

1 **Title:** Geographic variation in phenotypic divergence between two hybridizing field cricket species

2

3 **Authors:** Amy R. Byerly¹, Clara Jenck¹, Alexander R. B. Goetz¹, David B. Weissman², David A. Gray³,

4 Charles L. Ross⁴, Luana S. Maroja⁵ and Erica L. Larson¹

5

6 ¹ Department of Biological Sciences, University of Denver, Denver, CO 80208

7 ² Department of Entomology, California Academy of Sciences, Golden Gate Park, San Francisco, CA

8 94118

9 ³ Department of Biology, California State University, Northridge, CA 91330

10 ⁴ School of Natural Science, Hampshire College, Amherst, MA 01002

11 ⁵ Department of Biology, Williams College, Williamstown, MA 01267

12

13 ORCID ID: 0000-0003-3006-645X (ELL)

14 ORCID ID: 0000-0002-4439-561X (DAG)

15 ORCID ID: 0000-0002-7287-9435 (LSM)

16

17 **Corresponding Authors:**

18 Amy R. Byerly

19 Department of Biological Sciences

20 University of Denver

21 Denver, CO 80208

22 Phone: (303) 871 - 3461

23 Email: amy.byerly@du.edu

24

25 Erica L. Larson

26 Department of Biological Sciences

27 University of Denver

28 Denver, CO 80208

29 Phone: (303) 871 - 3694

30 Email: erica.larson@du.edu

31

32 **Keywords:** Speciation, local adaptation, morphology, hybrid zone, *Gryllus*, Orthoptera

33 **Abstract**

34 Patterns of morphological divergence across species' ranges can provide insight into local adaptation
35 and speciation. In this study, we compare phenotypic divergence among 4,221 crickets from 337
36 populations of two closely related species of field cricket, *Gryllus firmus* and *G. pennsylvanicus* and
37 their hybrids. We find that these species differ across their geographic range in key morphological
38 traits, such as body size and ovipositor length, and we directly compare phenotype with genotype for
39 a subset of crickets to demonstrate nuclear genetic introgression, phenotypic intermediacy of hybrids,
40 and essentially unidirectional mitochondrial introgression. We discuss how these morphological traits
41 relate to life history differences between these two species. Our comparisons across geographic areas
42 support prior research that suggested that cryptic variation within *G. firmus* may represent different
43 species. Overall, our study highlights how variable morphology can be across wide ranging species,
44 and the importance of studying reproductive barriers in more than one or two transects of a hybrid
45 zone.

46

47

48 **Introduction**

49 Phenotypic divergence can provide insight into evolutionary processes acting across different scales
50 of biological organization. Within a single species, phenotypic divergence can reflect differences
51 between environments, between population histories, or a combination of these factors (Gavrilets et
52 al. 2001, Uyeda et al. 2009, Runemark et al. 2010, Oneal and Knowles 2013, Jenck et al. 2020).

53 Phenotypic divergence can signal the possible early stages of species differentiation (Wolf et al. 2008,
54 González et al. 2011, Skoglund et al. 2015) and in closely related species, can shed light on local
55 adaptation and patterns of increasing divergence (Britch and Cain 2001, Shaw and Mullen 2011).

56 Most studies of species divergence have limited replication across the ranges of a species pair and the
57 specific traits that maintain reproductive barriers between species are not always clear (Harrison and
58 Larson 2016). Geographically comprehensive surveys of phenotypic divergence are much harder
59 (Jiménez and Ornelas 2015, Wang et al. 2017, Polly and Wójcik 2019, Moran et al. 2020), but critical
60 if we are to understand the origin and maintenance of species boundaries.

61 The relationship between divergent phenotypic characteristics and reproductive barriers is
62 most easily studied in places where the ranges of closely related species overlap and heterospecific
63 individuals mate and produce offspring (Barton and Hewitt 1985, Harrison 1990). In the resulting
64 hybrid zone, as the different species co-exist, compete, and interbreed, phenotypic characteristics
65 may be more variable among individuals when compared to the pure allopatric populations that lie
66 outside the hybrid zone (Hollander et al. 2018, Sottas et al. 2018). By comparing this phenotypic
67 variation both between conspecific allopatric and sympatric populations, as well as between
68 heterospecific populations, it becomes possible to examine potential causes of phenotypic evolution,
69 speciation, and how those mechanisms lead to the reproductive barriers that maintain species
70 boundaries (Shaw and Mullen 2011).

71 Here, we examine the phenotypic divergence between two closely related and geographically
72 widespread species of North American field crickets, *Gryllus pennsylvanicus* and *G. firmus*, whose
73 common ancestry dates to roughly 200,000 years ago (Willett et al. 1997, Maroja et al. 2009a). The
74 more northern, inland species, *G. pennsylvanicus*, is broadly distributed throughout the United
75 States, while the more southern, coastal species, *G. firmus*, is restricted to the east coast and west into
76 Texas (Alexander 1968, Harrison and Arnold 1982, Weissman and Gray 2019). These species form a
77 hybrid zone along the eastern front of the Appalachian Mountains (Harrison and Arnold 1982) and
78 where they co-occur they are isolated by multiple reproductive barriers. The most striking barrier is a
79 one-way incompatibility - *G. firmus* females mated to *G. pennsylvanicus* males lay few eggs that do
80 not hatch (Harrison 1983, Maroja et al. 2009b, Larson et al. 2012). These two species are also isolated
81 by habitat - *G. firmus* is often found in sandy habitats and has a lighter coloration and longer
82 ovipositors that can presumably lay eggs deeper in sandy soils (Harrison 1986, Ross and Harrison
83 2006). *Gryllus firmus* is also a larger cricket, though size may vary with the length of the growing
84 season (Masaki 1961). In some parts of the hybrid zone, *G. firmus* develops faster and emerges earlier
85 in the season, leading to temporal isolation (Harrison 1985).

86 These morphological differences have been well characterized in a handful of locations
87 within the hybrid zone (e.g. Connecticut), but whether these morphological traits are consistently
88 different between *G. firmus* and *G. pennsylvanicus* is an open question (Weissman and Gray 2019).
89 When species differences are studied in only a few locations - it may be impossible to distinguish
90 species-specific traits from within-species local adaptation. Morphological traits like lighter color and

91 longer ovipositors may have evolved in specific areas due to habitat selection. Likewise, body size
92 may vary with climate and latitude. Here we conduct the first geographically comprehensive
93 comparison between *G. firmus* and *G. pennsylvanicus* by combining published and unpublished
94 morphological datasets for these two species across their geographic range. Our dataset includes 4,221
95 crickets from 337 populations, spanning collections over four decades. We have three objectives.
96 First, we quantify morphological divergence within and between species across their geographic
97 range. Second, for populations near the hybrid zone, we test whether traits that distinguish species
98 are correlated with ancestry. Finally, we examine the correlation between morphological traits and
99 environmental variables across these species' ranges. In doing so, we aim to gain a greater
100 understanding of how population variation and local adaptation contributes to divergence and
101 speciation.

102

103

104 Methods

105

106 *Cricket collections*

107 We compiled a dataset of 4,221 crickets, the majority being *G. pennsylvanicus*, but also *G. firmus* and
108 their hybrids, from 337 collecting localities (Fig. 1). Crickets were sampled throughout the United
109 States and Canada with the largest collections in the northeastern United States and the hybrid zone.
110 Sampling spanned 40 years (1983 to 2022) with collections performed by A.R. Byerly, E.L. Larson,
111 L.S. Maroja, C.L. Ross and R.G. Harrison. In addition to these previously unpublished morphological
112 data we included data from Ross & Harrison (2002), Larson *et al.* (2013), and Weissman and Gray
113 (2019), with the latter being the most geographically widespread dataset. We also included
114 morphological data from a newly described cricket species, *G. thinos* (Weissman and Gray 2019),
115 which is closely related to *G. pennsylvanicus* and *G. firmus* (Gray *et al.* 2020). We included *G. thinos*
116 to enable us to compare morphological variation within *G. firmus* to that of a closely related species
117 that occupies the same habitat but is classified as a separate species.

118 We categorized each collecting location as allopatric or sympatric based on past sampling of
119 the field cricket hybrid zone (Harrison and Arnold 1982, Willett *et al.* 1997, Maroja *et al.* 2009a,
120 Larson *et al.* 2013a, 2014). Populations in and near the hybrid zone often have individuals that are

121 pure *G. firmus* or pure *G. pennsylvanicus*, but they also have many backcrosses and recent generation
122 hybrids (Harrison and Bogdanowicz 1997, Maroja et al. 2009a, Larson et al. 2013a, 2014). Because of
123 this, we considered any collecting locations that were near the hybrid zone as “sympatric”. We also
124 assigned each collecting location to a geographic region (labeled in **Fig. 1**). These regions, identified
125 using climatological data (Karl and Koss 1984), were as follows: central (**CTR**: IL, IN, KY, MO, OH,
126 TN, WV); east north central (**ENC**: IA, MI, MN, WI); northeast (**NE**: CT, DE, ME, MD, MA, NH, NJ,
127 NY, PA, RI, VT); northwest (**NW**: ID, OR, WA); south (**SO**: AR, KS, LA, MS, OK, TX); southeast (**SE**:
128 AL, FL, GA, NC, SC, VA); southwest (**SW**: AZ, CO, NM, UT); west (**WE**: CA, NV); west north central
129 (**WNC**: MT, NE, ND, SD, WY).

130 In all cases, crickets were collected by hand and maintained in plastic containers with food
131 (cat and rabbit food), water vials, and shelter prior to freezing. Most samples were collected as adults,
132 but in some cases, crickets were collected as late instar nymphs. Nymphs were allowed to mature to
133 adult stage in the laboratory before freezing. Most collections were done in August-September, but
134 some crickets were collected in late July or early October.

135

136 ***Morphological measurements***

137 We focused only on traits that were measured using the same methods across different studies.
138 Crickets were measured for body size, as gauged by either body length, femur length, and/or
139 pronotum width. Body length was measured from the vertical surface of the face to the tip of the
140 abdomen, straightening the body when necessary. Pronotum width was measured at the widest part
141 of the pronotum. Femur length was measured from the proximal to distal end of the hind femur.
142 Female ovipositor length was measured from the point of attachment on the abdomen to the distal
143 end of the ovipositor. Because ovipositor length varies isometrically with body size (**Fig. S1**), we also
144 calculated relative ovipositor length as the length of the ovipositor divided by pronotum width or
145 femur length, depending on sample availability. We obtained all measurements using Vernier calipers
146 and recorded values to the nearest 0.1 mm.

147 For a subset of samples where tegmina were available (31 allopatric crickets and 437
148 sympatric crickets), we measured their color using a USB4000 spectrophotometer with an Ocean
149 Optics PX-2 pulsed xenon lamp and SpectraSuite v2.0 software. We mounted a probe on a metal
150 stand at a 90° angle 0.7 mm from the surface of the tegmina. For each male, we recorded and averaged

151 spectral reflectance for three points near the center of the tegmina. We recorded spectral
152 measurements as the percentage of reflected light relative to a Spectralon white standard, restricted
153 our analyses to wavelengths of 300–700 nm, and used a segmental classification method to estimate
154 brightness, chroma, and hue using the CLR v1.1 (Montgomery 2008). We calculated total brightness
155 (B) as R_{300–700}, the summed reflectance from 300 nm to 700 nm. We also divided our reflectance
156 data into four bins of 100 nm each, calculated the total brightness for each bin (Br=600–700, By=500–
157 600, Bg=400–500, and Bb=300–400), and then calculated chroma: $\sqrt{(BrBg)^2 + (ByBb)^2}$ and hue:
158 $\arctan[(ByBb)/B]/[(BrBg)/B]$.

159

160 ***Molecular markers***

161 A subset of the crickets in our dataset was previously genotyped for mitochondrial DNA haplotype (N
162 = 1,132 Harrison et al. 1987, Harrison and Bogdanowicz 1997, Willett et al. 1997, Maroja et al. 2009a,
163 Larson et al. 2013b) and/or 110 Single Nucleotide Polymorphisms (SNPs) from nuclear genes with
164 elevated divergence between *G. pennsylvanicus* and *G. firmus* (N = 559, Larson et al. 2013a, 2014).
165 Mitochondrial DNA haplotype was determined by sequencing cytochrome *c* oxidase I, the adjacent
166 tRNA-Leu, and a portion of cytochrome *c* oxidase II (Harrison et al. 1987; Willett et al. 1997). SNPs
167 were identified from transcriptomes of male accessory glands from two focal populations (Ithaca, NY
168 and Guilford, CT; Andrés et al. 2013), were genotyped using Sequenom MassARRAY platform
169 (Larson et al. 2013a, 2014). We used these genotype data to recalculate the hybrid index, while
170 accounting for hemizygosity for male X-linked markers using the methods from Shastry et al. (2021).
171 This was especially important because nearly half of these 110 SNPs are located on the X
172 chromosome (Maroja et al. 2015; Gainey et al. 2018). We defined the hybrid index as the proportion
173 of alleles that were inherited from *G. firmus* (hybrid index = 1; Guildford, CT (GUI); Tom's River, NJ
174 (TOM); and Parksley, MD (MET, a.k.a. PAR in Larson et al. 2013a, 2014) and *G. pennsylvanicus*
175 (hybrid index = 0; Ithaca, NY (ITH); Scranton, PA (SCR); State College, PA (SCO)).

176

177 ***Analysis of morphological traits and molecular markers***

178 All analyses were conducted in R v4.1.2 (R Core Team 2020). To manipulate data, we used the R
179 packages *dplyr* v1.0.6 and *tidyverse* v1.3.1. To plot our data, we used the R packages *ggplot2* v3.3.5

180 and *ggpubr* v0.4.0 and to make our maps we used *Maps* v3.3.0. For statistical analyses, we used
181 commands from the R packages *MASS* v7.3-54 and *car* v3.0-12. We used the R packages *corrplot*
182 v0.92 and *Hmisc* v4.5-0 to determine environmental variable correlation. We used the R packages
183 *AICcmodavg* v2.3-1 and *MnMln* 1.43.1 to rank models based on Akaike Information Criterion and
184 test models.

185 To test for differences in morphological traits between species and regions we used the
186 Kruskal-Wallis Test, followed by a Pairwise Wilcoxon Rank Sum Test (PWRST) to determine
187 differences between multiple groups. We chose these non-parametric tests because our dataset failed
188 the Levene's Test for homogeneity of variance. We quantified how well morphological traits could
189 classify crickets using a Linear Discriminant Analysis (LDA) on allopatric crickets. For all analyses,
190 we present the unadjusted p-values and indicate in bold the values that were significant following
191 FDR correction (Benjamini and Hochberg 1995).

192

193 *Environmental predictors of species distributions*

194 We tested the relationship between phenotype and environmental variables that we predicted would
195 be important in determining species range or local adaptation at two scales: 1) across the species
196 ranges and 2) at an intermediate scale in a well-characterized region of the hybrid zone
197 (Connecticut). Across the species ranges, we used only allopatric crickets that were most clearly
198 differentiated by morphology; and at the intermediate scale, we used both allopatric and sympatric
199 crickets. We focused on the two phenotypes that best distinguished the two species and were
200 quantified in most of our samples - ovipositor length and pronotum width.

201 We identified 10 environmental variables that might be good predictors of species'
202 distributions based on the natural history of these species and prior studies of the field cricket hybrid
203 zone (longitude, latitude, elevation, precipitation, minimum temperature, maximum temperature,
204 human footprint and three soil characteristics, see Larson et al. 2013b). Elevation, precipitation, and
205 temperature data were collected from the PRISM Climate group website
206 (<https://prism.oregonstate.edu/>). Elevation was calculated from an 800m digital elevation model of the
207 continental US. For each site, we collected precipitation variables and minimum and maximum
208 temperature for the year in which each cricket was collected. PRISM data were not available for sites
209 in Canada. Soil data were collected from the USDA STATSGO2 soil survey (US sites:

210 https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/geo/?cid=nrcs142p2_053629) and the
211 Soil Landscapes of Canada database (Canada sites:
212 <https://sis.agr.gc.ca/cansis/nsdb/slc/v3.2/index.html>). For a subset of sites in the northeastern US, we
213 used soil data from ISRIC SoilGrids (Poggio et al. 2021) due to the smaller spatial scale. These data
214 were accessed and compiled using the R package *soilDB* v2.6.14. We used the following variables:
215 average percent sand, average percent clay, and average percent organic matter. Due to the high
216 intercorrelation of soil variables confirmed through correlation matrix, we excluded average soil
217 percent silt from further analyses. We also obtained spatial data from the Last of The Wild Global
218 Human Footprint dataset (version 3), consisting of anthropogenic impact measured by population
219 density, land use, and transportation access at a 1-km resolution (Venter et al. 2016).

220 We used model selection tests that included these 10 environmental variables to find the
221 combination of variables that best explains morphological variation. We ranked competing models
222 using Akaike Information Criterion (AIC) and we reported the models with the highest goodness-of-
223 fit.

224

225 **Data accessibility**

226 All morphological data, collection site information, including GPS coordinates and environmental
227 data and scripts, are published in Dryad (doi:10.5061/dryad.jwstqjqdx).

228

229

230 **Results**

231

232 ***Estimates of body size***

233 In total, our dataset comprised 4,221 crickets, with > 1,100 crickets per sex for each morphological
234 trait measured, except for male tegmina color (**Table 1**). We first evaluated the relationship between
235 three morphological traits that reflect overall body size in crickets: body length, femur length, and
236 pronotum width. We found that body length measurements could vary depending on how crickets
237 responded to being frozen in the lab, or other factors such as number of eggs or last meal (see also
238 Weissman and Gray 2019). Consequently, we chose to exclude body length measurements from our
239 analyses, but still include them in our supplemental datasets. Male and female individuals of both *G.*

240 *pennsylvanicus* and *G. firmus* had strong positive relationships between femur length and pronotum
241 width (male *G. pennsylvanicus*: $R^2 = 0.53$, $F_{1,233} = 265$, $p < 2.2 \times 10^{-16}$ and male *G. firmus*: $R^2 = 0.76$, $F_{1,117}$
242 = 363.1, $p < 2.2 \times 10^{-16}$, **Fig. S1A**; female *G. pennsylvanicus*: $R^2 = 0.53$, $F_{1,192} = 21$, $p < 2.2 \times 10^{-16}$ and
243 female *G. firmus*: $R^2 = 0.74$, $F_{1,89} = 254.7$, $p < 2.2 \times 10^{-16}$, **Fig. S1B**). Therefore, we used pronotum width
244 as our estimate for overall body-size to maximize the number of individuals we could compare across
245 datasets. In female individuals, pronotum width and ovipositor length were also positively related in
246 both species (*G. pennsylvanicus*: $R^2 = 0.44$, $F_{1,214} = 165.7$, $p < 2.2 \times 10^{-16}$ and *G. firmus*: $R^2 = 0.26$, $F_{1,87} =$
247 30.48, $p = 3.44 \times 10^{-7}$, **Fig. S1C**). In comparisons with *G. thinos*, we used femur length to estimate body
248 size to maximize the numbers of individuals in those comparisons.

249

250 ***Morphological differences between species***

251 There were significant differences among allopatric *G. pennsylvanicus*, *G. firmus*, *G. thinos*, and
252 sympatric populations (e.g., *G. firmus*, *G. pennsylvanicus* and hybrids) in male body size (Kruskal-
253 Wallis, $\chi^2 = 35.79$, $df = 3$, $p = 8.29 \times 10^{-8}$), female body size (Kruskal-Wallis, $\chi^2 = 51.89$, $df = 3$, $p =$
254 3.16×10^{-11}), female ovipositor length (Kruskal-Wallis, $\chi^2 = 1277.2$, $df = 3$, $p < 2.2 \times 10^{-16}$), and relative
255 ovipositor length (Kruskal-Wallis, $\chi^2 = 82.10$, $df = 3$, $p < 2.2 \times 10^{-16}$). When comparing allopatric *G.*
256 *pennsylvanicus* and *G. firmus*, male pronotum ($p = 2.1 \times 10^{-5}$, **Fig. 2A**), female pronotum ($p = 1.4 \times 10^{-11}$,
257 **Fig. 2B**), ovipositor length ($p < 2.2 \times 10^{-16}$, **Fig. S2A**), and relative ovipositor length ($p = 2.8 \times 10^{-16}$, **Fig.**
258 **2C**) were all significantly different. However, for each of these traits there was still considerable
259 overlap between allopatric species. Ovipositor length had the most striking differences between
260 species (**Fig. S2A**), even when controlling for body size (**Fig. 2C**).

261 For males, tegmina color alone classified most individuals from allopatric populations as
262 either *G. pennsylvanicus* or *G. firmus* (LDA, misclassification rate 3%). One of the 24 *G.*
263 *pennsylvanicus* males was misclassified as *G. firmus* and zero of the 7 *G. firmus* males were
264 misclassified as *G. pennsylvanicus*. When looking at male body size alone the misclassification rate
265 was much higher at 23% with 56 of the 268 *G. pennsylvanicus* males misclassified and 27 of the 90 *G.*
266 *firmus* males misclassified. There was not enough overlap in body size and tegmina color data to
267 perform these analyses using both variables. For females, body size and relative ovipositor length
268 classified most individuals from allopatric populations as either *G. pennsylvanicus* or *G. firmus* (LDA,

269 misclassification rate 12%). Fifteen of the 189 *G. pennsylvanicus* were misclassified as *G. firmus* and
270 17 of the 90 *G. firmus* were misclassified as *G. pennsylvanicus*.

271 Crickets from areas near the hybrid zone, which we refer to as sympatric, had considerable
272 overlap with those from allopatric populations. Sympatric crickets were not different from *G. firmus*
273 for male body size, but they were on average larger than *G. pennsylvanicus* (*G. pennsylvanicus*: $p =$
274 6.0×10^{-6} , *G. firmus*: $p = 0.16$, **Fig. 2A**), but were still different from both allopatric species for female
275 body size (*G. pennsylvanicus*: $p = 9.4 \times 10^{-7}$, *G. firmus*: $p = 0.00032$, **Fig. 2B**), female ovipositor length
276 (*G. pennsylvanicus*: $p < 2.0 \times 10^{-16}$, *G. firmus*: $p < 2.0 \times 10^{-16}$, **Fig. S2A**), and female relative ovipositor
277 length (*G. pennsylvanicus*: $p = 4.6 \times 10^{-8}$, *G. firmus*: $p = 1.0 \times 10^{-9}$, **Fig. 2C**). This suggests that while these
278 sympatric populations may have individuals that are more *G. firmus*-like or *G. pennsylvanicus*-like,
279 they still have intermediate morphology compared to allopatric populations.

280

281 ***Intraspecific variation in key morphological traits***

282 We then tested how these traits varied across different geographic regions of each species. We found
283 differences among regions of *G. pennsylvanicus* for male pronotum (Kruskal-Wallis, $\chi^2 = 56.11$, $df =$
284 6, $p = 2.76 \times 10^{-10}$), female pronotum (Kruskal-Wallis, $\chi^2 = 63.44$, $df = 6$, $p = 8.9 \times 10^{-12}$), ovipositor
285 length (Kruskal-Wallis, $\chi^2 = 185.72$, $df = 6$, $p < 2.2 \times 10^{-16}$), and relative ovipositor length (Kruskal-
286 Wallis, $\chi^2 = 33.6$, $df = 6$, $p = 8.03 \times 10^{-6}$). Male and female *G. pennsylvanicus* were largest in the
287 southern and midcentral US (SE, SO, SW, CTR, **Figs. 3A, 3B**) and they had the smallest body size in
288 the northern west (WNC, NW). There were differences among regions in *G. firmus* pronotum width
289 (Kruskal-Wallis, males, $\chi^2 = 9.27$, $df = 2$, $p = 0.01$; females, $\chi^2 = 9.15$, $df = 2$, $p = 0.01$), in ovipositor
290 length (Kruskal-Wallis, $\chi^2 = 78.65$, $df = 2$, $p < 2.2 \times 10^{-16}$), and relative ovipositor lengths (Kruskal-
291 Wallis, $\chi^2 = 54.49$, $df = 2$, $p = 1.47 \times 10^{-12}$). Male and female *G. firmus* were larger in the south than in
292 the northeast, while *G. firmus* in the south were not significantly different from crickets in either the
293 northeast or the southeast (**Figs. 3A, 3B**). In *G. pennsylvanicus*, ovipositor length varied by region.
294 Eastern populations (NE, SE) had the shortest ovipositors, and the central US (CTR) had the longest
295 ovipositors - although there was very limited sample size for this region (**Figs. S2B, 3C**). There was
296 considerable variation in ovipositor length among *G. firmus* populations; southern *G. firmus* females
297 had significantly shorter relative ovipositors than *G. firmus* in the southeast, who in turn had shorter
298 relative ovipositors than *G. firmus* in the northeast (**Figs. S2C, 3C**). However, *G. firmus* in the

299 southeast had very similar absolute ovipositor lengths to northeastern *G. firmus* - but had larger body
300 sizes, whereas southern *G. firmus* simply had shorter ovipositors (Fig. S2C).

301 Recent work from Weissman and Gray (2019) documented cryptic variation in southern USA
302 *G. firmus*, so we took a closer look at these populations, separating crickets collected in Florida from
303 those collected in Texas. We also included the recently described closely-related species, *G. thinos*,
304 which is sympatric with Texas *G. firmus* (Weissman and Gray 2019). We found that male (Kruskal-
305 Wallis, $\chi^2 = 29.26$, df = 3, p = 1.98x10⁻⁶) and female (Kruskal-Wallis, $\chi^2 = 24.88$, DF = 3, p = 1.63x10⁻⁵)
306 body size and ovipositor length (ovipositor length: Kruskal-Wallis, $\chi^2 = 101.39$, df = 3, p < 2.2x10⁻¹⁶;
307 relative ovipositor: Kruskal-Wallis, $\chi^2 = 89.57$, df = 3, p < 2.2x10⁻¹⁶) differ among these groups (Figs. 4,
308 S2). Compared to northeastern *G. firmus*, Florida *G. firmus* were much larger (Figs. 4A, 4B), but had
309 only slightly larger ovipositor lengths (Fig. S2C), giving them shorter relative ovipositors (Fig. 4C).
310 Texas *G. firmus* did not differ in overall body size from northeastern *G. firmus*, but had even shorter
311 relative ovipositor lengths (Figs. 4C, S2C). The magnitude of the morphological differences among
312 Florida, Texas, and northeastern *G. firmus* is similar to differences between *G. firmus* and the
313 recently described *G. thinos*. Gray et al. (2020) found that *G. firmus* in Texas and Florida are
314 genetically distinct groups, with Texas *G. firmus* sister to *G. pennsylvanicus* and Florida *G. firmus*
315 sister to both *G. pennsylvanicus* and Texas *G. firmus*. Altogether, the morphological differences and
316 the phylogenetic relationships support the findings by Weissman and Gray (2019) that Texas *G.*
317 *firmus* may be an undescribed cryptic species.

318

319 *Morphology in sympatric populations*

320 For the subset of crickets that were from the hybrid zone or nearby (sympatric populations), and
321 were also genotyped with molecular markers, we looked at the relationship between admixture and
322 morphological traits. We found that each trait had a similar transition from *G. pennsylvanicus* to *G.*
323 *firmus*, with highly admixed individuals having intermediate phenotypes (Fig. 5). We found male
324 pronotum ($R^2 = 0.19$, $F_{1,279} = 63.35$, p = 4.38x10⁻¹⁴), male tegmina color ($R^2 = 0.31$, $F_{1,133} = 60.82$, p =
325 1.62x10⁻¹²), female pronotum ($R^2 = 0.28$, $F_{1,275} = 107.3$, p < 2.2x10⁻¹⁶), and relative ovipositor length (R^2
326 = 0.47, $F_{1,270} = 243.1$, p < 2.2x10⁻¹⁶) all had strong correlation with the hybrid index. Because the SNPs
327 used to calculate the hybrid index are concentrated on the X chromosome (54 out of 110, (Maroja et
328 al. 2015, Gainey et al. 2018)), females (XX) were more likely to be classified with an intermediate

329 hybrid index than males (XO). Overall, morphological traits were also correlated with mtDNA
330 haplotypes - crickets that had *G. pennsylvanicus* mtDNA tended to be smaller (males: Kruskal-Wallis,
331 $\chi^2 = 43.14$, df = 1, p = 5.11×10^{-11} ; females: Kruskal-Wallis, $\chi^2 = 44.86$, df = 1, p = 2.11×10^{-11}), darker
332 (Kruskal-Wallis, $\chi^2 = 33.75$, df = 1, p = 6.27×10^{-9}) crickets with shorter ovipositors (Kruskal-Wallis, χ^2
333 = 37.67, df = 1, p = 8.40×10^{-10}) (Fig. 6). We found that crickets with *G. firmus* ancestry at nuclear
334 markers (hybrid index = 1) often had *G. pennsylvanicus* mtDNA haplotypes (Fig. 7), indicating
335 asymmetric introgression of the mtDNA.

336

337 *Environmental predictors of morphology*

338 In allopatric populations throughout broad ranges, we found latitude, elevation, average soil percent
339 clay, minimum and maximum temperature created the best model for ovipositor length. Latitude,
340 longitude, soil percent sand, and minimum temperature created the best model for pronotum width
341 (Table 2). Average soil percent clay, as well as higher minimum and maximum temperatures, were
342 positively associated with longer ovipositor lengths and higher minimum temperatures were
343 positively associated with larger body size, characteristics of *G. firmus* (Fig. S3). In the subset of
344 Connecticut sympatric and allopatric populations, minimum and maximum temperatures, as well as
345 soil percent organic matter, created the best model with positive associations for all three variables
346 and ovipositor length (Table 2, Fig. S3).

347

348

349 Discussion

350

351 *Cryptic diversity in a wide-ranging species*

352 The hybrid zone between the field crickets *G. firmus* and *G. pennsylvanicus* has been a model for
353 understanding speciation (Harrison and Rand 1989, Harrison and Larson 2014). The field cricket
354 hybrid zone stretches from the northeastern US as far south as Virginia and likely farther into the
355 southeast. Divergence in morphology, nuclear and mitochondrial DNA, and reproductive barriers
356 have been carefully studied in several major regions of the hybrid zone (Harrison 1985, Rand and
357 Harrison 1989, Ross and Harrison 2002, Maroja et al. 2009a, 2009b, Larson et al. 2012, 2014). Yet

358 even in this well-studied system there is geographic diversity across the ranges of these species that
359 complicates their relationships.

360 Our results confirm that allopatric populations of these two species, defined by genetic
361 markers (Harrison and Arnold 1982, Willett et al. 1997, Broughton and Harrison 2003, Maroja et al.
362 2009a), can be largely differentiated by a combination of body size, male tegmina color, and female
363 ovipositor length (**Fig. 2**). At the same time, there is regional variation in these traits within each
364 species (**Fig. 3**). These differences may be due to local adaptation of life history traits such as egg
365 diapause and development time (discussed below) or phenotypic plasticity. But in some cases, they
366 may also indicate cryptic diversity in field crickets.

367 In their revision of North American field crickets, Weissman & Gray (2019) proposed that
368 there was cryptic diversity in southern populations of *G. firmus*, particularly in Texas. Importantly,
369 our phenotypic comparisons confirm that Texas and Florida *G. firmus* are morphologically distinct
370 from northeastern *G. firmus* (**Fig. 4**). In a recent nuclear phylogeny, Texas and Florida *G. firmus*-like
371 crickets also formed distinct clusters within the larger *G. pennsylvanicus* group (Weissman and Gray
372 2019, Gray et al. 2020). Unfortunately, we do not have a phylogeny that includes genes from both
373 Texas and Florida *G. firmus* and northeastern *G. firmus*, so the relationships among these groups are
374 still unclear. But the combination of distinct morphology and phylogenetic relationships suggests that
375 at least one cryptic species of *Gryllus* exists, a situation that will not be resolved without further
376 genotyping and/or evaluations of reproductive compatibility among these populations.

377

378 *Intermediate phenotypes in hybrid zone crickets*

379 The morphological traits that best distinguish species in allopatry can also be used to
380 distinguish these species in or near the hybrid zone. In this study, we used a conservative approach to
381 defining allopatric and sympatric populations. Allopatric populations were those well outside of
382 where the two species co-occur and are typically populations that have been genotyped with species-
383 diagnostic markers. We found that in sympatry, crickets that were mostly *G. firmus* or mostly *G.*
384 *pennsylvanicus* at nuclear markers (Larson et al. 2013a, 2014) had morphological traits that are also
385 *G. firmus*-like or *G. pennsylvanicus*-like. Both male and female body size, male tegmina color, and
386 relative ovipositor length had clinal variation from *G. pennsylvanicus*-like to *G. firmus*-like, with
387 highly admixed individuals having intermediate phenotypes (**Fig. 5**). Male tegmina color stood out as

388 having the fewest individuals with intermediate hybrid index values (Fig. 5D), but that is most likely
389 because the SNPs used to calculate the hybrid index were predominately X-linked, so male XO
390 crickets were rarely heterozygous at those SNPs and had overall lower hybrid indices (Larson et al.
391 2014, Maroja et al. 2015, Gainey et al. 2018).

392 The relationship between morphology and mitochondrial haplotype was less clear for
393 populations near or in the hybrid zone. Crickets that were mostly *G. firmus* at nuclear markers often
394 had *G. pennsylvanicus* mtDNA (Fig. 7). This pattern fits with what we expect based on the one-way
395 prezygotic incompatibility between *G. firmus* females and *G. pennsylvanicus* males (Harrison 1983,
396 Maroja et al. 2009b, Larson et al. 2012). All F1 hybrids are produced from crosses with *G.*
397 *pennsylvanicus* mothers, thus *G. pennsylvanicus* mtDNA will be more likely to introgress into *G.*
398 *firmus*. Even rare instances of hybridization might lead to mtDNA introgression, like the mtDNA
399 capture observed in many mammal species (Melo-Ferreira et al. 2005, Good et al. 2008).

400

401 *Adaptations to soil type*

402 Ovipositor length is one of the most striking morphological differences between *G. firmus* and *G.*
403 *pennsylvanicus*. Female crickets use their ovipositors to lay their eggs in the soil and ovipositor
404 length has been hypothesized to relate to the soil type and/or the depth of egg laying (Masaki 1979).
405 The depth of egg laying may be a particularly critical life-history trait in *G. pennsylvanicus* and *G.*
406 *firmus* because these species overwinter as eggs, as opposed to most field crickets that overwinter as
407 early instar nymphs (Alexander 1968, Harrison and Bogdanowicz 1995). For eggs to be viable, they
408 must withstand low winter temperatures and freeze/thaw cycles (Ross and Harrison 2006).
409 Throughout its range, *G. firmus* is most often found on sandy coastal soils (Harrison and Arnold 1982,
410 Weissman and Gray 2019) and tends to have a longer ovipositor than *G. pennsylvanicus* (Figs. 3, S2).
411 This may be an adaptation to laying eggs deeper in sandy substrates in response to intermittent
412 rainfall and the risk of eggs drying out (Walker 1980). In some parts of the hybrid zone, such as
413 Connecticut, the association with different soil types is striking. The two species have been found on
414 micro habitat patches of loam (*G. pennsylvanicus*) and sandy (*G. firmus*) soils in Connecticut
415 (Harrison 1986, Harrison and Rand 1989, Rand and Harrison 1989) and interactions between the two
416 species occur across these habitat patch boundaries on the scale of only hundreds of meters (Ross and
417 Harrison 2002, Larson et al. 2014).

418 Despite what appears to be strong habitat associations, the relationship between soil type and
419 ovipositor length is complicated. Ovipositor length does not necessarily determine egg-laying depth,
420 instead females may wield long ovipositors at different angles (Réale and Roff 2002). It is also not
421 clear exactly how the association between ovipositor length and soil type is maintained. Females of
422 both species prefer to lay eggs in loamy soil and there is no difference in overwintering egg viability
423 in different soil types (Ross and Harrison 2006). Finally, these associations are clearly established only
424 in a small part of the species' ranges - i.e. Connecticut (Rand and Harrison 1989, Ross and Harrison
425 2002, Larson et al. 2013b). Even where soil associations appear to be the strongest, the transition from
426 sandy to loamy soils is more gradual and less distinct than we might expect based on the patchiness of
427 *G. firmus* and *G. pennsylvanicus* populations (Ross and Harrison 2002, Larson et al. 2014). Here we
428 find that both across the broad ranges of these species, and at an intermediate scale in the
429 Connecticut hybrid zone, there is no strong association between ovipositor length and sandy soils. In
430 fact, we tend to see crickets with longer ovipositors on clay soils (Table 2). This might be due to the
431 different methods used to quantify soil type (soil survey data versus on-site soil sampling), but
432 altogether this suggests that habitat associations in these species are variable and should be
433 investigated further.

434

435 ***Body size, climate, and life cycle***

436 In insects, seasonality and the length of the growing season are critical to the rate of
437 development and adult body size (Masaki 1961, Tauber and Tauber 1981). This is particularly true for
438 hemimetabolous insects, which often go through many nymphal stages and have long development
439 times before reaching their full size and sexual maturity (Kivelä et al. 2011). Insects at higher
440 latitudes have shorter growing seasons and as a result may develop more quickly or reach an overall
441 smaller body size (Masaki 1967, Parsons and Joern 2014). This pattern of smaller body sizes at higher
442 latitudes is sometimes referred to as the converse of Bergman's rule, which states that individuals
443 have larger body sizes in colder climates (Masaki 1967, Mousseau 1997). We see this pattern most
444 clearly in *G. pennsylvanicus*, where we found the populations with the smallest body size tended to
445 be farther north (WNC and NW, Fig. 2). Indeed, we found that crickets at higher latitudes had on
446 average smaller body size and that there was a significant relationship between body size and latitude
447 (Table 2).

448 We may not expect a direct relationship between body size and latitude if the length of the
449 growing season allows for multiple generations per year. Insects can shift from continuous
450 development in the south to univoltine (one generation per year) in the north (Masaki 1961, 1967).
451 As a result, there may be regions where body size is smaller than expected based on latitude to
452 accommodate multiple generations per year. We did not find this pattern in our results; but we may
453 not have had the resolution of latitudinal samples to see a sawtooth pattern in body size. However,
454 there is some evidence that development time in *G. firmus* varies with latitude. In Virginia, *G. firmus*
455 emerge earlier in the season than *G. pennsylvanicus* - leading to temporal isolation in that part of the
456 hybrid zone, but in Connecticut, the two emerge simultaneously (Harrison 1985). In Florida, *G.*
457 *firmus* is reported to have multiple generations per year (Walker, personal observation, reported in
458 (Weissman and Gray 2019), where throughout its range it otherwise appears to have a single
459 generation per year (Walker 1980). Notably, despite having many generations per year, Florida *G.*
460 *firmus* are considerably larger than northern populations. It is unclear whether there is a continuous
461 shift in life cycle across the range of *G. firmus*, or if Florida *G. firmus* have a distinct life history from
462 other *G. firmus*.

463

464 ***Conclusions***

465 In studies of speciation and to understand the effects of local selection, it is critical to quantify
466 morphological and genetic variation across the geographic range of widespread species. The field
467 cricket hybrid zone is an example of how important the larger geographic context can be. In some
468 regions of the field cricket hybrid zone, *G. pennsylvanicus* and *G. firmus* have a patchy distribution
469 and *G. firmus* crickets are found on sandy soils (Rand and Harrison 1989, Ross and Harrison 2002).
470 But the strong soil association breaks down in other regions of the hybrid zone (Larson et al. 2013b)
471 and across their geographic range, suggesting the soil association may be a result of local adaptation or
472 colonization history (Hauffe and Searle 1993, Gompert et al. 2010). Our results provide a foundation
473 for future geographically expansive studies that compare genetic divergence and the role of specific
474 traits in reproductive barriers to better understand local adaptation and speciation in this system.
475 More broadly, this is an example of how critical it is to move studies of speciation beyond the
476 comparison of a few focal populations. Geographically expansive studies of phenotypic and genetic

477 divergence will also be important for understanding how species distributions and hybrid zones shift
478 over time and in a changing climate (Britch and Cain 2001, Taylor et al. 2015).

479

480 **Acknowledgements**

481 Rick Harrison collected many of the samples in this dataset. He was a wonderful mentor and friend to
482 many of the authors and an inspiration to all of us. We thank the University of Denver Ecology and
483 Evolution group, especially Shannon Murphy and Jonathan Velotta, for feedback on this manuscript.
484 This work was supported by grants to ARB from the Explorer's Club, The Orthopterists' Society, and
485 the Society of Systematic Biologists and National Science Foundation grants to ELL (DEB 2012041)
486 and LSM (DEB 2012060).

487

488 **Author Contributions**

489 ARB, CJ, DBW, DAG, CLR, LSM and ELL collected the data; ARB, CJ and ELL combined the datasets;
490 AG obtained the environmental data and advised on analyses. ARB conducted all analyses. ARB and
491 ELL wrote the manuscript with contributions from all authors.

Tables

492

493

494

495 **Table 1.** Summary of sample sizes for morphological measurements by sex, population type, and
496 region (See Fig. 1 for location information).

497

	Pronotum		Femur		Ovipositor Length	Ovipositor		Tegmina Color
	Width		Length			Pronotum Ratio	Ovipositor Femur Ratio	
	Females	Males	Females	Males				
Totals	1203	1263	1134	1213	4047	1174	1110	469
CTR	4	5	4	5	12	4	4	-
allopatic	4	5	4	5	4	4	4	-
sympatric	-	-	-		8	-	-	-
NE	993	1010	871	849	3739	969	851	449
allopatic	111	167	85	132	1480	108	82	23
sympatric	882	843	786	717	2259	861	769	426
NW	26	17	27	15	27	26	27	-
allopatic	26	17	27	15	27	26	27	-
SE	66	65	77	60	111	62	74	20
allopatic	66	65	77	60	89	62	74	8
sympatric	-	-	-	-	22	-	-	12
SO	40	69	66	171	70	40	66	-
allopatic	40	69	65	171	69	40	65	-
sympatric	-	-	1		1	-	1	-
SW	29	41	29	52	29	29	29	-
allopatic	29	41	29	52	29	29	29	-
WNC	45	56	60	61	59	44	59	-
allopatic	45	56	60	61	59	44	59	-

498

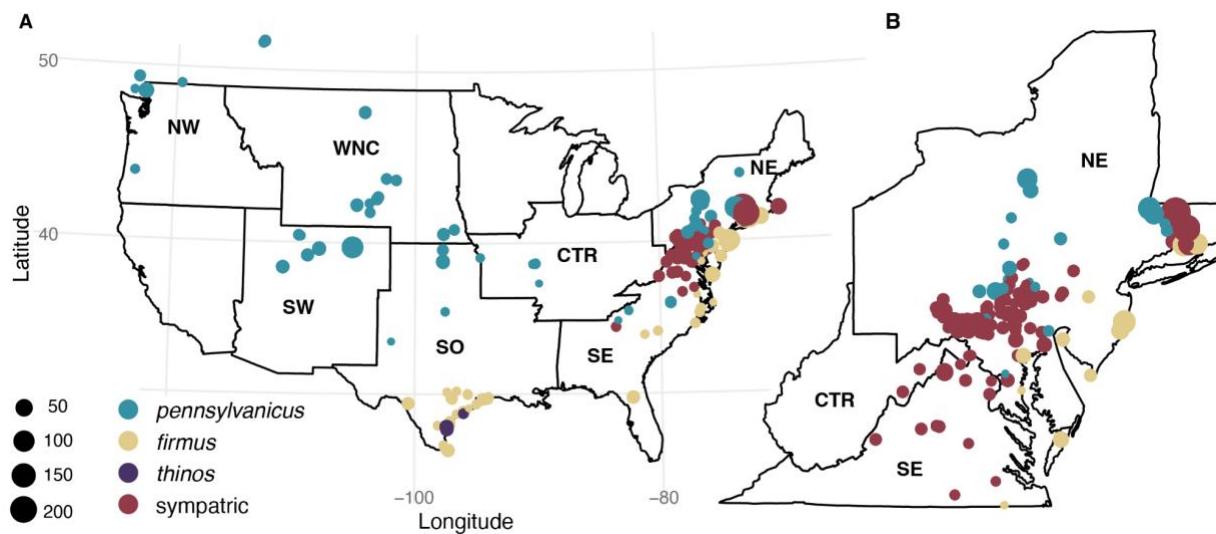
499 **Table 2.** Results of linear regression and AIC to test the relationship between environmental variables and morphological traits in female
 500 crickets of both species. ¹Indicates variables where values are based on the year the samples were collected.
 501

A. Ovipositor length

	Df	Sum of Sq	RSS	AIC	Coefficient	St. Error	t-value	p-value
(Intercept)		-	887.86	321.96	16.213	0.132	122.417	< 2.00E-16
Latitude	1	9.283	897.14	322.33	0.545	0.358	1.523	0.129
Precipitation ¹	1	1.054	886.81	323.69	-	-	-	-
Longitude	1	0.389	887.47	323.86	-	-	-	-
Human Footprint	1	0.132	887.73	323.93	-	-	-	-
Avg Soil % Sand	1	0.015	887.85	323.96	-	-	-	-
Avg Soil % Organic Matter	1	0.004	887.86	323.96	-	-	-	-
Elevation	1	26.035	913.90	326.55	-0.638	0.250	-2.551	0.011
Avg Soil % Clay	1	26.562	914.42	326.68	0.365	0.142	2.577	0.011
Minimum Temperature ¹	1	29.311	917.17	327.36	-1.244	0.459	-2.707	0.007
Maximum Temperature ¹	1	124.629	1012.49	349.91	2.281	0.409	5.582	6.89E-08

B. Pronotum width

(Intercept)		-	36.539	-253.9	5.83503	0.036	162.636	< 2.00E-16
Maximum Temperature ¹	1	0.381	36.158	-253.69	-	-	-	-
Precipitation ¹	1	0.176	36.363	-252.73	-	-	-	-

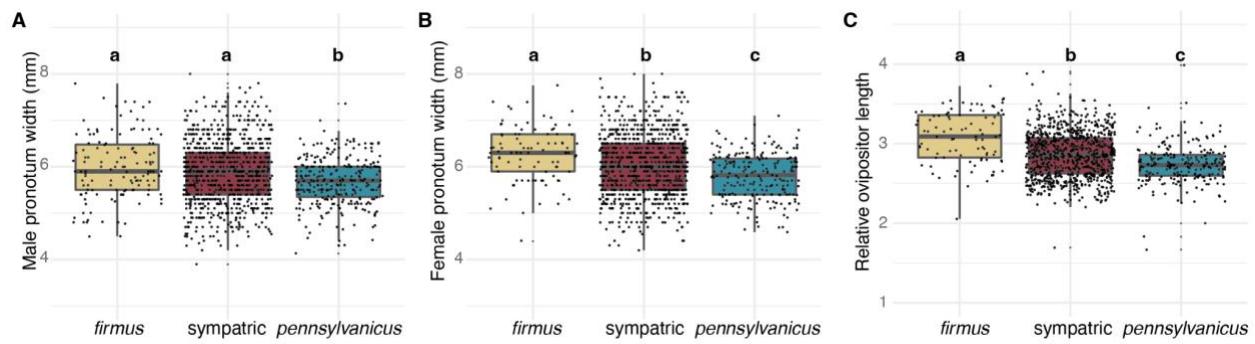

Human Footprint	1	0.147	36.392	-252.59	-	-	-	-
Elevation	1	0.103	36.436	-252.38	-	-	-	-
Avg Soil % Clay	1	0.088	36.451	-252.31	-	-	-	-
Avg Soil % Organic Matter	1	0.013	36.526	-251.96	-	-	-	-
Minimum Temperature ¹	1	2.964	39.503	-242.56	-0.233	0.064	-3.670	3.27E-04
Avg Soil % Sand	1	3.953	40.492	-238.33	-0.180	0.043	-4.238	3.73E-05
Longitude	1	4.618	41.157	-235.55	-0.187	0.041	-4.580	9.07E-06
Latitude	1	12.890	49.429	-204.23	-0.536	0.070	-7.652	1.53E-12

502

503 **Figures**

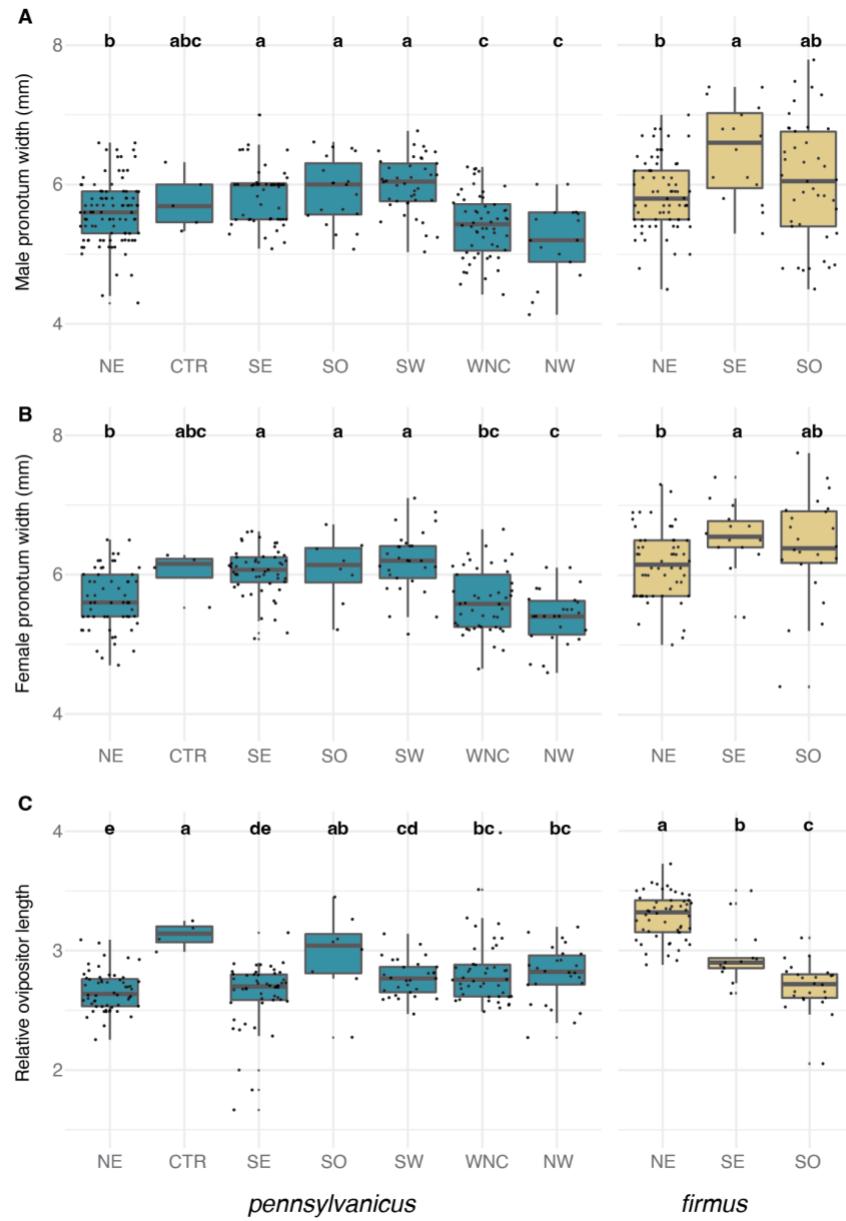
504

505



506

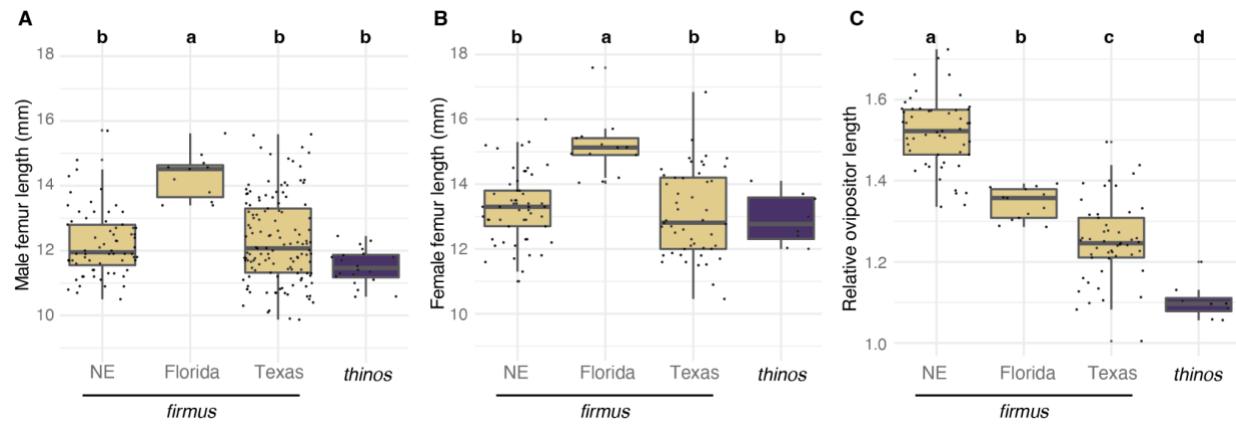
507


508 **Figure 1. Map of North American cricket collecting locations.** Allopatric populations of *Gryllus*
509 *firmus* are in yellow, *G. pennsylvanicus* are in teal, *G. thinos* populations are in purple, and sympatric
510 *G. firmus* and *G. pennsylvanicus* populations are in red. The size of the circle corresponds to the
511 sample size for each location. **A.** Entire range of collection locations in the United States and Canada.
512 **B.** Enlarged area of densely sampled locations in northeast, central, and southeast United States.

513
514
515
516

517
518 **Figure 2. Allopatric populations of *G. firmus* and *G. pennsylvanicus* differ in overall body size and**
519 **ovipositor length. A. Male pronotum width by species. B. Female pronotum width by species C.**
520 **Relative ovipositor length (ovipositor length/pronotum width). Boxplots indicate the mean values of**
521 **each trait, quartiles, the range of the data (whiskers), and outliers. Individual data points are overlaid**
522 **as scatterplots. Letters indicate the significant differences among groups (PWRST with corrected p-**
523 **values < 0.05).**

524

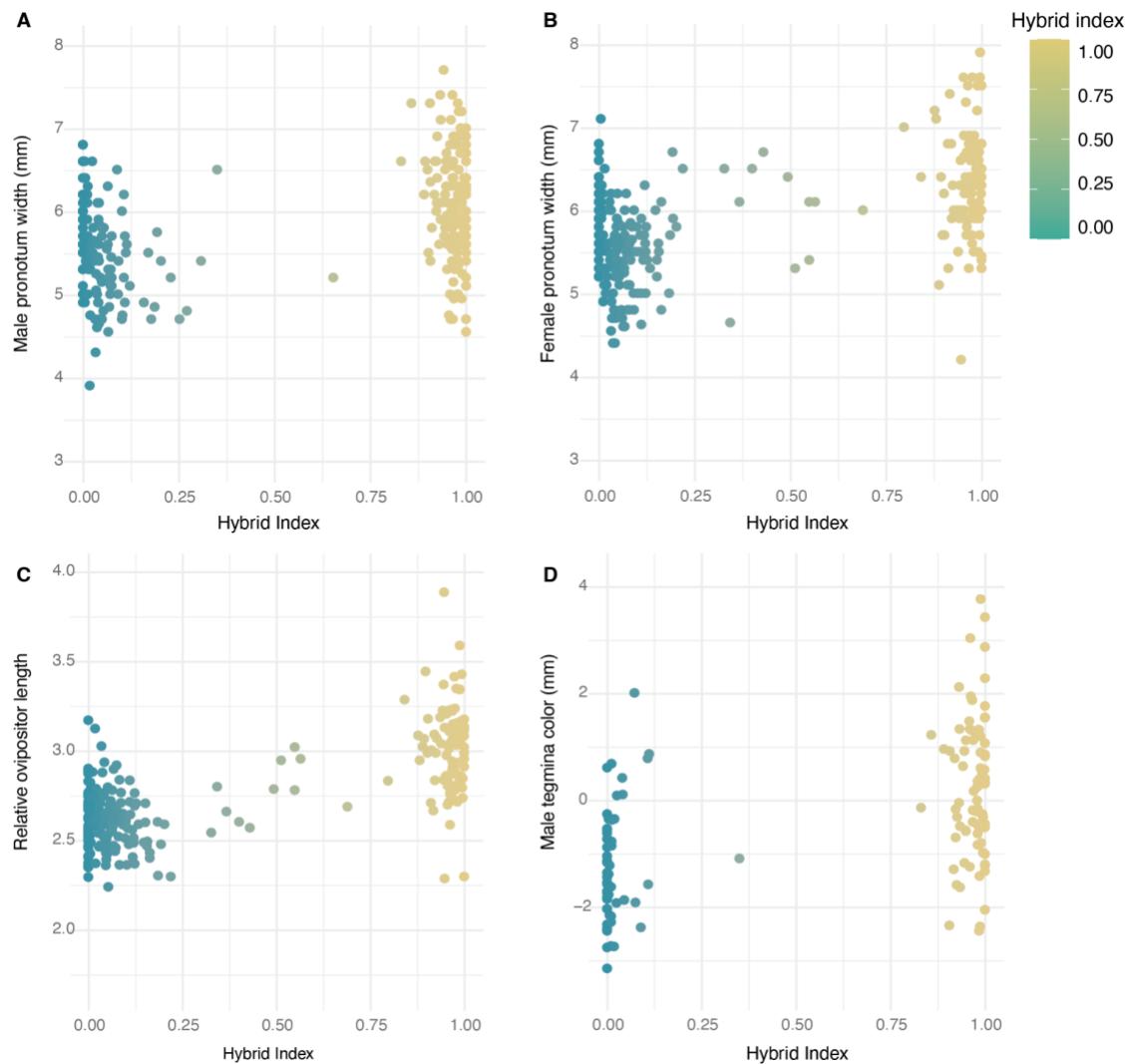


525

526 **Figure 3. Cricket body size and relative ovipositor length varies by geographic region. A.** Male
 527 pronotum width by species and region. **B.** Female pronotum width by species and region **C.** Relative
 528 ovipositor length by species and region. Boxplots indicate the mean values of each trait, quartiles, the
 529 range of the data (whiskers), and outliers. Individual data points are overlaid as scatterplots. Letters
 530 indicate the significant differences among groups within each species (PWRST with corrected p-
 531 values < 0.05) and exact p-values are presented in **Tables S1** and **S2**. See **Fig. 1** for location
 532 information.

533

534

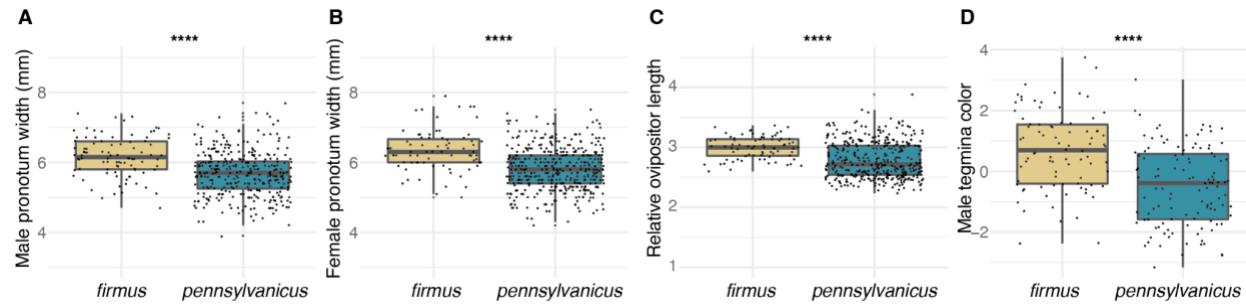


535

536 **Figure 4. Morphological variation in *G. firmus* consistent with proposed cryptic species. A.** Male
537 femur length, **B.** Female femur length and **C.** Relative ovipositor length (ovipositor length/femur
538 length). There is considerable morphological variation among northeastern, Florida and Texas *G.*
539 *firmus*, which is similar to the magnitude of morphological divergence observed in the sister species
540 *G. thinos*. This combined with genetic divergence suggests there may be cryptic species in what is
541 currently considered *G. firmus*. Boxplots indicate the mean values of each trait, quartiles, the range of
542 the data (whiskers), and outliers. Individual data points are overlaid as scatterplots. Letters indicate
543 the significant differences among groups (PWRST with corrected p-values < 0.05) and exact p-values
544 are presented in **Table S3**.

545

546

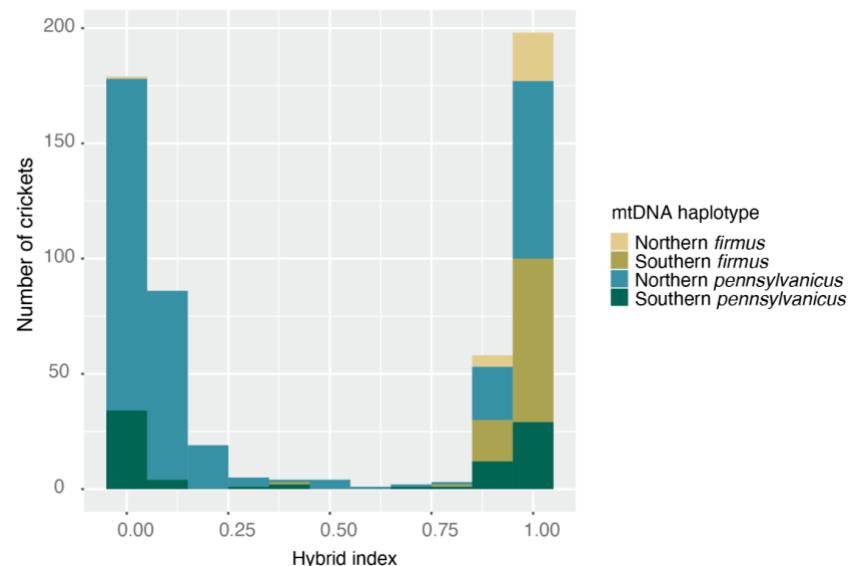

547

548 **Figure 5. Crickets with more hybrid background have intermediate morphological traits.** The
549 relationship between the hybrid index (an estimate of ancestry proportions, *G. pennsylvanicus* = 0
550 and *G. firmus* = 1) and A. male pronotum width, B. female pronotum width, C. relative ovipositor
551 length, and D. male tegmina color.

552

553

554



555

556 **Figure 6. Morphological traits tended to correspond to mtDNA haplotypes. A.** male pronotum width,
557 **B.** female pronotum width, **C.** relative ovipositor length and **D.** male tegmina color. Boxplots indicate
558 the mean values of each trait, quartiles, the range of the data (whiskers), and outliers. Individual data
559 points are overlaid as scatterplots.

560

561

562

563 **Figure 7. Mitochondrial DNA introgression is largely asymmetric.** Crickets with *G. firmus* ancestry at
564 nuclear markers (hybrid index = 1) often had *G. pennsylvanicus* mtDNA haplotypes.

565

566

567

References

568 Alexander RD (1968) Life cycle origins, speciation, and related phenomena in crickets. *The Quarterly*
569 *review of biology* 43: 1–41.

570 Andrés JA, Larson EL, Bogdanowicz SM, Harrison RG (2013) Patterns of transcriptome divergence in
571 the male accessory gland of two closely related species of field crickets. *Genetics* 193: 501–513.

572 Barton NH, Hewitt GM (1985) Analysis of hybrid zones. *Annual review of ecology and systematics*
573 16: 113–148.

574 Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful
575 approach to multiple testing. *Journal of the Royal Statistical Society. Series B, Statistical*
576 *methodology* 57: 289–300.

577 Britch SC, Cain ML (2001) Spatio-temporal dynamics of the *Allonemobius fasciatus*– *A. socius* mosaic
578 hybrid zone: a 14-year perspective. *Molecular ecology* 10: 627–638.

579 Broughton RE, Harrison RG (2003) Nuclear gene genealogies reveal historical, demographic and
580 selective factors associated with speciation in field crickets. *Genetics* 163: 1389–1401.

581 Gainey DP, Kim JY, Maroja LS (2018) Mapping reduced introgression loci to the X chromosome of
582 the hybridizing field crickets, *Gryllus firmus* and *G. pennsylvanicus*. *PloS one* 13: e0208498.

583 Gavrilets S, Arnqvist G, Friberg U (2001) The evolution of female mate choice by sexual conflict.
584 *Proceedings of the Royal Society of London. Series B: Biological Sciences* 268: 531–539.

585 Gompert Z, Lucas LK, Fordyce JA, Forister ML, Nice CC (2010) Secondary contact between *Lycaeides*
586 *idas* and *L. melissa* in the Rocky Mountains: extensive admixture and a patchy hybrid zone.
587 *Molecular ecology* 19: 3171–3192.

588 González C, Ornelas JF, Gutiérrez-Rodríguez C (2011) Selection and geographic isolation influence
589 hummingbird speciation: genetic, acoustic and morphological divergence in the wedge-tailed
590 sabrewing (*Campylopterus curvipennis*). *BMC evolutionary biology* 11: 38.

591 Good JM, Hird S, Reid N, Demboski JR, Steppan SJ, Martin-Nims TR, Sullivan J (2008) Ancient
592 hybridization and mitochondrial capture between two species of chipmunks. *Molecular ecology*
593 17: 1313–1327.

594 Gray DA, Weissman DB, Cole JA, Lemmon EM, Lemmon AR (2020) Multilocus phylogeny of *Gryllus*
595 field crickets (Orthoptera: Gryllidae: Gryllinae) utilizing anchored hybrid enrichment. *Zootaxa*
596 4750: 328–348.

597 Harrison RG (1983) Barriers to gene exchange between closely related cricket species. I. Laboratory
598 hybridization studies. *Evolution; international journal of organic evolution* 37: 245–251.

599 Harrison RG (1985) Barriers to gene exchange between closely related cricket species. II. Life cycle
600 variation and temporal isolation. *Evolution; international journal of organic evolution* 39: 244–
601 259.

602 Harrison RG (1986) Pattern and process in a narrow hybrid zone. *Heredity* 56: 337–349.

603 Harrison RG (1990) Hybrid zones: windows on evolutionary process. *Oxford Surveys in Evolutionary
604 Biology* 7: 69–128.

605 Harrison RG, Arnold J (1982) A narrow hybrid zone between closely related cricket species.
606 *Evolution* 36: 535.

607 Harrison RG, Rand DM (1989) Mosaic hybrid zones and the nature of species boundaries. *Speciation
608 and its Consequences*: 111–133.

609 Harrison RG, Bogdanowicz SM (1995) Mitochondrial DNA phylogeny of North American field
610 crickets: perspectives on the evolution of life cycles, songs, and habitat associations. *Journal of
611 Evolutionary Biology* 8: 209–232.

612 Harrison RG, Bogdanowicz SM (1997) Patterns of variation and linkage disequilibrium in a field
613 cricket hybrid zone. *Evolution* 51: 493.

614 Harrison RG, Larson EL (2014) Hybridization, introgression, and the nature of species boundaries.
615 *The Journal of heredity* 105: 795–809.

616 Harrison RG, Larson EL (2016) Heterogeneous genome divergence, differential introgression, and the
617 origin and structure of hybrid zones. *Molecular ecology* 25: 2454–2466.

618 Harrison RG, Rand DM, Wheeler WC (1987) Mitochondrial DNA variation in field crickets across a
619 narrow hybrid zone. *Molecular biology and evolution* 4: 144–144.

620 Hauffe HC, Searle JB (1993) Extreme karyotypic variation in a *Mus musculus domesticus* hybrid zone:
621 the tobacco mouse story revisited. *Evolution; international journal of organic evolution* 47:
622 1374–1395.

623 Hollander J, Montaño-Rendón M, Bianco G, Yang X, Westram AM, Duvaux L, Reid DG, Butlin RK
624 (2018) Are assortative mating and genital divergence driven by reinforcement? *Evolution letters*
625 2: 557–566.

626 Jenck CS, Lehto WR, Ketterman BT, Sloan LF, Sexton AN, Tinghitella RM (2020) Phenotypic
627 divergence among threespine stickleback that differ in nuptial coloration. *Ecology and evolution*
628 10: 2900–2916.

629 Jiménez RA, Ornelas JF (2015) Historical and current introgression in a Mesoamerican hummingbird
630 species complex: a biogeographic perspective. *PeerJ* 4: e1556.

631 Karl T, Koss WJ (1984) Regional and national monthly, seasonal, and annual temperature weighted
632 by area, 1895–1983. Available from: <https://repository.library.noaa.gov/view/noaa/10238> (April
633 12, 2021).

634 Kivelä SM, Välimäki P, Carrasco D, Mäenpää MI, Oksanen J (2011) Latitudinal insect body size clines
635 revisited: a critical evaluation of the saw-tooth model. *The Journal of animal ecology* 80: 1184–
636 1195.

637 Larson EL, Hume GL, Andrés JA, Harrison RG (2012) Post-mating prezygotic barriers to gene
638 exchange between hybridizing field crickets. *Journal of evolutionary biology* 25: 174–186.

639 Larson EL, Andrés JA, Bogdanowicz SM, Harrison RG (2013a) Differential introgression in a mosaic
640 hybrid zone reveals candidate barrier genes. *Evolution; international journal of organic*

641 evolution 67: 3653–3661.

642 Larson EL, Guilherme Becker C, Bondra ER, Harrison RG (2013b) Structure of a mosaic hybrid zone
643 between the field crickets *Gryllus firmus* and *G. pennsylvanicus*. *Ecology and evolution* 3: 985–
644 1002.

645 Larson EL, White TA, Ross CL, Harrison RG (2014) Gene flow and the maintenance of species
646 boundaries. *Molecular ecology* 23: 1668–1678.

647 Maroja LS, Andrés JA, Harrison RG (2009a) Genealogical discordance and patterns of introgression
648 and selection across a cricket hybrid zone. *Evolution; international journal of organic evolution*
649 63: 2999–3015.

650 Maroja LS, Andrés JA, Walters JR, Harrison RG (2009b) Multiple barriers to gene exchange in a field
651 cricket hybrid zone. *Biological Journal of the Linnean Society* 97: 390–402.

652 Maroja LS, Larson EL, Bogdanowicz SM, Harrison RG (2015) Genes with restricted introgression in a
653 field cricket (*Gryllus firmus*/*Gryllus pennsylvanicus*) hybrid zone are concentrated on the X
654 chromosome and a single autosome. *G3* 5: 2219–2227.

655 Masaki S (1961) Geographic variation of diapause in insects. *Bull. Fac. Agric. Hirosaki Univ.* 7: 66–98.

656 Masaki S (1967) Geographic variation and climatic adaptation in a field cricket (Orthoptera:
657 Gryllidae). *Evolution; international journal of organic evolution* 21: 725–741.

658 Masaki S (1979) Climatic adaptation and species status in the lawn ground cricket. *Oecologia* 43: 207–
659 219.

660 Melo-Ferreira J, Boursot P, Suchentrunk F, Ferrand N, Alves PC (2005) Invasion from the cold past:
661 extensive introgression of mountain hare (*Lepus timidus*) mitochondrial DNA into three other
662 hare species in northern Iberia. *Molecular ecology* 14: 2459–2464.

663 Moran PA, Hunt J, Mitchell C, Ritchie MG, Bailey NW (2020) Sexual selection and population
664 divergence III: Interspecific and intraspecific variation in mating signals. *Journal of evolutionary
665 biology* 33: 990–1005.

666 Mousseau TA (1997) Ecotherms follow the converse to Bergmann's rule. *Evolution; international*
667 *journal of organic evolution* 51: 630–632.

668 Oneal E, Knowles LL (2013) Ecological selection as the cause and sexual differentiation as the
669 consequence of species divergence? *Proceedings. Biological sciences / The Royal Society* 280:
670 20122236.

671 Parsons SMA, Joern A (2014) Life history traits associated with body size covary along a latitudinal
672 gradient in a generalist grasshopper. *Oecologia* 174: 379–391.

673 Poggio L, de Sousa LM, Batjes NH, Heuvelink GBM, Kempen B, Ribeiro E, Rossiter D (2021) SoilGrids
674 2.0: producing soil information for the globe with quantified spatial uncertainty. *SOIL* 7: 217–
675 240. <https://doi.org/10.5194/soil-7-217-2021>

676 Polly PD, Wójcik JM (2019) Geometric morphometric tests for phenotypic divergence between
677 chromosomal races. In: *Shrews, Chromosomes and Speciation*. Cambridge University Press, 336–
678 364.

679 Rand DM, Harrison RG (1989) Ecological genetics of a mosaic hybrid zone: mitochondrial, nuclear
680 and reproductive differentiation of crickets by soil type. *Evolution; international journal of*
681 *organic evolution* 43: 432–449.

682 R Core Team (2020) R: A language and environment for statistical computing. R Foundation for
683 Statistical Computing, Vienna, Austria. Available from: <https://www.R-project.org/>.

684 Réale D, Roff DA (2002) Quantitative genetics of oviposition behaviour and interactions among
685 oviposition traits in the sand cricket. *Animal behaviour* 64: 397–406.

686 Ross CL, Harrison RG (2002) A fine-scale spatial analysis of the mosaic hybrid zone between *Gryllus*
687 *firmus* and *Gryllus pennsylvanicus*. *Evolution; international journal of organic evolution* 56:
688 2296–2312.

689 Ross CL, Harrison RG (2006) Viability selection on overwintering eggs in a field cricket mosaic
690 hybrid zone. *Oikos* 115: 53–68.

691 Runemark A, Hansson B, Pafilis P, Valakos ED, Svensson EI (2010) Island biology and morphological
692 divergence of the Skyros wall lizard *Podarcis gaigeae*: a combined role for local selection and
693 genetic drift on color morph frequency divergence? *BMC evolutionary biology* 10: 269.

694 Shastry V, Adams PE, Lindtke D, Mandeville EG, Parchman TL, Gompert Z and Buerkle CA, 2021.
695 Model-based genotype and ancestry estimation for potential hybrids with mixed-ploidy. *Molecular
696 ecology resources*, 21(5), pp.1434-1451.

697 Shaw KL, Mullen SP (2011) Genes versus phenotypes in the study of speciation. *Genetica* 139: 649–
698 661.

699 Skoglund S, Siwertsson A, Amundsen P-A, Knudsen R (2015) Morphological divergence between
700 three Arctic charr morphs - the significance of the deep-water environment. *Ecology and
701 evolution* 5: 3114–3129.

702 Sottas C, Reif J, Kuczyński L, Reifová R (2018) Interspecific competition promotes habitat and
703 morphological divergence in a secondary contact zone between two hybridizing songbirds.
704 *Journal of evolutionary biology* 31: 914–923.

705 Tauber CA, Tauber MJ (1981) Insect seasonal cycles. *Annual review of ecology and systematics* 12:
706 281–308.

707 Taylor SA, Larson EL, Harrison RG (2015) Hybrid zones: windows on climate change. *Trends in
708 ecology & evolution* 30: 398–406.

709 Uyeda JC, Arnold SJ, Hohenlohe PA, Mead LS (2009) Drift promotes speciation by sexual selection.
710 *Evolution; international journal of organic evolution* 63: 583–594.

711 Venter O, Sanderson EW, Magrach A, Allan JR, Beher J, Jones KR, Possingham HP, Laurance WF,
712 Wood P, Fekete BM, Levy MA, Watson JEM (2016) Sixteen years of change in the global
713 terrestrial human footprint and implications for biodiversity conservation. *Nature
714 communications* 7: 12558.

715 Venter, O., E. W. Sanderson, A. Magrach, J. R. Allan, J. Beher, K. R. Jones, H. P. Possingham, W. F.
716 Laurance, P. Wood, B. M. Fekete, M. A. Levy, and J. E. Watson. 2018. Last of the Wild Project,

717 Version 3 (LWP-3): 2009 Human Footprint, 2018 Release. Palisades, New York: NASA
718 Socioeconomic Data and Applications Center (SEDAC). <https://doi.org/10.7927/H46T0JQ4>.
719 Accessed October 18, 2021.Walker TJ (1980) Mixed oviposition in individual females of *Gryllus*
720 *firmus*: Graded proportions of fast-developing and diapause eggs. *Oecologia* 47: 291–298.

721 Wang G-H, Li H, Zhao H-W, Zhang W-K (2017) Detecting climatically driven phylogenetic and
722 morphological divergence among spruce (*Picea*) species worldwide. *Biogeosciences* 14: 2307–
723 2319.

724 Weissman DB, Gray DA (2019) Crickets of the genus *Gryllus* in the United States (Orthoptera:
725 *Gryllidae*: *Gryllinae*). *Zootaxa* 4705: 1– 277.

726 Willett CS, Ford MJ, Harrison RG (1997) Inferences about the origin of a field cricket hybrid zone
727 from a mitochondrial DNA phylogeny. *Heredity* 79: 484–494.

728 Wolf JBW, Harrod C, Brunner S, Salazar S, Trillmich F, Tautz D (2008) Tracing early stages of species
729 differentiation: ecological, morphological and genetic divergence of Galápagos sea lion
730 populations. *BMC evolutionary biology* 8: 150.

731