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ABSTRACT

How barriers to gene flow arise and are maintained are key questions in evolutionary
biology. Speciation research has mainly focussed on barriers that occur either before mating
or after zygote formation. In comparison, postmating prezygotic (PMPZ) isolation — a barrier
that acts after gamete release but before zygote formation —is less frequently investigated
but may hold a unique role in generating biodiversity. Here we discuss the distinctive
features of PMPZ isolation, including the primary drivers and molecular mechanisms
underpinning PMPZ isolation. We then present the first comprehensive survey of PMPZ
isolation research, revealing that it is a widespread form of prezygotic isolation across
eukaryotes. The survey also exposes obstacles in studying PMPZ isolation, in part
attributable to the challenges involved in directly measuring PMPZ isolation and uncovering
its causal mechanisms. Finally, we identify outstanding knowledge gaps and provide
recommendations for improving future research on PMPZ isolation. This will allow us to
better understand the nature of this often-neglected reproductive barrier and its

contribution to speciation.
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1. Introduction

Understanding the origin of species requires identifying barriers to gene flow between
lineages and quantifying how different barriers contribute to total reproductive isolation
(Marie Curie SPECIATION Network et al., 2012; Sobel & Chen, 2014). There has been a
tendency to categorise such barriers as either: i) pre- mating/pollination vs. post-
mating/pollination (herein collectively called pre- or post- mating isolation (see Table 1:
Glossary)) or ii) prezygotic vs. postzygotic isolation (Coyne & Orr, 2004) (Fig. 1). As a result,
the terms premating and prezygotic, and postmating and postzygotic are often used
interchangeably and speciation research tends to focus either on premating or postzygotic
isolation (Coyne & Orr, 2004; Merrill et al., Reifova et al., Shaw et al., this volume). This
framing has led to a dearth of research investigating the barriers to gene flow that act after
gamete release, but before karyogamy, termed postmating prezygotic (PMPZ) isolation
(Darwin, 1859; Lillie, 1921; Dobzhansky, 1937) (Fig. 1). Overlooking or confounding PMPZ
isolation with other barriers to gene flow is more than a semantic problem. Neglecting or
misidentifying the contribution of PMPZ isolation may lead to misinterpretation of the mode

and tempo of reproductive isolation, skewing our understanding of the speciation process.

PMPZ isolation emerges from interactions between female and male gametes, and/or
reproductive tract tissues and their secretions (e.g., pollen interacting with the stigma, or
sperm traversing the female reproductive tract), that result in the reduced frequency of
successfully fertilised eggs in crosses between taxa. Reduced fertilisation can occur via the
interruption of the transport, storage, contact and/or fusion of gametes. The ubiquity of
reproductive interactions leading to fertilisation means that PMPZ isolation can act in any
taxa where sexual interactions are a necessary step in reproduction (i.e., most eukaryotes,
outside of fungi which have a dikaryotic stage that does not neatly fit PMPZ categorisation;
Giraud & Goubiere, 2012). This fact makes PMPZ isolation perhaps the most widespread
potential form of prezygotic isolation to be found in eukaryotes. Consequently, studying
PMPZ isolation offers a unique opportunity to make direct comparisons about the

accumulation, strength, and types of prezygotic barriers across the eukaryotic tree of life.
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PMPZ isolation was recognised early in the history of speciation research as a potential
barrier to gene flow (Darwin, 1859; Lillie, 1921; Dobzhansky, 1937) but has been
understudied compared to premating and postzygotic isolation (Howard et al., 2009). Akin
to the late realisation that sexual selection may continue after mating (Parker, 1970;
Thornhill, 1983), the cryptic nature of postmating interactions has likely hindered progress
in the field. The most recent reviews of PMPZ isolation in animals or plants were conducted
over a decade ago (Howard, 1999; Howard et al., 2009), and there have been no reviews
examining PMPZ mechanisms and PMPZ barriers across eukaryotes. A contemporary
review is timely since there have been significant advances in molecular techniques in the
last 15 years enabling new insights into the prevalence, mechanisms, and evolution of PMPZ
isolation (Manier et al., 2013; Higashiyama & Takeuchi, 2015; Carlisle & Swanson, 2021;
Cheung et al., 2022).

Here, we provide a synthesis of the unique role of PMPZ isolation in generating biodiversity
and, by summarising the current state of the field, we outline the scope for future research.
First, we discuss the evolutionary processes involved in the evolution and maintenance of
PMPZ isolation and detail the underlying physiological and genetic mechanisms. Second, we
conduct the first comprehensive survey of the speciation literature concerning PMPZ
isolation to identify similarities and differences in the mechanisms and measures of PMPZ
isolation across eukaryotes. Third, we identify gaps in the speciation literature and suggest
avenues for future research. We conclude by suggesting where efforts could provide new

insights into this often-neglected stage of reproductive isolation.
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2. The unique role of PMPZ isolation in speciation

2.1 The role of sexual selection and sexual conflict in promoting the evolution of PMPZ
isolation

Traits that influence mating and fertilisation success within populations are frequently
under strong sexual selection and sexual conflict. Most theoretical models connecting sexual
selection to reproductive isolation are agnostic to the traits underlying divergence
(Kirkpatrick & Ravigné, 2002). However, premating and postmating sexual selection place
different emphasis on the traits that mediate reproductive success (Parker et al., 2013;
Lipold et al., 2014; Evans & Garcia-Gonzalez, 2016). The evolution of premating sexually
selected traits can (in principle) involve both male and female intra- and inter-sexual
selection, and competition is often temporally separated from choice (Rosenthal, 2017).
Targets of premating sexual selection may be spread across many traits (e.g. behavioural,
morphological and physiological; e.g., Andersson, 1994; Rosenthal, 2017) and given that
many premating traits are condition dependent (Rowe & Houle, 1997), individual loci may
be under weak selection. In contrast, sexual selection operating after mating is restricted to
sperm competition and cryptic female choice and thus the traits involved are localised. In
particular, selection necessarily operates directly on the gametes and surrounding
fluid/tissue within the female reproductive tract in internally fertilising animals, or within
the carpel in land plants (Birkhead & Pizzari, 2002; Tonnabel et al., 2021). As a consequence,
a dynamic unique to PMPZ interactions occurs when the outcome of male-male competition
might vary across females, creating an emergent three-way female x male x male

interaction, where competition is always concurrent with choice (Lipold et al., 2020).

Another distinct feature of postcopulatory interactions is the tightly coordinated molecular
interplay between the sexes (McCullough et al., 2022; Misra et al., 2022). For instance,
sperm proteins are replaced by female proteins during sperm transport and storage after
mating (McCullough et al., 2022). As such, mismatches between mating partners that
disrupt this tight coordination may rapidly cause incompatibilities underlying PMPZ
isolation. Together, selection acting on a potentially reduced subset of tightly associated
interacting traits may subject traits associated with PMPZ isolation to a more restricted set

of selection pressures, and reduce the number of loci under divergent selection, compared
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to selection influencing premating traits. Disruptive selection might therefore be more
effective in generating rapid divergence in postmating traits (Orr, 1998; Yeaman & Whitlock,
2011). Alternatively, fewer loci under divergent selection may slow barrier formation
compared to polygenic divergence involved in premating isolation (Westram et al., 2018;
Martin et al., 2019). Regardless, the restricted physiological targets of selection and
potentially simple genetic basis suggest that the study of PMPZ isolation provides a highly
tractable opportunity to study sexual interactions and prezygotic isolation in a relatively

simple model.

Postmating traits have profound effects on fitness and such conditions may favour the rapid
coevolution of postmating interactions between the sexes. For example, in internally
fertilising animals, coevolution between female reproductive tract dimensions and sperm
length have been found widely across taxa (Pitnick et al., 2009). Additionally, experimental
evolution studies have shown that traits involved in fertilisation respond to the strength of
sexual selection, or to correlated selection between the sexes, over short evolutionary
timeframes (Holland & Rice, 1999; Miller & Pitnick, 2002; Crudgington et al., 2009; Wigby et
al., 2009; Godwin et al., 2017). Combined, these findings at both the macroevolutionary and
microevolutionary level suggest that PMPZ isolation may be a critical early contributor to
population divergence (Devigili et al., 2018; Turissini et al., 2018; Garlovsky et al., 2020).
Indeed, PMPZ isolation is the only known barrier to gene flow in some taxa (Palumbi &
Metz, 1991; Fricke & Arnqvist, 2004; Marshall et al., 2011). Thus, if traits acting after mating,
which are under strong sexual selection, play such a critical role in reproductive isolation,
then we should expect a strong signature of sexual selection on patterns of biodiversity.
However, the role of sexual selection as a driver of speciation has long been contested
(Ritchie, 2007; Servedio & Boughman, 2017), and recent evidence remains mixed
(Kraaijeveld et al., 2011; Janicke et al., 2018). If PMPZ isolation is especially important in the
early stages of speciation, then its signature may be overwritten as other barriers evolve. A
comparative study in animals found that the signal of speciation via sexual selection might
weaken over time (i.e., deeper nodes showed a smaller effect size than shallower
phylogenetic distances; Kraaijeveld et al. (2011)). Moreover, if strong premating barriers
have evolved, then detecting the role of PMPZ isolation in early divergence may be difficult.

Thus, despite the unique selection pressures acting on postmating traits that may promote
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the early evolution of PMPZ isolation, its detectable effect may be transient. As such, we are
likely underestimating the number of cases where PMPZ isolation may occur and the

importance it may have had at an earlier stage of speciation.

2.2 Extrinsic PMPZ isolation and the role of natural selection

Although PMPZ isolation is most often thought to be shaped by sexual selection or sexual
conflict, certain forms of PMPZ isolation could also be affected by natural selection. External
environmental conditions (e.g., temperature, salinity, or pH) can directly influence the
function of reproductive traits (Reinhardt et al., 2015) and populations may vary in
reproductive function under certain conditions (e.g., temperature extremes). Thus,
environmental conditions could select against immigrant gametes as a form of extrinsic
PMPZ isolation (see Thompson et al., this volume). The environment may also indirectly
shape the reproductive environment in which PMPZ interactions take place. Resources
incorporated into reproductive traits, such as gamete cell membranes or reproductive
tissues, can affect their quality or function (Cardozo & Pilastro, 2018). For instance,
nutritional status can impact the number of gametes produced or the composition of
reproductive fluids (Macartney et al., 2019). In this way, the expression of PMPZ barriers
may be context dependent, resulting from an emergent genotype (e.g., female) x genotype

(e.g., male) x environment (e.g., temperature) interaction.

In plants, there is clear evidence of external environmental conditions contributing to PMPZ
isolation. For instance, in spiral gingers (Costus spp.), pollinator-driven selection on floral
traits has led to differences in style length between species such that pollen grains from
short-styled species do not have the appropriate energy reserves needed to reach the ovule
of long-styled species ("pollen attrition") (Yost & Kay, 2009). Similarly, in the yellow monkey
flower (Mimulus guttatus), pollen from copper-sensitive populations performed poorly
when crossed to copper-resistant individuals grown in copper-heavy soil (Searcy & Macnair,
1990). In animals, environmental effects on the expression of PMPZ barriers are likely to be
especially important for spermcasters and external fertilisers where gametes are directly
exposed to the external environment. For example, in the sand goby (Pomatoschistus
minutus), differences in salinity between populations inhabiting brackish and marine

environments reduces immigrant male sperm viability and fertilisation success (Svensson et
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al., 2017). Similarly, on the Island of S3o Tomé the sister species Drosophila santomea and
D. yakuba inhabit high and low elevations, respectively, where D. santomea become sterile
at lower temperatures than D. yakuba (Matute et al., 2009). Indeed, evidence suggests that
species ranges are better predicted by fertility- rather than lethal- thermal limits (Parratt et
al., 2021), suggesting that environmental selection on fertility traits might pleiotropically

influence the performance of these traits in heterospecific crosses.

2.3 Opportunity costs and reinforcement as drivers of PMPZ isolation

Postmating reproductive traits might be uniquely positioned to mitigate costs involved in
mating decisions, indirectly or directly leading to PMPZ isolation (i.e., as the result of
reinforcement). For instance, PMPZ isolation could evolve via indirect selection to reduce
the costs of going unmated while minimising the production of hybrid offspring. Theory
predicts that females may alleviate the costs of going unmated by relaxing mate preferences
and mating with the first male encountered, even if this male is of low quality, rather than
wasting time and resources searching for a suitable mate and risking going unmated before
death (Kokko & Mappes, 2005; but see Richardson & Zuk, 2022). In polyandrous species, the
benefit to females of mating with the first available male can be strong if they can later
“trade-up” to a better quality male (Kokko & Mappes, 2005; Kokko & Jennions, 2008). In the
context of speciation, a similar process could operate if females encounter heterospecifics
at a high enough frequency for mating to occur, but then are able to bias paternity towards
“higher quality” conspecific males via conspecific gamete precedence (Larson et al., 2019).
In this case, conspecific gamete precedence could decrease short-term costs of going un- (or
under-) mated while restricting any potential long-term hybridization costs (Marshall et al.,

2002).

Mating with heterospecific males might even come with advantages for females, for
example, through receipt of fecundity boosting resources such as nuptial gifts or proteins
that stimulate oviposition (Peterson et al., 2011), or access to higher quality territories or
resources (Cramer et al. 2016); although this requires that the short term benefit to females
outweighs the costs of heterospecific mating. Heterospecific mating costs can themselves
be expressed as PMPZ isolation in the form of non-competitive gametic isolation (NCGI).

NCGI arises if interactions between the male gametes or seminal fluid and female
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reproductive tract are disrupted after a single heterospecific mating. NCGI can be expressed
in the form of reduced fertilisation success after a single heterospecific mating (Kay, 2006;
Jennings et al., 2014; Garlovsky & Snook, 2018), reduced female lifespan (Ting et al., 2014;
Kao et al., 2015) reduced fecundity (Matute, 2010; Marshall & Dirienzo, 2012; Turissini et
al., 2018), or temporary or permanent blocking of mating opportunities (e.g. satyrization,
copulatory plugs, and stigma clogging) (Patterson, 1946; Knowles & Markow, 2001; Holland
& Chamberlain, 2007; Matute, 2010). Notably, some forms of NCGI may be more costly than
others. For instance, reduced fertilisation success may impose elevated costs compared to
reduced fecundity, if females lay similar numbers of eggs as in a conspecific cross (Garlovsky
& Snook, 2018). The costs to females of reduced fertilisation success are therefore
equivalent to producing inviable (hybrid) embryos and NCGI could itself act as the source,

rather than outcome, of reinforcing selection (Lorch & Servedio, 2007).

Regardless of whether selection is imposed by postzygotic incompatibilities or NCGI, PMPZ
barriers could be a particularly responsive target of reinforcement (Lorch & Servedio, 2007).
For example, conspecific gamete precedence can provide a reliable mechanism to ensure
conspecific paternity that does not depend on external signals/stimuli-based mate
discrimination, therefore it can be selected where premating barriers are not reliable
(Matute, 2015; Cramer et al., 2016). Reinforcement of PMPZ barriers has been suggested in
various taxa, including flowering plants (Kay & Schemske, 2008), insects (Matute, 2010;
Castillo & Moyle, 2019), birds (Cramer et al., 2016; Albrecht et al., 2019) and sea urchins
(Geyer & Palumbi, 2003; Zigler et al., 2003). Given the relatively few cases in which any
specific mechanism of reinforcement is known (Servedio & Noor, 2003; Ortiz-Barrientos et
al., 2009), PMPZ barriers appear to be uniquely and intriguingly responsive to reinforcing

selection (Slaughter et al., 2008; but see Geyer & Lessios, 2009; Popovic et al., 2014).

2.4 Molecular mechanisms and targets of PMPZ isolation

Several features of the function and rate of evolution of genes involved in postmating
interactions might promote the evolution of PMPZ isolation. Many genes tightly associated
with fertilisation are highly conserved (Dean et al., 2009; Finseth et al., 2014; Kasimatis &
Phillips, 2018; Wassarman & Litscher, 2021; Garlovsky et al., 2022), such that relatively little

divergence between taxa might disrupt interacting reproductive traits resulting in PMPZ
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barriers. Postmating reproductive traits primarily have an effect on fertilisation success,
while premating traits often have additional functions outside of reproduction. Therefore,
the number of mutations necessary to generate PMPZ barriers may be fewer than for
premating isolation as they are likely to be less pleiotropic, facilitating the more rapid
emergence of PMPZ isolation. For instance, molecular divergence within a single gene acting
as an egg receptor or a sperm cell surface protein (e.g., EBR1 and bindin in sea urchin;
reviewed in Vacquier & Swanson, 2011), or divergence in pollen tube guidance genes (e.g.
AtLURE1 and PRK®; Liu et al., 2021), may be the only step necessary to prevent interspecific

fertilisation (Vacquier, 1998; Swanson & Vacquier, 2002).

Reproductive genes are expected to be highly conserved and experience relatively strong
purifying selection. However, specific regions of these genes can evolve quickly (Vacquier &
Swanson, 2011). Thus, while some reproductive genes are highly conserved, genes
specifically expressed in tissues relevant to PMPZ isolation (e.g., gonads) often include genes
with elevated rates of non-synonymous evolution (Swanson & Vacquier, 2002; Arunkumar
et al., 2013; Gossmann et al., 2014; Dapper & Wade, 2020; Moyle et al., 2021). These rapidly
evolving loci include classes of mutations such as deletions and novel chimeric loci,
consistent with relaxed selection (Walters & Harrison, 2011; Gossmann et al., 2016;
Harrison et al., 2019; Dapper & Wade, 2020; Patlar et al., 2021). These data suggest that
some genes expressed in males involved in PMPZ isolation (e.g., seminal fluid proteins)
might evolve via unusual evolutionary mechanisms, including arising de novo with no initial
function, and therefore under limited constraint, until they are co-opted for reproductive

function (Hurtado et al., 2022).

More data are needed to assess whether evolution via these kinds of mechanisms is broadly
true for loci underlying PMPZ isolation. If true, it would suggest a clear instance in which
variation fuelling the novel evolution of traits involved in PMPZ isolation is distinct from
other reproductive traits. With the exception of some well-described egg membrane
receptor proteins (Grayson, 2015) and pollen tube guidance molecules (Kanaoka et al.,
2011; Zhong et al., 2019), most studies investigating the genetic architecture of PMPZ
isolation have focussed on male traits (Britch et al., 2007; Ahmed-Braimah, 2016). As PMPZ

isolation necessarily involves an interaction between interacting mating partners more
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research is needed to understand the molecular nature of female traits involved in PMPZ
isolation (Sweigart, 2010; Yeates et al., 2013; Cramer et al., 2016; McCullough et al., 2020;
Ahmed-Braimah et al., 2021).

There is accumulating evidence to suggest that intraspecific mechanisms ensuring high
fertility are directly associated with PMPZ isolation, via either the same phenotypes or the
same genes. For example, in Drosophila the same genes conferring advantages in sperm
competition within species influence conspecific sperm precedence (Castillo & Moyle, 2014;
Civetta & Finn, 2014). In the house mouse (Mus spp.) species complex, species experiencing
stronger intraspecific sperm competition have greater interspecific fertilisation success,
possibly as a result of differences in the strength of sexual conflict and selection against
polyspermy (Martin-Coello et al., 2009). In the nightshade family (Solanaceae), loci
underlying the mechanism of genetic self-incompatibility also directly affect the expression
of pollen-pistil barriers between species (e.g., Jewell et al., 2020; Tovar-Méndez et al.,
2014). In the guppy (Poecilia reticulata), the ovarian fluid both favours sperm from
unrelated males in the context of inbreeding avoidance (Gasparini & Pilastro, 2011) and
favours sperm from males of the same, versus different drainages (Devigili et al., 2018).
Similarly, major histocompatibility complex genotype at gamete surfaces influences
fertilisation success in birds (e.g., Gallus gallus) and mice (Mus musculus) as a mechanism
for inbreeding avoidance (Rilicke et al., 1998; Lgvlie et al., 2013; Firman & Simmons, 2015)
and could contribute to outbreeding avoidance (i.e., against heterospecifics) (Mays & Hill,
2004; Kopp et al., 2018). Selection for immune compatibility at CMAH/Neu5Gc egg cell-
surface antigens may even have contributed to PMPZ isolation early in human evolutionary

history (Ghaderi et al., 2011).

In summary, PMPZ isolation may play a unique role in speciation because it: 1) is expected
to have more restricted targets of selection compared to premating isolation; 2) is expected
to emerge early due to rapid coevolution between the sexes; 3) may be particularly
important early during divergence, but be hard to detect; 4) may be environmentally
dependent; 4) potentially evolves via indirect selection and reinforcement; and 5) may

involve evolutionary mechanisms including de novo functions and co-option of intra-specific
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3. Survey of PMPZ isolation in speciation

We performed the first comprehensive literature survey on PMPZ isolation across the tree
of life to evaluate similarities and differences in the types of barriers and mechanisms
reported. We identified 462 relevant studies on PMPZ isolation using the Web Of Science
(accessed May 26th, 2022, see Supplemental Material) including both inter- and intra-
specific crosses, and analyses of sequence and expression divergence of reproductive traits.
From these, we identified the number of studies that reported various pieces of information
to determine: 1) the diversity of taxa in which PMPZ isolation has been documented, 2) the
types of barriers that have been measured, and 3) where compelling evidence of PMPZ

isolation has been demonstrated.

3.1 PMPZ isolation is widespread across the eukaryotic tree of life

Our survey highlights the ubiquity of PMPZ isolation across eukaryotes consistent with
fertilisation being a universal aspect of sexual reproduction (Fig. 2). We found PMPZ
isolation in taxa with various reproductive systems (e.g., gonochoric/dioecious,
hermaphroditic, facultative sexual) and different modes of fertilisation (internal, external,
spermcasters). The majority of studies focused on animals and land plants (290 and 160
studies, respectively) with only 12 studies outside of these two groups (six on brown algae,
one on diatoms, three on green algae, one on red algae, and one on the apicomplexan
Plasmodium; Fig. S1). Fungi were not included in the survey as mapping the reproductive
barriers from plant and animal taxa on to what the fungal community uses is currently
difficult, with some fungal researchers using equivalent terms (Ament-Velasquez et al.,
2022; Turner et al., 2010) and others not. Reviews of reproductive isolation in fungi only use
the terms premating and postmating where postmating really is postzygotic (Giraud et al.,
2008) or alternatives (Giraud & Goubiere, 2012). Moreover, variation in life cycles of fungal
taxa has been suggested to make direct comparisons between the animal and plant
literature and fungal studies problematic (Giraud & Goubiere, 2012). Future collaboration
between speciation researchers crossing this taxonomic divide may help to better map

terminology which could extend the number of taxa exhibiting PMPZ isolation.
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Studies of land plants were almost exclusively conducted on angiosperms, with only a single
study each on gymnosperms and ferns (Fig. 2). Among animals, internal fertilisers accounted
for the majority of studies (61.7%; 179/290). The majority of studies on internally fertilising
animals were conducted on insects (43.4%; 126/290), of which over half used Drosophila
species (50.8%; 64/126). Externally fertilising animals such as echinoderms and some fishes
were also well represented (Fig. 2). However, while echinoderms are one of the earliest and
best studied groups regarding PMPZ isolation, studies to date are limited to only a few
groups within the clade and confirmed instances of PMPZ isolation are restricted to taxa in
just two Orders (Fig. 2). Aside from fishes, studies of vertebrates were very limited (Fig. 2).
Overall, over half of studies performed interspecific crosses (53.5%; 247/462), while 21.9%
of studies examined intraspecific crosses and 12.1% compared both inter- and intra-specific
crosses (Fig. 2). The remaining 58 studies (12.6%) did not perform experimental crosses
(e.g., were based exclusively on analyses of sequence or expression divergence of genes
involved in reproduction). Thus, studies of PMPZ isolation span a range of divergence, with
studies of intraspecific pairs highlighting the potential role of PMPZ isolation at the earliest

stages of speciation.

3.2 Diversity of PMPZ measures across eukaryotic taxa

Plant studies are unified in the ways in which PMPZ isolation is measured, with nearly all
studies using one or more of four common measures (Fig. 3; Table S1): 1) pollen
performance, 2) fruit set, 3) seed set, and 4) the proportion of hybrid seeds produced from a
competitive pollination experiment (Fig. S2). In contrast, animal studies used a wider range
of measures (Table S2), some of which differed in terminology and methodology between
taxa. For instance, “fertilisation success” included both direct measures: i.e., observations of
the proportions of successfully fertilised eggs using direct assessment of fertilisation status,
or offspring sex ratio (in systems with haplodiploidy); and indirect measures, such as
assessing the proportions of successfully developing embryos at various stages of early
development, or the proportions of successfully hatched eggs. To consolidate information
across studies, we grouped measures of PMPZ isolation in animals into 9 categories (Fig. 3;

Table S2).
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Many measures of PMPZ isolation are analogous in plants and animals. For example, seed
set and fruit set are analogous to indirect measures of fertilisation success in animals; pollen
tube growth and sperm motility measure male gamete performance; and some PMPZ
barriers such as conspecific gamete precedence are described in both plants and animals
(Fig. 3). However, important differences in PMPZ mechanisms exist between taxa.
Differences between species in reproductive trait morphology have clearly been
demonstrated as mechanisms underlying PMPZ isolation in plants (i.e., style length;
Brothers & Delph, 2017), but have only been used as indirect measures in animals in the
absence of direct evidence for a role in PMPZ isolation. Similarly, chemotaxis is key to PMPZ
isolation in externally fertilising taxa (Riffell et al., 2004; Yeates et al., 2013; Weber et al.,
2017), but its significance in mediating PMPZ isolation in internally fertilising animals
remains largely unknown (Sun et al., 2003). Inconsistencies in what is considered evidence
of PMPZ isolation across taxa and how PMPZ mechanisms operate limit our ability to make

broader conclusions.

3.3 Limitations of current PMPZ isolation research

3.3.1 Indirect measures infer but do not demonstrate PMPZ isolation

Many studies reported PMPZ isolation using indirect measures such as divergence in
reproductive gene sequences or trait morphologies. For example, some studies alluded to
PMPZ isolation from elevated rates of sequence evolution or divergence in the molecular
composition of reproductive tissues, but most cases lack direct evidence connecting
divergence of reproductive genes and proteins with a PMPZ mechanism. Likewise, divergent
postmating traits such as sperm morphology are often used as indirect evidence for PMPZ
isolation, particularly in systems where it is more difficult to study postmating interactions
directly (e.g., birds and mammals). Reduced female survival after heterospecific mating has
also been reported as a PMPZ barrier, presumably due to reductions in lifetime fecundity
(Ting et al., 2014; Kao et al., 2015). Conclusively demonstrating PMPZ isolation requires the
often difficult task of measuring the outcome of cryptic sexual interactions and showing that
these interactions result in a potential reduction of gene flow (Zigler et al., 2008; Palumbi,
2009; Manier et al., 2013; Moyle et al., 2014; Cramer et al., 2016). Experiments adequately

demonstrating conspecific gamete precedence are alone sufficient evidence of PMPZ
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isolation. For other barriers, care must be taken to ensure the barrier observed is acting at

the PMPZ stage (Fig. 1).

3.3.2 Proxy measures may conflate PMPZ and postzyqgotic isolation

A difficulty in establishing the presence of PMPZ isolation is the use of proxy measures that
may conflate PMPZ isolation with other isolating barriers — an issue that few studies
acknowledge (e.g., Pernet, 1999). Measuring fertilisation success via proxies such as
hatching success, embryonic cleavage, seed set, or fruit set could conflate failed syngamy or
karyogamy (i.e., PMPZ isolation) with early embryonic inviability (i.e., postzygotic isolation).
Of the four predominant measures of PMPZ isolation used in plants, only pollen
performance is not a proxy measure. However, what constitutes a proxy measure can be
subtle and depend on the taxa in question. For instance, in orchids (Orchidaceae), fruit set
may be a true measure of PMPZ isolation, when only compatible pollination triggers fruit
development, prior to fertilisation (Zhang & O’Neill, 1993; Scopece et al., 2007). Likewise, in
animals, reduced female fecundity can be considered a true measure of PMPZ isolation in
taxa where ovulation can be separated from fertilisation success. For example, reduced
female fecundity after heterospecific mating may arise from either overstimulation (i.e.,
prolonged insemination reaction mass preventing ovulation in Drosophila; Patterson, 1946)
or understimulation (i.e., an ejaculate does not promote stimulation of the normal

postmating female response preceding egg-laying; Marshall et al., 2009).

3.3.3 Pericopulatory processes are not measures of PMPZ isolation

In animals, several potential barriers occurring immediately before PMPZ interactions have
been considered PMPZ isolation in previous studies (e.g. copulation duration or mechanical
isolation), or their position during the reproductive timeline remains ambiguous (Sanchez-
Guillén et al., 2012; Oxford & Croucher, 2014). Such pericopulatory processes have posed
difficulties when defining PMPZ isolation as they can influence which gamete x gamete
interactions take place (Fig. 1; Table 2). For example, the mechanism of male gamete
priming in some fishes allows males to modulate the numbers of sperm ejaculated after first
assessing female quality (or species identity), which can lead to lower interspecific fertility
(Aspbury & Gabor, 2004). Furthermore, female remating rate is a pericopulatory barrier as it

can bias representation of ‘preferred’ (i.e. conspecific) male sperm in the fertilisation set
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(Chang, 2004) and similarly, reduced copulation duration resulting from genitalic mismatch
could decrease the number of sperm or other ejaculate components transferred to females.
Indeed, reduced sperm transfer is thought to be one of the primary mechanisms underlying
conspecific gamete precedence between Drosophila simulans and D. mauritania (Manier et
al., 2013). However, as PMPZ isolation necessarily requires the opportunity for gametes
and/or reproductive tissues to interact, we do not consider these barriers as components of
PMPZ isolation sensu stricto. Mechanical isolation as described in plants can be considered
as a PMPZ barrier, as this barrier involves pollen interacting with the female reproductive
tract (e.g., pollen attrition). In animals, however, mechanical isolation is not a PMPZ barrier,
as genitalic mismatch precludes the transfer of sperm to the female reproductive tract, thus
preventing sperm from interacting with the female or ova (see Table 2) (Wojcieszek &

Simmons, 2013).
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4. Scope of future PMPZ research

Having assessed the potentially unique contribution of PMPZ isolation as a barrier to gene
flow and summarising the current state of PMPZ isolation research, we now set out
recommendations we hope will help to advance the field. These suggestions generally
mirror the challenges discussed in section 3.3 and fall under three categories. First, issues
related to measuring PMPZ isolation; second, addressing taxonomic biases in research
efforts; and finally, resolving the physiological and genetic mechanisms underpinning PMPZ
isolation. We conclude by outlining a set of open questions to encourage avenues of future

research.

4.1 Recommendations for PMPZ isolation research

4.1.1 Use unified and direct measures of PMPZ isolation

Our survey reveals a lack of consistency in how PMPZ isolation is measured and defined
across animals. When combined with the variable inclusion of pericopulatory processes in
PMPZ isolation (see section 3.3.3), this makes broader conclusions difficult. However, this
may not be the case for plant studies, which use a comparatively reduced and consistent set

of four measures, albeit only one of which is a direct measure of PMPZ isolation.

Accurately assessing the relative contribution of different barriers (i.e., premating vs. PMPZ
vs. postzygotic) to total reproductive isolation at various stages of divergence provides
critical information about the speciation process (Sobel & Chen, 2014). When focusing on
PMPZ isolation, two problems may arise in addressing this question. First, the signature of
PMPZ isolation may be overwritten by premating or postzygotic barriers that evolve later
during divergence, making its effect difficult to detect, tending to decrease the observed
contribution of PMPZ isolation towards total reproductive isolation. Second, ambiguities
about which barriers are acting, and when, can lead to over- or under-estimating the
strength and occurrence of PMPZ isolation and weaken the ability to assess the contribution
of PMPZ isolation to total reproductive isolation (see section 3.3). Current estimates of total
reproductive isolation, while sparse, provide mixed evidence of the strength of PMPZ
isolation relative to other barriers (Ramsey et al., 2003; Dopman et al., 2010; Peterson et al.,

2011; Jewell et al., 2012; Sanchez-Guillén et al., 2012; Jennings et al., 2014; Rose et al.,
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2014; Martin & Mendelson, 2016; Kostyun & Moyle, 2017; Lackey & Boughman, 2017
Turissini et al., 2018). In Drosophila, PMPZ isolation evolves at a similar rate to premating
isolation (Turissini et al., 2018). In fishes, there is little evidence of PMPZ isolation (Martin &
Mendelson, 2016; Lackey & Boughman, 2017). In plants, on average, PMPZ barriers appear
to be weaker than premating barriers, but stronger than any individual postzygotic barrier

(Christie et al., 2022).

To avoid conflating PMPZ isolation with other barriers, we suggest using experiments that
enable the separation of fertilisation success and embryo mortality by confirming the
fertilisation status of unhatched eggs or ungerminated seeds. Reliable cell staining protocols
exist for insects, birds, and plants, but are rarely used in studies of PMPZ isolation. Further,
complementary experiments can be used to confirm the presence of PMPZ isolation, such as
performing both a heterospecific cross and conspecific gamete precedence experiment in
tandem (Fig. S2). Few studies do this and there are likely many instances in the literature
that attribute reduced numbers of hybrid offspring produced to postzygotic barriers that

may rather be the result of PMPZ isolation.

4.1.2 Diversify the taxonomic range of systems used to study PMPZ isolation

Our survey highlighted taxonomic biases in the study of PMPZ isolation towards insects,
externally fertilising animals, and angiosperms. These biases may reflect differences in the
relative ease of studying different groups in the laboratory and directly observing
fertilisation kinetics (e.g., in externally fertilising aquatic taxa) (Howard, 1999; Howard et al.,
2009). We note a distinct lack of studies in tetrapod vertebrates (mammals, birds,
amphibians, and reptiles), non-flowering plants, and insects outside the Diptera, Coleoptera,
and Orthoptera. Without focussed research effort outside of well-studied groups, it is
difficult to assess whether the lack of documented evidence of PMPZ isolation reflects real
biological differences in its prevalence. Some currently understudied taxa show promise to
improve understanding of PMPZ isolation. For example, in haplodiploid organisms only
fertilised eggs develop into female offspring and thus fertilisation success can easily be
disentangled from hybrid inviability. Further, researchers do not currently take full

advantage of gamete mixing experiments or artificial insemination, in which con- and
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hetero- specific gametes are mixed in known quantities to directly test for PMPZ barriers

(Ludlow & Magurran, 2006; Perez-Velazquez et al., 2010).

4.1.3 Uncover the causal mechanisms underlying PMPZ isolation

Identifying the types of PMPZ barriers present between taxa provides only the first step
towards understanding the role of PMPZ isolation as a barrier to gene flow. With recent
advances in molecular techniques, it should be a priority in the field to identify the
physiological and molecular mechanisms and underlying genetic architecture of PMPZ
barriers. In this respect, PMPZ isolation research lags behind other areas of speciation
research where the genetic and developmental bases of isolation are beginning to be
resolved (e.g., Presgraves, 2010; Streisfeld et al., 2013; Bradley et al., 2017; Rossi et al.,
2020; Liang et al., 2023, Merrill et al., Reifova et al., this volume). To this end, we suggest
using complementary approaches to link observed phenotypes to the underlying barrier
loci, for instance by genetically modifying gamete recognition proteins. Similarly, evidence
of PMPZ isolation from indirect measures (e.g., molecular and morphological divergence)
should be confirmed by laboratory or field experiments that estimate the strength of

reproductive isolation.

Box 1: Open questions for future research
In surveying the PMPZ isolation literature and the current state of the field, we highlight a

number of open questions and potentially fruitful avenues of future research.

1. When does PMPZ isolation emerge during speciation?

2. What are the evolutionary forces that promote the evolution of PMPZ isolation
(i.e., natural selection, sexual selection, genetic conflict, genetic drift)?

3. Does the intensity of sexual selection (i.e., monandrous vs polyandrous; selfing vs
outcrossing) impact the rate of evolution of PMPZ isolation?

4. What are the physiological and molecular mechanisms underlying PMPZ isolation?

5. How often do PMPZ barriers use the same mechanisms as intraspecific
sperm/pollen choice?

6. Isthere direct evidence for a role of divergence in gamete/reproductive tract

morphology as a mechanism underlying PMPZ isolation in animals?
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7. What role does chemotaxis play in determining fertilisation outcomes influencing
PMPZ isolation?

8. What is the genetic architecture underlying PMPZ isolation and is it simpler than
that of premating isolation?

[end of box]
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5. Concluding remarks

Understanding the process of speciation requires understanding reproductive isolation and
guantifying the contribution of different barriers to gene flow. Although PMPZ isolation has
been historically understudied in speciation research compared to premating and
postzygotic isolation, PMPZ isolation holds a unique role in generating biodiversity. Indeed,
PMPZ barriers appear ubiquitous across eukaryotes, and a number of shared barriers have
evolved convergently in animals and plants. Our survey highlighted some challenges
inherent to PMPZ isolation research, such as a lack of consistency in how PMPZ isolation is
measured, the use of indirect measures of PMPZ isolation and the lack of knowledge about
the physiological and genetic mechanisms of PMPZ isolation. Overcoming these challenges
is essential to better understand how PMPZ barriers are formed and to further progress
speciation research. Despite these challenges, these are exciting times to work on PMPZ
isolation research thanks to recent developments in ‘omics’ technologies (e.g., genomics,
metabolomics, proteomics) and genome editing which will allow us to make important

discoveries on the role of PMPZ isolation in generating and maintaining biodiversity.
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Figure 1. Position of PMPZ isolation along sequential stages of reproductive isolation.
Pericopulatory isolation involves reproductive processes that occur immediately before or
during mating and that may impact PMPZ isolation. See Table 2 for examples of
pericopulatory and PMPZ barriers. The dashed arrow between pericopulatory and PMPZ
isolation represents the time at which gamete release takes place. Fertilisation (karyogamy)
occurs within the grey box.
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Figure 2. Summary of PMPZ isolation across the eukaryotic tree of life.

Each tip represents a taxonomic Order in which PMPZ isolation has been studied. Inner ring
shows fertilisation mode (internal fertilisers/external fertilisers/spermcasters). Fertilisation
mode is variable within plant Orders and not shown. Outer ring indicates whether PMPZ
isolation has been studied between populations within species only (yellow), between species
only (orange), or both between populations and between species (red). Ring shading indicates
where PMPZ isolation has been measured directly (confirmed = yes, full) or only inferred via
indirect methods or proxies (confirmed = no, transparent; see section 3.3). Tips with no colour
indicate taxa where there is no available data. Branch lengths do not reflect divergence time.
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Figure 3. Distribution of measures of PMPZ isolation across plants and animals.

Each tip represents a taxonomic Order (land plants) or Class (animals) in which PMPZ isolation
has been studied. Stacked bar charts show the proportion of studies within each taxa
reporting the grouped measures of PMPZ isolation. We classified measures of PMPZ used into
11 categories. The 7 categories in plants are noted on the left and the 9 animal categories are
noted on the right (see Tables S1 and S2). The total number of studies in each taxon are
indicated by the height of the outer grey bars and numbers. Branch lengths do not reflect

divergence time.

79



3015 Tables
3016 Table 1. Glossary.

Conspecific gamete

Paternity bias towards conspecific males over heterospecific

precedence males, regardless of the normal patterns of within-species
competitive gamete precedence. Also called conspecific sperm
precedence and conspecific pollen precedence.

Dioecious Male and female reproductive organs occurring in separate

individuals. Term mainly used in plants.

Extrinsic postmating
prezygotic isolation

External factors that differentially impact fertility, e.g.,
differences in thermal fertility limits between species.

Fecundity

The number of eggs laid, or seeds produced within a given
timeframe.

Fertilisation set

The population of gametes that are able to compete to fertilise a
given ovum.

Gamete release

Also called ejaculation; insemination; mating; sperm transfer;
spawning; masting; pollen deposition; pollination.

Gonochoric Male and female reproductive organs in separate individuals.
Term mainly used in animals.
Karyogamy Fusion of parental pronuclei inside the ovum preceding the

formation of the zygote.

Male gamete priming

Adjustment of male gamete production and/or expenditure
according to the fitness return associated with a specific
mating/in response to stimuli from con- vs. hetero- specific
potential mates.

Gamete x gamete
interactions

Interactions between the male gametes (sperm, pollen) and
female gametes (egg, ovule) either in the environment (external
fertilisation) or in the female reproductive tract (internal
fertilisation).

Insemination reaction

Opaque mass secreted by the female reproductive tract into the
bursa after mating in some Drosophila species. Females
generally do not lay eggs until the reaction mass subsides.
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Postmating
interactions

Also called ejaculate-female reproductive tract interactions;
pollen-pistil interactions.

Non-competitive
gametic isolation
(NCGI)

Forms of PMPZ isolation that result after a single heterospecific
mating, i.e., in the absence of competition between gametes
(e.g. sperm or pollen competition). For example, reduced
fertilisation success or fecundity.

Mechanical isolation

Mismatch in the morphology of reproductive structures (e.g.,
external genitalia in animals and style length in plants).

Pericopulatory
isolation

Any barrier to gene flow that acts immediately before or at
copulation.

Postmating isolation

Any barrier to gene flow that acts after gametes are released.
Includes postmating prezygotic isolation and postzygotic
isolation.

Postmating prezygotic

Any barrier to gene flow that acts after gamete release and

(PMP2Z) before fertilisation (karyogamy). Also called gametic isolation.
isolation
PMPZ barrier The interaction between reproductive traits leading to a

potential reduction of gene flow between taxa, e.g., conspecific
gamete precedence, reduced fertilisation success, reduced
fecundity.

PMPZ mechanism

The causal physiological or molecular mechanism that manifests
as a barrier, e.g., reduced sperm chemotaxis, sperm-egg
misrecognition, reduced pollen-tube growth.

Postzygotic isolation

Any barrier to gene flow that acts after fertilisation (karyogamy)
resulting in inviable, sterile, or reduced fitness hybrid offspring.

Premating
isolation/pre-
pollination isolation

Any barrier to gene flow that reduces the frequency of
interspecific matings. In this chapter, we limit our discussion to
sexual forms of premating isolation including behavioural
isolation, pollinator isolation, and mechanical isolation (in
animals).

Prezygotic isolation

Any barrier to gene flow that acts before karyogamy. Includes
premating and postmating prezygotic isolation.
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Reinforcement

The strengthening of prezygotic isolation resulting from
selection against costly hybridisation.

Spermcaster Reproductive mode found in aquatic organisms where sperm are
released into the external environment but fertilisation takes
place internally.

Syngamy Fusion of gamete cell surfaces.
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Table 2: Pericopulatory and PMPZ barriers and underlying mechanisms.

A non-exhaustive list of the physiological or cellular mechanisms underlying postmating
prezygotic barriers to gene flow with example taxa. Many mechanisms underlying reduced
fertilisation success after a single heterospecific cross (NCGI) may also underlie patterns of
conspecific gamete precedence where there is opportunity for con- and hetero- specific
gametes to compete for fertilisation. Abbreviations: CGP, conspecific gamete precedence;
NCGI, non-competitive gametic isolation.

Barrier Mechanism

Pericopulatory barriers

Modulation of sperm number - males increase or decrease the

numbers of sperm available for ejaculation following an assessment
o of female quality or species identity.

Sperm priming - . . - .
E.g., male sailfin mollies (Poecilia latipinna) produce more sperm in
the presence of con- vs. hetero- specific (Poecilia formosa) females

(Aspbury & Gabor, 2004).

Mismatch in genital morphology - copulation fails or is suboptimal

o ) due to mismatch between male and female genitalia.
Mechanical isolation . S . , .
) il E.g., intromission is not completed due to mismatch in genital
in animals
morphology or position in crosses between sympatric millipede

(Parafontaria spp.) populations (Tanabe & Sota, 2008).

Reduced ejaculate transfer - truncated heterospecific copulation

reduces ejaculate transfer.

Copulation duration | E.g., most copulations end before sperm transfer in crosses between
Drosophila simulans females and D. mauritania males (Price et al.,
2001).

Biased representation in the fertilisation set - females increase the

relative number of conspecific sperm in the fertilisation set by
) preferentially remating with conspecifics.

Remating rate gy .. . . .
E.g., female whiteflies (Bemisia tabaci) ameliorate reproductive
interference by increasing acceptance of copulation attempts by

homotypic males (Crowder et al., 2010).

Postmating prezygotic barriers

Species-specific abiotic fertility limits - species differ in gamete

Extrinsic factors tolerance to abiotic factors (e.g., temperature, pH, salinity).
E.g., germination of pollen from copper-sensitive populations of
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yellow monkeyflowers (Mimulus guttatus) is reduced in the pistils of
copper resistant individuals grown under high copper concentrations
(Searcy & Macnair, 1990).

E.g., Drosophila santomea become sterile at lower temperatures
than D. yakuba (Matute et al., 2009).

Mechanical isolation
in plants

Pollen grain size x style length - mismatch between species in pollen

reserves and style length results in pollen tubes not reaching the
ovule.

E.g., small-flowered populations of Silene latifolia produce small
pollen grains that are not capable of growing pollen tubes long
enough to reach the ovules of females from large-flowered
populations which have longer styles (Brothers & Delph, 2017).

Conspecific gamete
precedence

Ejaculate x female reproductive fluid interactions - female

reproductive fluid favours conspecific sperm or impedes
heterospecific sperm.

E.g., collared flycatcher (Ficedula albicollis) sperm swimming speed
decreases more rapidly in heterospecific pied flycatcher (F.
hypoleuca) female cloacal fluid (Cramer et al., 2016).

E.g., ovarian fluid increases conspecific sperm motility and
attraction in Salmonids (Yeates et al., 2013).

Sperm storage dynamics - sperm entry into, retention, or exit from,

sperm storage organs is biased towards conspecifics.

E.g., females bias sperm use towards the sperm storage organ
containing conspecific sperm, rather than last male sperm, in
crosses between Drosophila mauritiana and D. simulans (Manier et
al., 2013).

Pollen tube growth - pollen tube growth is impaired or arrested

(pollen attrition) in a heterospecific style.

E.g., pollen tubes of self-compatible species are actively rejected in
the pistils of self-incompatible species, and pollen-tube growth rate
is reduced in some heterospecific crosses of wild tomato (Solanum
spp.) (Baek et al., 2016).

Pollen tube guidance - incompatibilities between pollen tube

receptors and heterospecific female attractant molecules result in
abnormal pollen tube growth.

E.g., wild-type Arabidopsis thaliana ovules are mainly targeted by
conspecific pollen tubes. A. thaliana mutant ovules that do not
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express the female attractant AtLURE1 are also fertilised by
heterospecific A. lyrata pollen tubes (e.g. AtLURE1 and PRK6; Liu et
al., 2021).

Reduced fertilisation
success (NCGI)

Sperm chemotaxis - incompatibilities between sperm receptors and

female attractant molecules result in impaired sperm orientation
and motility towards the egg.

E.g., exposure to heterospecific eggs did not induce sperm motility
and orientation in crosses between three coral species (genus
Acropora) (Morita et al., 2006).

Differential pollen germination - germination of pollen grains is

impaired on heterospecific stigma.
E.g., germination of Costus pulverulentus pollen on C. scaber
stigmas is reduced (Yost & Kay, 2009).

Failed syngamy - incompatibilities between gamete recognition

proteins lead to failed syngamy.

E.g., sperm-egg attachment and fusion of gamete cell membranes
mediated by species-specific gamete recognition proteins (EBR1 and
bindin) in sea urchins (Strongylocentrotus spp.) (Vacquier &
Swanson, 2011).

Reduced female
fecundity (NCGI)

Disrupted female postmating response - mismatched ejaculate x

female interactions that do not elicit the stereotypical female
postmating response preceding ovulation (e.g., physiological or
conformational changes in the female reproductive tract).

E.g., perturbation of the postmating transcriptional response in the
lower female reproductive tract results in a prolonged insemination
reaction mass that blocks female egg laying after Drosophila
mojavensis females mate with heterospecific D. arizonae males
(Knowles & Markow, 2001; Bono et al., 2011).

Reduced female survival - heterospecific mating reduces female

lifespan resulting in lower overall lifetime fecundity.

E.g., ectopic sperm migration breaching the reproductive tract and
entering non-gonadal tissue causes increased mortality, indirectly
decreasing reproductive output, and directly blocks ovulation in
heterospecific crosses between Caenorhabditis spp. (Ting et al.
2014).
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Supplementary Material

Supplementary methods

We performed a literature search using the Web Of Science conducted on 26/05/2022 (for
search terms used see Table S4) which resulted in 2730 unique publications. We randomly
assigned publications among co-authors for screening of titles and abstracts to refine our list
of publications to include only empirical studies of the primary literature investigating PMPZ
isolation. After screening we added other relevant publications that were not identified in our
initial search and redistributed the final list of 461 publications among co-authors based on

field of expertise for data collection.

We performed all analyses in R v.4.2.2 (R Core Team, 2020) using the following packages:
tidyverse v.1.3.2 (Wickham et al., 2019), ggtree v.3.6.2 (Yu et al., 2017), ggstance v.0.3.6,
treedata.table v.0.1.0, treeio v.1.22.0 (Wang et al., 2020). All code and analyses are

available on GitHub: (https://martingarlovsky.github.io/CSH PMPZ/). Silhouettes were

downloaded from Phylopic (https://www.phylopic.org/). Picture credits: Phoenicurus:

Martin Bulla, based on Frangois Desbordes' illustration; Cestoda to Maxime Dahirel both

under a CC licence 4.0 (https://creativecommons.org/licenses/by/4.0/), Mytilus and

Strongylocentrotus: Harold N Eyster; Gastropod: Armelle Ansart (photograph), Maxime
Dahirel (digitisation); Peromyscus: Nina Skinner; Gymnosperm (Tsuga): lan Burt (original)
and T. Michael Keesey (vectorization), all under a CC licence 3.0

(https://creativecommons.org/licenses/by/3.0/); all other images are used under a public

domain licence CC 1.0 (https://creativecommons.org/publicdomain/zero/1.0/).
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3090

3091 Table S1. Measures of PMPZ isolation in land plants were combined into 7 categories.
3092 Numbers in parentheses are counts of studies using each measure.

Measure Includes
Molecular divergence Molecular divergence (8)
Pollen-pistil interaction Pollen tube growth (63); pollen germination

(26); pollen adhesion (4); pollen hydration
(1); in vitro pollen tube attraction assay (2);
semi-in vivo pollen tube attraction assay (1);
style length and varying pollen placement
along the style (1)

Divergent postpollination traits Sperm swimming speedt (1), sperm
longevityt (1), gamete size (1), pollen wall
anatomy (1)

Seed set Seed set (88), fruit size (proxy for seed set)
(1), seed yield (proxy for seed set) (1)

Fruit set Fruit set (56)
Conspecific gamete precedence Conspecific pollen precedence (44)
Fertilisation success Sporophyte formation (1)

3093  tDivergent postmating traits when measured between species only (without demonstrating
3094  anincompatibility).
3095

3096

3097

3098

3099

3100

3101

3102

3103

3104

3105

3106

3107

3108
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3109

3110 Table S2. We combined the various measures of PMPZ isolation in animals into 9 categories.
3111 Some measures are considered “ejaculate x female interactions” when measured in a con-
3112  vs. heterospecific cross, or as “divergent postmating traits” when measured between taxa
3113  only (without demonstrating a direct role in PMPZ isolation). Numbers in parentheses are
3114  counts of studies using each measure.

Measure Includes

Molecular divergence Expression divergence (10), intron retention
(1), alternative splicing (1), postmating
female response divergence (transcript
abundance) (3), population genetics
(genome scans) (1), molecular evolution of
reproductive proteins (45)

Ejaculate x female interaction Sperm transfer (17), sperm storage (17),
sperm depletion (1), sperm swimming
speed* (8), sperm motility (12), sperm
viability* (3), acrosome reaction (3),
syngamy (1), karyogamy (1), fertilisation (1),
insemination reaction (3)

Divergent postmating traits Sperm morphology (2), sperm number (4),
sperm swimming speedt (3), ovarian fluid
composition (i.e., physiological differences
including pH, Ca%* concentration, total
protein concentration and osmolality) (1)

Fertilisation success** Fertilisation success (106), hatching success
(49), offspring sex ratio (haplodiploidy) (1)

Offspring number Egg-to-adult viability (3), progeny number
(20)
Pericopulatory traits Copulation duration (8), remating rate (5),

sperm priming (2)

Conspecific gamete precedence Conspecific sperm precedence (36)
Fecundity Number of eggs laid (68)
Survival Female survival (11)
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3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126

3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148

*Traits that are considered as a mechanism when measured in a con- vs. heterospecific

context;

tDivergent postmating traits when measured between species only (without demonstrating

an incompatibility);

**We included both direct measures and proxy measures (e.g., hatching success) to reflect

the authors intended, albeit indirect, measurement of PMPZ isolation.

Table S3. Measures of PMPZ isolation in other taxa were combined into 3 categories.

Numbers in parentheses are counts of studies using each measure.

Measure

Includes

Fertilisation success

Fertilisation success (4)

Molecular divergence

Molecular divergence (3)

Gametic interactions

Observing gamete interactions (4)
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3149
3150
3151

3152
3153
3154

Table S4. Search terms used to access Web Of Science on 26/05/2022.

Search term

“gametic isolation” AND “reproductive isolation” AND speciation

“gametic isolation”

“gametic isolation” AND speciation

gamet™* AND speciation

pollen AND speciation

pollen AND “reproductive isolation”

“pollen-pistil” AND “reproductive isolation” AND speciation

sperm AND speciation

sperm AND “reproductive isolation”

“reproductive isolation” AND speciation AND post-mat*

“reproductive isolation” AND speciation AND postmat*

“reproductive isolation” AND speciation AND post-cop*

“reproductive isolation” AND speciation AND postcop*

“reproductive isolation” AND speciation AND post-pollination

“reproductive isolation” AND speciation AND postpollination

“reproductive isolation” AND speciation AND pre-zygot*

“reproductive isolation” AND speciation AND prezygot*

“gametic incompatibility”

“reproductive isolation” AND “postmating prezygotic”

“reproductive isolation” AND “post-mating prezygotic”

90



3155
3156
3157
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3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175

Figure S1. Measures of PMPZ isolation in other eukaryotes.
Stacked bars show the number of studies in which each grouped measure (see Table S3) has

been measured.

Figure S2. PMPZ isolation and flowering plants. Two common experimental setups for
measuring PMPZ isolation in angiosperms. (A) A crossability experiment, whereby reciprocal
hand-pollinations are performed using heterospecific pollen only (reciprocal cross not
shown). Measures of PMPZ isolation (including pollen performance, fruit set, and seed set)
are taken and compared to an intraspecific baseline (intraspecific cross not shown). There are
three possible outcomes when measuring seed set in a crossability experiment: (i) full seed
set (implies no PMPZ isolation, but PMPZ isolation can be present under competitive
conditions, see B); (ii) reduced seed set resulting from PMPZ isolation; and (iii) reduced seed
set resulting from post-zygotic embryo abortion (i.e., not PMPZ isolation). Note that (i) and
(ii) are confounded unless embryo abortion is rigorously accounted for. (B) A pollen
competition experiment, whereby a mix (typically 50:50) of heterospecific and conspecific
pollen are applied to stigmas of one or both species. Paternity is then assigned to seeds using
paternity analysis. Reduced hybrid seed formation can result from (i) reduced ability of
heterospecific pollen to obtain fertilisation (PMPZ isolation) or (ii) reduced seed set from
postzygotic embryo abortion. As in A, without additional data on where failure is occurring,

these outcomes are confounded.
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