic (PMPZ) isolation 74 

(Darwin, 1859; Lillie, 1921; Dobzhansky, 1937) (Fig. 1). Overlooking or confounding PMPZ 75 

isolation with other barriers to gene flow is more than a semantic problem. Neglecting or 76 

misidentifying the contribution of PMPZ isolation may lead to misinterpretation of the mode 77 

and tempo of reproductive isolation, skewing our understanding of the speciation process. 78 

 79 

PMPZ isolation emerges from interactions between female and male gametes, and/or 80 

reproductive tract tissues and their secretions (e.g., pollen interacting with the stigma, or 81 

sperm traversing the female reproductive tract), that result in the reduced frequency of 82 

successfully fertilised eggs in crosses between taxa. Reduced fertilisation can occur via the 83 

interruption of the transport, storage, contact and/or fusion of gametes. The ubiquity of 84 

reproductive interactions leading to fertilisation means that PMPZ isolation can act in any 85 

taxa where sexual interactions are a necessary step in reproduction (i.e., most eukaryotes, 86 

outside of fungi which have a dikaryotic stage that does not neatly fit PMPZ categorisation; 87 

Giraud & Goubiere, 2012). This fact makes PMPZ isolation perhaps the most widespread 88 

potential form of prezygotic isolation to be found in eukaryotes. Consequently, studying 89 

PMPZ isolation offers a unique opportunity to make direct comparisons about the 90 

accumulation, strength, and types of prezygotic barriers across the eukaryotic tree of life. 91 

 92 

https://paperpile.com/c/XIgY5v/XmAU+Kndv
https://paperpile.com/c/XIgY5v/XmAU+Kndv
https://paperpile.com/c/XIgY5v/XmAU+Kndv
https://paperpile.com/c/XIgY5v/xuzO
https://paperpile.com/c/XIgY5v/xuzO
https://paperpile.com/c/XIgY5v/EYNe+XGXJ+JG12
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PMPZ isolation was recognised early in the history of speciation research as a potential 93 

barrier to gene flow (Darwin, 1859; Lillie, 1921; Dobzhansky, 1937) but has been 94 

understudied compared to premating and postzygotic isolation (Howard et al., 2009). Akin 95 

to the late realisation that sexual selection may continue after mating (Parker, 1970; 96 

Thornhill, 1983), the cryptic nature of postmating interactions has likely hindered progress 97 

in the field. The most recent reviews of PMPZ isolation in animals or plants were conducted 98 

over a decade ago (Howard, 1999; Howard et al., 2009), and there have been no reviews 99 

examining PMPZ mechanisms and PMPZ barriers across eukaryotes. A contemporary 100 

review is timely since there have been significant advances in molecular techniques in the 101 

last 15 years enabling new insights into the prevalence, mechanisms, and evolution of PMPZ 102 

isolation (Manier et al., 2013; Higashiyama & Takeuchi, 2015; Carlisle & Swanson, 2021; 103 

Cheung et al., 2022). 104 

 105 

Here, we provide a synthesis of the unique role of PMPZ isolation in generating biodiversity 106 

and, by summarising the current state of the field, we outline the scope for future research. 107 

First, we discuss the evolutionary processes involved in the evolution and maintenance of 108 

PMPZ isolation and detail the underlying physiological and genetic mechanisms. Second, we 109 

conduct the first comprehensive survey of the speciation literature concerning PMPZ 110 

isolation to identify similarities and differences in the mechanisms and measures of PMPZ 111 

isolation across eukaryotes. Third, we identify gaps in the speciation literature and suggest 112 

avenues for future research. We conclude by suggesting where efforts could provide new 113 

insights into this often-neglected stage of reproductive isolation.   114 

https://paperpile.com/c/XIgY5v/EYNe+XGXJ+JG12
https://paperpile.com/c/XIgY5v/ONDc
https://paperpile.com/c/XIgY5v/ONDc
https://paperpile.com/c/XIgY5v/ONDc
https://paperpile.com/c/XIgY5v/tyV5+XufP
https://paperpile.com/c/XIgY5v/tyV5+XufP
https://paperpile.com/c/XIgY5v/ONDc+5oDO
https://paperpile.com/c/XIgY5v/ONDc+5oDO
https://paperpile.com/c/XIgY5v/ONDc+5oDO
https://paperpile.com/c/XIgY5v/x6pM+2Pl3+2HVz+Giay
https://paperpile.com/c/XIgY5v/x6pM+2Pl3+2HVz+Giay
https://paperpile.com/c/XIgY5v/x6pM+2Pl3+2HVz+Giay
https://paperpile.com/c/XIgY5v/x6pM+2Pl3+2HVz+Giay
https://paperpile.com/c/XIgY5v/x6pM+2Pl3+2HVz+Giay
https://paperpile.com/c/XIgY5v/x6pM+2Pl3+2HVz+Giay
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2. The unique role of PMPZ isolation in speciation 115 

2.1 The role of sexual selection and sexual conflict in promoting the evolution of PMPZ 116 

isolation 117 

Traits that influence mating and fertilisation success within populations are frequently 118 

under strong sexual selection and sexual conflict. Most theoretical models connecting sexual 119 

selection to reproductive isolation are agnostic to the traits underlying divergence 120 

(Kirkpatrick & Ravigné, 2002). However, premating and postmating sexual selection place 121 

different emphasis on the traits that mediate reproductive success (Parker et al., 2013; 122 

Lüpold et al., 2014; Evans & Garcia-Gonzalez, 2016). The evolution of premating sexually 123 

selected traits can (in principle) involve both male and female intra- and inter-sexual 124 

selection, and competition is often temporally separated from choice (Rosenthal, 2017). 125 

Targets of premating sexual selection may be spread across many traits (e.g. behavioural, 126 

morphological and physiological; e.g., Andersson, 1994; Rosenthal, 2017) and given that 127 

many premating traits are condition dependent (Rowe & Houle, 1997), individual loci may 128 

be under weak selection. In contrast, sexual selection operating after mating is restricted to 129 

sperm competition and cryptic female choice and thus the traits involved are localised. In 130 

particular, selection necessarily operates directly on the gametes and surrounding 131 

fluid/tissue within the female reproductive tract in internally fertilising animals, or within 132 

the carpel in land plants (Birkhead & Pizzari, 2002; Tonnabel et al., 2021). As a consequence, 133 

a dynamic unique to PMPZ interactions occurs when the outcome of male-male competition 134 

might vary across females, creating an emergent three-way female × male × male 135 

interaction, where competition is always concurrent with choice (Lüpold et al., 2020).  136 

 137 

Another distinct feature of postcopulatory interactions is the tightly coordinated molecular 138 

interplay between the sexes (McCullough et al., 2022; Misra et al., 2022). For instance, 139 

sperm proteins are replaced by female proteins during sperm transport and storage after 140 

mating (McCullough et al., 2022). As such, mismatches between mating partners that 141 

disrupt this tight coordination may rapidly cause incompatibilities underlying PMPZ 142 

isolation. Together, selection acting on a potentially reduced subset of tightly associated 143 

interacting traits may subject traits associated with PMPZ isolation to a more restricted set 144 

of selection pressures, and reduce the number of loci under divergent selection, compared 145 

https://paperpile.com/c/XIgY5v/9afF
https://paperpile.com/c/XIgY5v/jtEZ+UUlB
https://paperpile.com/c/XIgY5v/jtEZ+UUlB
https://paperpile.com/c/XIgY5v/jtEZ+UUlB
https://paperpile.com/c/XIgY5v/jtEZ+UUlB
https://paperpile.com/c/XIgY5v/jtEZ+UUlB
https://paperpile.com/c/XIgY5v/jtEZ+UUlB
https://paperpile.com/c/XIgY5v/jtEZ+UUlB
https://paperpile.com/c/XIgY5v/0kVq
https://paperpile.com/c/XIgY5v/IVz5+0kVq/?prefix=e.g.%2C%20,
https://paperpile.com/c/XIgY5v/q6FA/?prefix=e.g.%2C%20
https://paperpile.com/c/XIgY5v/oy4J+WuY6
https://paperpile.com/c/XIgY5v/oy4J+WuY6
https://paperpile.com/c/XIgY5v/oy4J+WuY6
https://paperpile.com/c/XIgY5v/25PI
https://paperpile.com/c/XIgY5v/25PI
https://paperpile.com/c/XIgY5v/25PI
https://paperpile.com/c/XIgY5v/f7Jg
https://paperpile.com/c/XIgY5v/f7Jg
https://paperpile.com/c/XIgY5v/f7Jg
https://paperpile.com/c/XIgY5v/f7Jg
https://paperpile.com/c/XIgY5v/f7Jg
https://paperpile.com/c/XIgY5v/f7Jg
https://paperpile.com/c/XIgY5v/f7Jg
https://paperpile.com/c/XIgY5v/f7Jg
https://paperpile.com/c/XIgY5v/f7Jg
https://paperpile.com/c/XIgY5v/f7Jg
https://paperpile.com/c/XIgY5v/f7Jg
https://paperpile.com/c/XIgY5v/f7Jg
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to selection influencing premating traits. Disruptive selection might therefore be more 146 

effective in generating rapid divergence in postmating traits (Orr, 1998; Yeaman & Whitlock, 147 

2011). Alternatively, fewer loci under divergent selection may slow barrier formation 148 

compared to polygenic divergence involved in premating isolation (Westram et al., 2018; 149 

Martin et al., 2019). Regardless, the restricted physiological targets of selection and 150 

potentially simple genetic basis suggest that the study of PMPZ isolation provides a highly 151 

tractable opportunity to study sexual interactions and prezygotic isolation in a relatively 152 

simple model. 153 

 154 

Postmating traits have profound effects on fitness and such conditions may favour the rapid 155 

coevolution of postmating interactions between the sexes. For example, in internally 156 

fertilising animals, coevolution between female reproductive tract dimensions and sperm 157 

length have been found widely across taxa (Pitnick et al., 2009). Additionally, experimental 158 

evolution studies have shown that traits involved in fertilisation respond to the strength of 159 

sexual selection, or to correlated selection between the sexes, over short evolutionary 160 

timeframes (Holland & Rice, 1999; Miller & Pitnick, 2002; Crudgington et al., 2009; Wigby et 161 

al., 2009; Godwin et al., 2017). Combined, these findings at both the macroevolutionary and 162 

microevolutionary level suggest that PMPZ isolation may be a critical early contributor to 163 

population divergence (Devigili et al., 2018; Turissini et al., 2018; Garlovsky et al., 2020). 164 

Indeed, PMPZ isolation is the only known barrier to gene flow in some taxa (Palumbi & 165 

Metz, 1991; Fricke & Arnqvist, 2004; Marshall et al., 2011). Thus, if traits acting after mating, 166 

which are under strong sexual selection, play such a critical role in reproductive isolation, 167 

then we should expect a strong signature of sexual selection on patterns of biodiversity. 168 

However, the role of sexual selection as a driver of speciation has long been contested 169 

(Ritchie, 2007; Servedio & Boughman, 2017), and recent evidence remains mixed 170 

(Kraaijeveld et al., 2011; Janicke et al., 2018). If PMPZ isolation is especially important in the 171 

early stages of speciation, then its signature may be overwritten as other barriers evolve. A 172 

comparative study in animals found that the signal of speciation via sexual selection might 173 

weaken over time (i.e., deeper nodes showed a smaller effect size than shallower 174 

phylogenetic distances; Kraaijeveld et al. (2011)). Moreover, if strong premating barriers 175 

have evolved, then detecting the role of PMPZ isolation in early divergence may be difficult. 176 

Thus, despite the unique selection pressures acting on postmating traits that may promote 177 

https://paperpile.com/c/XIgY5v/noHp+CsQR
https://paperpile.com/c/XIgY5v/noHp+CsQR
https://paperpile.com/c/XIgY5v/Ns2J
https://paperpile.com/c/XIgY5v/Ns2J
https://paperpile.com/c/XIgY5v/Ns2J
https://paperpile.com/c/XIgY5v/rZvI+lfC3+jKDv+36mS+mebs
https://paperpile.com/c/XIgY5v/rZvI+lfC3+jKDv+36mS+mebs
https://paperpile.com/c/XIgY5v/rZvI+lfC3+jKDv+36mS+mebs
https://paperpile.com/c/XIgY5v/rZvI+lfC3+jKDv+36mS+mebs
https://paperpile.com/c/XIgY5v/rZvI+lfC3+jKDv+36mS+mebs
https://paperpile.com/c/XIgY5v/rZvI+lfC3+jKDv+36mS+mebs
https://paperpile.com/c/XIgY5v/rZvI+lfC3+jKDv+36mS+mebs
https://paperpile.com/c/XIgY5v/rZvI+lfC3+jKDv+36mS+mebs
https://paperpile.com/c/XIgY5v/joe5+sLTs+14xL
https://paperpile.com/c/XIgY5v/joe5+sLTs+14xL
https://paperpile.com/c/XIgY5v/joe5+sLTs+14xL
https://paperpile.com/c/XIgY5v/joe5+sLTs+14xL
https://paperpile.com/c/XIgY5v/joe5+sLTs+14xL
https://paperpile.com/c/XIgY5v/joe5+sLTs+14xL
https://paperpile.com/c/XIgY5v/joe5+sLTs+14xL
https://paperpile.com/c/XIgY5v/dniP+LBKG+dFlK
https://paperpile.com/c/XIgY5v/dniP+LBKG+dFlK
https://paperpile.com/c/XIgY5v/dniP+LBKG+dFlK
https://paperpile.com/c/XIgY5v/dniP+LBKG+dFlK
https://paperpile.com/c/XIgY5v/Muoj+johF
https://paperpile.com/c/XIgY5v/MCMs+Iraj
https://paperpile.com/c/XIgY5v/MCMs+Iraj
https://paperpile.com/c/XIgY5v/MCMs+Iraj
https://paperpile.com/c/XIgY5v/MCMs+Iraj
https://paperpile.com/c/XIgY5v/MCMs+Iraj
https://paperpile.com/c/XIgY5v/MCMs/?noauthor=1
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the early evolution of PMPZ isolation, its detectable effect may be transient. As such, we are 178 

likely underestimating the number of cases where PMPZ isolation may occur and the 179 

importance it may have had at an earlier stage of speciation.  180 

 181 

2.2 Extrinsic PMPZ isolation and the role of natural selection 182 

Although PMPZ isolation is most often thought to be shaped by sexual selection or sexual 183 

conflict, certain forms of PMPZ isolation could also be affected by natural selection. External 184 

environmental conditions (e.g., temperature, salinity, or pH) can directly influence the 185 

function of reproductive traits (Reinhardt et al., 2015) and populations may vary in 186 

reproductive function under certain conditions (e.g., temperature extremes). Thus, 187 

environmental conditions could select against immigrant gametes as a form of extrinsic 188 

PMPZ isolation (see Thompson et al., this volume). The environment may also indirectly 189 

shape the reproductive environment in which PMPZ interactions take place. Resources 190 

incorporated into reproductive traits, such as gamete cell membranes or reproductive 191 

tissues, can affect their quality or function (Cardozo & Pilastro, 2018). For instance, 192 

nutritional status can impact the number of gametes produced or the composition of 193 

reproductive fluids (Macartney et al., 2019). In this way, the expression of PMPZ barriers 194 

may be context dependent, resulting from an emergent genotype (e.g., female) × genotype 195 

(e.g., male) × environment (e.g., temperature) interaction.  196 

 197 

In plants, there is clear evidence of external environmental conditions contributing to PMPZ 198 

isolation. For instance, in spiral gingers (Costus spp.), pollinator-driven selection on floral 199 

traits has led to differences in style length between species such that pollen grains from 200 

short-styled species do not have the appropriate energy reserves needed to reach the ovule 201 

of long-styled species ("pollen attrition") (Yost & Kay, 2009). Similarly, in the yellow monkey 202 

flower (Mimulus guttatus), pollen from copper-sensitive populations performed poorly 203 

when crossed to copper-resistant individuals grown in copper-heavy soil (Searcy & Macnair, 204 

1990). In animals, environmental effects on the expression of PMPZ barriers are likely to be 205 

especially important for spermcasters and external fertilisers where gametes are directly 206 

exposed to the external environment. For example, in the sand goby (Pomatoschistus 207 

minutus), differences in salinity between populations inhabiting brackish and marine 208 

environments reduces immigrant male sperm viability and fertilisation success (Svensson et 209 

https://paperpile.com/c/XIgY5v/Tqr7
https://paperpile.com/c/XIgY5v/Tqr7
https://paperpile.com/c/XIgY5v/Tqr7
https://paperpile.com/c/XIgY5v/vgE4
https://paperpile.com/c/XIgY5v/Ov1v
https://paperpile.com/c/XIgY5v/Ov1v
https://paperpile.com/c/XIgY5v/Ov1v
https://paperpile.com/c/XIgY5v/FnYW
https://paperpile.com/c/XIgY5v/Ipf6
https://paperpile.com/c/XIgY5v/Ipf6
https://paperpile.com/c/XIgY5v/fOzI
https://paperpile.com/c/XIgY5v/fOzI
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al., 2017). Similarly, on the Island of São Tomé the sister species Drosophila santomea and 210 

D. yakuba inhabit high and low elevations, respectively, where D. santomea become sterile 211 

at lower temperatures than D. yakuba (Matute et al., 2009). Indeed, evidence suggests that 212 

species ranges are better predicted by fertility- rather than lethal- thermal limits (Parratt et 213 

al., 2021), suggesting that environmental selection on fertility traits might pleiotropically 214 

influence the performance of these traits in heterospecific crosses. 215 

 216 

2.3 Opportunity costs and reinforcement as drivers of PMPZ isolation 217 

Postmating reproductive traits might be uniquely positioned to mitigate costs involved in 218 

mating decisions, indirectly or directly leading to PMPZ isolation (i.e., as the result of 219 

reinforcement). For instance, PMPZ isolation could evolve via indirect selection to reduce 220 

the costs of going unmated while minimising the production of hybrid offspring. Theory 221 

predicts that females may alleviate the costs of going unmated by relaxing mate preferences 222 

and mating with the first male encountered, even if this male is of low quality, rather than 223 

wasting time and resources searching for a suitable mate and risking going unmated before 224 

death (Kokko & Mappes, 2005; but see Richardson & Zuk, 2022). In polyandrous species, the 225 

benefit to females of mating with the first available male can be strong if they can later 226 

“trade-up” to a better quality male (Kokko & Mappes, 2005; Kokko & Jennions, 2008). In the 227 

context of speciation, a similar process could operate if females encounter heterospecifics 228 

at a high enough frequency for mating to occur, but then are able to bias paternity towards 229 

“higher quality” conspecific males via conspecific gamete precedence (Larson et al., 2019). 230 

In this case, conspecific gamete precedence could decrease short-term costs of going un- (or 231 

under-) mated while restricting any potential long-term hybridization costs (Marshall et al., 232 

2002). 233 

 234 

Mating with heterospecific males might even come with advantages for females, for 235 

example, through receipt of fecundity boosting resources such as nuptial gifts or proteins 236 

that stimulate oviposition (Peterson et al., 2011), or access to higher quality territories or 237 

resources (Cramer et al. 2016); although this requires that the short term benefit to females 238 

outweighs the costs of heterospecific mating. Heterospecific mating costs can themselves 239 

be expressed as PMPZ isolation in the form of non-competitive gametic isolation (NCGI). 240 

NCGI arises if interactions between the male gametes or seminal fluid and female 241 

https://paperpile.com/c/XIgY5v/fOzI
https://paperpile.com/c/XIgY5v/fOzI
https://paperpile.com/c/XIgY5v/lOkN
https://paperpile.com/c/XIgY5v/lOkN
https://paperpile.com/c/XIgY5v/lOkN
https://paperpile.com/c/XIgY5v/MHcw
https://paperpile.com/c/XIgY5v/MHcw
https://paperpile.com/c/XIgY5v/MHcw
https://paperpile.com/c/XIgY5v/MHcw
https://paperpile.com/c/XIgY5v/P9QZ
https://paperpile.com/c/XIgY5v/P9QZ
https://paperpile.com/c/XIgY5v/P9QZ+R1dw
https://paperpile.com/c/XIgY5v/QN0O
https://paperpile.com/c/XIgY5v/QN0O
https://paperpile.com/c/XIgY5v/QN0O
https://paperpile.com/c/XIgY5v/Rw0D
https://paperpile.com/c/XIgY5v/Rw0D
https://paperpile.com/c/XIgY5v/Rw0D
https://paperpile.com/c/XIgY5v/Rw0D
https://paperpile.com/c/XIgY5v/Ac3z
https://paperpile.com/c/XIgY5v/Ac3z
https://paperpile.com/c/XIgY5v/Ac3z
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reproductive tract are disrupted after a single heterospecific mating. NCGI can be expressed 242 

in the form of reduced fertilisation success after a single heterospecific mating (Kay, 2006; 243 

Jennings et al., 2014; Garlovsky & Snook, 2018), reduced female lifespan (Ting et al., 2014; 244 

Kao et al., 2015) reduced fecundity (Matute, 2010; Marshall & Dirienzo, 2012; Turissini et 245 

al., 2018), or temporary or permanent blocking of mating opportunities (e.g. satyrization, 246 

copulatory plugs, and stigma clogging) (Patterson, 1946; Knowles & Markow, 2001; Holland 247 

& Chamberlain, 2007; Matute, 2010). Notably, some forms of NCGI may be more costly than 248 

others. For instance, reduced fertilisation success may impose elevated costs compared to 249 

reduced fecundity, if females lay similar numbers of eggs as in a conspecific cross (Garlovsky 250 

& Snook, 2018). The costs to females of reduced fertilisation success are therefore 251 

equivalent to producing inviable (hybrid) embryos and NCGI could itself act as the source, 252 

rather than outcome, of reinforcing selection (Lorch & Servedio, 2007). 253 

 254 

Regardless of whether selection is imposed by postzygotic incompatibilities or NCGI, PMPZ 255 

barriers could be a particularly responsive target of reinforcement (Lorch & Servedio, 2007). 256 

For example, conspecific gamete precedence can provide a reliable mechanism to ensure 257 

conspecific paternity that does not depend on external signals/stimuli-based mate 258 

discrimination, therefore it can be selected where premating barriers are not reliable 259 

(Matute, 2015; Cramer et al., 2016). Reinforcement of PMPZ barriers has been suggested in 260 

various taxa, including flowering plants (Kay & Schemske, 2008), insects (Matute, 2010; 261 

Castillo & Moyle, 2019), birds (Cramer et al., 2016; Albrecht et al., 2019) and sea urchins 262 

(Geyer & Palumbi, 2003; Zigler et al., 2003). Given the relatively few cases in which any 263 

specific mechanism of reinforcement is known (Servedio & Noor, 2003; Ortiz-Barrientos et 264 

al., 2009), PMPZ barriers appear to be uniquely and intriguingly responsive to reinforcing 265 

selection (Slaughter et al., 2008; but see Geyer & Lessios, 2009; Popovic et al., 2014). 266 

 267 

2.4 Molecular mechanisms and targets of PMPZ isolation 268 

Several features of the function and rate of evolution of genes involved in postmating 269 

interactions might promote the evolution of PMPZ isolation. Many genes tightly associated 270 

with fertilisation are highly conserved (Dean et al., 2009; Finseth et al., 2014; Kasimatis & 271 

Phillips, 2018; Wassarman & Litscher, 2021; Garlovsky et al., 2022), such that relatively little 272 

divergence between taxa might disrupt interacting reproductive traits resulting in PMPZ 273 
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barriers. Postmating reproductive traits primarily have an effect on fertilisation success, 274 

while premating traits often have additional functions outside of reproduction. Therefore, 275 

the number of mutations necessary to generate PMPZ barriers may be fewer than for 276 

premating isolation as they are likely to be less pleiotropic, facilitating the more rapid 277 

emergence of PMPZ isolation. For instance, molecular divergence within a single gene acting 278 

as an egg receptor or a sperm cell surface protein (e.g., EBR1 and bindin in sea urchin; 279 

reviewed in Vacquier & Swanson, 2011), or divergence in pollen tube guidance genes (e.g. 280 

AtLURE1 and PRK6; Liu et al., 2021), may be the only step necessary to prevent interspecific 281 

fertilisation (Vacquier, 1998; Swanson & Vacquier, 2002).  282 

 283 

Reproductive genes are expected to be highly conserved and experience relatively strong 284 

purifying selection. However, specific regions of these genes can evolve quickly (Vacquier & 285 

Swanson, 2011). Thus, while some reproductive genes are highly conserved, genes 286 

specifically expressed in tissues relevant to PMPZ isolation (e.g., gonads) often include genes 287 

with elevated rates of non-synonymous evolution (Swanson & Vacquier, 2002; Arunkumar 288 

et al., 2013; Gossmann et al., 2014; Dapper & Wade, 2020; Moyle et al., 2021). These rapidly 289 

evolving loci include classes of mutations such as deletions and novel chimeric loci, 290 

consistent with relaxed selection (Walters & Harrison, 2011; Gossmann et al., 2016; 291 

Harrison et al., 2019; Dapper & Wade, 2020; Patlar et al., 2021). These data suggest that 292 

some genes expressed in males involved in PMPZ isolation (e.g., seminal fluid proteins) 293 

might evolve via unusual evolutionary mechanisms, including arising de novo with no initial 294 

function, and therefore under limited constraint, until they are co-opted for reproductive 295 

function (Hurtado et al., 2022).  296 

 297 

More data are needed to assess whether evolution via these kinds of mechanisms is broadly 298 

true for loci underlying PMPZ isolation. If true, it would suggest a clear instance in which 299 

variation fuelling the novel evolution of traits involved in PMPZ isolation is distinct from 300 

other reproductive traits. With the exception of some well-described egg membrane 301 

receptor proteins (Grayson, 2015) and pollen tube guidance molecules (Kanaoka et al., 302 

2011; Zhong et al., 2019), most studies investigating the genetic architecture of PMPZ 303 

isolation have focussed on male traits (Britch et al., 2007; Ahmed-Braimah, 2016). As PMPZ 304 

isolation necessarily involves an interaction between interacting mating partners more 305 
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research is needed to understand the molecular nature of female traits involved in PMPZ 306 

isolation (Sweigart, 2010; Yeates et al., 2013; Cramer et al., 2016; McCullough et al., 2020; 307 

Ahmed-Braimah et al., 2021). 308 

 309 

There is accumulating evidence to suggest that intraspecific mechanisms ensuring high 310 

fertility are directly associated with PMPZ isolation, via either the same phenotypes or the 311 

same genes. For example, in Drosophila the same genes conferring advantages in sperm 312 

competition within species influence conspecific sperm precedence (Castillo & Moyle, 2014; 313 

Civetta & Finn, 2014). In the house mouse (Mus spp.) species complex, species experiencing 314 

stronger intraspecific sperm competition have greater interspecific fertilisation success, 315 

possibly as a result of differences in the strength of sexual conflict and selection against 316 

polyspermy (Martín-Coello et al., 2009). In the nightshade family (Solanaceae), loci 317 

underlying the mechanism of genetic self-incompatibility also directly affect the expression 318 

of pollen-pistil barriers between species (e.g., Jewell et al., 2020; Tovar-Méndez et al., 319 

2014). In the guppy (Poecilia reticulata), the ovarian fluid both favours sperm from 320 

unrelated males in the context of inbreeding avoidance (Gasparini & Pilastro, 2011) and 321 

favours sperm from males of the same, versus different drainages (Devigili et al., 2018). 322 

Similarly, major histocompatibility complex genotype at gamete surfaces influences 323 

fertilisation success in birds (e.g., Gallus gallus) and mice (Mus musculus) as a mechanism 324 

for inbreeding avoidance (Rülicke et al., 1998; Løvlie et al., 2013; Firman & Simmons, 2015) 325 

and could contribute to outbreeding avoidance (i.e., against heterospecifics) (Mays & Hill, 326 

2004; Kopp et al., 2018). Selection for immune compatibility at CMAH/Neu5Gc egg cell-327 

surface antigens may even have contributed to PMPZ isolation early in human evolutionary 328 

history (Ghaderi et al., 2011). 329 

 330 

In summary, PMPZ isolation may play a unique role in speciation because it: 1) is expected 331 

to have more restricted targets of selection compared to premating isolation; 2) is expected 332 

to emerge early due to rapid coevolution between the sexes; 3) may be particularly 333 

important early during divergence, but be hard to detect; 4) may be environmentally 334 

dependent; 4) potentially evolves via indirect selection and reinforcement; and 5) may 335 

involve evolutionary mechanisms including de novo functions and co-option of intra-specific 336 
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mechanisms promoting fertilisation success (e.g., sperm competition or inbreeding 337 

avoidance).   338 
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3. Survey of PMPZ isolation in speciation 339 

We performed the first comprehensive literature survey on PMPZ isolation across the tree 340 

of life to evaluate similarities and differences in the types of barriers and mechanisms 341 

reported. We identified 462 relevant studies on PMPZ isolation using the Web Of Science 342 

(accessed May 26th, 2022, see Supplemental Material) including both inter- and intra- 343 

specific crosses, and analyses of sequence and expression divergence of reproductive traits. 344 

From these, we identified the number of studies that reported various pieces of information 345 

to determine: 1) the diversity of taxa in which PMPZ isolation has been documented, 2) the 346 

types of barriers that have been measured, and 3) where compelling evidence of PMPZ 347 

isolation has been demonstrated. 348 

 349 

3.1 PMPZ isolation is widespread across the eukaryotic tree of life 350 

Our survey highlights the ubiquity of PMPZ isolation across eukaryotes consistent with 351 

fertilisation being a universal aspect of sexual reproduction (Fig. 2). We found PMPZ 352 

isolation in taxa with various reproductive systems (e.g., gonochoric/dioecious, 353 

hermaphroditic, facultative sexual) and different modes of fertilisation (internal, external, 354 

spermcasters). The majority of studies focused on animals and land plants (290 and 160 355 

studies, respectively) with only 12 studies outside of these two groups (six on brown algae, 356 

one on diatoms, three on green algae, one on red algae, and one on the apicomplexan 357 

Plasmodium; Fig. S1). Fungi were not included in the survey as mapping the reproductive 358 

barriers from plant and animal taxa on to what the fungal community uses is currently 359 

difficult, with some fungal researchers using equivalent terms (Ament-Velasquez et al., 360 

2022; Turner et al., 2010) and others not. Reviews of reproductive isolation in fungi only use 361 

the terms premating and postmating where postmating really is postzygotic (Giraud et al., 362 

2008) or alternatives (Giraud & Goubiere, 2012). Moreover, variation in life cycles of fungal 363 

taxa has been suggested to make direct comparisons between the animal and plant 364 

literature and fungal studies problematic (Giraud & Goubiere, 2012). Future collaboration 365 

between speciation researchers crossing this taxonomic divide may help to better map 366 

terminology which could extend the number of taxa exhibiting PMPZ isolation. 367 

 368 
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Studies of land plants were almost exclusively conducted on angiosperms, with only a single 369 

study each on gymnosperms and ferns (Fig. 2). Among animals, internal fertilisers accounted 370 

for the majority of studies (61.7%; 179/290). The majority of studies on internally fertilising 371 

animals were conducted on insects (43.4%; 126/290), of which over half used Drosophila 372 

species (50.8%; 64/126). Externally fertilising animals such as echinoderms and some fishes 373 

were also well represented (Fig. 2). However, while echinoderms are one of the earliest and 374 

best studied groups regarding PMPZ isolation, studies to date are limited to only a few 375 

groups within the clade and confirmed instances of PMPZ isolation are restricted to taxa in 376 

just two Orders (Fig. 2). Aside from fishes, studies of vertebrates were very limited (Fig. 2). 377 

Overall, over half of studies performed interspecific crosses (53.5%; 247/462), while 21.9% 378 

of studies examined intraspecific crosses and 12.1% compared both inter- and intra-specific 379 

crosses (Fig. 2). The remaining 58 studies (12.6%) did not perform experimental crosses 380 

(e.g., were based exclusively on analyses of sequence or expression divergence of genes 381 

involved in reproduction). Thus, studies of PMPZ isolation span a range of divergence, with 382 

studies of intraspecific pairs highlighting the potential role of PMPZ isolation at the earliest 383 

stages of speciation. 384 

 385 

3.2 Diversity of PMPZ measures across eukaryotic taxa 386 

Plant studies are unified in the ways in which PMPZ isolation is measured, with nearly all 387 

studies using one or more of four common measures (Fig. 3; Table S1): 1) pollen 388 

performance, 2) fruit set, 3) seed set, and 4) the proportion of hybrid seeds produced from a 389 

competitive pollination experiment (Fig. S2). In contrast, animal studies used a wider range 390 

of measures (Table S2), some of which differed in terminology and methodology between 391 

taxa. For instance, “fertilisation success” included both direct measures: i.e., observations of 392 

the proportions of successfully fertilised eggs using direct assessment of fertilisation status, 393 

or offspring sex ratio (in systems with haplodiploidy); and indirect measures, such as 394 

assessing the proportions of successfully developing embryos at various stages of early 395 

development, or the proportions of successfully hatched eggs. To consolidate information 396 

across studies, we grouped measures of PMPZ isolation in animals into 9 categories (Fig. 3; 397 

Table S2).  398 

 399 
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Many measures of PMPZ isolation are analogous in plants and animals. For example, seed 400 

set and fruit set are analogous to indirect measures of fertilisation success in animals; pollen 401 

tube growth and sperm motility measure male gamete performance; and some PMPZ 402 

barriers such as conspecific gamete precedence are described in both plants and animals 403 

(Fig. 3). However, important differences in PMPZ mechanisms exist between taxa. 404 

Differences between species in reproductive trait morphology have clearly been 405 

demonstrated as mechanisms underlying PMPZ isolation in plants (i.e., style length; 406 

Brothers & Delph, 2017), but have only been used as indirect measures in animals in the 407 

absence of direct evidence for a role in PMPZ isolation. Similarly, chemotaxis is key to PMPZ 408 

isolation in externally fertilising taxa (Riffell et al., 2004; Yeates et al., 2013; Weber et al., 409 

2017), but its significance in mediating PMPZ isolation in internally fertilising animals 410 

remains largely unknown (Sun et al., 2003). Inconsistencies in what is considered evidence 411 

of PMPZ isolation across taxa and how PMPZ mechanisms operate limit our ability to make 412 

broader conclusions.  413 

 414 

3.3 Limitations of current PMPZ isolation research 415 

3.3.1 Indirect measures infer but do not demonstrate PMPZ isolation 416 

Many studies reported PMPZ isolation using indirect measures such as divergence in 417 

reproductive gene sequences or trait morphologies. For example, some studies alluded to 418 

PMPZ isolation from elevated rates of sequence evolution or divergence in the molecular 419 

composition of reproductive tissues, but most cases lack direct evidence connecting 420 

divergence of reproductive genes and proteins with a PMPZ mechanism. Likewise, divergent 421 

postmating traits such as sperm morphology are often used as indirect evidence for PMPZ 422 

isolation, particularly in systems where it is more difficult to study postmating interactions 423 

directly (e.g., birds and mammals). Reduced female survival after heterospecific mating has 424 

also been reported as a PMPZ barrier, presumably due to reductions in lifetime fecundity 425 

(Ting et al., 2014; Kao et al., 2015). Conclusively demonstrating PMPZ isolation requires the 426 

often difficult task of measuring the outcome of cryptic sexual interactions and showing that 427 

these interactions result in a potential reduction of gene flow (Zigler et al., 2008; Palumbi, 428 

2009; Manier et al., 2013; Moyle et al., 2014; Cramer et al., 2016). Experiments adequately 429 

demonstrating conspecific gamete precedence are alone sufficient evidence of PMPZ 430 
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isolation. For other barriers, care must be taken to ensure the barrier observed is acting at 431 

the PMPZ stage (Fig. 1).  432 

 433 

3.3.2 Proxy measures may conflate PMPZ and postzygotic isolation 434 

A difficulty in establishing the presence of PMPZ isolation is the use of proxy measures that 435 

may conflate PMPZ isolation with other isolating barriers – an issue that few studies 436 

acknowledge (e.g., Pernet, 1999). Measuring fertilisation success via proxies such as 437 

hatching success, embryonic cleavage, seed set, or fruit set could conflate failed syngamy or 438 

karyogamy (i.e., PMPZ isolation) with early embryonic inviability (i.e., postzygotic isolation). 439 

Of the four predominant measures of PMPZ isolation used in plants, only pollen 440 

performance is not a proxy measure. However, what constitutes a proxy measure can be 441 

subtle and depend on the taxa in question. For instance, in orchids (Orchidaceae), fruit set 442 

may be a true measure of PMPZ isolation, when only compatible pollination triggers fruit 443 

development, prior to fertilisation (Zhang & O’Neill, 1993; Scopece et al., 2007). Likewise, in 444 

animals, reduced female fecundity can be considered a true measure of PMPZ isolation in 445 

taxa where ovulation can be separated from fertilisation success. For example, reduced 446 

female fecundity after heterospecific mating may arise from either overstimulation (i.e., 447 

prolonged insemination reaction mass preventing ovulation in Drosophila; Patterson, 1946) 448 

or understimulation (i.e., an ejaculate does not promote stimulation of the normal 449 

postmating female response preceding egg-laying; Marshall et al., 2009). 450 

 451 

3.3.3 Pericopulatory processes are not measures of PMPZ isolation  452 

In animals, several potential barriers occurring immediately before PMPZ interactions have 453 

been considered PMPZ isolation in previous studies (e.g. copulation duration or mechanical 454 

isolation), or their position during the reproductive timeline remains ambiguous (Sánchez-455 

Guillén et al., 2012; Oxford & Croucher, 2014). Such pericopulatory processes have posed 456 

difficulties when defining PMPZ isolation as they can influence which gamete × gamete 457 

interactions take place (Fig. 1; Table 2). For example, the mechanism of male gamete 458 

priming in some fishes allows males to modulate the numbers of sperm ejaculated after first 459 

assessing female quality (or species identity), which can lead to lower interspecific fertility 460 

(Aspbury & Gabor, 2004). Furthermore, female remating rate is a pericopulatory barrier as it 461 

can bias representation of ‘preferred’ (i.e. conspecific) male sperm in the fertilisation set 462 
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(Chang, 2004) and similarly, reduced copulation duration resulting from genitalic mismatch 463 

could decrease the number of sperm or other ejaculate components transferred to females. 464 

Indeed, reduced sperm transfer is thought to be one of the primary mechanisms underlying 465 

conspecific gamete precedence between Drosophila simulans and D. mauritania (Manier et 466 

al., 2013). However, as PMPZ isolation necessarily requires the opportunity for gametes 467 

and/or reproductive tissues to interact, we do not consider these barriers as components of 468 

PMPZ isolation sensu stricto. Mechanical isolation as described in plants can be considered 469 

as a PMPZ barrier, as this barrier involves pollen interacting with the female reproductive 470 

tract (e.g., pollen attrition). In animals, however, mechanical isolation is not a PMPZ barrier, 471 

as genitalic mismatch precludes the transfer of sperm to the female reproductive tract, thus 472 

preventing sperm from interacting with the female or ova (see Table 2) (Wojcieszek & 473 

Simmons, 2013).   474 
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4. Scope of future PMPZ research 475 

Having assessed the potentially unique contribution of PMPZ isolation as a barrier to gene 476 

flow and summarising the current state of PMPZ isolation research, we now set out 477 

recommendations we hope will help to advance the field. These suggestions generally 478 

mirror the challenges discussed in section 3.3 and fall under three categories. First, issues 479 

related to measuring PMPZ isolation; second, addressing taxonomic biases in research 480 

efforts; and finally, resolving the physiological and genetic mechanisms underpinning PMPZ 481 

isolation. We conclude by outlining a set of open questions to encourage avenues of future 482 

research. 483 

 484 

4.1 Recommendations for PMPZ isolation research 485 

4.1.1 Use unified and direct measures of PMPZ isolation 486 

Our survey reveals a lack of consistency in how PMPZ isolation is measured and defined 487 

across animals. When combined with the variable inclusion of pericopulatory processes in 488 

PMPZ isolation (see section 3.3.3), this makes broader conclusions difficult. However, this 489 

may not be the case for plant studies, which use a comparatively reduced and consistent set 490 

of four measures, albeit only one of which is a direct measure of PMPZ isolation.  491 

 492 

Accurately assessing the relative contribution of different barriers (i.e., premating vs. PMPZ 493 

vs. postzygotic) to total reproductive isolation at various stages of divergence provides 494 

critical information about the speciation process (Sobel & Chen, 2014). When focusing on 495 

PMPZ isolation, two problems may arise in addressing this question. First, the signature of 496 

PMPZ isolation may be overwritten by premating or postzygotic barriers that evolve later 497 

during divergence, making its effect difficult to detect, tending to decrease the observed 498 

contribution of PMPZ isolation towards total reproductive isolation. Second, ambiguities 499 

about which barriers are acting, and when, can lead to over- or under-estimating the 500 

strength and occurrence of PMPZ isolation and weaken the ability to assess the contribution 501 

of PMPZ isolation to total reproductive isolation (see section 3.3). Current estimates of total 502 

reproductive isolation, while sparse, provide mixed evidence of the strength of PMPZ 503 

isolation relative to other barriers (Ramsey et al., 2003; Dopman et al., 2010; Peterson et al., 504 

2011; Jewell et al., 2012; Sánchez-Guillén et al., 2012; Jennings et al., 2014; Rose et al., 505 
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2014; Martin & Mendelson, 2016; Kostyun & Moyle, 2017; Lackey & Boughman, 2017; 506 

Turissini et al., 2018). In Drosophila, PMPZ isolation evolves at a similar rate to premating 507 

isolation (Turissini et al., 2018). In fishes, there is little evidence of PMPZ isolation (Martin & 508 

Mendelson, 2016; Lackey & Boughman, 2017). In plants, on average, PMPZ barriers appear 509 

to be weaker than premating barriers, but stronger than any individual postzygotic barrier 510 

(Christie et al., 2022). 511 

 512 

To avoid conflating PMPZ isolation with other barriers, we suggest using experiments that 513 

enable the separation of fertilisation success and embryo mortality by confirming the 514 

fertilisation status of unhatched eggs or ungerminated seeds. Reliable cell staining protocols 515 

exist for insects, birds, and plants, but are rarely used in studies of PMPZ isolation. Further, 516 

complementary experiments can be used to confirm the presence of PMPZ isolation, such as 517 

performing both a heterospecific cross and conspecific gamete precedence experiment in 518 

tandem (Fig. S2). Few studies do this and there are likely many instances in the literature 519 

that attribute reduced numbers of hybrid offspring produced to postzygotic barriers that 520 

may rather be the result of PMPZ isolation.  521 

 522 

4.1.2 Diversify the taxonomic range of systems used to study PMPZ isolation 523 

Our survey highlighted taxonomic biases in the study of PMPZ isolation towards insects, 524 

externally fertilising animals, and angiosperms. These biases may reflect differences in the 525 

relative ease of studying different groups in the laboratory and directly observing 526 

fertilisation kinetics (e.g., in externally fertilising aquatic taxa) (Howard, 1999; Howard et al., 527 

2009). We note a distinct lack of studies in tetrapod vertebrates (mammals, birds, 528 

amphibians, and reptiles), non-flowering plants, and insects outside the Diptera, Coleoptera, 529 

and Orthoptera. Without focussed research effort outside of well-studied groups, it is 530 

difficult to assess whether the lack of documented evidence of PMPZ isolation reflects real 531 

biological differences in its prevalence. Some currently understudied taxa show promise to 532 

improve understanding of PMPZ isolation. For example, in haplodiploid organisms only 533 

fertilised eggs develop into female offspring and thus fertilisation success can easily be 534 

disentangled from hybrid inviability. Further, researchers do not currently take full 535 

advantage of gamete mixing experiments or artificial insemination, in which con- and 536 
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hetero- specific gametes are mixed in known quantities to directly test for PMPZ barriers 537 

(Ludlow & Magurran, 2006; Perez-Velazquez et al., 2010). 538 

 539 

4.1.3 Uncover the causal mechanisms underlying PMPZ isolation 540 

Identifying the types of PMPZ barriers present between taxa provides only the first step 541 

towards understanding the role of PMPZ isolation as a barrier to gene flow. With recent 542 

advances in molecular techniques, it should be a priority in the field to identify the 543 

physiological and molecular mechanisms and underlying genetic architecture of PMPZ 544 

barriers. In this respect, PMPZ isolation research lags behind other areas of speciation 545 

research where the genetic and developmental bases of isolation are beginning to be 546 

resolved (e.g., Presgraves, 2010; Streisfeld et al., 2013; Bradley et al., 2017; Rossi et al., 547 

2020; Liang et al., 2023, Merrill et al., Reifova et al., this volume). To this end, we suggest 548 

using complementary approaches to link observed phenotypes to the underlying barrier 549 

loci, for instance by genetically modifying gamete recognition proteins. Similarly, evidence 550 

of PMPZ isolation from indirect measures (e.g., molecular and morphological divergence) 551 

should be confirmed by laboratory or field experiments that estimate the strength of 552 

reproductive isolation.  553 

 554 

Box 1: Open questions for future research 555 

In surveying the PMPZ isolation literature and the current state of the field, we highlight a 556 

number of open questions and potentially fruitful avenues of future research.  557 

1. When does PMPZ isolation emerge during speciation? 558 

2. What are the evolutionary forces that promote the evolution of PMPZ isolation 559 

(i.e., natural selection, sexual selection, genetic conflict, genetic drift)? 560 

3. Does the intensity of sexual selection (i.e., monandrous vs polyandrous; selfing vs 561 

outcrossing) impact the rate of evolution of PMPZ isolation? 562 

4. What are the physiological and molecular mechanisms underlying PMPZ isolation? 563 

5. How often do PMPZ barriers use the same mechanisms as intraspecific 564 

sperm/pollen choice?  565 

6. Is there direct evidence for a role of divergence in gamete/reproductive tract 566 

morphology as a mechanism underlying PMPZ isolation in animals? 567 
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7. What role does chemotaxis play in determining fertilisation outcomes influencing 568 

PMPZ isolation? 569 

8. What is the genetic architecture underlying PMPZ isolation and is it simpler than 570 

that of premating isolation? 571 

[end of box]  572 
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5. Concluding remarks 573 

Understanding the process of speciation requires understanding reproductive isolation and 574 

quantifying the contribution of different barriers to gene flow. Although PMPZ isolation has 575 

been historically understudied in speciation research compared to premating and 576 

postzygotic isolation, PMPZ isolation holds a unique role in generating biodiversity. Indeed, 577 

PMPZ barriers appear ubiquitous across eukaryotes, and a number of shared barriers have 578 

evolved convergently in animals and plants. Our survey highlighted some challenges 579 

inherent to PMPZ isolation research, such as a lack of consistency in how PMPZ isolation is 580 

measured, the use of indirect measures of PMPZ isolation and the lack of knowledge about 581 

the physiological and genetic mechanisms of PMPZ isolation. Overcoming these challenges 582 

is essential to better understand how PMPZ barriers are formed and to further progress 583 

speciation research. Despite these challenges, these are exciting times to work on PMPZ 584 

isolation research thanks to recent developments in ‘omics’ technologies (e.g., genomics, 585 

metabolomics, proteomics) and genome editing which will allow us to make important 586 

discoveries on the role of PMPZ isolation in generating and maintaining biodiversity.  587 
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Figures 2984 

 2985 

 2986 
Figure 1. Position of PMPZ isolation along sequential stages of reproductive isolation.  2987 
Pericopulatory isolation involves reproductive processes that occur immediately before or 2988 
during mating and that may impact PMPZ isolation. See Table 2 for examples of 2989 
pericopulatory and PMPZ barriers. The dashed arrow between pericopulatory and PMPZ 2990 
isolation represents the time at which gamete release takes place. Fertilisation (karyogamy) 2991 
occurs within the grey box.  2992 
  2993 
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 2994 
Figure 2. Summary of PMPZ isolation across the eukaryotic tree of life.  2995 
Each tip represents a taxonomic Order in which PMPZ isolation has been studied. Inner ring 2996 
shows fertilisation mode (internal fertilisers/external fertilisers/spermcasters). Fertilisation 2997 
mode is variable within plant Orders and not shown. Outer ring indicates whether PMPZ 2998 
isolation has been studied between populations within species only (yellow), between species 2999 
only (orange), or both between populations and between species (red). Ring shading indicates 3000 
where PMPZ isolation has been measured directly (confirmed = yes, full) or only inferred via 3001 
indirect methods or proxies (confirmed = no, transparent; see section 3.3). Tips with no colour 3002 
indicate taxa where there is no available data. Branch lengths do not reflect divergence time. 3003 
  3004 
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 3005 
 3006 

Figure 3. Distribution of measures of PMPZ isolation across plants and animals.  3007 
Each tip represents a taxonomic Order (land plants) or Class (animals) in which PMPZ isolation 3008 
has been studied. Stacked bar charts show the proportion of studies within each taxa 3009 
reporting the grouped measures of PMPZ isolation. We classified measures of PMPZ used into 3010 
11 categories. The 7 categories in plants are noted on the left and the 9 animal categories are 3011 
noted on the right (see Tables S1 and S2). The total number of studies in each taxon are 3012 
indicated by the height of the outer grey bars and numbers. Branch lengths do not reflect 3013 
divergence time.   3014 
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Tables 3015 

Table 1. Glossary. 3016 

Conspecific gamete 
precedence  

Paternity bias towards conspecific males over heterospecific 
males, regardless of the normal patterns of within-species 
competitive gamete precedence. Also called conspecific sperm 
precedence and conspecific pollen precedence. 

Dioecious Male and female reproductive organs occurring in separate 
individuals. Term mainly used in plants. 

Extrinsic postmating 
prezygotic isolation 

External factors that differentially impact fertility, e.g., 
differences in thermal fertility limits between species. 

Fecundity The number of eggs laid, or seeds produced within a given 
timeframe. 

Fertilisation set The population of gametes that are able to compete to fertilise a 
given ovum. 

Gamete release Also called ejaculation; insemination; mating; sperm transfer; 
spawning; masting; pollen deposition; pollination. 

Gonochoric Male and female reproductive organs in separate individuals. 
Term mainly used in animals. 

Karyogamy Fusion of parental pronuclei inside the ovum preceding the 
formation of the zygote. 

Male gamete priming Adjustment of male gamete production and/or expenditure 
according to the fitness return associated with a specific 
mating/in response to stimuli from con- vs. hetero- specific 
potential mates. 

Gamete × gamete 
interactions 

Interactions between the male gametes (sperm, pollen) and 
female gametes (egg, ovule) either in the environment (external 
fertilisation) or in the female reproductive tract (internal 
fertilisation).  

Insemination reaction Opaque mass secreted by the female reproductive tract into the 
bursa after mating in some Drosophila species. Females 
generally do not lay eggs until the reaction mass subsides.  
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Postmating 
interactions 

Also called ejaculate-female reproductive tract interactions; 
pollen-pistil interactions. 

Non-competitive 
gametic isolation 
(NCGI) 

Forms of PMPZ isolation that result after a single heterospecific 
mating, i.e., in the absence of competition between gametes 
(e.g. sperm or pollen competition). For example, reduced 
fertilisation success or fecundity.  

Mechanical isolation Mismatch in the morphology of reproductive structures (e.g., 
external genitalia in animals and style length in plants).  

Pericopulatory 
isolation 

Any barrier to gene flow that acts immediately before or at 
copulation.  

Postmating isolation Any barrier to gene flow that acts after gametes are released. 
Includes postmating prezygotic isolation and postzygotic 
isolation. 

Postmating prezygotic 
(PMPZ) 
isolation 

Any barrier to gene flow that acts after gamete release and 
before fertilisation (karyogamy). Also called gametic isolation. 

PMPZ barrier The interaction between reproductive traits leading to a 
potential reduction of gene flow between taxa, e.g., conspecific 
gamete precedence, reduced fertilisation success, reduced 
fecundity. 

PMPZ mechanism The causal physiological or molecular mechanism that manifests 
as a barrier, e.g., reduced sperm chemotaxis, sperm-egg 
misrecognition, reduced pollen-tube growth. 

Postzygotic isolation Any barrier to gene flow that acts after fertilisation (karyogamy) 
resulting in inviable, sterile, or reduced fitness hybrid offspring. 

Premating 
isolation/pre-
pollination isolation 

Any barrier to gene flow that reduces the frequency of 
interspecific matings. In this chapter, we limit our discussion to 
sexual forms of premating isolation including behavioural 
isolation, pollinator isolation, and mechanical isolation (in 
animals). 

Prezygotic isolation Any barrier to gene flow that acts before karyogamy. Includes 
premating and postmating prezygotic isolation.  
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Reinforcement The strengthening of prezygotic isolation resulting from 
selection against costly hybridisation. 

Spermcaster Reproductive mode found in aquatic organisms where sperm are 
released into the external environment but fertilisation takes 
place internally. 

Syngamy Fusion of gamete cell surfaces. 
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Table 2: Pericopulatory and PMPZ barriers and underlying mechanisms.  3050 
A non-exhaustive list of the physiological or cellular mechanisms underlying postmating 3051 
prezygotic barriers to gene flow with example taxa. Many mechanisms underlying reduced 3052 
fertilisation success after a single heterospecific cross (NCGI) may also underlie patterns of 3053 
conspecific gamete precedence where there is opportunity for con- and hetero- specific 3054 
gametes to compete for fertilisation. Abbreviations: CGP, conspecific gamete precedence; 3055 
NCGI, non-competitive gametic isolation. 3056 

Barrier Mechanism 

Pericopulatory barriers 

Sperm priming 

Modulation of sperm number - males increase or decrease the 
numbers of sperm available for ejaculation following an assessment 
of female quality or species identity.  
E.g., male sailfin mollies (Poecilia latipinna) produce more sperm in 
the presence of con- vs. hetero- specific (Poecilia formosa) females 
(Aspbury & Gabor, 2004).  

Mechanical isolation 
in animals 

Mismatch in genital morphology - copulation fails or is suboptimal 
due to mismatch between male and female genitalia.  
E.g., intromission is not completed due to mismatch in genital 
morphology or position in crosses between sympatric millipede 
(Parafontaria spp.) populations (Tanabe & Sota, 2008).  

Copulation duration 

Reduced ejaculate transfer - truncated heterospecific copulation 
reduces ejaculate transfer.  
E.g., most copulations end before sperm transfer in crosses between 
Drosophila simulans females and D. mauritania males (Price et al., 
2001).  

Remating rate  

Biased representation in the fertilisation set - females increase the 
relative number of conspecific sperm in the fertilisation set by 
preferentially remating with conspecifics.  
E.g., female whiteflies (Bemisia tabaci) ameliorate reproductive 
interference by increasing acceptance of copulation attempts by 
homotypic males (Crowder et al., 2010). 

Postmating prezygotic barriers 

Extrinsic factors 
Species-specific abiotic fertility limits - species differ in gamete 
tolerance to abiotic factors (e.g., temperature, pH, salinity).  
E.g., germination of pollen from copper-sensitive populations of 

https://paperpile.com/c/XIgY5v/MHj8
https://paperpile.com/c/XIgY5v/JxA8
https://paperpile.com/c/XIgY5v/RTQX
https://paperpile.com/c/XIgY5v/RTQX
https://paperpile.com/c/XIgY5v/dAKk
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yellow monkeyflowers (Mimulus guttatus) is reduced in the pistils of 
copper resistant individuals grown under high copper concentrations 
(Searcy & Macnair, 1990).  
E.g., Drosophila santomea become sterile at lower temperatures 
than D. yakuba (Matute et al., 2009). 

Mechanical isolation 
in plants 

Pollen grain size × style length - mismatch between species in pollen 
reserves and style length results in pollen tubes not reaching the 
ovule.  
E.g., small-flowered populations of Silene latifolia produce small 
pollen grains that are not capable of growing pollen tubes long 
enough to reach the ovules of females from large-flowered 
populations which have longer styles (Brothers & Delph, 2017).  

Conspecific gamete 
precedence 

Ejaculate × female reproductive fluid interactions - female 
reproductive fluid favours conspecific sperm or impedes 
heterospecific sperm. 
E.g., collared flycatcher (Ficedula albicollis) sperm swimming speed 
decreases more rapidly in heterospecific pied flycatcher (F. 
hypoleuca) female cloacal fluid (Cramer et al., 2016). 
E.g., ovarian fluid increases conspecific sperm motility and 
attraction in Salmonids (Yeates et al., 2013).   

Sperm storage dynamics - sperm entry into, retention, or exit from, 
sperm storage organs is biased towards conspecifics. 
E.g., females bias sperm use towards the sperm storage organ 
containing conspecific sperm, rather than last male sperm, in 
crosses between Drosophila mauritiana and D. simulans (Manier et 
al., 2013). 

Pollen tube growth - pollen tube growth is impaired or arrested 
(pollen attrition) in a heterospecific style. 
E.g., pollen tubes of self-compatible species are actively rejected in 
the pistils of self-incompatible species, and pollen-tube growth rate 
is reduced in some heterospecific crosses of wild tomato (Solanum 
spp.) (Baek et al., 2016). 

Pollen tube guidance - incompatibilities between pollen tube 
receptors and heterospecific female attractant molecules result in 
abnormal pollen tube growth.  
E.g., wild-type Arabidopsis thaliana ovules are mainly targeted by 
conspecific pollen tubes. A. thaliana mutant ovules that do not 

https://paperpile.com/c/XIgY5v/Ipf6
https://paperpile.com/c/XIgY5v/lOkN
https://paperpile.com/c/XIgY5v/RXjX
https://paperpile.com/c/XIgY5v/gL3i
https://paperpile.com/c/XIgY5v/rXDl+S9Ic+AsJZ
https://paperpile.com/c/XIgY5v/zTel+Giay
https://paperpile.com/c/XIgY5v/zTel+Giay
https://paperpile.com/c/XIgY5v/F9dH
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express the female attractant AtLURE1 are also fertilised by 
heterospecific A. lyrata pollen tubes (e.g. AtLURE1 and PRK6; Liu et 
al., 2021). 

Reduced fertilisation 
success (NCGI) 

Sperm chemotaxis - incompatibilities between sperm receptors and 
female attractant molecules result in impaired sperm orientation 
and motility towards the egg. 
E.g., exposure to heterospecific eggs did not induce sperm motility 
and orientation in crosses between three coral species (genus 
Acropora) (Morita et al., 2006).   

Differential pollen germination - germination of pollen grains is 
impaired on heterospecific stigma.  
E.g., germination of Costus pulverulentus pollen on C. scaber 
stigmas is reduced (Yost & Kay, 2009). 

Failed syngamy - incompatibilities between gamete recognition 
proteins lead to failed syngamy. 
E.g., sperm-egg attachment and fusion of gamete cell membranes 
mediated by species-specific gamete recognition proteins (EBR1 and 
bindin) in sea urchins (Strongylocentrotus spp.) (Vacquier & 
Swanson, 2011). 

Reduced female 
fecundity (NCGI) 

Disrupted female postmating response - mismatched ejaculate × 
female interactions that do not elicit the stereotypical female 
postmating response preceding ovulation (e.g., physiological or 
conformational changes in the female reproductive tract). 
E.g., perturbation of the postmating transcriptional response in the 
lower female reproductive tract results in a prolonged insemination 
reaction mass that blocks female egg laying after Drosophila 
mojavensis females mate with heterospecific D. arizonae males 
(Knowles & Markow, 2001; Bono et al., 2011). 

Reduced female survival - heterospecific mating reduces female 
lifespan resulting in lower overall lifetime fecundity. 
E.g., ectopic sperm migration breaching the reproductive tract and 
entering non-gonadal tissue causes increased mortality, indirectly 
decreasing reproductive output, and directly blocks ovulation in 
heterospecific crosses between Caenorhabditis spp. (Ting et al. 
2014). 

 3057 
 3058 

https://paperpile.com/c/XIgY5v/ECzX/?prefix=e.g.%20AtLURE1%20and%20PRK6%3B%20
https://paperpile.com/c/XIgY5v/ECzX/?prefix=e.g.%20AtLURE1%20and%20PRK6%3B%20
https://paperpile.com/c/XIgY5v/T7pZ
https://paperpile.com/c/XIgY5v/FnYW
https://paperpile.com/c/XIgY5v/JmR7/?prefix=reviewed%20in%20
https://paperpile.com/c/XIgY5v/JmR7/?prefix=reviewed%20in%20
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Supplementary Material 3060 

Supplementary methods 3061 

We performed a literature search using the Web Of Science conducted on 26/05/2022 (for 3062 

search terms used see Table S4) which resulted in 2730 unique publications. We randomly 3063 

assigned publications among co-authors for screening of titles and abstracts to refine our list 3064 

of publications to include only empirical studies of the primary literature investigating PMPZ 3065 

isolation. After screening we added other relevant publications that were not identified in our 3066 

initial search and redistributed the final list of 461 publications among co-authors based on 3067 

field of expertise for data collection.  3068 

 3069 

We performed all analyses in R v.4.2.2 (R Core Team, 2020) using the following packages: 3070 

tidyverse v.1.3.2 (Wickham et al., 2019), ggtree v.3.6.2 (Yu et al., 2017), ggstance v.0.3.6, 3071 

treedata.table v.0.1.0, treeio v.1.22.0 (Wang et al., 2020). All code and analyses are 3072 

available on GitHub: (https://martingarlovsky.github.io/CSH_PMPZ/). Silhouettes were 3073 

downloaded from Phylopic (https://www.phylopic.org/). Picture credits: Phoenicurus: 3074 

Martin Bulla, based on François Desbordes' illustration; Cestoda to Maxime Dahirel both 3075 

under a CC licence 4.0 (https://creativecommons.org/licenses/by/4.0/), Mytilus and 3076 

Strongylocentrotus: Harold N Eyster; Gastropod: Armelle Ansart (photograph), Maxime 3077 

Dahirel (digitisation); Peromyscus: Nina Skinner; Gymnosperm (Tsuga): Ian Burt (original) 3078 

and T. Michael Keesey (vectorization), all under a CC licence 3.0 3079 

(https://creativecommons.org/licenses/by/3.0/); all other images are used under a public 3080 

domain licence CC 1.0 (https://creativecommons.org/publicdomain/zero/1.0/). 3081 

 3082 

 3083 

 3084 

 3085 

 3086 

 3087 

 3088 

 3089 

https://paperpile.com/c/XIgY5v/Wfhm
https://paperpile.com/c/XIgY5v/R3Ht
https://paperpile.com/c/XIgY5v/R3Ht
https://paperpile.com/c/XIgY5v/R3Ht
https://paperpile.com/c/XIgY5v/smAp
https://paperpile.com/c/XIgY5v/smAp
https://paperpile.com/c/XIgY5v/smAp
https://paperpile.com/c/XIgY5v/11ma
https://paperpile.com/c/XIgY5v/11ma
https://paperpile.com/c/XIgY5v/11ma
https://martingarlovsky.github.io/CSH_PMPZ/
https://www.phylopic.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/publicdomain/zero/1.0/
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 3090 

Table S1. Measures of PMPZ isolation in land plants were combined into 7 categories. 3091 
Numbers in parentheses are counts of studies using each measure.  3092 

Measure Includes 

Molecular divergence Molecular divergence (8) 

Pollen-pistil interaction Pollen tube growth (63); pollen germination 
(26); pollen adhesion (4); pollen hydration 
(1); in vitro pollen tube attraction assay (2); 
semi-in vivo pollen tube attraction assay (1); 
style length and varying pollen placement 
along the style (1) 

Divergent postpollination traits Sperm swimming speed† (1), sperm 
longevity† (1), gamete size (1), pollen wall 
anatomy (1) 

Seed set Seed set (88), fruit size (proxy for seed set) 
(1), seed yield (proxy for seed set) (1) 

Fruit set Fruit set (56) 

Conspecific gamete precedence Conspecific pollen precedence (44) 

Fertilisation success Sporophyte formation (1) 

†Divergent postmating traits when measured between species only (without demonstrating 3093 
an incompatibility).  3094 
 3095 
 3096 
 3097 
 3098 
 3099 
 3100 
 3101 
 3102 
 3103 
 3104 
 3105 
 3106 
 3107 
 3108 
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 3109 
Table S2. We combined the various measures of PMPZ isolation in animals into 9 categories. 3110 
Some measures are considered “ejaculate × female interactions” when measured in a con- 3111 
vs. heterospecific cross, or as “divergent postmating traits” when measured between taxa 3112 
only (without demonstrating a direct role in PMPZ isolation). Numbers in parentheses are 3113 
counts of studies using each measure.  3114 

Measure Includes 

Molecular divergence Expression divergence (10), intron retention 
(1), alternative splicing (1), postmating 
female response divergence (transcript 
abundance) (3), population genetics 
(genome scans) (1), molecular evolution of 
reproductive proteins (45) 

Ejaculate × female interaction Sperm transfer (17), sperm storage (17), 
sperm depletion (1), sperm swimming 
speed* (8), sperm motility (12), sperm 
viability* (3), acrosome reaction (3), 
syngamy (1), karyogamy (1), fertilisation (1), 
insemination reaction (3) 

Divergent postmating traits Sperm morphology (2), sperm number (4), 
sperm swimming speed† (3), ovarian fluid 
composition (i.e., physiological differences 
including pH, Ca2+ concentration, total 
protein concentration and osmolality) (1) 

Fertilisation success** Fertilisation success (106), hatching success 
(49), offspring sex ratio (haplodiploidy) (1) 

Offspring number Egg-to-adult viability (3), progeny number 
(20) 

Pericopulatory traits Copulation duration (8), remating rate (5), 
sperm priming (2) 

Conspecific gamete precedence Conspecific sperm precedence (36) 

Fecundity Number of eggs laid (68) 

Survival Female survival (11) 
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*Traits that are considered as a mechanism when measured in a con- vs. heterospecific 3115 
context;  3116 
†Divergent postmating traits when measured between species only (without demonstrating 3117 
an incompatibility); 3118 
**We included both direct measures and proxy measures (e.g., hatching success) to reflect 3119 
the authors intended, albeit indirect, measurement of PMPZ isolation.  3120 
 3121 
 3122 
 3123 
 3124 
Table S3. Measures of PMPZ isolation in other taxa were combined into 3 categories. 3125 
Numbers in parentheses are counts of studies using each measure.  3126 

Measure Includes 

Fertilisation success Fertilisation success (4) 

Molecular divergence Molecular divergence (3) 

Gametic interactions  Observing gamete interactions (4) 

 3127 
 3128 
 3129 
 3130 
 3131 
 3132 
 3133 
 3134 
 3135 
 3136 
 3137 
 3138 
 3139 
 3140 
 3141 
 3142 
 3143 
 3144 
 3145 
 3146 
 3147 
 3148 



90 

 3149 
 3150 
Table S4. Search terms used to access Web Of Science on 26/05/2022.  3151 

Search term 

“gametic isolation” AND “reproductive isolation” AND speciation 

“gametic isolation” 

“gametic isolation” AND speciation 

gamet* AND speciation 

pollen AND speciation 

pollen AND “reproductive isolation” 

“pollen-pistil” AND “reproductive isolation” AND speciation 

sperm AND speciation 

sperm AND “reproductive isolation” 

“reproductive isolation” AND speciation AND post-mat* 

“reproductive isolation” AND speciation AND postmat* 

“reproductive isolation” AND speciation AND post-cop* 

“reproductive isolation” AND speciation AND postcop* 

“reproductive isolation” AND speciation AND post-pollination 

“reproductive isolation” AND speciation AND postpollination 

“reproductive isolation” AND speciation AND pre-zygot* 

“reproductive isolation” AND speciation AND prezygot* 

“gametic incompatibility” 

“reproductive isolation” AND “postmating prezygotic” 

“reproductive isolation” AND “post-mating prezygotic” 

 3152 

 3153 

 3154 
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Figure S1. Measures of PMPZ isolation in other eukaryotes. 3155 

Stacked bars show the number of studies in which each grouped measure (see Table S3) has 3156 

been measured. 3157 

 3158 

Figure S2. PMPZ isolation and flowering plants. Two common experimental setups for 3159 

measuring PMPZ isolation in angiosperms. (A) A crossability experiment, whereby reciprocal 3160 

hand-pollinations are performed using heterospecific pollen only (reciprocal cross not 3161 

shown). Measures of PMPZ isolation (including pollen performance, fruit set, and seed set) 3162 

are taken and compared to an intraspecific baseline (intraspecific cross not shown). There are 3163 

three possible outcomes when measuring seed set in a crossability experiment: (i) full seed 3164 

set (implies no PMPZ isolation, but PMPZ isolation can be present under competitive 3165 

conditions, see B); (ii) reduced seed set resulting from PMPZ isolation; and (iii) reduced seed 3166 

set resulting from post-zygotic embryo abortion (i.e., not PMPZ isolation). Note that (i) and 3167 

(ii) are confounded unless embryo abortion is rigorously accounted for. (B) A pollen 3168 

competition experiment, whereby a mix (typically 50:50) of heterospecific and conspecific 3169 

pollen are applied to stigmas of one or both species. Paternity is then assigned to seeds using 3170 

paternity analysis. Reduced hybrid seed formation can result from (i) reduced ability of 3171 

heterospecific pollen to obtain fertilisation (PMPZ isolation) or (ii) reduced seed set from 3172 

postzygotic embryo abortion. As in A, without additional data on where failure is occurring, 3173 

these outcomes are confounded. 3174 

 3175 


