
1

System-on-Chip Information Flow Validation under
Asynchronous Resets

Samit S. Miftah∗, Kshitij Raj†, Xingyu Meng∗, Sandip Ray†, Kanad Basu∗

∗ECE Department, University of Texas at Dallas, Richardson, TX, USA
†ECE Department, University of Florida, Gainesville, FL, USA

Abstract—Modern System-on-Chip (SoC) designs comprise
hundreds of individual IP blocks, each with its custom implemen-
tation of reset signals in most cases. The asynchronous nature of
these resets while crossing different reset domains makes the SoC
prone to various vulnerabilities if not implemented and validated
thoroughly. A key aspect in validating system functionality is
to ensure the functionality under reset is verified. Traditional
simulation-based validation techniques often become a bottleneck
in complex SoC designs due to the large control path of these
designs. We propose SoCCAR, a SoC validation framework
that addresses this problem. SoCCAR leverages control flow
graphs (CFG) of the design to extract the control flow associated
with property violations caused by reset domain crossings due
to asynchronous resets. SoCCAR efficiently tracks the chain
of events leading to the payload without suffering from state
space explosion, a common challenge in complex designs. We
test the efficacy of SoCCAR in detecting such vulnerabilities by
developing multiple SoC benchmarks, each embedded with cus-
tom vulnerability originating from reset implementations across
different domains. These vulnerabilities reflect practical design
complexity and correspond to security violations encountered in
practice as a result of multiple asynchronous resets. SoCCAR
successfully detected all violations with minimal computation
overhead and runtime, making it a viable approach for detecting
such violations in complex SoC designs.

Index Terms—RTL Verification, Asynchronous reset, Multiple
Reset Domain, Hardware Security.

I. INTRODUCTION

The growing demand for advanced System-on-Chips (SoCs)
in modern computing systems has led to larger and more
intricate RTL designs, resulting in increased complexity and,
as a consequence, a greater likelihood of functional errors
and security vulnerabilities [1]. In order to address these
challenges, SoCs undergo a rigorous functional verification
process, accounting for over 70% of resources and engineering
time [2]–[4]. Another crucial aspect of this verification effort
is security validation to provide assurance for both reliability
and security [4].

A major contributing factor to the increased design com-
plexity stems from asynchronous events such as asynchronous
resets, dynamic clock switching, software activities, and
analog/mixed-signal (AMS) events [5]. Their unpredictable
nature can create vulnerabilities that malicious actors may
exploit, jeopardizing the system’s integrity. Furthermore, the
presence of multiple reset domains in an SoC poses added
security challenges. These challenges include potential is-
sues like data corruption and synchronization problems when
signals traverse domains, particularly in cases where mul-

tiple IPs from untrusted vendors are integrated, each with
its distinct reset implementations. Due to the wide range
of potential asynchronous triggers, it becomes impractical
for an SoC security architect to foresee system behavior,
anticipate security risks, and proactively design safeguards.
Consequently, the reliability of SoC designs heavily relies on
security validation to identify and rectify problems arising
from asynchronous events. In practice, detecting corner cases
related to asynchronous events represents a complex challenge
and constitutes a substantial portion of the validation costs in
industrial SoC security validation.

There have been works on developing various methodolo-
gies for security verification of SoC designs. These methodolo-
gies include techniques like fuzzing, concolic testing, assertion
checking, and information flow tracking [6]–[10]. However,
these tools cannot comprehensively identify all the vulnerabil-
ities arising from asynchronous resets. In particular, dynamic
(simulation-based) techniques cannot exhaustively test all pos-
sible reset combinations. On the other hand, (commercial)
formal verification tools typically necessitate the identification
of all reset signals and analyzing the design under the assump-
tion that the system remains uninterrupted by resets during
execution. Although it is theoretically possible to relax the
restriction on reset signals and treat them as non-deterministic
free inputs, this approach leads to an overwhelming increase in
the number of reachable design states, exceeding the capacity
of existing formal tools. Moreover, the prevalent method em-
ployed to tackle scalability issues, namely manual abstraction,
often eliminates the specific edge cases in the design that give
rise to these violations. It is imperative to develop a security
validation technique capable of detecting asynchronous reset-
related violations while effectively managing the complexities
and scalability challenges inherent in contemporary SoC de-
signs without relying on manual abstractions.

In this paper, we introduce a novel approach, SoCCAR (SoC
Security Checker under Asynchronous Resets), to address
security vulnerabilities within the domain of SoC systems.
SoCCAR offers a solution for the identification of security vul-
nerabilities originating from asynchronous resets. This solution
hinges on two pivotal constituents: (1) an efficient algorithm
for the extraction of the control flow graph governing reset-
triggered events from the RTL design and (2) a symbolic test-
ing framework designed for the comprehensive exploration of
the design space, thereby ensuring detection of latent security
vulnerabilities. Our methodology relies upon the utilization
of symbolic execution techniques applied to the RTL code,



2

thereby enabling the rigorous assessment of the behavior of
reset signals on the security properties that undergo scrutiny.
To tackle state space explosion, we extract a control path
originating from the reset signals and terminating at the desired
property. Subsequently, with the control path extracted and
the number of states to be traversed significantly reduced, we
engage in an exhaustive symbolic execution procedure. The
complexity arising from multiple resets is addressed through
the extension of the control path across multiple modules. This
ensures the inclusion of any signals traversing reset signal
domains due to a reset event and exerting an influence on
other modules within the extracted controlled path. To test
the efficacy of SoCCAR and conduct an impartial evaluation,
we adopt a red team/blue team approach. In this approach,
one team is entrusted with the systematic insertion of security
vulnerabilities in accordance with a structured methodology,
while the other team is tasked with the detection of these vul-
nerabilities employing SoCCAR. It should be noted that this
paper proposes a methodology to detect security vulnerabilities
originating from asynchronous resets. Defenses against them
do not fall under the scope of this work.

The paper makes the following major contributions.

• SoCCAR, to the best of our knowledge, is the first
hardware security validation framework that comprehen-
sively accounts for asynchronous events during security
validation.

• We introduce path extraction from the control flow of
a hardware design. This technique enables the execution
of exhaustive symbolic analysis within a reduced search
space of states, effectively mitigating the issue of state
space expansion.

• We develop a methodology to address challenges posed
by multiple resets, particularly regarding the vulnerabili-
ties they can introduce across different reset domains.

• We evaluate SoCCAR’s effectiveness via a systematic
testbed using a red team/blue team approach. One team
introduced bugs into six variants of SoCs, while the other
deploys SoCCAR to detect them. The SoCs used are sim-
plified and sanitized versions of automotive (AutoSoC)
and mobile (ClusterSoC) SoCs. SoCCAR successfully
identified all bugs in this evaluation.

The rest of the paper is organized as follows. Section II
provides essential background information on RTL design
verification, and in Section III, we discuss the research chal-
lenges, primarily centered around RTL verification. Section IV
reviews prior works in this domain, while Section V presents
the architecture and operational principles of the SoCCAR
framework. Section VI provides an evaluation of the SoC-
CAR’s performance on benchmark SoCs, and Section VII
concludes this paper.

II. BACKGROUND

In this section, we provide an overview of the key concepts
that are related to our framework. We will discuss the concepts
of Reset Domain Crossing (RDC), Asynchronous reset, and
security validation in contemporary industrial practice.

Fig. 1: Simple SoC Architecture Differentiated by reset do-
mains.

A. Asynchronous Resets in SoC Designs

The complexity of SoC designs has increased due to the
integration of diverse subsystems (computing, memory, cryp-
tography, communication, etc.), each consisting of multiple
IPs operating asynchronously with distinct clock domains.
The practice of resetting individual modules has become a
prevalent approach to address runtime issues such as crashes,
violations, interrupts, etc. Modern SoC designs incorporate
multiple reset domains, each governed by independent reset
signals. An example of a simple SoC is shown in Figure 1.
Currently, industrial-grade SoCs encompass tens to hundreds
of reset domains, with each domain being managed by a
combination of asynchronous reset signals [11]. Nevertheless,
the application of asynchronous resets during execution can
lead to unpredictable system behavior, yielding elusive defects
that are arduous to detect.

B. Reset Domain Crossing

Reset domain crossing (RDC) refers to a sequential path in
the design where the source and the destination sequential
elements operate on independent resets [12]. Modern SoC
designs operate in multiple domains (clock, reset, power) to
accommodate various functionalities from different IPs and
enable these IPs to operate in diverse configurations [11].
Nonetheless, the presence of multiple reset domains intro-
duces several security vulnerabilities. Data transfer between
reset domains must be accurately synchronized to avoid data
corruption and reliability issues. Problems stemming from
multiple resets also include untimely deactivation, polarity
errors, activation sequencing, and insufficient reset cycles [5].

III. CHALLENGES OF ASYNCHRONOUS RESETS ON
MULTIPLE MODULES

To motivate the role of an asynchronous reset in the in-
formation flow violation of an SoC, we present the following
examples.

Example 1: Insufficient or incorrect reset logic in crypto-
graphic modules can lead to the failure of erasing memory [13]
at its intended timestamp. Additionally, metastability problems
may arise at the destination register when the reset of the
source register is not the same as that of the destination register
in an SoC [5].



3

Example 2: Furthermore, improper gating of reset signals
within multiple reset domains can result in reset domain
crossing (RDC) signals, leading to unexpected system behav-
ior [14]. Such issues encompass failure to flush memory, meta-
stability problems, and undesired state changes. For instance,
a reset in the RAM of an SoC may induce meta-stability issues
in the memory control unit. Another vulnerability related to
RDC involves a reset in the memory control unit, altering the
state of buffer register arrays, preventing data flushing, and
potentially causing data leakage in the system.

During dynamic verification of SoC designs, exhaustive
testing of all possible reset combinations throughout the exe-
cution is impractical. Formal verification involves the use of
mathematical analysis to validate system properties; however,
it depends on predetermined reset signals and is incapable
of detecting violations that may arise due to asynchronous
resets during execution. The overwhelming number of states
that would result from considering reset signals as non-
deterministic inputs would surpass the capacity of the current
formal tools.

Attempts to address scalability issues through manual ab-
straction often eliminate critical corner cases leading to vi-
olations. Therefore, there is a pressing need for a security
validation technique that detects violations resulting from
asynchronous resets while managing the complexities and
scalability challenges of modern SoC designs without resorting
to manual abstractions.

IV. RELATED WORKS

Hardware security validation encompasses diverse research
domains, one of which pertains to detecting information flow
violations [15]–[17]. Investigations in this domain involve the
application of formal methods, annotations, and type systems
to develop designs with proven security.

Formal method-based approaches have been extensively
researched and repurposed for directed test generation in RTL
verification [18], [19]. Furthermore, formal techniques are
employed to verify the validity of information flow policies
and to authenticate the integrity of RTL designs against such
policies [20], [21]. In order to make the formal verification
methods memory efficient, several methodologies have been
developed, such as symbolic model checking, partial order
reduction, symmetry reduction, and bi-simulation minimiza-
tion [22]–[27]. As designs become larger and more complex,
these techniques face challenges due to “state space explo-
sion” [4], [28]. In such cases, concolic testing is a promising
approach that employs symbolic execution for generating
directed tests [7], [29]. This method has shown success in
both software and hardware applications. Automated concolic
test generation techniques have also been explored to enhance
coverage for large-scale designs [30], [31]. In recent work, a
concolic testing-based approach was developed to validate the
security of an IP core [3].

In light of the increasing prevalence of SoC designs featur-
ing multiple clock and reset domains, several techniques have
been proposed to verify the secure transfer of signals between
said domains, referred to as clock domain crossing (CDC)

Fig. 2: SoCCAR Framework Workflow

and RDC, in order to guarantee trustworthy designs [32].
Several studies have looked into techniques for identifying
and managing errors in CDC [33], [34]. The challenges
that are specific to reset verification in hardware have been
categorized [5]. In order to address these challenges, the use of
assertions in conjunction with a reset distribution tree has also
been explored [11]. –However, and in spite of critical need,
we have not found any existing research on systematically
examining the potential security implications of these features.

V. SOCCAR ARCHITECTURE

SoCCAR has been developed to address the security chal-
lenges of detecting vulnerabilities arising from asynchronous
resets. The workflow of SoCCAR is shown in Fig. 2. SoCCAR
takes a security property list and the target SoC as inputs and
applies the verification steps discussed below. If any property
is violated, SoCCAR extracts the complete path from the
originating reset signal to the property violation as its output.

Consider an SoC design, S , containing IP modules
⟨M1, ...,Mk⟩, where each module Mi includes a list of
clock signals C[Mi] and reset signals R[Mi], together with a
(partially ordered) set of hardware events E[Mi]. These events
are composed of standard hardware operations and require
specific signals to trigger them. We define the relationship
between an event and its triggering signal as the signal
governing the event. In other words, if a signal, v, governs
event, e, we can assert that event, e, is controlled by signal,
v, within the module Mi, where e is an element of the set
E[Mi]. Each signal vi defines a chain of events Evi from the
control flow of Mi. vi is referred to as the governing signal
for Evi in Mi. The list of properties, Plist, defines the security
specifications of the SoC. Therefore, to ensure that an SoC is
secure from vulnerabilities arising from asynchronous resets,
SoCCAR needs to verify the properties, ⟨P1, ...,Pk⟩ ∈ Plist.

SoCCAR requirements: SoCCAR has two major functional-
ities: 1) traversing through the graph, and 2) running symbolic
execution using an SMT solver. To traverse and select paths
from the CFG, SoCCAR uses the networkX library [35] and
to run symbolic execution SymbiYosys [36].

To detect vulnerabilities originating from asynchronous re-
sets, SoCCAR includes four modules:



4

1) The CFG generator examines module design files and
creates control flow graphs (CFGs) for each module and
the properties. The “property CFG” is the control flow
graph representing conditions and assignments asserted
by a property. These CFGs are then utilized to identify
violations and track the source of the signal causing the
violation if one is found.

2) The module hierarchy constructor reads the RTL files.
Subsequently, it indexes the modules and constructs a
hierarchy of the modules within the SoC design. This
assists in the subsequent stage of tracing the origin signal
of the violation.

3) The property violation detector module first generates
CFGs for the listed properties and the specified modules
within the target SoC. Subsequently, it compares these
property CFGs with the module CFGs to detect viola-
tions. When a violation is detected, the corresponding
module is designated as the target module from which the
signal’s source is traced. This module of SoCCAR also
limits the number of state spaces, thereby overcoming the
problem of state space explosion.

4) Subsequently, the violation source tracer module traces
the RDC signal from the security violation to the source
signal (i.e., asynchronous reset). It constructs the sym-
bolic path of the violation.

A. CFG Generator

To facilitate the extraction of paths from the hardware con-
trol flow, SoCCAR constructs CFGs of the design using CFG
Generator. This step entails parsing each RTL file embedded
within the design and creating CFGs representing individual
modules’ control flow. When a security vulnerability is de-
tected, back-tracking through these CFGs gives SoCCAR the
ability to trace the vulnerability back to its origin point. Fig. 3
explains the procedure with an example. Notably, output of
design 2, as shown in Fig. 3(c), depends on the output of
design 1 shown in Figure 3(a). In case a vulnerability is found
in design 2 at line 2, the relevant CFGs of these modules can
be utilized to trace the source of this signal back to line 2
in design 1. In this scenario, the signal in question pertains
to an asynchronous reset. In Fig. 3 (b) and (d), notations
are employed to signify node numbers, their respective line
numbers in code, and their respective flow values. Flow values
refer to the level of the corresponding node in the control flow
graph. The CFG generator also generates CFGs for properties,
representing the conditional requirements to be met before
asserting the property. Note that these property CFGs differ
from module CFGs in that the conditions within them are not
required to maintain a specific order.

B. Module Hierarchy Constructor

To identify the path within the SoC overall control flow,
SoCCAR includes a procedure for hierarchy construction,
which entails indexing both the design and header files,
utilizing the Module Hierarchy Constructor. Here, “module
hierarchy” refers to the arrangement of SoC modules and
their organization within the overarching design. Algorithm 1

Fig. 3: Example of CFG of an RTL design vulnerable due to an
RDC signal originating from an asynchronous reset. (a) verilog
code of module: design 1, (b) CFG of module: design 1, (c)
verilog code of module: design 2, (d) CFG of module: de-
sign 2.

describes this process. The idea is to take the complete SoC
design as input and create a hierarchy, HS , and a list enlisting
modules of interest in the SoC, Mint. The design and header
files are collected, as shown in line 1 in Algorithm 1. Next,
all the design files are partially parsed to construct a list of
module names. In this step, only the names of the modules are
collected, thereby the term “partially parsing”. A class, CM ,
is defined to represent the modules in a structured manner
(line 2). This class will be regarded as “module class”. CM

stores the details of each module in the design, such as the
module’s name, design file name, input and output ports,
internal register names, involved header files, and related sub-
modules. This helps trace signal sources from the overall
control flow of the SoC.

Suppose an SoC is based on a hierarchy as shown in
Figure 4(a). To establish a relationship among the modules,
we define three basic relationships. Modules that undergo
instantiation are denoted as child modules, whereas those
performing instantiations are termed parent modules. Mod-
ules linked directly to one another without instantiations are
recognized as sibling modules. Considering sub-module 2.2
as our target module, modules that are instantiating sub-
module 2.2 in their design are its parent modules, such as



5

(a)

Top Module

Sub-module 1.2 Sub-module 1.3Sub-module 1.1 Sub-module 1.4

Sub-module 3.2

Sub-module 2.1 Sub-module 2.2 Sub-module 2.3

Sub-module 3.1

I\O-1 I\O-2 I\O-3 I\O-4

I\O-10I\O-9I\O-6

I\O-11

I\O-13I\O-12

I\O-7 I\O-8I\O-5

Hierarchy Details

I\O Sets: 1-13

Sub-modules: 1.1-1.4, 2.1-2.3, 3.1-3.2

Number of Levels: 4

Level 0 Sub-modules: Top Module

Level 1 Sub-modules: 1.1, 1.2, 1.3, 1.4

Level 2 Sub-modules: 2.1, 2.2, 2.3

Level 3 Sub-modules: 3.1, 3.2

(b)

Sub-module 2.2 Class

Class Name: Sub-module 2.2

File Name: "Sub-module 2.2.sv"

I\O: I\O set no.-(7,8, 9, 11, 12, 13)

Internal Register Names: reg_1, reg_2,...

Parent Modules: (1.2, 6), (1.3, 7), (1.4, 8)

Sibling Modules: (2.1, 10)

Child Modules: (3.1, 11), (3.2, 12)

(c)

Fig. 4: SoC design hierarchy construction.

Algorithm 1 Module Hierarchy Construction
Input: S , Pj ;
Output: HS , Mint, Creg

1: collect design files in dir
2: define CM
3: define Creg
4: initialize Mlist

5: initialize HS
6: for every reg in Pj append reg to Reglist
7: for each file in dir do
8: parse each file
9: append module names to Mlist

10: end for
11: for each file in dir do
12: parse each file
13: for Mi in each file do
14: instantiate and update CMi

15: instantiate Creg for each register in Mi

16: if all registers from Reglist in Mi then
17: append Mi to Mint

18: end if
19: end for
20: end for
21: construct HS using set of (CMi)
22: return HS , Mint

sub-modules 1.2, 1.3, and 1.4. Sub-modules 3.1 and 3.2, which
originate from sub-module 2.2, are the child modules of sub-
module 2.2. sub-modules 2.1 and 2.2 are connected without
instantiating each other; therefore, they are sibling modules.
SoCCAR lists the modules with their relationship and the
I/O ports that are used to connect the two modules. In the
example of Figure 4(a), sub-module 2.2 is instantiated by its
parent module sub-module 1.2 by I/O port set 7, the detail
of sub-module 2.2 is shown in Figure 4(b). In Figure 4(c),
module class for sub-module 2.2 lists the relationships and the
corresponding I/O ports as tuples. The class also records the
file name where the module design is located and the internal
register names list. Once the class is defined and a list of
module names is obtained (lines 7 to 9), SoCCAR proceeds
to create instances of these classes for each module, initializing

them appropriately. Alongside the module class, CM , another
class called Creg is introduced to capture and store information
about the internal registers within each module design (line 3).
This class will be referred to as “register class”, elaborated
in detail in Section V-D. A list, Reglist containing all the
registers’ names in the property, Pj , is also created (line 6).
SoCCAR parses the design files and collects the information
about the modules for constructing their respective classes,
as shown in line 14. During this process, the register class
instances are also updated (line 15). The module that contains
all the registers from reglist is added to the module of interest
list, Mint (line 17). If no such module is found in the design
files, S is categorized as violating the security properties, and
an error flag is raised, notifying to verify the correctness of the
security property. Using module classes, a complete graph of
the SoC design is constructed, which represents the hierarchy,
HS , of modules in S (line 21).

Note that the Module Hierarchy Constructor targets the
generation of a hierarchical structure denoted as HS , serving
as a comprehensive representation of the overall SoC design.
Furthermore,HS gives essential details regarding the I/O ports
employed for the interconnection of various modules within
the SoC. This feature supports the framework’s “Violation
Source Trace” module, making it easy to trace vulnerabilities
to their point of origin. (See Section V-D).

C. Property Violation Detector
SoCCAR utilizes the Property Violation Detector module

to identify any security property violations that may occur
while reducing state space. Algorithm 2 describes the overall
process of this module, how it identifies whether any module
in S violates the security properties Pj ∈ Plist and reduces
state space. It takes three inputs: module lists, Mlist, list of
modules of interest or victim module, Mint, and the security
property to verify, Pj .
1 property example_property;
2 @(p, q)
3 (cond_B & cond_D & cond_G) |->

Assignment_X;
4 endproperty //example_property
5

Listing 1: Property Example.



6

Algorithm 2 Property Violation Detection
Input: Mlist, Mint, Pj

Output: regvio, Mcurr

1: PCFG ← extractCFG (Pj)
2: Cl ← CFG2list (all conditions in PCFG)
3: CFGi ← extractCFG (Mi)
4: set vio flag = FALSE

5: initialize(symbolic list)
6: for each Mi in Mint do
7: initialize(path)
8: find alwaysblk−ij such that Senslst == SenslstP
9: mark(path)

10: condlstM ← alwaysblk−ij

11: for each condM in condlstM do
12: find condM such that condM ≡ (condP ∈ Cl)
13: if find == NULL then
14: unmark(path)
15: end if
16: condP1 ← condP−next

17: if relation (condP , condP1) = AND then
18: condlstM ← condM−blk

19: else if relation (condP , condP1) = OR then
20: condlstM ← condlstM
21: end if
22: end for
23: if all condP ∈ Cl is aligned then
24: append(symbolic list)
25: end if
26: end for
27: (vio flag, In pattern) =

execute symbolic analysis(symbolic list)
28: return In pattern if vio flag == TRUE

else “property verified”

Initially, SoCCAR analyzes the security property to extract
a CFG denoted as PCFG (line 1 in Algorithm 2). This CFG
outlines the required sequence and arrangement of conditions
and assignments within the SoC design. By isolating the
preceding conditions of an assignment, SoCCAR constructs
a list of conditions denoted as Cl (line 2). If the security
property P is satisfied, the CFGs from both the module and
the property should align. In order to verify the alignment,
SoCCAR extracts the CFG of the victim module, which is
determined using the property (line 3). The property list,
derived from the security property expressed in SystemVerilog
assertion (Listing 1), serves as an illustration. Subsequently,
SoCCAR aligns the conditions from PCFG with those from
MCFG and verifies the assignments to detect any violations.
The flag vio flag is initialized to FALSE (line 4) to indicate the
absence of violations. Here, the term “align with each other”
indicates that the conditions before an assignment specified
in the property match with those in the module’s CFG. To
illustrate, consider the code snippet presented in Listing 2. The
path leading to the assignment of the value valA to register
regA, governed by the conditions (A == B) and (C == D),
conforms to the corresponding property illustrated in Listing 2.
We refer to such instances as being aligned with one another.

1 always @(posedge clk) begin
2 if (A==B) begin
3 if (C==D) begin
4 regA = valA;
5 end
6 end
7 end
8 property regA_prop;
9 @(posedge clk) disable iff(nrst)

10 (A == B) && (C == D) |-> regA == valA;
11 endproperty

Listing 2: Example code(in SystemVerilog).

To align the conditions, the framework constructs the condi-
tion list, Cl, under an always block from the property (line 2).
From MCFG, always blocks with a sensitivity list, Senslst,
is selected, which should be similar to the sensitivity list of
the security property, SenslstP (line 6). Within the selected
blocks, SoCCAR identifies the conditional blocks such as a
condition C, where C ∈ Cl. If multiple conditions exist in
the security property before an assignment, SoCCAR aligns
them based on their relationships. If the conditions have a
relation of “AND”, SoCCAR attempts to align using nested
conditional block (lines 17-18). When the conditions have an
“OR” relation, the aligning procedures will find both conditions
on the same block level (lines 19-20). The condition alignment
process does not check instances of the conditions in sequence
unless it is explicitly mentioned in the security property. Upon
aligning each always/conditional block, the aligned blocks are
marked for symbolic execution. The block is unmarked if the
next conditional block is not found in one of the marked
blocks. The marking process ends once the traversal through
the CFG reaches the assignment, constructing a complete
path. These paths are appended to a list for running symbolic
execution (line 24). This list is used by the symbolic execution
engine to be restricted to selected paths.

SoCCAR runs symbolic execution on the marked paths
using SymbiYosys (line 27). Two types of symbolic execution
are executed on the module: (a) a complete symbolic execution
(assuming reset as a regular signal) and (b) conventional
symbolic execution (it is assumed that the reset will not be
triggered). From the paths in the symbolic execution list,
those related to asynchronous resets are marked for com-
plete symbolic execution, and the rest are for conventional
symbolic execution. A path is considered related to asyn-
chronous reset if the path is sensitive to reset, i.e., always
@(..., posedge/negedge reset, ...). By restricting the symbolic
execution engine within the selected paths, SoCCAR considers
all reset conditions, thereby alleviating state space explosion.
If a violation is detected during the symbolic execution, the
violation detector returns the input pattern needed to reach the
state. Otherwise, the property is declared as verified, and the
process is ended (line 28).

The clock cycles boundary allowed for symbolic execution
was set to 100 cycles for each step in the path. However, this
boundary can be modified by the user as required. Within this
predefined limit, using symbolic analysis, SoCCAR systemati-
cally explores the subsequent steps (conditions or assignment)
from the path. The property is deemed unsatisfied if these steps
are not identified within the set cycle boundary. In the case of



7

a property dictating that an assignment is accomplished after
a certain number of clock cycles following a condition, n, the
clock cycle boundary is set to (100+ n) cycles. Furthermore,
when the assignment is found within the boundary but at a
different clock cycle from the property, SoCCAR also regards
this as a property violation.

Current state-of-the-art formal tools such as Cadence Jasper-
gold and Synopsys Formal require the definition of reset
signals before verification can commence. This requirement
is due to the assumption that resets will not occur during
runtime in order to avoid state space explosion. Consequently,
these tools inadvertently overlook vulnerabilities associated
with asynchronous reset signals. To circumvent this, SoCCAR
adopts a strategy to prevent overlooking paths containing asyn-
chronous resets that might be disregarded under the aforemen-
tioned assumptions. Nevertheless, if a violation is triggered
by an RDC signal, the payload remains detectable through
traditional methods. However, the conventional methods fail
when detecting the source of the vulnerability, i.e., the origin
of the RDC signal. Our experimental results, shown in Table V
corroborate this.

D. Violation Source Trace

The Violation Source Trace module traces the violation of
a security property from the payload to the corresponding
asynchronous reset signal using Algorithm 3. This module
encompasses the process of tracing the asynchronous reset
signal responsible for the violation of the property. SoCCAR
takes the module violating the property, Mcurr, as input. Next,
an empty path PthS is initialized. To trace the violating
statement to the input, a class is defined to encapsulate
information about each register in Mcurr as mentioned in
Section V-B. The register represented by the class is regarded
as the host. The class contains information such as register
name, registers that are assigned to the host, and registers that
guard the assignment with a condition. An example of host
class is shown in Table I for “reg r1” in module “M 1”, an
example register to elaborate register class which includes the
module it is located, and the related registers in the module.

TABLE I: Example of Register Class.

Register Class

Host register name: reg r1
Module name: M 1
Guard register and corresponding value: (reg pr1, x), (reg pr2, y),

(reg pr3, z)

The subsequent phase of the tracing process entails iden-
tifying and isolating the erroneous statement. Once such a
statement is identified, the entire path, PthMcurr, of the CFG
in Mcurr is extracted (line 2 of Algorithm 3). By utilizing
the register classes associated with PthMcurr, the framework
generates a list of inputs, regarded as InMcurr, that lead to
the faulty assignment (line 3). The process of extracting the
path and constructing the list marks the completion of tracing

Algorithm 3 Violation Source Tracing
Input: Mlist, HS , Mcurr, IOS
Output: PthS

1: initialize PthS
2: Mcurr.pth ← extrct pth CFG (Mcurr, Creg.curr)
3: from Mcurr.pth construct InMCurr

4: append Mcurr.pth to PthS
5: while InMCurr ̸⊆ IOS do
6: traverse upper in HS
7: Mcurr ← parent (Mcurr)
8: extractCFG(Mcurr)
9: Mcurr.pth ← extrct pth CFG (Mcurr, Creg.curr)

10: from Mcurr.pth construct InMCurr

11: append Mcurr.pth to PthS
12: end while
13: return PthS

within the faulty module, and the path is appended to PthS
(line 4). If the inputs of InMcurr form a subset of SoC, S ,
the overall tracing process is completed (line 5). However,
if InMcurr is not a subset of the inputs of the SoC, InS ,
i.e., InMcurr ∈ InS , SoCCAR will proceed to traverse the
hierarchy upwards (line 6). In the higher level of the hierarchy,
SoCCAR will search the module Mi that contains the sub-
module Mcurr and assigns value to InMcurr. Subsequently,
this Mi becomes the new Mcurr, and the tracing continues
(line 7). The next iteration of tracing requires the construction
of updated InMcurr from the new Mcurr. SoCCAR generates
and analyzes CFG of the new Mcurr (line 8). Next, it performs
symbolic execution on the updated Mcurr to identify the path
from the CFG that corresponds to the input pattern for the old
Mcurr leading to the violation (line 9). SoCCAR extracts the
path and constructs InMcurr (line 10), and appends InMcurr

to PthS (line 11). It subsequently repeats the previous phase
until InMcurr ∈ InS or a reset in any module. Following
each tracing iteration, the extracted paths are combined to
form the complete path, PthS , as the final output of SoCCAR
(line 13). This complete path, PthS , establishes the symbolic
path from the asynchronous reset of the SoC to the violation
of the security properties. Through this procedure, SoCCAR
tracks any RDC signal back to the specific module where
the asynchronous reset was initiated. By using this process,
SoCCAR extracts only CFGs from the modules in the same
hierarchical path, which overcomes the challenge of extracting
the complete CFG for the entire SoC while minimizing the
false positive rate that comes with incomplete CFG.

VI. SOCCAR EVALUATION

This section provides a detailed explanation of the evalua-
tion approach used to assess SoCCAR’s efficacy in detecting
security violations caused by asynchronous resets. First, we
explain how we assess its performance. Next, we discuss the
process of designing representative SoCs and the bug insertion
strategy into the benchmarks. In conclusion, we showcase the
evaluation process, results, and findings from the evaluation
of SoCCAR.



8

mkCPU
RV32IMC

CPU Subsystem

mem_
controller de-burster

boot
ROM de-burster

SHA256 MD5

SPI UART

DFT IDFT

Memory Subsystem

SRAM
(SP)

SRAM
(DP)

mkCPU
RV32IC

AXI-
Wishbone
Adapter

Wishbone Fabric

Wishbone Fabric

Wishbone Fabric

AXI-
Wishbone
Adapter

AXI-
Wishbone
Adapter

I2C Ethernet

AX
I I

nt
er

co
nn

ec
t F

ab
ric

C
ry

pt
o

D
SP

C
om

m
un

ic
at

io
n

(a)

Wishbone Interconnect

Crypto Cores

Communication Cores DSP Cores

SHA
256

AES
192 DES3 RV32I RV32E

CPU Cores

SRAM
(SP)

SRAM
(DP)

Memory Blocks

SPI UART I2C FIR DFT IDFT

(b)

Fig. 5: SoC models used for SoCCAR evaluation. (a) AutoSoC: Hierarchical bus-based SoC topology. (b) ClusterSoC: Standard
bus-based SoC topology.

A. Evaluation Method

The assessment of SoCCAR in our study was done using
a red-team/blue-team approach. The red team studied and
crafted bugs, devised a methodology for their inclusion, and
developed diverse SoC benchmarks with embedded bugs. In
order to ensure an impartial evaluation, no exchange of infor-
mation took place between the red and blue teams with regard
to bug descriptions, IP classes, the frequency of occurrence,
types of bugs introduced, and their location. The blue team
only received the faulty design and the designated property
for verification from the red team, with no communication
regarding the design and implementation of SoCCAR between
the two teams. SoCCAR was evaluated based on the seven
properties listed in Section VI-D. These properties represent
the six violation types listed in Table IV.

B. Representative SoC design

We created several representative SoC benchmarks with
multiple reset domains. These designs are complex enough to
demonstrate SoCCAR’s scalability. The benchmarks represent
scaled-down versions of commercial SoCs commonly used in
developing mobile and Internet of Things (IoT) devices. They
have a hierarchical tiled architecture consisting of different
components such as processors and peripherals, as shown in
Figure 5. These components are connected through a shared
bus, and there are separate subsystems for domain-specific
applications. Bus bridges are used to connect the subsystems

TABLE II: Area Statistics of SoC Benchmarks. Results are
based on synthesized designs using AMD-Xilinx Vivado.

SoC Architecture SoC Variants RTL Lines Area Statistics

LUTs LUTRAMs FFs BRAMs

ClusterSoC
Variant #1

≈8200
33524 2641 13214 124

Variant #2 33862 2181 13286 124
Variant #3 31928 2258 12682 126

AutoSoC
Variant #1

≈3200
35826 2298 15622 126

Variant #2 38861 2971 18982 128
Variant #3 37972 2874 17214 128

to the main system bus, which follows the AMBA specification
and uses the AXI-4 protocol. However, the application-specific
subsystems use different protocols, like Wishbone and APB.

There are two main types of System-on-Chip (SoC) config-
urations used as benchmarks for the evaluation of SoCCAR:
hierarchical bus-based and standard bus-based. These config-
urations are depicted in Figure 5. AutoSoC is for automotive
applications, and ClusterSoC is for IoT/mobile applications.
Both models use open-source IP implementations from MIT-
CEP benchmarks and OpenCores.

The benchmarks utilized in this study are based on the
RISC-V ISA, with a specific focus on the RV32IM and
RV32IMC variants. The application-specific subsystems con-
sist of functional units called “islands”, such as cryptographic,
memory, communication, and DSP subsystems. For example,
the cryptographic subsystem includes modules for SHA256
and MD5, while the DSP subsystem has DFT, IDFT, and FIR
modules.

In order to showcase different security vulnerabilities as-
sociated with multiple reset domains, three distinct variants
were employed in creating the benchmarks. Table II presents
the area metrics for all three versions, encompassing LUTs
ranging from 35,800 to 38,900. These SoCs, despite their
complexity, have demonstrated the successful execution of
standard Linux benchmarks and RISC-V applications. Our
assessment of SoCCAR confirms its scalability and accuracy
when used with these SoC designs. Moreover, these SoC
benchmarks serve as a useful testing ground for diverse
SoC validation frameworks. They provide a manageable yet
feature-rich platform that reflects the complexity of commer-
cial SoC designs. It should be noted that other open-source
designs, including CVA-6 [37] and Rocket-chip-based [38]
SoC designs, were also considered as evaluation benchmarks.
However, we discovered that these SoCs lack the necessary
complexity to address our research goals. Specifically, our
research focuses on the security implications of multiple
asynchronous reset domains that interact and lead to subtle
security compromises. To explore these scenarios, we need



9

SoCs with multiple IPs, particularly the so-called “south clus-
ter IPs” that communicate asynchronously across various reset
domains. Unfortunately, neither of the mentioned SoCs exhibit
such interactions; they primarily implement processor-memory
cores rather than full-blown SoC functionality (despite these
interactions being common in industrial designs). Due to the
scarcity of sufficiently complex SoCs, we made the decision
to design and implement our own SoCs. These custom SoCs
serve as platforms for us and the research community, allow-
ing us to validate different research solutions using realistic
features found in industrial SoCs.

C. Bug Insertion Strategy

It is essential to identify the different types of bugs that
may occur in order to demonstrate the efficacy of SoCCAR.
Moreover, it is important that the bugs are rarely activated
and dispersed across various designs rather than restricted to
a single module. It is crucial to note that detecting various
bug types in one evaluation testbed through the verification
technique does not necessarily guarantee the identification
of bugs in other SoCs. To assess the thoroughness of the
evaluation, a systematic approach was developed to insert
suitable bugs into different variations of SoC benchmarks. The
frequency of each bug class was also varied within each SoC.

The methodology for introducing violations/bugs can be
broken down into three phases. First, we determine the type
of violation based on the category of IP. The rationale behind
this is that certain security violations are better suited for
specific categories of IPs. For example, a Denial-of-Service
bug is relevant to a router on the chip that connects different
islands, while an information leakage bug is relevant to a
cryptographic island. In the second phase, we insert these
bugs into various versions of the benchmark. Based on the
categorization, we have identified distinct types of bugs, which
have been presented in Table III. These bugs are designed to
evaluate the security of the system in a comprehensive manner.
During asynchronous resets, these bugs trigger the delivery of

particular payloads, which can compromise the core security
aspects of the SoC designs, including integrity, confidentiality,
and availability. We now describe the representative instances
of violations/bugs implanted onto the benchmarks:

a) Information Leakage: During an asynchronous reset,
the module fails to clear the registers storing plaintext and
keys used in cryptographic calculations, allowing unauthorized
processes to access these values.

b) Data Integrity: Failure of the read/write request ad-
dress range check following an asynchronous reset occurs due
to this bug. Unauthorized access to protected memory regions
can occur if memory address registers are not cleared properly.
The outcome of this could involve unauthorized read/write
operations.

c) Privilege Mode: This bug prevents the state machine
that manages the privilege settings of the RISC-V cores from
transitioning between the default modes i.e., user, supervisor,
and machine. To achieve this, we intentionally introduce
incorrect privilege switches during asynchronous resets in the
RISC-V cores. Consequently, the privilege level register is
assigned an undefined value, leading to a critical functionality
error due to the absence of an available privilege level.

d) Delay of Reset Signals: To avoid metastability or
sampling of asynchronous data, the clock cycle delay of reset
assertion must be taken into account during the design process.
If enforced incorrectly, an attacker may exploit such vulner-
abilities and gain access to sensitive data assets in protected
memory regions, perform unauthorized R/W operations, etc.

e) Unsynchronized RDC: When transitions in reset do-
mains lack synchronization mechanisms, changing the asyn-
chronous reset of a source register during operation can cause
the destination register to become “metastable”. This condition
can lead to security vulnerabilities, including information
leakage or data integrity violations.

f) Unsynchronized Reset Assertion: While considering
multiple reset domains, the order of reset assertion between
coupled blocks with RDC should be in sequence, else the

TABLE III: Summary of Security Violations/Bugs.

Violation Type Trigger Condition Impact

Information
Leakage Asynchronous reset in Crypto Engine

Inadvertent disclosure of confidential assets can happen if an attacker gains
access to unencrypted plain text through the cipher text port. This type of
bug compromises the confidentiality of secure assets in the SoC design.

Loss of Data In-
tegrity Asynchronous reset at memory module Unauthorized access of read and write operations to secure memory regions

breaches the integrity and confidentiality of on-chip assets.

Unavailability of
Privilege modes Asynchronous reset at processor core Failure to transition between privilege modes undermines the availability

of essential system functions.

Delay of Reset
Signals

Unaccounted clock cycle delay of reset as-
sertion

Delays in reset signals can cause timing violations, race conditions,
incorrect initialization of the circuit or memory elements, and also lead
to data integrity and confidentiality violations.

Unsynchronized
RDC

No synchronization mechanism between
transitions in different reset domains.

May induce metastability in registers controlled by different reset domains,
incorrect initialization of registers, and functional errors during run-time.

Unsynchronized
Reset Assertion

Out-of-order reset assertion between cou-
pled blocks with RDC

This may lead to incorrect/asynchronous sampling of data from registers. It
may also cause data integrity and confidentiality violations in cryptographic
IPs, memory blocks, etc. by allowing unauthorized read access to protected
memory regions before proper reset assertion.



10

TABLE IV: Bugs/Violations Injected in SoC Benchmarks for SoCCAR Evaluation.

Bug No. Violation Type
Bug/Violation Placement

ClusterSoC AutoSoC
Variant #1 Variant #2 Variant #3 Variant #1 Variant #2 Variant #3

AR#1 Information Leakage MD5, AES192 – AES192, SHA256 MD5, SHA256 AES192 –
AR#2 Data Integrity SRAM SRAM Wishbone Bus SRAM – –
AR#3 Privilege Mode – RV32I RV32E RV32-IC, RV32-IM RV-32IM –
AR#4 Delay in Reset Signal SHA-256 – SRAM(DP) – – –
RDC#1 Unsynchronized RDC – – – RV32-IC SHA-256 –
RDC#2 Unsynchronized Reset Assertion – – – – RV32-IMC SRAM(DP)

possibility of sampling asynchronous data may happen. This is
particularly crucial in IPs handling confidential data assets, i.e.,
crypto IPs, memory blocks, etc., and may lead to information
leakage and compromise data integrity.

In this study, we investigated bugs inspired by real security
vulnerabilities found in commercial SoC designs. These bugs
were then modified to match our evaluation criteria. We
created multiple instances of each bug type and integrated
them into our evaluation benchmarks using a random bug
injection process. The bugs, their variation type, and placement
in the SoC are shown in Table IV.

D. Evaluation Results

SoCCAR was successfully able to detect all three bugs, as
mentioned in Table IV. In the upcoming subsections, we will
discuss each bug from Table IV individually, providing more
information about them as reported by SoCCAR.

In Table V, we provide a detailed comparison of our
improved version of SoCCAR, the previous work [39], and
the widely-used state-of-the-art formal verification tool, Ca-
dence JasperGold [40]. Table V enlists the bug IDs used in
this paper and their violation type in the first two columns
respectively. The following six columns are organized in
pairs of violation and source detection ability by SoCCAR
v1.0, SoCCAR v2.0, and Cadence JasperGold. The tabu-
lated findings underscore that SoCCAR v2.0 excels in both
the detection of previously unidentified vulnerabilities (Bug
AR#2) and the vulnerabilities stemming from RDCs (Bug
RDC#1 and RDC#2). Furthermore, In our evaluation, as shown
in Table V, JasperGold could not identify violations of the
asynchronous reset violations (AR#1–AR#4). It was able to
identify the states responsible for two of the reset domain
crossing violations. Nevertheless, it lacks the capability to

identify the source signal leading to the occurrence of those
violations. Furthermore, we have also included the duration for
detecting each bug in Table VI. With the current benchmarks,
there were no false positives or negatives.

TABLE VI: SoCCAR bug detection time.

Bug No. Violation Type Time Duration

AR#1 Information Leakage 278 ms

AR#2 Data Integrity 312 ms

AR#3 Privilege Mode 284 ms

AR#4 Delay in Reset Signal 292ms

RDC#1 Unsynchronized RDC 748 ms

RDC#2 Unsynchronized Reset Assertion 806 ms

In the following paragraphs, we describe each of the bugs
with the property they violate and the report generated by
SoCCAR.

1) Bug AR#1: SoCCAR detected a bug causing in-
formation to be potentially leaked due to asynchronous
reset. This bug violates the property displayed in List-
ing 3. The property asserts that the keys and data
bits be cleared upon receipt of an asynchronous reset.
1 property inf_leakage;
2 @(posedge wb_clk_i)
3 wb_rst_i |=> (key[0]!) && (wbm_dat_o!)
4 endproperty //inf_leakage
5

Listing 3: Security property for Bug AR#1.

As seen from the CFG shown in Listing 4, if a reset occurs
during the operation of the AES module, the key value is set

TABLE V: SoCCAR comparison with previous version and Cadence JasperGold.

Bug No. Violation Type SoCCAR v1.0 SoCCAR v2.0 Cadence JasperGold
Violation Detection Source Detection Violation Detection Source Detection Violation Detection Source Detection

AR#1 Information Leakage ✓ ✓ ✓ ✓ ✗ ✗

AR#2 Data Integrity ✗ ✗ ✓ ✓ ✗ ✗

AR#3 Privilege Mode ✓ ✓ ✓ ✓ ✗ ✗

AR#4 Delay in Reset Signal ✓ ✓ ✓ ✓ ✗ ✗

RDC#1 Unsynchronized RDC ✗ ✗ ✓ ✓ ✓ ✗

RDC#2 Unsynchronized Reset As-
sertion ✗ ✗ ✓ ✓ ✓ ✗



11

to LOW. However, the data value is not being cleared thereby,
causing a potential information leakage. This bug is therefore
an information leakage type of bug as displayed in Table IV
1 Module: aes_top :: 3 :: wb_clk_i == 1 :: Alws;
2 Module: aes_top :: 3, 0 :: wb_rst_i == 1 :: C;
3 Module: aes_top :: 3, 0 :: key[0] <== 0 :: A;
4

Listing 4: CFG of Bug AR#1.

2) Bug AR#2: SoCCAR detected a data integrity failure
in the second benchmark SoC design. In this design, the
property listed in Listing 5, which asserts clearing of the
acknowledge flag and memory block information, is violated.

1 property dat_intgrty;
2 @(posedge wb_clk_i)
3 wb_rst_i |=> (mem[waddr2][32:24] == 0) &&

(wb_ack_o!)
4 endproperty //dat_intgrty
5

Listing 5: Security property for Bug AR#2.

However, in this benchmark SoC, no such logic was im-
plemented; thereby, upon resetting, the memory block and
acknowledgment flags are not cleared. This violates the data
integrity of an SoC that causes unauthorized write to memory.
This bug represents Bug type ‘B’ from Table IV.

3) Bug AR#3: A privilege transition error is observed by
SoCCAR in the third SoC design benchmark. This bug violates
the set of properties listed in Listing 6, which asserts that
after a reset the bus should go back to the initialization state.

1 property dat_intgrty;
2 @(posedge wb_clk_i)
3 wb_rst_i |=> state == WBSTART;
4 endproperty //dat_intgrty
5

Listing 6: Security property for Bug AR#3.

However, the CFG shown in Listing 7 demonstrates
that the property after a reset, one of the RISC-V cores
(picorv32) goes to an idle state, which does not clear the
privilege flags. This poses a critical flaw in maintaining
security regarding privilege level permissions of the SoC.

1 Module: picorv32_top :: 6 :: wb_clk_i == 1 ::
Alws;

2 Module: picorv32_top :: 6, 0 :: wb_rst_i == 1
:: C;

3 Module: picorv32_top :: 6, 0 :: state <== IDLE
:: A;

4

Listing 7: CFG of Bug AR#3.

4) Bug AR#4: An initialization error was detected by
SoCCAR in the third benchmark. The property demon-
strated in Listing 8 outlines the initialization protocol for the
SRAM(DP) module of the benchmark SoC. It specifies that the
“data last buf ” and “rp” registers should be cleared or set to
LOW one cycle after receiving a reset signal. SoCCAR detected
a violation of this property in the module “noc buffer”.

1 property rp_reset;
2 @(posedge clk)
3 rst |-> data_last_buf = 0 && rp = 0
4 endproperty //rp_reset
5

Listing 8: Security property for Bug AR#4.

As evidenced by Listing 9, upon receiving reset signal
in the AXI Adapter module in the NoC buffer, the regis-
ter rp is incremented by one after one clock cycle. The
source signal and the payload both belong to the same
module. The security of the SoC is violated by faulty logic.
1 noc_buffer :: 4 :: clk == 1 :: Alws;
2 noc_buffer :: 4, 0 :: rst == 1 :: C;
3 noc_buffer :: 4, 0 :: rp <== @(posedge clk) rp

+ 1 :: A;
4

Listing 9: CFG of Bug AR#4.

Due to this bug, the AXI adapter does not clear the register
‘rp’ upon a reset, causing incorrect initialization of the NoC
buffers. As illustrated by Table IV, Bug C is placed in the
SRAM (DP) module of the NoC in the SoC.

5) Bug RDC#1: SoCCAR detected a reset synchronization
error in the first SoC benchmark in the RV32IC module. This
bug violates properties shown in Listing 10, which asserts
proper synchronization of instruction fetch protocol. Listing 10
shows two properties. According to the first property, upon
reset, output instruction and next output of the programmable
counter must be LOW. The second property mandates that if the
ifid module is enabled, the instruction output of ifid must be
the same as the input instruction, and the next programmable
counter output must be the same as its respective input.
1 property reset_value_set_0;
2 @(posedge clk and negedge nRST) !nRST |=>

ifid.instr_out == 0 && ifid.pc_next_out == 0;
3 endproperty //reset_value_set_0
4 property reset_value_set_1;
5 @(posedge clk and negedge nRST) ifid.

enable == 1 |=> ifid.instr_out == ifid.
instr_in && ifid.pc_next_out == ifid.
pc_next_in;

6 endproperty //reset_value_set_1
7

Listing 10: Security property for Bug RDC#1.

Listing 11 illustrates the control flow of the reported vio-
lation. As seen in lines 1 to 4, the source of the RDC signal
causing the violation originates in the module exmem. The
RDC signal propagates through the modules datapath and
hazard unit (lines 4 to 11). Subsequently, it causes the ifid
module to have a delay in assigning the next program counter
value (lines 12 and 13).

The bug results in a synchronization issue within the system,
as the instruction fetch module experiences a delay in assign-
ing the next instruction. This bug was placed in the RV32IC
module of the SoC by the red team as displayed in Table IV.



12

1 exmem :: 0 :: CLK == 1, nRST == 0 :: Alws;
2 exmem :: 0, 0 :: nRST == 0 :: C;
3 exmem :: 0, 0 :: exif.dWEN_out <== ’0 :: A;
4 exmem :: 0, 0 :: exif.dREN_out <== ’0 :: A;
5 datapath :: 52 :: Comb/* :: Alws;
6 datapath :: 52 :: huif.WEN <== exif.dWEN_out

:: A;
7 datapath :: 52 :: huif.REN <== exif.dREN_out

:: A;
8 hazard_unit :: 0, 4 :: ++++ELSE++++ :: C;
9 hazard_unit :: 0, 4, 0 :: huif.ihit == 1 and

huif.REN == 0 and huif.WEN == 0 or huif.dhit
== 1 :: C;

10 hazard_unit :: 0, 4, 0 :: huif.ifid_enable <==
1 :: A;

11 ifid :: 0, 2, 0 :: ifid.enable == 1 :: C;
12 ifid :: 0, 2, 0 :: ifid.instr_out <== #1 ifid.

instr_in :: A;
13 ifid :: 0, 2, 0 :: ifid.pc_next_out <== #1

ifid.pc_next_in :: A;
14

Listing 11: CFG of RDC#2.

6) Bug RDC#2: SoCCAR detected an unsynchronized
reset assertion type of violation that violates the property
listed in Listing 12 in the first benchmark. This property
ensures that the memory control module maintains the
correct initialization of registers. The property description
in Listing 12 dictates that if the memory control is in
‘WBCACHE1’ state and the cache control’s ram state is
‘ACCESS’, the value of dwait[!dsource] and dwait[dsource]
must be 0 and 1 respectively in the same clock cycle.

1 property wbcache;
2 @(posedge CLK, negedge nRST)
3 (curr_state ==WBCACHE1 & ccif.ramstate==

ACCESS) |=> (ccif.dwait[!dsource] = 0 & ccif.
dwait[dsource] = 1);

4 endproperty //wbcache
5

Listing 12: Security property for Bug RDC#2.

1 ram :: 5, 0 :: nRST == 0 or addr == ramif.
ramaddr and ramif.ramREN == 1 or ramif.ramWEN
== 1 and count >= LAT :: C;

2 ram :: 5, 0 :: rstate <== ACCESS :: A;
3 system :: 0 :: multicore.prif <== ram.prif ::

A;
4 multicore :: 4 :: ccif.ramload <== scif.

ramload :: A;
5 multicore :: 5 :: ccif.ramstate <== scif.

ramstate :: A;
6 memory_control :: 1 :: Comb/* :: Alws;
7 memory_control :: 1, 3 :: curr_state ==

WBCACHE1 :: C;
8 memory_control :: 1, 3, 0 :: ccif.ramstate ==

ACCESS :: C;
9 memory_control :: 1, 3, 0 :: ccif.dwait[

dsource] <== 0 :: A;
10 memory_control :: 1, 3, 0 :: ccif.dwait[!

dsource] <== 0 :: A;
11

Listing 13: CFG of Bug RDC#1.

Listing 13 illustrates the control flow of the bug. The source
signal of the bug is indicated by the first line in the reported
CFG by SoCCAR. In Listing 13, it can be seen that under
the condition shown in line 1, the “RAM” module initiates an
RDC. The RDC propagates through system and multicore to
the module memory control (lines 4 to 6). This RDC causes

the module to violate the property (lines 6 to 10) by assigning
both ccif.dwait[!dsource] and ccif.dwait[dsource] registers to
LOW (line 9 and 10).

Therefore, due to Bug B, the implementation of an asyn-
chronous reset in the SoC RAM leads to the occurrence of
metastability issues in the Memory Controller. As illustrated
in Table IV, the bug is placed in the RV32IMC of the SoC.

VII. CONCLUSION

To ensure the security of complex SoC designs that consist
of multiple reset domains, it is crucial to consider viola-
tions that may arise due to erratic system behavior caused
by asynchronous resets. These violations can be extremely
rare and are among the most challenging bugs to detect in
current industrial practices. To the best of our knowledge,
our framework, SoCCAR, presents the first systematic ap-
proach that aims to detect such violations. The systematic
exploration of violations caused by asynchronous resets is
achieved by SoCCAR through CFG extraction and static
analysis of reset logic and their impact on its propagation
throughout the design. Although SoCCAR can significantly
mitigate the effects of state space explosion, it still has to
perform symbolic execution for 100 cycles after each step in
the path. If the path is excessively long, this could lead to high
memory usage and time consumption. In order to evaluate the
scalability and efficacy of SoCCAR in real-world SoCs, we
developed an elaborate experimental testbed. Based on our
evaluation of SoCCAR, we found that it attains near-perfect
detection accuracy within a few seconds of verification time.
It is noteworthy that SoCCAR operates directly on the RTL
implementation of complex SoCs without necessitating manual
abstraction.

VIII. ACKNOWLEDGMENT

This research is supported by NSF grant #2223046.

REFERENCES

[1] W. Chen, S. Ray, J. Bhadra, M. Abadir, and L.-C. Wang, “Challenges
and trends in modern soc design verification,” IEEE Design & Test,
vol. 34, no. 5, pp. 7–22, 2017.

[2] K. L. Maidhili, F. Noorbasha, A. Vamsi, and K. H. Kishore, “Reset
logic verification of an iod at system on chip level using gatesim,”
International Journal, vol. 8, no. 7, 2020.

[3] R. Zhang, C. Deutschbein, P. Huang, and C. Sturton, “End-to-end
automated exploit generation for validating the security of processor
designs,” in 2018 51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 2018, pp. 815–827.

[4] G. Dessouky, D. Gens, P. Haney, G. Persyn, A. Kanuparthi, H. Khattri,
J. M. Fung, A.-R. Sadeghi, and J. Rajendran, “{HardFails}: Insights
into {Software-Exploitable} hardware bugs,” in 28th USENIX Security
Symposium (USENIX Security 19), 2019, pp. 213–230.

[5] C. Kwok, P. Viswanathan, and P. Yeung, “Addressing the challenges of
reset verification in soc designs,” in Design and Verification Conference
(DVCon), 2015.

[6] R. Kande, A. Crump, G. Persyn, P. Jauernig, A.-R. Sadeghi, A. Tyagi,
and J. Rajendran, “{TheHuzz}: Instruction fuzzing of processors using
{Golden-Reference} models for finding {Software-Exploitable} vulner-
abilities,” in 31st USENIX Security Symposium (USENIX Security 22),
2022, pp. 3219–3236.

[7] A. Ahmed, F. Farahmandi, and P. Mishra, “Directed test generation using
concolic testing on rtl models,” in 2018 Design, Automation & Test in
Europe Conference & Exhibition (DATE). IEEE, 2018, pp. 1538–1543.



13

[8] V. M. Vedula, J. A. Abraham, J. Bhadra, and R. S. Tupuri, “A hier-
archical test generation approach using program slicing techniques on
hardware description languages,” Journal of Electronic Testing, vol. 19,
pp. 149–160, 2003.

[9] H. Witharana, Y. Lyu, S. Charles, and P. Mishra, “A survey on assertion-
based hardware verification,” ACM Computing Surveys (CSUR), vol. 54,
no. 11s, pp. 1–33, 2022.

[10] A. Ardeshiricham, W. Hu, J. Marxen, and R. Kastner, “Register transfer
level information flow tracking for provably secure hardware design,” in
Design, Automation & Test in Europe Conference & Exhibition (DATE),
2017. IEEE, 2017, pp. 1691–1696.

[11] I. Ahmed, K. Nouh, and A. Abbas, “Multiple reset domains verification
using assertion based verification,” in 2017 IFIP/IEEE International
Conference on Very Large Scale Integration (VLSI-SoC). IEEE, 2017,
pp. 1–6.

[12] M. Fawzy, A. Elgohary, and H. Ibrahim, “Noise reduction in reset
domain crossings verification using formal verification,” in 2020 IEEE
East-West Design & Test Symposium (EWDTS). IEEE, 2020, pp. 1–5.

[13] Hackdac, “Hackdac/hackdac 2018 beta: The soc used for the beta
phase of hack@dac 2018.” [Online]. Available: https://github.com/
hackdac/hackdac 2018 beta/tree/master

[14] P. Yeung, E. Marschner, and K. Liu, “Multi-domain verification: When
clock, power and reset domains collide,” in Design and Verification
Conferecen, DVCon, 2015.

[15] F. Farahmandi, Y. Huang, and P. Mishra, System-on-chip security.
Springer, 2020.

[16] D. Zhang, Y. Wang, G. E. Suh, and A. C. Myers, “A hardware design
language for timing-sensitive information-flow security,” Acm Sigplan
Notices, vol. 50, no. 4, pp. 503–516, 2015.

[17] X. Li, M. Tiwari, J. K. Oberg, V. Kashyap, F. T. Chong, T. Sherwood,
and B. Hardekopf, “Caisson: a hardware description language for secure
information flow,” ACM Sigplan Notices, vol. 46, no. 6, pp. 109–120,
2011.

[18] M. Chen and P. Mishra, “Property learning techniques for efficient
generation of directed tests,” IEEE Transactions on Computers, vol. 60,
no. 6, pp. 852–864, 2011.

[19] A. Gargantini and C. Heitmeyer, “Using model checking to generate tests
from requirements specifications,” ACM SIGSOFT Software Engineering
Notes, vol. 24, no. 6, pp. 146–162, 1999.

[20] Y. Jin and Y. Makris, “Proof carrying-based information flow tracking
for data secrecy protection and hardware trust,” in 2012 IEEE 30th VLSI
Test Symposium (VTS). IEEE, 2012, pp. 252–257.

[21] M.-M. Bidmeshki, A. Antonopoulos, and Y. Makris, “Information
flow tracking in analog/mixed-signal designs through proof-carrying
hardware ip,” in Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2017. IEEE, 2017, pp. 1703–1708.

[22] C. Baier, E. M. Clarke, V. Hartonas-Garmhausen, M. Kwiatkowska, and
M. Ryan, “Symbolic model checking for probabilistic processes,” in
International Colloquium on Automata, Languages, and Programming.
Springer, 1997, pp. 430–440.

[23] D. A. Parker, “Implementation of symbolic model checking for proba-
bilistic systems,” Ph.D. dissertation, University of Birmingham, 2003.

[24] E. M. Hahn, T. Han, and L. Zhang, “Synthesis for pctl in paramet-
ric markov decision processes,” in Nasa formal methods symposium.
Springer, 2011, pp. 146–161.

[25] A. F. Donaldson and A. Miller, “Symmetry reduction for probabilistic
model checking using generic representatives,” in International Sympo-
sium on Automated Technology for Verification and Analysis. Springer,
2006, pp. 9–23.

[26] M. Kwiatkowska, G. Norman, and D. Parker, “Symmetry reduction for
probabilistic model checking,” in International Conference on Computer
Aided Verification. Springer, 2006, pp. 234–248.

[27] J.-P. Katoen, T. Kemna, I. Zapreev, and D. N. Jansen, “Bisimulation
minimisation mostly speeds up probabilistic model checking,” in Inter-
national Conference on tools and algorithms for the construction and
analysis of systems. Springer, 2007, pp. 87–101.

[28] M. Chen, X. Qin, H.-M. Koo, and P. Mishra, System-level validation:
high-level modeling and directed test generation techniques. Springer
Science & Business Media, 2012.

[29] K. Sen, D. Marinov, and G. Agha, “Cute: A concolic unit testing engine
for c,” ACM SIGSOFT Software Engineering Notes, vol. 30, no. 5, pp.
263–272, 2005.

[30] G. Li, P. Li, G. Sawaya, G. Gopalakrishnan, I. Ghosh, and S. P.
Rajan, “Gklee: concolic verification and test generation for gpus,” in
Proceedings of the 17th ACM SIGPLAN symposium on Principles and
Practice of Parallel Programming, 2012, pp. 215–224.

[31] K. Cong, F. Xie, and L. Lei, “Automatic concolic test generation
with virtual prototypes for post-silicon validation,” in 2013 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD). IEEE,
2013, pp. 303–310.

[32] P. Ashar, “Static verification based signoff-a key enabler for managing
verification complexity in the modern soc,” in 2013 Formal Methods in
Computer-Aided Design. IEEE, 2013, pp. 15–15.

[33] N. Karimi and K. Chakrabarty, “Detection, diagnosis, and recovery from
clock-domain crossing failures in multiclock socs,” IEEE transactions
on computer-aided design of integrated circuits and systems, vol. 32,
no. 9, pp. 1395–1408, 2013.

[34] K. Takara, C. Kwok, N. Jain, and A. Hari, “Next-generation power
aware cdc verification–what have we learned,” in Design and Verification
Conference and Exhibition United States, 2015.

[35] A. Hagberg, P. Swart, and D. S Chult, “Exploring network struc-
ture, dynamics, and function using networkx,” Los Alamos National
Lab.(LANL), Los Alamos, NM (United States), Tech. Rep., 2008.

[36] YosysHQ, “Symbiyosys: A front-end driver for yosys-based formal
verification,” https://github.com/YosysHQ/sby, 2024.

[37] F. Zaruba and L. Benini, “The cost of application-class processing:
Energy and performance analysis of a linux-ready 1.7-ghz 64-bit risc-
v core in 22-nm fdsoi technology,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 27, no. 11, pp. 2629–2640, 2019.

[38] K. Asanović, R. Avizienis, J. Bachrach, S. Beamer, D. Biancolin,
C. Celio, H. Cook, D. Dabbelt, J. Hauser, A. Izraelevitz, S. Karandikar,
B. Keller, D. Kim, J. Koenig, Y. Lee, E. Love, M. Maas,
A. Magyar, H. Mao, M. Moreto, A. Ou, D. A. Patterson, B. Richards,
C. Schmidt, S. Twigg, H. Vo, and A. Waterman, “The rocket chip
generator,” EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2016-17, Apr 2016. [Online]. Available: http:
//www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html

[39] X. Meng, K. Raj, A. P. D. Nath, K. Basu, and S. Ray, “Soccar: Detecting
system-on-chip security violations under asynchronous resets,” in 2021
58th ACM/IEEE Design Automation Conference (DAC). IEEE, 2021,
pp. 625–630.

[40] “Jasper rtl apps | cadence - cadence design systems.”
[Online]. Available: https://www.cadence.com/en US/home/
tools/system-design-and-verification/formal-and-static-verification/
jasper-gold-verification-platform.html

Samit Miftah (S’23) is a doctoral student in the
Department of Electrical and Computer Engineering
at the University of Texas at Dallas, Richardson,
Texas as part of the TIES lab. He received his B.Sc in
Engineering degree in Electrical & Electronic Engi-
neering from Bangladesh University of Engineering
and Technology (BUET) in 2019. Samit is pursuing
his Ph.D. in the domain of Hardware Security. His
research interests include hardware and system secu-
rity, Trojan detection and hardware verification. His
research has been published in Hardware Oriented

Security and Trust (HOST).

Kshitij Raj (S’19) is a doctoral student in the
Department of Electrical and Computer Engineering
at the University of Florida, Gainesville, Florida as
part of the Rising lab. He received his B.Tech degree
in Electronics & Telecommunication Engineering
from KIIT University, India, in 2017 and his Masters
degree in Electrical and Computer Engineering from
the University of Florida in 2020. Kshitij is pursuing
his Ph.D. in the domain of Secure Silicon Design
and Validation. His research interests lie in the
field of Silicon Architecture, Design, Validation and

Micro-architecture Verification. His research has been published in Design
Automation Conference (DAC), Design, Automation and Test in Europe
Conference (DATE), AsianHOST Conference, etc.

https://github.com/hackdac/hackdac_2018_beta/tree/master
https://github.com/hackdac/hackdac_2018_beta/tree/master
https://github.com/YosysHQ/sby
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform.html


14

Xingyu Meng (S’20) is a doctoral student in the
department of Electrical and Computer Engineering
at the University of Texas at Dallas as part of
the Trustworthy and Intelligent Embedded System
(TIES) lab. He received his BE degree in Electronics
Science and Technology from Nankai University in
2015, and he received his MS degree in System
Engineering from the University of Texas, Dallas,
in 2019. His research interests include hardware
and system security, Trojan detection and hardware
verification. His research has been published in

Design Automation Conference (DAC), IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems (TCAD), etc.

Sandip Ray (SM’13) is a Professor with the De-
partment of Electrical and Computer Engineering,
University of Florida, Gainesville, FL, USA, where
he holds an Endowed IoT Term Professorship at
the Warren B. Nelms Institute for Connected World.
Before joining University of Florida, he was a Senior
Principal Engineer at NXP Semiconductors, and
prior to that, he was a Research Scientist with Intel
Strategic CAD Laboratories. During his industry
tenure, he led industrial research and R& D in pre-
silicon and post-silicon validation of security and

functional correctness of SoC designs, design-for-security and design-for-
debug architectures, and security validation for automotive and Internet-of-
Things applications. His current research targets correct, dependable, secure,
and trustworthy computing through the cooperation of specification, synthesis,
architecture, and validation technologies. He is the author of three books and
over 100 publications in international journals and conferences. He has also
served as a Technical Program Committee Member of over 50 international
conferences, as the Program Chair of ACL2 2009, FMCAD 2013, and IFIP
IoT 2019, as a Guest Editor for IEEE DESIGN & TEST, IEEE TMSCS,
and ACM TODAES, and as an Associate Editor of Springer HaSS and IEEE
TMSCS. He has a Ph.D. from the University of Texas at Austin.

Kanad Basu (S’07-M’12-SM’20) received his Ph.D.
from the department of Computer and Information
Science and Engineering, University of Florida. His
thesis was focused on improving signal observability
for post-silicon validation. Post-PhD, Kanad worked
in various semiconductor companies like IBM and
Synopsys. During his PhD days, Kanad interned at
Intel. Currently, Kanad is an Assistant Professor at
the Electrical and Computer Engineering Depart-
ment of the University of Texas at Dallas. Prior
to this, Kanad was an Assistant Research Professor

at the Electrical and Computer Engineering Department of NYU. He has
authored 2 US patents, 2 book chapters, and several peer-reviewed journal
and conference articles. Kanad was awarded the ”Best Paper Award” at the
International Conference on VLSI Design 2011. Kanad’s current research
interests are hardware and systems security.


	Introduction
	Background
	Asynchronous Resets in SoC Designs
	Reset Domain Crossing

	Challenges of Asynchronous Resets on Multiple Modules
	Related Works
	SoCCAR Architecture
	CFG Generator
	Module Hierarchy Constructor
	Property Violation Detector
	Violation Source Trace

	SoCCAR Evaluation
	Evaluation Method
	Representative SoC design
	Bug Insertion Strategy
	Evaluation Results
	Bug AR#1
	Bug AR#2
	Bug AR#3
	Bug AR#4
	Bug RDC#1
	Bug RDC#2


	Conclusion
	Acknowledgment
	References
	Biographies
	Samit Miftah
	Kshitij Raj
	Xingyu Meng
	Sandip Ray
	Kanad Basu


