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ABSTRACT
The movement of a mobile sensor has a critical impact on the
information gathered from the area of interest, as well as the quality
of the estimate that amodel can build from the collected information
at any moment in time. Both systematic exploration models, which
make the sensor move in regular patterns, and random movement
models have specific advantages. There is less research concerning
models that are positioned between these two extremes. In this
paper, we propose Grid Limited Randomness (GLR), a family of
path planning algorithms based on sampling waypoints from a grid
of a specific resolution. We propose three variations differentiated
by the order in which the mobile sensor visits these waypoints: new
samples added to the end of the path (GLR-EOP), smallest detour
(GLR-SD), and the shortest path as approximated by Christofides’
algorithm. An extensive simulation study in the Waterberry Farms
benchmark shows that the GLR variations offer benefits that, in
specific circumstances, make them preferable to both fully random
and fully systematic exploration paths.
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1 INTRODUCTION
Informative path planning (IPP) aims to determine a path for a mo-
bile sensor (for instance, a drone) that, within specified constraints,
acquires the highest quality information about the geographical
area of interest [14]. The primary constraint in these scenarios is a
limited time, movement, or sensing budget. This means, in practice,
that the mobile sensor cannot visit every location in the geographic
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area: for instance, a drone in a precision agriculture application
checking for disease outbreaks cannot inspect in detail every single
plant. Thus, the result of the sensing will be a set of observations
(samples) determined by the path of the mobile sensor. An estima-
tion algorithm can be used to build a full map of the area of interest.
As the mobile sensor continues to move and collect observations,
the estimator can obtain maps of increasing quality.

IPP algorithms range from systematic exploration techniques
that maximize coverage, to techniques that aim to serendipitously
discover phenomena of interest. For instance, lawnmower-type
algorithms achieve a predictable coverage of the area of interest,
with the observations collected from equidistant paths (Figure 1-
Top Left). Given an exploration budget, a fixed-budget lawnmower
(FBLM) path planner would find the densest possible pattern that
would still allow the sensor to return to its home location. Such a
path is uniform and predictable: no point in the area of interest will
be farther from an observation than one-half of the distance be-
tween turns. However, the cost of this uniformity at the completion
is the lack of uniformity during the exploration: halfway through
the path the mobile sensor did not yet reach the top half of the area.
Any kind of transient phenomena of interest in this area will not be
discovered during the exploration. A second challenge is that any
kind of delay in the exploration, forcing the mobile sensor to return
to the base before the completion of the trajectory, would leave the
top part of the area unexplored. In adversarial environments, such
as intrusion detection, systematic exploration has the additional
disadvantage that the movement of the sensor is predictable, and
certain areas are consistently less explored than others.

The path in Figure 1 (top right) shows a random waypoint (RW)
model. The advantage of this model is that the exploration is not
limited to well-defined areas at the beginning of the exploration
but explores larger portions of the area of interest. Typically, a high-
quality estimator can provide a better estimate from the samples
collected by a random waypoint explorer in the initial parts of the
exploration. Furthermore, the randomness of the exploration makes
it difficult for adversarial entities to anticipate the mobile sensor.

However, random waypoint models also have specific disadvan-
tages. Due to the geometry of the model, the center of the area
of interest tends to be explored more thoroughly than the outly-
ing areas [2]. These models also often lead to large areas that are
left unexplored, usually near the borders of the area of interest, as
shown in the top right side of Figure 1.
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Figure 1: Four exploration techniques: Top-Left - Systematic
/ Lawnmower, Top-Right: Random waypoint, Bottom Left
and Right: techniques trading off between randomness and
systematic exploration. Thick blue lines show the trajectory
in the first half of the exploration, thin red lines in the second
half.

Systematic exploration and random waypoints are the two ex-
tremes of a continuum of possibilities between regularity and ran-
domness. In this paper, we start from the conjecture that between
these extremes there are approaches with features that, at least
in certain circumstances, make them preferable to both the fully
random and fully systematic approaches. We propose and investi-
gate a family of exploration algorithms where the randomness of
the waypoints is limited by reducing the random choice to happen
within a cell of a grid. Examples of the paths generated by such an
in-between approach are in Figure 1, bottom left and right. Within
this algorithm family, Grid Limited Randomness (GRL), we also
consider the order in which the waypoints are visited, leading to
variations that affect not only the path of the robot but also the
number of waypoints that can be chosen for a given budget.

The main contributions of this paper are:
• Proposes a family of exploration techniques, Grid Limited
Randomness, that fill in the design space between random
and systematic exploration.

• Provides practical implementations for three variations of
the algorithms, based on the way new samples are appended
to the path: End-of-Path, Smallest Detour, and Christofides’
Algorithm.

• Through an extensive simulation study in the Waterberry
Farms benchmark environment, we identify the settings in
which specific variants of GRL outperform both fully random
and fully systematic exploration.

2 RELATEDWORK
The significant technological developments in hardware design
made drones and mobile robots inexpensive and ubiquitous. While
most such systems are currently remote controlled, their use as
autonomous mobile sensors is a natural next step. This led to a new
emphasis in the research of informative path planning algorithms.

The estimation model assumed by the algorithm can have a
significant influence over the formulation of the problem.

For instance, Guestrin, Krause, and Singh [7] assume a Gaussian
process estimator, which leads to the selection of observation points
as the problem to maximize mutual information (a problem that is
NP-complete by itself, even without considering the search for an
efficient path through these points). A recursive greedy algorithm
for a graph theoretical formulation was proposed by Chekuri and
Pál [4]. Singh [13] proposed an innovative non-myopic method,
which means the algorithm plans for possible future observations.
The algorithm is an iterative one that calculates the informative
path in each step to include the observation in the previous step,
considering the budget and the path’s cost. It also involves group-
ing random locations into clusters to sub-modularize the problem.
Other recent path planning algorithms that assume an Gaussian
process estimator include [8, 10, 12].

In general, planning for the quality of the information which
might be obtained by the estimator is a very difficult problem. Thus
many path planning algorithms instead optimize for a surrogate
criteria, which is very often the coverage obtained by mobile sensor.
Unfortunately, even the coverage problem [5], sometimes referred
to as the orienteering problem [3] is difficult, because closely re-
lated to the traveling salesman problem and, as such, NP-complete.
Often, practitioners accept a suboptimal algorithm from the point
of view of path length, which however, solves practical problems
with respect to robot control, avoidance of obstacles and so on. A
survey of common coverage path planning algorithms and their two
and three-dimensional applications are provided by Galceran and
Carreras [6]. In certain situations, the path must be formulated to
account for the topology of geographical area under consideration,
which raises challenges even for the basic lawnmower pattern [1].

Waterberry Farm Benchmark [9] is a computational testbed
designed to measure the performance of path planning algorithms.
The model assumes a precision agriculture application, with envi-
ronments of increasing size and complexity, planted with tomato
and strawberry and various areas. The observations are used to
create information models about two plant diseases, the Tomato
Yellow Leaf Curl Virus TYLCV on tomatoes and Charcoal Rot CCR
in the strawberry plants, as well as soil humidity.

3 GRID LIMITED RANDOMNESS
In order to develop exploration algorithms positioned between
the fully systematic and fully random techniques, we could start
from two directions: randomizing a systematic model or system-
atizing a random one. An example of the first approach would be
to add random noise to the lawnmower movement. This would
solve the problem of predictability of the exploration. However, it
would introduce holes in the exploration, delay the robot due to
the suboptimal tracks which would make it impossible to finish the
exploration at the same exploration density and would still not help
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with the fact that the mobile sensor explores only a geographically
limited area in the first half of the exploration.

In this paper we take the opposite approach, and start from the
random exploration technique, which we will make more system-
atic. Our process will start by investigating what is wrong with the
traditional random waypoint (RW) model. In this model, effectively,
the robot visits a series of waypoints that are chosen uniformly
randomly from the area of interest. Uniform random sampling is a
powerful and efficient way to acquire information from a studied
phenomena, with significant theoretical apparatus behind it.

What are the problems with random waypoints? First, if the
number of samples is small, it is still possible that the particular set
of samples leave a relatively large area uncovered. This becomes
more and more unlikely as the number of samples increases. The
second problem is that while the waypoints are sampled uniformly
randomly in RW, the observations are not. The mobile sensor needs
to continue to make observations as it is moving from waypoint
to waypoint and there are several mechanisms through which this
leads to a suboptimal distribution of them. First, due to geometric
reasons, most of the observations will cluster into the center of the
explored area. Another problem is that in the random waypoint
model, there are many self-intersections on the trajectory of the
mobile sensor. Each of these points corresponds to a repeated, and
therefore, likely a less informative observation.

This analysis leads us to two ideas in the design of the Grid
Limited Randomness model. First, we avoid the holes in the sample
set by overlaying a grid on the geometric area and sequentially
sampling from the individual grid cells. This ensures that there is
at most a difference of one sample between the most sampled and
the least sampled grid cell.

The second idea is to influence the collected observations by
choosing the order in which the waypoints are traversed by the
mobile sensor. To understand the intuition here, let us consider a
sensor moving between two waypoints. If these two waypoints
are far away from each other, the robot will have to traverse a
long straight path, during which it will make observations whose
location is far from the waypoints (for instance, traverse other grid
cells), and might have been previously explored. Furthermore, this
long traversal will take resources away from the exploration budget
of the sensor, which limits our ability to choose more waypoints.
On the other hand, if the waypoints are close to each other, the
observations on the paths between them arewell correlatedwith the
waypoints, and their impact on the exploration cost is significantly
smaller. Thus, the second idea leads us to the conclusion that the
order in which the waypoints are visited is an important component
of the algorithm, and the GRL algorithm’s grid sampling model
needs to be combined with specific algorithms for this.

Before we proceed with the specific discussions of the models,
we need to make another observations, that the planning of the
exploration path often depends on the exploration budget. This bud-
get reflects constraints such as the energy available to the mobile
sensor (such as drone), financial constraints, or available daylight.
For the remainder of this paper, we will express the exploration
budget in the form of a total distance the mobile sensor can tra-
verse while performing observations. The exploration budget has
little impact on the RW exploration: the mobile sensor will simply
keep exploring with the random waypoints until it runs out of the

exploration budget. In contrast, for a systematic exploration model,
the budget determines how densely the exploration turns can run
in such a way as to complete the exploration within the budget.
For the GLR model, the implication of the exploration budget is
that it is impossible to know ahead how many grid-waypoints we
can sample, as the length of the path connecting them depends on
the waypoint ordering component of the path planning algorithm.
Thus, most variants of the GLR model will need to find a way to
simultaneously determine the number of waypoints and the path
through them. We propose three waypoint ordering approaches of
varying computational complexity.
End-of-Path (GLR-EOP): This approach collects the random sam-
ples from the grid by traversing the grid in a back and forth line
by line pattern (effectively, a grid resolution version of the lawn-
mower). If the grid was exhausted, the iteration over the grid cells
starts from the beginning. The waypoints are added to the end of
the current path, until the length of the path exceeds the exploration
budget 𝑏 (see Algorithm 1).

To analyze the complexity of the algorithm, we notice that suc-
cessive waypoints are in successive grid cells, thus the number of
waypoints will be approximately equal to the exploration budget
𝑏 divided by the grid cell size. If the path is created by 𝑘 complete
iterations over all the grid cells plus possibly several other samples,
this means that each grid cell will have 𝑘 or 𝑘 + 1 samples.

Algorithm 1: GLR-EOP
Input : starting-point, velocity, time, ℎ𝑐𝑒𝑙𝑙𝑠 , 𝑣𝑐𝑒𝑙𝑙𝑠
Output :path

1 𝑏 = velocity · time
2 Divide area into a grid of size ℎ𝑐𝑒𝑙𝑙𝑠 × 𝑣𝑐𝑒𝑙𝑙𝑠

3 path = [starting-point]
4 repeat
5 Choose cell 𝑐 as the next cell from the grid
6 Choose waypoint𝑤 randomly uniformly from 𝑐

7 Append𝑤 to end of 𝑝𝑎𝑡ℎ
8 until length(path) < b;
9 return path

Shortest detour (GLR-SD): This approach collects the random
samples in a similar order as the GLR-SD approach, with a different
approach taken for the insertion of the new waypoint into the path.
Adding a newwaypoint to the path will normally lead to an increase
of the lenght of the path, as the path will need to make a detour
between two points, and the triangle inequality ensures that the
new path will be longer. The GLR-SD approach finds the insertion
point (other than the starting point, which cannot be changed)
where the caused detour is the shortest.

To analyze the complexity of the algorithm, we notice that the
insertion of the a waypoint has a cost proportional with the current
lenght of the path. Thus, computational complexity of the algo-
rithm grows quadratically in the length of the budget. In practice,
the insertion is highly parallelizable and thus has a negligible com-
putational cost for paths with several thousand waypoints. As the
waypoints are chosen in the same order as in GLR-EOP and no
waypoint is rejected, this algorithm also retains the property that
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there is a difference of at most one sample between the most and
the least sampled grid cell. However, it is not true any more that the
successive waypoints are in different grid cells - with GLR-SD the
successive waypoints will be typically close together. An implica-
tion of this is that the GLR-SD approach, for the same exploration
budget will have a much larger number of waypoints compared to
GLR-EOP.

Algorithm 2: GLR-SD
Input : starting-point, velocity, time, ℎ𝑐𝑒𝑙𝑙𝑠 , 𝑣𝑐𝑒𝑙𝑙𝑠
Output :path

1 𝑏 = velocity · time
2 Divide area into a grid of size ℎ𝑐𝑒𝑙𝑙𝑠 × 𝑣𝑐𝑒𝑙𝑙𝑠

3 path = [starting-point]
4 repeat
5 Choose cell 𝑐 as the next cell from the grid
6 Choose waypoint𝑤 randomly uniformly from 𝑐

7 𝑑 = ∞
8 insert_at=-1
9 for i from 1 to count(path do
10 detour = dist(path[i-1], w) + dist(w, path[i]) -

dist(path[i-1], dist(path[i])
11 if detour < d then
12 d = detour
13 insert_at = i
14 end
15 end
16 insert𝑤 into path at location insert_at
17 until length(path) < b;
18 return path

Using Christofides’ Algorithm (GLR-CA): This approach also
collects the waypoints from the grid in the same order as the other
algorithms, and aims to find the shortest path that connects these
waypoints. As this challenge is equivalent to the traveling salesman
problem, the optimal solution cannot be found in tractable time. Our
approach uses Christofides’ algorithm, a polynomial time 𝑂 (𝑛3)
algorithm that finds a solution that it at most 3/2 of the optimal
length (and, in practice, most of the time a significantly better
approximation).

The motivation for GLR-CA is that with this algorithm, we can
add a significantly larger number of data samples, whose distri-
bution and randomness we have more control over it through the
GLR mechanism. The overall flow of the implementation, however,
is slightly different from the GLR-EOP and GLR-SD algorithms. In
order to find the approximation of the optimal path, we need to
present the algorithm the full set of sample points. However, we
do not know ahead of time the length of the path the algorithm
will find. With a fixed exploration budget, the best exploration can
be achieved when the budget is fully utilized. A possibility would
be to present the algorithm with a larger number of points, which
creates a path longer than the exploration budget, and then cut
short the resulting path at the expiration of the exploration budget.
This, however, would result in a suboptimal result. Let us imagine

that we have a 2x2 grid, and present the algorithm a large set of
nodes sampled through the iterative GLR process. If the resulting
path is four times the size of the budget, and we cut it down to the
budget size, it is very likely that the path which we output would
only contain points that are closely clustered in the grid cell closest
to the starting point.

In conclusion, we need to cut down the waypoints before they
are presented to the algorithm, and ensure that all the waypoints
presented to the algorithm will be part of the output. Luckily, the
search for this number is made easier by the fact that the length
of the path monotonically increases when new points are added
to the existing ones. This allows us to use a binary search to find
the subset of the GLR waypoints to be presented to Cristofides’
algorithms (see Algorithm 3).

To analize the complexity of the algorithm, we notice that wewill
need to run the Cristofides’ algorithm 2 · 𝑙𝑜𝑔2 (𝑙) times, where 𝑙 < 𝑏

is the number of waypoints in the final path, while Christofides’
algorithm has a cubic complexity in the lenght of the path.

Overall, we can state that GLR-EOP has a𝑂 (𝑙), GLR-SD an𝑂 (𝑙2)
and GLR-CA an 𝑂 (𝑙3 log(𝑙)) complexity. This difference is com-
pounded by the fact that the length of the output path 𝑙 is largest
for GLR-CA, followed by GLR-SD and GLR-EOP.

Algorithm 3: GLR-CA
Input : starting-point, velocity, time, ℎ𝑐𝑒𝑙𝑙𝑠 , 𝑣𝑐𝑒𝑙𝑙𝑠
Output :path

1 𝑏 = velocity · time
2 Divide area into a grid of size ℎ𝑐𝑒𝑙𝑙𝑠 × 𝑣𝑐𝑒𝑙𝑙𝑠

3 waypoints = [starting-point]
4 for i from 1 to max do
5 Choose cell 𝑐 as the next cell from the grid
6 Choose waypoint𝑤 randomly uniformly from 𝑐

7 waypoints.append(𝑤 )
8 end
9 # Fast increase to an upper limit of waypoints

10 upper = 1
11 repeat
12 upper = 2 * upper
13 path = Cristofides_Algorithm(waypoints[0:upper])
14 until length(path) < b;
15 # Binary search to find the exact number of waypoints
16 lower = upper / 2 while upper - 1 > lower do
17 test = (upper + lower) / 2
18 path = Cristofides_Algorithm(waypoints[0:])
19 if length(path) > b then upper = test ;
20 else lower = test ;
21 end
22 return path

4 EXPERIMENTAL STUDY
4.1 Experimental setup
In order to investigate the properties of the proposed algorithms,
we run a series of experiments using the Waterberry Farms (WBF)
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Figure 2: The path and end-of-experiment model performance of the GLR-EOP algorithm compared to FLDM and RW using the
Gaussian Process estimator. Top row: the path of the mobile sensor. Center row: the ground truth for the TYLCV observations
(leftmost figure), and the estimate provided by the estimator at the end of the exploration. Bottom row: the uncertainty metric
of the estimator (the standard deviation of the Gaussian Process estimator at the specific point), at the end of the exploration.

benchmark environment. WBF realistically simulates the data col-
lection in the context of a precision agriculture application, model-
ing a Florida farm growing tomatoes and strawberries. The environ-
ment creates models of the dynamic spreading of the tomato and
strawberry diseases and the soil humidity. WBF allows the creation
of experiments that benchmark pairs of path planning algorithms
and estimators, and provides a number of scoring functions.

For the purposes of this paper, we used the following assump-
tions in the configuration of the WBF benchmark: we considered
a medium size environment ("Miniberry-30", of size 30x30 ft), half
planted with strawberry and half with tomato plants. We only con-
sidered the observations for the Tomato Yellow Leaf Curl Virus
(TYLCV). We run a single-day experiment, which involved the
day 10 of the model, where a relatively large infection of TYLCV
exists in the environment. We assumed an exploration budget of
400seconds, with a velocity of the mobile sensor of 1ft/sec.

As we are comparing the path planning algorithms, we paired
all algorithms we are considering with the same estimator, a high
quality estimator using a Gaussian Process (GP) to perform rea-
soning about the observations collected. Each such GP derives
its prior statistics under the same spatially-dependent structural
assumptions, governed by a squared-exponential kernel function
and fitting its hyper-parameters to past observations via standard
regression techniques (e.g., via the GaussianProcessorRegressor
within Python’s scikit-learn toolbox, implementingAlgorithm 2.1
assuming the kernel function in equation 2.31 of [11]).

The following algorithm were compared:

FBLM - Fixed Budget Lawnmower algorithm. This algorithm rep-
resents the "systematic" extreme of the randomness spectrum.

RW Random waypoint: the algorithm generates a series of way-
points chosen randomly and uniformly from the area of interest,
and visits them in order. This algorithm represents the "random"
extreme of the randomness spectrum.

GLR-EOP with grid sizes of 2-by-2, 4-by-4 and 8-by-8.

GLR-SD with grid sizes of 2-by-2, 4-by-4 and 8-by-8.

GRL-CA with grid sizes of 2-by-2, 4-by-4 and 8-by-8.

As the performance metric, we calculated a simple L1 score
(mean absolute error) between the model created by the estimator
and the ground truth for the TYLCV values.

For the purposes of real-world deployment, it is important to
consider the computational costs of the various configurations. In
our setting, the GLR-CA algorithm took about 5-10 seconds, while
the GP estimator took about 20 seconds. The computational cost of
the other algorithms was found to be negligible. While these values
are acceptable for a practical deployment, we need to consider
that the Miniberry-30 model is much smaller than a real farm. The
Waterberry model built to match a real-world farm, has a size of
4000 by 5000 ft, representing a 10,000 times increase in size. As
the GP algorithm has a cubic and the GLR-CA algorithm has a log-
times-cubic complexity, these algorithms cannot be naively scaled
to a real world setting.
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4.2 Experimental results
Figure 2 shows the results of the experiments with the GLR-EOP
model with various grid sizes, as well as the FBLM and RW algo-
rithms. The top row shows the actual path traversed by the mobile
sensor. We notice how the GLR-EOP variants on grid sizes 2x2, 4x2
and 8x8 represent a gradual transition between the RW randomness
toward the systematic exploration of FBLM. Note that systematic
exploration can be done in many different ways; the reason why
the path for the GLR-EOP-8x8 resembles that of the lawnmower
exploration is because of the way in which the random waypoints
had been collected from the grid cells in a back and forth movement.
These waypoints are not reordered in the EOP variant, retaining
their original path.

The middle row of the figure shows, in the leftmost cell the
ground truth of the observations. The bottom half of the area is not
planted with tomatoes. In the part planted with tomatoes, there is
an outbreak of the tomato yellow leaf curl virus (TYLCV), which
endangers the crop. The reminder of the figures show the output
of the estimators, at the end of the exploration path.

Some of the conclusions we can draw are as follows. The Gauss-
ian Process estimator, in general, does a good job approximating
the shape of the outbreak, if the number of observations around
it are dense enough. When there are large areas where there are
no observations, the GP can make significant errors, both in the
positive and negative direction.

The bottom row of Figure 2 shows the uncertainty of the Gauss-
ian Process estimator at the end of the exploration. Clearly, the
systematic exploration algorithms leaves the least uncertainty in
the exploration, if it manages to finish the exploration. The benefits
of the GP model is evident from the fact that whenever the estimate
has high errors (e.g. showing an outbreak where in reality there is
none), it is actually also showing a high uncertainty. This is clearly
visible, for instance, in the GLR-EOP-4x4 setting.

Figure 3 shows the same arrangement as Figure 3, but this time
for the GLR-SD algorithm. In the following, we will focus on the
specific differences between these algorithms. First, the GLR-SD
algorithms still represent an intermediate level between the sys-
tematic exploration of FBML and the randomness of RW. However,
as the shortest-detour algorithm does not insert the waypoints in
the path in the order they are presented, the lawnmower pattern is
not observable anymore in the path.

The SD algorithm greatly reduces the number of places where
the path self-intersects. While the RW algorithm generates paths
that self-intersect very often, and many intersections are present
for GLR-EOP as well, the number of interactions for GLR-SD are
very small. The algorithm also accomodates a larger number of
waypoints, as shown by the fact that the GLR-SD paths are created
from a larger number of short segments, in contrast with the longer
segments in GLR-EOP.

Another interesting observation refers to the size of the unex-
plored "holes" in the path of the mobile sensor. The GLR procedure
guarantees that there will be an approximately equal number of
waypoints in every grid cells, but it does not guarantee that there
will be trajectory paths traversing the center of the cells. It is thus
possible that for grid cells with a lower resolution we have rela-
tively large holes in the center of the cells, while the waypoints are

connected through paths that a passing close to the borders of the
cells. Such holes are visible in the lower left part of the area for the
GLR-SD-2x2 and GLR-SD-4x4 algorithms in Figure 3.

Finally, Figure 4 shows the same setting for the GLR-CA algo-
rithms. The overall look of the paths shows an evolution from the
GLP-SD algorithm, retaining the general properties. The number
of points continued to increase, making the straight segments even
shorter. The GLR-CA algorithm remains prone to having large holes
in the centers of the grid cells, as it optimizes for paths lenght, not
for coverage. As in the case of GLR-SD, this problem gets amelio-
rated with the increase of the grid resolution.

The discussion, up to this point, as reflected in Figures 2, 3 and
4, reflected the state of the system after the successful conclusion
of the estimates within the exploration budget 𝑏. Under these as-
sumptions, systematic exploration is always the optimal strategy.

There are, however, many reasons for considering the quality of
the estimates at other points in the estimation lifecycle. For instance,
the customer of the sensing might require anytime information,
the ability to query the current model at any point during the
exploration. In a practical setting, there might be many reasons
for the system to finish the exploration early, for instance due to
weather events, mechanical failures or the actions of adversaries.

It is therefore useful to study the evolution of the quality of the
model as the exploration proceeds. Figure 5 shows the evolution
of the L1 score (negative mean absolute error). In these figures,
the 0 value is the best achievable. The exploration budget in these
experiments was 400, which means that the values at t=400 are
the ones corresponding to the models shown in Figures 2, 3 and 4.
The three figures compare the differently parameterized GLR-EOP,
GLR-SD and GLR-CA variants respectively to GBLM and RW. For
easier readibility, the figures had been an exponential smoothing
applied with a 0.66 smoothing parameter.

Overall, from these results we can draw the following conclu-
sions. All graphs start from score -0.4, which is the error beetween
the initial model assumption (no TYLCV outbreak) and the ground
truth. Overall, for all the trajectories, there is an increasing ten-
dency in the score, as the model gets better with the additional
observations. However, this increase is not monotonic, as the GP
model might make errors in its reasoning. As the case of FBLM
lines show, the score can actually dip below the one on the initial
assumptions, if the model predicts disease in areas where it does
not exist, while no disease in areas where it does. In the long run,
however, all the trajectories lead to increasingly better scores.

Comparing the different approaches, we find that, as expected,
the systematic exploration in FBLM ends up being either the best
or very close to it. If we are considering the accuracy in the model
earlier in the exploration, this is not the case in this scenario. In fact,
FBLM overtakes the randomwaypoint RWonly at around timepoint
375 out of 400. While this is due to some of the peculiarities of this
scenario, in particular the fact that the TYLCV outbread happens
to be relatively far from the origin, the fact remains that at halfway
in the exploration budget, systematic approaches will have a hole
that is of the size of half the explored area.

The GLR approaches, have a temporal evolution of performances
which situate them between the early increase of RW and the slower
but stead score increase of FBLM. Interestingly, for the GLR-EOP
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Figure 3: The path and end-of-experiment model performance of the GLR-SD algorithm compared to FBLM and RW using the
Gaussian Process estimator. Top row: the path of the mobile sensor. Center row: the ground truth for the TYLCV observations
(leftmost figure), and the estimate provided by the estimator at the end of the exploration. Bottom row: the uncertainty metric
of the estimator (the standard deviation of the Gaussian Process estimator at the specific point), at the end of the exploration.
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Figure 4: The path and end-of-experiment model performance of the GLR-CA algorithm compared to FBLM and RW using the
Gaussian Process estimator.
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approach, the coarser grids (2x2 and 4x4) perform better, while for
the GLR-SD and GLR-CA approaches, the finer grids (8x8) is better.

As an overall evaluation, the best performance at the end of
the exploration budget was achieved by the GLR-SD-8x8 variant,
however the differences between most algorithms were sufficiently
small to assign them primarily to random circumstances.

However, the differences were significantly larger earlier in the
process. We can conclude that, if anytime performance is of im-
portance, or if there is a significant risk of early termination of
the exploration, algorithms from the GLR family can be a better
alternative to both random waypoint and systematic exploration.
From the various variants we explored, the most valuables were
found GLR-EOP-2x2 and GLR-SD-8x8 (these grid sizes might need
to be appropriately scaled function of the area size). In this series
of experiments, we did not see an improvement from GLR-SD to
GLR-CA which would justify the additional computational cost.
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Figure 5: The evolution of the L1 score for the TYLVC detec-
tion.

8


	Abstract
	1 Introduction
	2 Related work
	3 Grid Limited Randomness
	4 Experimental study
	4.1 Experimental setup
	4.2 Experimental results

	Acknowledgments
	References

