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Abstract— In today’s era of automation, mobile robots are
being used for collecting meaningful information about an am-
bient phenomenon such as temperature or moisture distribution
in an agricultural field. Most of the studies in the literature
assume that the underlying information field is Gaussian, and
therefore, Gaussian Process (GP)-based models are extremely
popular. Furthermore, we have found that due to the inherent
computational complexity of such naive GP-based techniques,
most studies in the literature do not scale well beyond small-
size environments, i.e., where the number of informative points
n < 1000. These render such a predictive model more or less
useless in many practical applications. In this paper, we posit
that a different technique, Generative Adversarial Network-
based inpainting, for robotic information gathering can be
useful. The state-of-art inpainting techniques 1) do not assume
that the underlying data is Gaussian, and 2) easily scale to
n ≫ 1000. Thus, they eliminate the two bottlenecks posed by
the GP-based solutions. We have tested our hypothesis on a
synthetic and a real-world crop dataset. Results show that while
the inpainting technique easily scales to 1024×1024, GP-based
predictions cannot. On the other hand, their solution qualities
are shown to be comparable.

I. INTRODUCTION

The reduced cost and increasing sensing capabilities of
drones brought robotic information gathering, once the do-
main of military and law enforcement applications, to a much
wider audience. Farmers can use them to survey fields for
plant diseases or invasive species, contractors can survey
roofs to generate construction or repair cost estimates and
homeowners on vacation can use them to monitor their
premises. All these applications can be seen as instances
of the information gathering problem, where a mobile robot
takes observations from different spatial locations to be used
to create an information model of the phenomena of interest.
The quality of the final model depends on two factors: the
path of the robot, which determines what observations are
made, and the inference process that determines how the
information model is built from the observations.

Traditionally, the focus of research in this field was on path
planning, which trades cost factors (e.g. time, fuel, number of
robots) against the quantity and quality of observations [1],
[2], [3], [4]. If the user can afford enough resources to cover
the whole area of interest with observations, the inference
step becomes a straightforward step of stitching observations
together. However, in many applications, aiming for complete
coverage is impractical. This is especially the case for
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Fig. 1. The impact of missing information (rendered in yellow over
an otherwise grayscale image) within an agricultural imagery collection
scenario: (a) a block set of missing values due to limited collection resource
relative to the area-of-interest or (b) a speckled set of missing values due to
spurious environmental disturbances or sensor malfunctions. (c) An example
of a robot path mask where the robot has visited and sensed information
from the black locations only whereas the sensor measurements in the white
cells need to be inferred.

civilian or personal applications, where resources are at a
premium. In these cases, the inference step needs to estimate
the missing information based on the available observations.
Missing information may also result from unexpected sensor
malfunctions or environmental disturbances that result in
outliers during post-processing. Fig. 1 illustrates the impact
of incomplete coverage or identified outliers in the context
of grayscale imagery over a farm field1.

One of the most popular models for the inference step in
this problem is based on the idea of Gaussian inference. The
information to be acquired is represented as a scalar field
covering the geographical area, the observations are distinct
measurements made at particular locations. An assumption
of a normal distribution of the uncertainty at unobserved
locations allows the inference to be performed through a
Gaussian Process (GP) – a standard approach used in most
recent research projects [1], [3], [5], [6], [7], [8], due to
several desirable attributes. Under certain assumptions, a
rigorous theoretical foundation supports that the model is an
optimal representation [9]. Furthermore, as part of the cal-
culations already done, the model returns an estimate of the
uncertainty at each point [10]. Finally, while the algorithm
is complex, high-quality publicly available implementations

1Original image taken from https://ageagle.com/resources/
?filter_by=data-set
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exist that can be readily deployed.
As the deployment of robotic information gathering broad-

ens its users, GP-based approaches are confronted with
scalability problems. The O(n3) computational complexity
of the canonical GP problem makes it very difficult to scale
beyond several hundred observations and query points on
commonly accessible hardware. For instance, in a precision
agriculture application, the area of interest can be millions of
square feet for a typical farm. This motivates a challenging
research direction of high practical importance to find infer-
ence methods that approximate the performance of Gaussian
inference but have much better scaling properties.

The approach we take in this paper is to reverse the way in
which we are usually thinking about the inference problem.
Instead of inferring a map out of discrete observations,
we consider that the observations represent the final map,
which, however, has some missing parts. The goal of the
inference is thus to infer the missing parts of the map. This
reformulation allows us to take advantage of the significant
recent progress made in the computer vision community. The
general concept of image inpainting refers to a technique
to fill in missing information from an image which allows
the removal of scratches or editing of distracting objects by
replacing them with the inferred background [11]. The objec-
tives of image inpainting are to ensure that the filled-in area
is semantically correct and visually realistic. Both of these
desiderata can be formalized as a probability distribution of
the output. In contrast to Gaussian inference, the probability
models are significantly more complex and are not suitable
for closed-form expressions. In recent years, however, the
use of deep neural networks as representations of the distri-
bution and the use of training techniques such as generative
adversarial networks and variational autoencoders provided
efficient solutions to the image inpainting problem [12], [13].

In this paper, we adapt DeepFill (v2) [14], a recent
and well-established image inpainting model, to the task of
data model inference in robotic information gathering. The
application domain we are considering involves information
collection in precision agriculture where the size of the areas
involved makes the use of external models difficult to use.
We test our models both on real-world as well as synthetic
data and compare them with Gaussian Process regression in
terms of both scalability and model quality.

The primary contributions of this paper are as follows:
1) We propose a novel technique of inference in the

robotic information gathering problem based on tech-
niques inspired by image inpainting literature.

2) We show that the proposed inference model provides
comparative solution quality but scales significantly
better than a GP regression technique, or the standard
approach to inference in robotic information gathering.

II. RELATED WORK

The task of information gathering asks a robot to go
to k locations in an unknown environment and measure
information using onboard sensing capabilities such as a
camera or a humidity sensor. The sensor measurements in the

unvisited locations are predicted based on the measurements
in the visited locations [5]. In the offline version of the
problem, the hyper-parameters of the underlying ambient
phenomena are assumed to be known [2], [10]. Machine
learning models can be deployed to learn the parameters
in such offline setups and the robot can be deployed to
follow the best path found by the offline planner [8], [15].
Such offline assumptions do not usually hold in a real-
world information gathering application such as precision
agriculture [1] and ocean monitoring [3]. On the other
hand, the online variant does not involve such a strong
assumption, and the parameters of the process are learned
and tuned with the sampling of new unseen information [16],
[17]. Gaussian process (GP) [18] is the most commonly
used technique to model the information field [10], [3],
[16], [5], [17]. Primarily, two main performance metrics
are used to evaluate the quality of the paths: Entropy [16]
and Mutual Information (MI) [10]. Singh et al. have shown
that the problem of optimal information gathering is NP-
hard [5], and therefore, greedy (or, myopic) strategies have
been popularly deployed sometimes with provable worst-case
performance guarantees [19], [10]. Non-myopic solutions
plan the paths for longer horizons using techniques such as
dynamic programming [20], [21], [22]. Due to the use of
compute-intensive calculations including matrix inversions in
GPs, the researchers in the literature have mostly used small-
scale environments for testing their proposed algorithms.
Table I lists some of the recent papers in this domain and
the corresponding number of locations (nodes) their test
environments have. However, we would like to point out
that there is a sub-field in machine learning that is dedicated
to finding efficient solutions using sparse GPs unlike the
classic GP models employed in robotics [23], [24], [25]. It
is worth mentioning that the most noted work in the field
of information gathering that scales beyond 1000 locations
is due to Solin et al. [7], who have used a reduced-rank GP
model to achieve this.

Reference Environment Size (# of nodes)
Solin et al. [7] 9261

Viseras, Shutin, and Merino [17] 400
Viseras, Shutin, and Merino [4] 400

Ma, Liu, and Sukhatme [3] 144
Ma, Liu, and Sukhatme [26] 100

Wei and Zheng [8] 60
Our paper (Synthetic data) 1024

Our paper (Real-world data) 1,048,576

TABLE I
RECENT STUDIES ON GP-BASED INFORMATION SAMPLING AND THE

ENVIRONMENT SIZES USED IN THEM.

We argue that a different approach can be taken to solve
the information gathering without relying on a careful de-
sign of sophisticated sparse-GP techniques. Specifically, we
investigate a technique called inpainting [11], which is most
prominent in the field of image processing. The goal here
is to reconstruct missing parts of an image [27]. Recently,
due to the advancements in deep learning, image inpainting
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has received significant attention, and a plethora of new
techniques are now available in the literature [12], [28],
[29], [13], [14] that are based on Generative Adversarial
Networks [30]. Recently, Variational Auto-Encoder (VAE)
networks [31] has been used by Shrestha et al. [32] for
map configuration prediction. Li et al. [33] have used a
deep learning schema using CNN and RNN for active
information sensing and inference. The closest study to our
presented work is due to Caley and Hollinger [34]. The
main difference with their work is that they need careful
network design unlike ours. In this paper, we use a state-
of-art inpainting technique [14] for predicting the missing
sensor measurements in the unvisited locations and compare
the performance against a traditional GP-based solution from
the perspectives of solution quality and prediction time.

III. APPROACH

This section discusses the two primary approaches to
robotic information gathering that will be compared ex-
perimentally in Section IV. The first approach described,
referred to as DeepFill, leverages an inpainting technique
from Google based on Generative Adversarial Networks
(GANs) for image processing. To our knowledge, this tech-
nique has not before been applied in the robotic information
gathering context. The second approach described, referred
to as GaussFill, leverages canonical inference/learning tools
within MATLAB based on Gaussian Processes (GPs), which
have become a standard for the robotic information gathering
problem. DeepFill promises advantages in two main ways:
scalability and applicability.2 DeepFill’s scalability advan-
tage comes by virtue of inpainting being fundamentally an
image processing problem, where typical image sizes have
millions of pixels, which correspond to collection locations
in the navigation environment. DeepFill’s applicability ad-
vantage arises from the extent to which uncertainties in real-
world robotic environments only questionably befit Gaussian
Process assumptions e.g., in high-resolution agricultural im-
agery as shown in Fig.1 via low-altitude drones.

A. The DeepFill Image Inpainting Technique

Early approaches to image inpainting aimed to expand the
current texture of the image in a local neighborhood. While
this technique can be used successfully to fill in small areas
such as scratches on an old photograph or noisy pixels, it
fails when larger areas in the image need to be filled in,
where the technique cannot rely on neighboring or nearby
pixels [11], [40], [41].

More recent approaches consider global information in
the image and are suitable for filling in larger areas. These
techniques usually rely on generative models which, given a
condition expressed in the form of an incomplete image, gen-
erate a complete image drawn from a plausible distribution.
Many of these techniques are based on the general concept
of a generative adversarial network (GAN). GANs train

2It should be noted that there is, albeit beyond this paper’s scope, a
rich literature on large-scale approximate inference/learning (e.g., [35], [36],
[37], [38], [39]) that may challenge the stated advantages of DeepFill.

simultaneously two components, the generator that creates
an image starting from a random seed while taking into
account the specific condition and a discriminator that is
trained to distinguish between the “fake”, that is, generated
images, and the “real” images taken from the training set.
In this application, only the generator component is retained
after the training. The competition between the increasingly
better discriminator and the generator forces the generator to
increasingly better approximate the probability distribution
of the training data [30].

The application of image inpainting to the robot infor-
mation gathering problem is not immediate. While we are
interested in a semantically correct in-fill, visual realism is
usually not a requirement, thus global reasoning is more
important than retaining local texture. Given the complex
trajectory of robotic exploration, the missing areas might
be relatively large patches with unpredictable shapes. For
instance, in the case of generating missing information from
a map, the system needs to handle both map cells for
which nearby cells have valid observations, cells where the
neighbors have no observations, and cells at the corners of
the map where the neighboring cells are not defined.

One of the recent in-fill algorithms which aims to solve
in the image processing domain problems similar to the
ones faced in the robotic exploration is the DeepFill v2 [14]
model. The technique uses a model called gated convolu-
tions, which learns the contributions of the various types of
nearby pixels alongside the different features for each spatial
location. To handle the missing areas of arbitrary shape, the
system uses a variant of GANs called Spectral-Normalized
Markovian Discriminator (SN-PatchGAN), which general-
izes the concept of local and global GANs. For more details,
the readers are referred to [14].

B. The GaussFill Information Modeling Technique

Gaussian Process (GP) models of environmental uncer-
tainties [42], [10], [9] assume that all the collection locations
generate information according to Gaussian random vector
X with known (prior) mean vector µ and covariance matrix
Σ. Typical navigation planning constraints do not permit
full coverage of the environment, decomposing the set of
all collection locations into two disjoint subsets, U and
V , corresponding to the unvisited and visited locations,
respectively. Under negligible sensor noise assumptions, the
Gaussian random vector XU characterizing the uncollected
information has (posterior) mean vector and covariance ma-
trix given by equations

µU |XV
= µU +ΣUV Σ

−1
V V (xV − µV )

ΣUU |XV
= ΣUU − ΣUV Σ

−1
V V ΣV U

(1)

with XV = xV denoting the values measured in the
visited locations and the prior statistics organized into the
corresponding block forms with respect to U and V i.e.,

µ =

[
µU

µV

]
and Σ =

[
ΣUU ΣUV

ΣV U ΣV V

]
.
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For brevity, we omit the analogous equations in the case
of non-negligible sensor noise, which given any set of
measurements Y = y renders posterior statistics µX|Y and
ΣX|Y still involving all collection locations. In any case, the
resulting posterior mean is known to be the minimum-mean-
square-error predictor of the process given the measurements
i.e., in the context of (1), it is known that

µU |XV
= arg min

x̂∈R|U|
E
[
||XU − x̂||2 | XV = xV

]
with |·| denoting set cardinality, E[·] denoting the expectation
operator, and ||·|| denoting the vector 2-norm and, thus, ||·||2
is the sum over the squared elements of its vector argument.

In practice, the principal challenge of Gaussian prediction
is to obtain accurate prior statistics for the environmen-
tal information (and accurate noise statistics when sens-
ing errors are non-negligible). Such priors are typically
derived from training data via statistical learning methods
(e.g., maximum-likelihood [9]) and, for spatially-distributed
Gaussian processes, usually also leverage domain-specific
environmental considerations. A length-p Gaussian process
has d = 2p + p(p − 1)/2 degrees-of-freedom, in general,
where requirements that the number of training samples
n ≫ d are often formidable in robotics applications. In
such situations, it is common to assume a reduced-order
structure for the Gaussian process. For example, the so-called
“homogeneous and isotropic Gaussian Markov random field
using an exponential kernel” defines the covariance matrix
using just two hyper-parameters: given any pair of locations
i and j at spatial positions qi and qj , respectively, the kernel
function is given by

σ2
ij = β2 exp (−||qi − qj ||/ℓ)

where β > 0 is the local standard deviation and ℓ > 0
is the exponential rate of diminishing covariance between
increasingly-distant locations. Observe that such a process,
when β = 0, will deterministically render only the mean
field, whose p degrees-of-freedom can analogously exhibit a
reduced-order structure. Fig 2 illustrates a realization from
such a structured length-1024 Gaussian process, rendering
the information field over spatial positions on a 32x32
uniform grid within the two-dimensional, unit-square region.
Such Gaussian realizations become compatible with (8-bit)
grayscale image processing conventions by linearly scaling
the surface heights to span the interval [0, 255] and then
quantize. Indeed, Fig. 2 is an example of the synthetic data
considered in our experiments to be described next.

IV. EXPERIMENTS

This section describes the experiments through which we
explore various information inference techniques described
in Section III. These experiments involve two different sets
of imagery in PNG format, which we label “Synthetic”
and “Cropland,” as well as three different sets of randomly
selected missing data values, or masks, which we label
“Block”, “Speckled”, and “Path”. Fig. 1 has already mo-
tivated the consideration of these masks, illustrating their

Fig. 2. (a) A length-1024 realization from a zero-mean Gaussian process
(via MATLAB’s sqrtm and randn functions), mapped onto locations
over a 32x32 uniform grid in the unit square, with a spatially-correlated
covariance structure induced by exponential kernel parameters β = ℓ = 1.
(b) A mean-field that within the spatial region is proportional to the sum
of an upper ”valley” (with a peak depth of -5) and a lower “hill” (with a
peak height of +5), each a Gaussian-shaped surface centered by its length-2
mean vector (taking values [0.50; 0.75] and [0.50; 0.25], respectively) with
elliptical contours defined by its 2-by-2 diagonal covariance matrix (taking
values 0.0625 and 0.2500 in x and y, respectively). (c) The addition of
the spatially-correlated realization in (a) and the structured mean field in
(b). (d) The identical spatial pattern in (c) after linearly scaling the surface
heights according to grayscale image processing conventions.

distinct characters, while Fig. 2 displays the formation of an
actual image from the Synthetic set.

A. Setup and Configuration

1) Image Sets: Our Synthetic image set consists of 3000
different 32x32 8-bit grayscale images in PNG format,
each formed via first sampling from the same length-1024
Gaussian process and then proceeding exactly as outlined
in Fig. 2. Note that, by construction, our experiments thus
have perfect knowledge of the prior statistics governing
this Synthetic image set—in turn, the GaussFill technique
employing (1) using these prior statistics produces the opti-
mal prediction in the minimum-mean-square-error sense. Our
Cropland image sets are twofold, one set of 32x32 images
and the other of 1024x1024 images, each consisting of 1011
different 8-bit grayscale images in PNG format. Both sets
of Cropland images derive from the same original set of 24-
bit color images in JPEG format, which exhibited varying
sizes (in pixels) and varying spatial resolutions (in feet per
pixel).3 Across all of these original images, the coarsest
spatial resolution was 15 ft, and thus, as Fig. 3’s step from
(a) to (b) illustrates, after all the higher-resolution images
were appropriately downsized the smallest pixel dimensions
across all images became 1382x1843; the step from (b) to (c)

3The URL of the image repository was noted when first discussing Fig.1.
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Fig. 3. The pre-processing steps of downloaded cropland imagery in
preparation for the experimental comparison of DeepFill versus GaussFill
techniques: (a) a 24-bit color image as rendered from its original JPEG for-
mat, which has rectangular pixel dimensions and a higher spatial resolution
than others in the set; (b) the same image rendered after converting to 8-bit
grayscale and downsizing its pixel dimensions (respectively via MATLAB’s
rgb2gray and imresize functions using default settings) to match the
lowest spatial resolution in the set; and (c) a pair of square images, each
further downsizing the center-square portion of the image in (b) to have
pixel dimensions 1024x1024 and 32x32. The reduced spatial resolution of
the 1024x1024 version (bottom-left) is hardly noticeable to the human eye,
while that of the 32x32 version (bottom-right) is not only noticeable but its
textural pattern is arguably more similar to the synthetic imagery in Fig. 2.

illustrates the cropping and further downsizing to yield image
sets with the desired pair of square dimensions. It is worth
noting that our direct implementation of GaussFill does not
scale to Cropland’s 1024x1024 images; even for Cropland’s
32x32 images, GaussFill is no longer equipped with perfect
knowledge of the prior statistics nor is there even a guarantee
that Gaussian assumptions are truly applicable.

2) Mask Types: As was motivated in Fig.1, our experi-
ments will compare fill techniques assuming three distinct
types of patterns for the missing data values. The generated
patterns, or masks, are represented as binary images where
white (black) indicates a location with missing (non-missing)
data. In the GaussFill notation of (1), for example, the black
(white) pixels define the set V of visited locations (the set U
of unvisited locations). All masks designate (by white pixels)
that data is missing from 1

16 th grid cells in the environment.
Block masks are constrained to themselves be square with a
randomly-selected center such that it remains entirely within
the area of interest. Speckled masks select their locations
from the area of interest at random and without replacement.
Finally, the robot path masks represent a battery-constrained
robotic information gathering scenario, where the robot could
not visit all the locations in the environment, and therefore,
inference is needed to “know” the sensor measurements at
the unvisited locations. The robot randomly explores and
collects sensor measurements until 1

16 th grid cells are left
to be visited whose measurements we infer. This creates

irregular mask shapes.
3) Fill Techniques: Section III discussed the two primary

fill techniques of interest, DeepFill and GaussFill. Our imple-
mentation of DeepFill uses the Pytorch v2 version4, provided
as trained by its developers. Quoting the GitHub site:5 “The
training dataset is a collection of images from Places365-
Standard in which spatial sizes are larger than 512x512. (It
will be freer to crop images with a larger resolution during
training).” While the exact number of images used in the
training dataset is unknown, the Places365-Standard dataset6

has approximately 1.8 million images. We all also evaluate
a third technique called AverageFill, but its implementation
is straightforward: replace all missing data values with
the empirical average of the non-missing values. Its score
serves only as a lowest-fidelity method against which our
DeepFill versus GaussFill comparisons can be calibrated.
Recall that these comparisons also have a highest-fidelity
calibration by the mean-square-error optimality of GaussFill
when equipped with perfect knowledge of the prior statistics,
which by construction is available for the Synthetic image
set. On the Cropland image set, however, our implementation
of GaussFill must first determine suitable prior statistics.
We accomplish this through a maximum-likelihood fit (via
MATLAB’s fitrgp function using default settings) given
the unmasked data values. It assumes a reduced-order Gaus-
sian process relying upon identical structural assumptions
that the model parameters assigned in Fig. 4 are an instance
of. That is, when presented with a masked image from either
(32x32) set, the first step of GaussFill is to use the unmasked
data with maximum-likelihood to estimate the structured
mean field µ̂, the exponential kernel parameters (β̂, ℓ̂) and
then construct the associated homogeneous and isotropic
covariance matrix Σ̂. The GaussFill technique for predicting
the missing data values then proceeds in the same manner
as when true prior statistics are known, only using the fitted
statistics. On the Synthetic data, we thus can evaluate two
variations of the GaussFill technique, Gaussfill (optimal)
using the true prior statistics and GaussFill (fitted) using the
estimated prior statistics.

B. Results

Fig. 4 considers the 32x32 Cropland image of Fig. 3
against a particular pair of masks, one block and one speck-
led, and visualizes the fill results of our three techniques:
DeepFill, GaussFill (fitted) and AverageFill. On the other
hand, Fig. 5 shows an illustrative realization of the filled re-
sults on a 32x32 synthetic dataset using the above-mentioned
techniques. The indicated mean-square error (MSE) between
an original and a filled information field represents how
close-to-reality the modeling was, i.e., lower is better.

Table II presents the MSE values (in terms of averages
and standard deviations) for robot path masks and Synthetic
data samples. Our proposed DeepFill approach performs

4See https://github.com/csqiangwen/DeepFillv2_
Pytorch/tree/04d44efce277f6d67001e6ae0a187bcaf0f24860

5See http://places2.csail.mit.edu/download.html
6See https://github.com/CSAILVision/places365
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Fig. 4. A realization for two types of masks, namely (a) Block and
(b) Speckled, compatible with our 32x32 image sets. Both masks indicate
64 locations of missing data values, but the Block type always renders
them as a square region whereas the Speckled type renders them without
adjacency constraints. (The analogous two types of masks compatible with
Cropland’s 1024x1024 image set, which each indicate 65,536 locations
of missing data values, are visualized in Fig. 1.) Also shown under each
mask, given the 32x32 data of Fig. 3, are the fills using the three different
techniques and their corresponding MSE values.

almost 12 times better than the AverageFill approach while
performing only about twice as worse as the GaussFill
technique. Table III summarizes the associated MSE values
over the Synthetic image set while using block and speck-
led masks. As expected for the Synthetic data, GaussFill
(optimal) performed the best because of its knowledge of
the true prior statistics. Similarly expected is that Gaussfill
(fitted) performed close to the DeepFill technique. Note that
the relative differences between the MSE scores of DeepFill
and Gaussfill (fitted) is nearly negligible–the maximum being
1.72 times worse than GaussFill (fitted) with speckled masks
on the Synthetic dataset. On the other hand, the AverageFill
technique performs the worst—up to 33.19 times worse than
DeepFill on the synthetic dataset. Table IV presents the
same summary but over both Cropland image sets. On the
32x32 versions, DeepFill and GaussFill are again close in
performance relative to where AverageFill sits. For example,
with speckled masks, DeepFill performs only 1.73 times

(a) (b) (c) (d) (e)
Fig. 5. An example of a robot path mask and the inferred information fields
using three tested techniques are shown. a) Original spatial information
field, b) path mask (white cells indicate the unvisited locations – 1/16-th
of the environment), and the inferred data using c) DeepFill (MSE = 17.50),
d) GaussFill (Fitted) (MSE = 3.68), and e) AverageFill (MSE = 329.57)
techniques.

TABLE II
MEAN SQUARE ERRORS BETWEEN GROUND TRUTH AND FILLED DATA

OVER THE 8-BIT (32X32) SYNTHETIC IMAGE SET

Technique Robot Path Masks
DeepFill 16.54± 12.15

GaussFill (Fitted) 7.50± 9.87
AverageFill 197.18± 121.28

TABLE III
MEAN SQUARE ERRORS BETWEEN GROUND TRUTH AND FILLED DATA

OVER THE 8-BIT (32X32) SYNTHETIC IMAGE SET

Technique Block Masks Speckled Masks
DeepFill 15.78± 10.87 5.89± 2.04

GaussFill (Fitted) 9.33± 16.69 3.42± 4.67
AverageFill 200.21± 174.05 195.48± 40.87

GaussFill (Optimal) 6.85± 4.48 2.66± 1.05

worse than the GaussFill (Fitted). In case of block masks,
DeepFill performs even better—1.13 times worse than the
GaussFill (Fitted). Note that when an original 1024x1024
image is resized to 32x32 for the sake of testing against
the GaussFill technique, the (trilinear) interpolation essen-
tially averages the fine-grained neighborhood pixel values
to populate each coarse-grained pixel. While the resulting
32x32 image is more likely to obey Gaussian assumptions,
prompting the GaussFill technique to perform better than
expected, the greatly reduced spatial resolution is practically
useless for any real-world farming application (see Fig. 3 for
an example). With 1024x1024 Cropland data, GaussFill does
not scale while DeepFill continues to perform notably better
than AverageFill, especially on speckled masks (up to 9.17
times better). We notice high standard deviations in some
cases due to a few outliers. For example, on the Synthetic
dataset with block masks, the GaussFill (Fitted) technique
has a mean MSE score of 9.33, but a standard deviation
of 16.69. The highest MSE value in this case was 269.37
whereas the median was 5.84.

On all data sets, MSE scores are better with speckled
masks than with block and path masks. This is because filling
is essentially a neighborhood-extrapolation problem. In block
regions, there are increased chances of compounding errors
from border inwards while filling speckles has less of that
risk [11], [13]. This is also true for robot path masks as one
region (e.g., a corner) in the environment was completely
unexplored by the robot, which created a block-like mask in
essence. One should note that the relatively poorer perfor-
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TABLE IV
MEAN SQUARE ERRORS BETWEEN GROUND TRUTH AND FILLED DATA

OVER THE 8-BIT CROP IMAGE SETS (BOTH 32X32 AND 1024X1024)

Technique Block Masks Speckled Masks
The 32x32 Versions (spatial resolution of meters/pixel)

DeepFill 32.99± 59.74 9.41± 12.13
GaussFill (Fitted) 29.16± 60.29 5.43± 8.77

AverageFill 63.12± 82.28 65.45± 62.55

The 1024x1024 Versions (spatial resolution of meters/pixel)
DeepFill 65.04± 56.86 10.72± 6.90

AverageFill 96.82± 90.42 98.33± 71.90

mance of DeepFill on the Cropland (1024x1024) dataset with
block masks is because filling in a missing 256x256 region
of a high-resolution image is hard not only for any technique
but for human brains as well. In terms of run time, prediction
of the sensor measurements in the missing locations using
DeepFill was extremely fast, taking on average only 0.02
sec. and 0.62 sec. on, respectively, the 32x32 and 1024x1024
information fields.

V. CONCLUSION

Gaussian Process modeling is the most popular approach
in the robotic information gathering literature. However,
such modeling techniques usually suffer from scalability and
applicability issues. In this paper, we argue that we can
leverage the recent advances in deep neural networks and
image inpainting techniques for such information modeling
tasks. Unlike Gaussian-based models, the inpainting tech-
niques do not require the underlying information field of the
ambient phenomena to be Gaussian. Furthermore, they easily
scale beyond millions of pixels (informative locations in our
setting), which is infeasible for standard Gaussian Process-
based inference methods. To this end, we have employed a
state-of-the-art inpainting technique for such an information
modeling task on both synthetic and real-world crop datasets.
Experimental results show that the inpainting-based infer-
ence technique is extremely fast and it performed comparably
against the popular Gaussian regression technique while out-
scaling the regression method for large (1024x1024) crop
field modeling. In the future, we plan to adopt an active
sensing model, where the robot’s actively sensed information
will determine the inferred field, which in turn, will drive
the robot to the next location, where the robot will sense
information again. The process will continue until the robot’s
battery lasts.
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