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Abstract
A (p, q)-colouring of a graph G is an edge-colouring of G which assigns at least q colours to each p-clique.
The problem of determining the minimum number of colours, f (n, p, q), needed to give a (p, q)-colouring
of the complete graph Kn is a natural generalization of the well-known problem of identifying the diag-
onal Ramsey numbers rk(p). The best-known general upper bound on f (n, p, q) was given by Erdős and
Gyárfás in 1997 using a probabilistic argument. Since then, improved bounds in the cases where p= q
have been obtained only for p ∈ {4, 5}, each of which was proved by giving a deterministic construction
which combined a (p, p− 1)-colouring using few colours with an algebraic colouring.
In this paper, we provide a framework for proving new upper bounds on f (n, p, p) in the style of these
earlier constructions. We characterize all colourings of p-cliques with p− 1 colours which can appear in
ourmodified version of the (p, p− 1)-colouring of Conlon, Fox, Lee, and Sudakov. This allows us to greatly
reduce the amount of case-checking required in identifying (p, p)-colourings, which would otherwisemake
this problem intractable for large values of p. In addition, we generalize our algebraic colouring from the
p= 5 setting and use this to give improved upper bounds on f (n, 6, 6) and f (n, 8, 8).
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1. Introduction
Let p and q be positive integers such that 1≤ q≤ (p

2
)
. We say that an edge-colouring of a graph G

is a (p, q)-colouring if any p-clique of G contains edges of at least q distinct colours. In 1975, Erdős
and Shelah [5] posed the question of determining f (n, p, q), the minimum number of colours
needed to give a (p, q)-colouring of the complete graph on n vertices, Kn.

This function f (n, p, q) is known as the Erdős-Gyárfás function after the authors of the first
paper [6] to systematically study (p, q)-colourings. The majority of their work focused on under-
standing the asymptotic behaviour of this function as n→ ∞ for fixed values of p and q. One of
their primary results was a general upper bound of

f (n, p, q)=O

(
n

p−2
(
p
2)−q+1

)

obtained using the Lovász Local Lemma, while one of the main problems they left open was the
determination of q, given a fixed value of p, for which f (n, p, q)= �(nε) for some constant ε, but

C© The Author(s), 2022. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the
Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and
reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1017/S0963548322000293 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548322000293
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0963548322000293&domain=pdf
https://doi.org/10.1017/S0963548322000293


350 A. Cameron and E. Heath

p − k

k

Figure 1. An example of a p-clique with a leftover structure.

f (n, p, q− 1)= no(1). Towards this end, they found that

n
1

p−2 − 1≤ f (n, p, p)≤ cn
2

p−1 ,

where the lower bound is given by a simple induction argument and the upper bound is a special
case of their general upper bound. However, they did not determine whether f (n, p, p− 1)= no(1).

In 2015, Conlon, Fox, Lee, and Sudakov [3], building on work done on small cases by Mubayi
and Eichhorn [4, 7], showed that f (n, p, p− 1)= no(1) by constructing an explicit (p, p− 1)-
colouring using very few colours. In [2], we slightly modified their colouring, which we call the
CFLS colouring, and paired it with an ‘algebraic’ construction to show f (n, 5, 5)≤ n1/3+o(1). This
improves on the general upper bound found by Erdős and Gyárfás and comes close to matching
their lower bound in terms of order of growth. Our construction built on the ideas of Mubayi
in [8], where he gave an explicit construction showing f (n, 4, 4)≤ n1/2+o(1).

In this paper, we push these ideas further. In Section 2, we prove the following result.

Theorem 1.1. For any p≥ 3, there is a (p, p− 1)-colouring of Kn using no(1) colours such that
the only p-cliques that contain exactly p− 1 distinct edge colours are isomorphic (as edge-coloured
graphs) to one of the edge-coloured p-cliques given in the definition below.

Definition 1.1. Given an edge-colouring f : E(Kn)→ C, we say that a subset S⊆V(Kn) has a left-
over structure under f if either |S| = 1 or there exists a bipartition (which we will call the initial
bipartition) of S into nonempty sets A and B for which

• A and B each have a leftover structure under f ;
• f (A)∩ f (B)= ∅; and
• there is a fixed colour α ∈ C such that f (a, b)= α for all a ∈A and all b ∈ B and α �∈ f (A)

and α �∈ f (B).

See Figure 1 for an example of a leftover structure. Alternatively, a more constructive definition
is to say that a p-clique S is leftover if either p= 1 or if it can be formed from a leftover (p− 1)-
clique by taking one of its vertices x, making a copy x′, colouring xx′ with a new colour, and
colouring x′y with the same colour as xy for each y ∈ S for which y �= x. Note that it is easy to see
by induction that these p-cliques always contain exactly p− 1 colours.

One of the general difficulties in producing explicit (p, q)-colourings is dealing with the large
number of possible non-isomorphic ways to colour the edges of a p-clique with fewer than q
colours in order to demonstrate that a construction avoids them. By identifying the ‘bad’ struc-
tures that are leftover after using only no(1) colours, we are able to greatly reduce the amount of
case-checking required in identifying (p, p)-colourings, which would otherwisemake this problem
intractable for large p.
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More precisely, one of the nice properties of these leftover structures is that any subset of ver-
tices of a leftover clique induces a clique that is itself leftover. Therefore, any edge-colouring of
Kn that eliminates leftover p-cliques also eliminates all leftover P-cliques for any P ≥ p. Moreover,
by Theorem 1.1, if this colouring uses nε+o(1) colours, then f (n, P, P)≤ nε+o(1), as the product of
this colouring with the one guaranteed in Theorem 1.1 will avoid any P-clique with fewer than P
colours for each P ≥ p.

As a specific example, in [2] we gave a (5, 5)-colouring of Kn that used n1/3+o(1) colours.
Since this colouring avoids leftover 5-cliques, then it also avoids leftover P-cliques for all P ≥ 5.
Therefore, if we take the product of this colouring with the appropriate one developed in
Section 2 that eliminates all 6-cliques with 5 or fewer colours other than leftover 6-cliques, then we
have a (6, 6)-colouring that uses only n1/3+o(1) colours, improving the best-known upper bound
given above, O(n2/5).

In Section 3, we generalize the algebraic portion of our colouring in [2], the ‘Modified Dot
Product’ colouring, to a version that eliminates leftover 6-cliques with O(n1/3) colours (making
the above example redundant) and eliminates leftover 8-cliques with O(n1/4) colours. By taking
the product of these colourings with the appropriate ones developed in Section 2, this gives us the
following theorem.

Theorem 1.2. We have the following upper bounds:

f (n, 6, 6)= n1/3+o(1); f (n, 8, 8)= n1/4+o(1).

This improves the best-known upper bound f (n, 8, 8)=O(n2/7) as well.

2. Modified CFLS colouring
In this section, we define an edge-colouring ψp of the complete graph with vertex set {0, 1}α for
some positive integer α. This construction is the product of two colourings, ψp = cp × �p, where
cp is the (p+ 3, p+ 2)-colouring defined in [3]. In many places, this section tracks parts of the
proof given in [3], and we have attempted to keep the notation consistent with that paper to make
cross-referencing easier.

We will prove the following lemma about the colouring cp.

Lemma 2.1. Let p be a fixed positive integer. Any subset S⊆ {0, 1}α with |S| ≤ p+ 3 vertices that
contains exactly |S| − 1 distinct colours under the edge-colouring cp either has a leftover structure
under cp or contains a striped K4 under cp.

A striped K4, as described by the following definition, was first defined in [8].

Definition 2.1. Let f : E(G)→ C be an edge-colouring of a graph G. We call any 4-clique of G,
{a, b, c, d} ⊆V(G), for which f (ab)= f (cd), f (ac)= f (bd), f (ad)= f (bc), f (ab) �= f (ac), f (ab) �=
f (ad), and f (ac) �= f (ad) a striped K4.

We will also prove the following result about the colouring ψp.

Lemma 2.2. There is no striped K4 under the edge-colouring ψp.

These two lemmas are enough to conclude that ψp is a (p+ 3, p+ 2)-colouring for which any
clique S with |S| ≤ p+ 3 that contains exactly |S| − 1 colours must have a leftover structure.

2.1 The construction
For some positive integer p, let

1≤ r1 ≤ r2 ≤ · · · ≤ rp
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be fixed positive integers such that rd|rd+1 for each d = 1, . . . , p− 1. These ri will be called the
parameters of our edge-colouring.

For any α ≥ rp, let n= 2α , and associate each vertex of the complete graph Kn with its own
unique binary string of length α. For each d = 1, . . . , p, let α = adrd + bd for positive integers
ad, bd such that 1≤ bd ≤ rd. For each string x ∈ {0, 1}α , we let

x=
(
x(d)1 , x(d)2 , . . . , x(d)ad+1

)
where x(d)i denotes a binary string in {0, 1}rd for each i= 1, . . . , ad and x(d)ad+1 denotes a binary
string from {0, 1}bd . We will call these substrings rd-blocks of x, including the final one which may
or may not actually have length equal to rd.

In the following definitions, we let r0 = 1 and rp+1 = α. First, we define a function ηd for any
d = 0, . . . , p on domain {0, 1}β × {0, 1}β where β is any positive integer as

ηd(x, y)=
⎧⎨
⎩
(
i, {x(d)i , y(d)i }

)
x �= y

0 x= y

where i denotes the minimum index for which x(d)i �= y(d)i .
For x, y ∈ {0, 1}α and 0≤ d ≤ p, let

ξd(x, y)=
(
ηd
(
x(d+1)
1 , y(d+1)

1

)
, . . . , ηd

(
x(d+1)
ad+1+1, y

(d+1)
ad+1+1

))
.

And let
cp(x, y)=

(
ξp(x, y), . . . , ξ0(x, y)

)
.

Next, we assume that the binary strings of {0, 1}β are lexicographically ordered for every
positive integer β . For 1≤ i≤ ap + 1 and binary strings x< y, define

δp,i(x, y)=
⎧⎨
⎩+1 if x(p)i ≤ y(p)i

−1 if x(p)i > y(p)i .

Let

�p(x, y)=
(
δp,1(x, y), . . . , δp,ap+1(x, y)

)
.

Finally, let
ψp(x, y)=

(
cp(x, y),�p(x, y)

)
.

2.2 Number of colours
For any positive integer n, let β be the positive integer for which

2(β−1)p+1
< n≤ 2βp+1

.

For each d = 1, . . . , p+ 1, let rd = βd in the construction of ψp. Specifically, this means we are
constructing the colouring on the complete graph with vertex set {0, 1}α where α = βp+1. We can
apply this colouring to Kn by arbitrarily associating each vertex of Kn with a unique binary string
from {0, 1}α and taking the induced colouring.

As shown in [3], for these choices of parameters rd, the colouring cp uses at most 24(p+1)βp log2 β

colours. On the other hand, �p uses

2ap+1 ≤ 2β
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colours. So all together, ψp uses at most 24(p+1)βp log2 β+β colours, where

( log2 n)
1/(p+1) ≤ β < ( log2 n)

1/(p+1) + 1.

Thus, for any fixed p, ψp uses a total of no(1) colours.

2.3 Refinement of functions
Before we prove Lemma 2.1, it will be helpful to give the following definition and results about
refinement of functions. The definition and Lemma 2.3 are paraphrased from [3].

Definition 2.2. Let f :A→ B and g :A→ C. We say that f refines g if f (a1)= f (a2) implies that
g(a1)= g(a2) for all a1, a2 ∈A.

Lemma 2.3 (Lemma 4.1(vi) from [3]). Let f , g be functions on domain A. If f refines g, then for all
A′ ⊆A, we have |f (A′)| ≥ |g(A′)|.
Lemma 2.4. Let f , g be functions on domain A. If f refines g and S⊆A is a finite subset for which
|f (S)| = |g(S)|, then

f (s1)= f (s2) ⇐⇒ g(s1)= g(s2)
for all s1, s2 ∈ S.

Proof. The forward direction follows from the definition of f refining g. Conversely, if we have
g(s1)= g(s2) but f (s1) �= f (s2) for some s1, s2 ∈ S, then |f (S)| ≥ |g(S)| + 1, a contradiction. �

In particular, Lemma 2.4 implies that if some edge-colouring of a clique S is refined by another
edge-colouring, but S contains the same number of colours under each, then the edge-colourings
must be isomorphic.

2.4 Proof of Lemma 2.1
Let S⊆ {0, 1}α be a set of |S| ≤ p+ 3 vertices which contains exactly |S| − 1 distinct edge colours
under cp. We will prove that S either has a leftover structure or contains a striped K4 by induction
on α, similar to the proof of Theorem 2.2 from [3].

For the base case, consider α ≤ rp. Then for any x, y ∈ S, the first component of cp(x, y) is

ξp(x, y)=
(
ηp(x, y)

)= (
(1, {x, y})) .

Therefore, all of the edges of S receive distinct colours. So it must be that |S| − 1= (|S|
2
)
, which

happens only when |S| = 1, 2. In either case, S trivially has a leftover structure.
Now assume that α > rp and that the statement is true for shorter binary strings. For each

d = 1, . . . , p, let αd be the largest integer strictly less than α that is divisible by rd. For any x ∈ S,
let x= (x′

d, x′′
d) for x′

d ∈ {0, 1}αd and x′′
d ∈ {0, 1}α−αd .

Let Sd denote the set of αd-prefixes of S,
Sd = {

x′
d ∈ {0, 1}αd |∃x ∈ S, x= (x′

d, x′′
d)
}
.

For each x′
d ∈ Sd, let

Tx′d = {x ∈ S|x= (x′
d, x′′

d)}.
Let �(d)

I be the set of colours contained in S found on edges that go between vertices from two
distinct T-sets,

�
(d)
I = {cp(x, y)|x, y ∈ S; x′

d �= y′
d}.
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Similarly, let �
(d)
E denote the set of colours contained in S found on edges between vertices

from the same T-set,

�
(d)
E = {cp(x, y)|x, y ∈ S; x �= y; x′

d = y′
d}.

Note that these sets of colours, �
(d)
I and �

(d)
E , partition all of the colours contained in S.

Therefore,

|S| − 1= |�(d)
I | + |�(d)

E |.
Next, define

C(d)
I = {

(cp(x′
d, y′

d), ηd−1(x′′
d, y′′

d))|x, y ∈ S; x′
d �= y′

d
}

C(d)
E = {{x′′

d, y′′
d}|x, y ∈ S; x �= y; x′

d = y′
d
}
.

It is shown in [3] that |�(d)
I | ≥ |C(d)

I | and that |�(d)
E | ≥ |C(d)

E |. The second inequality is easier
to see since any distinct x, y ∈ S for which x′

d = y′
d give ξd = (

0, . . . , 0, (i, {x′′
d, y′′

d})
)
as the appro-

priate component of cp(x, y). Although the first inequality seems intuitively true, its proof is a
bit more subtle. The following fact (proved in [3]) together with Lemma 2.3 gives us the desired
inequality.

Fact 2.1 (Lemma 4.3 from [3]). For x, y ∈ {0, 1}α , let
γd(x, y)= (cp(x′

d, y′
d), ηd−1(x′′

d, y′′
d)).

Then cp refines γd as functions on domain {0, 1}α × {0, 1}α .
We will also use the following fact which is proven in [3], although not stated as a claim

or lemma that can be easily cited. (See the final sentence of the second-to-final paragraph on
page 11.)

Fact 2.2 (proved in [3]). There exists an integer 1≤ d ≤ p for which

|C(d)
I | + |C(d)

E | ≥ |S| − 1.

Therefore,

|S| − 1= |�(d)
I | + |�(d)

E | ≥ |C(d)
I | + |C(d)

E | ≥ |S| − 1,

which implies that

|S| − 1= |�(d)
I | + |�(d)

E | = |C(d)
I | + |C(d)

E |.
Let

c̃p(x, y)=
⎧⎨
⎩ (cp(x′

d, y′
d), ηd−1(x′′

d, y′′
d)) if x′

d �= y′
d

{x′′
d, y′′

d} otherwise.

Then by Fact 2.1, we know that c̃p refines cp. And since |�(d)
I | + |�(d)

E | = |C(d)
I | + |C(d)

E |, then
by Lemma 2.4, we know that the structure of S under c̃p must be the same as the structure
of S under cp. Therefore, we need only show that S either has a leftover structure or contains
a striped K4 under c̃p to complete the proof. We consider two cases: either there exists some
ω ∈ C(d)

E that appears more than once in S under c̃p or each ω ∈ C(d)
E appears exactly once in S

under c̃p.
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Case 1: Let ω ∈ C(d)
E appear on at least two edges in S. This implies that ω = {x′′

d, y′′
d} and so

there must exist a, b, c, e ∈ S such that a= (x′
d, x′′

d), b= (x′
d, y′′

d), c= (y′
d, x′′

d), and e= (y′
d, y′′

d) for
some x′

d �= y′
d. Therefore,

c̃p(a, b)= c̃p(c, e)= {x′′
d, y′′

d}
c̃p(a, c)= c̃p(b, e)= (cp(x′

d, y′
d), 0)

c̃p(a, e)= c̃p(b, c)= (cp(x′
d, y′

d), ηd−1(x′′
d, y′′

d)),

and all three colours are distinct. Hence, S contains a striped K4 under c̃p.
Case 2: If each ω ∈ C(d)

E appears exactly once in S under c̃p, then we know that

|C(d)
E | =

∑
x′d∈Sd

(|Tx′d |
2

)

since each edge within a given T-set receives a unique colour. Moreover, if we let

C(d)
B = {cp(x′

d, y′
d)|x′

d, y′
d ∈ Sd},

then we know that

|C(d)
I | ≥ |C(d)

B | ≥ |Sd| − 1.

Therefore,

|Sd| − 1+
∑
x′d∈Sd

(|Tx′d |
2

)
≤ |S| − 1

∑
x′d∈Sd

(|Tx′d |
2

)
≤ |S| − |Sd|

∑
x′d∈Sd

(|Tx′d |
2

)
≤
∑
x′d∈Sd

(|Tx′d | − 1)

∑
x′d∈Sd

(|Tx′d | − 1)(|Tx′d | − 2)≤ 0.

Hence, we have |Tx′d | = 1, 2 for each x′
d ∈ Sd. This implies that |C(d)

E | =∑
x′d∈Sd (|Tx′d | − 1) and

|C(d)
I | = |C(d)

B | = |Sd| − 1. So by induction, Sd either has a leftover structure or contains a striped
K4 under cp. Furthermore, the colouring defined by

c′p(x, y)=
⎧⎨
⎩ cp(x′

d, y′
d) if x′

d �= y′
d

{x′′
d, y′′

d} otherwise

is refined by c̃p, and S contains exactly |S| − 1 colours under both c′p and c̃p. So by Lemma 2.4, the
edge-colouring of S under c̃p is isomorphic to the one under c′p, and hence it is sufficient to show
that S has either a leftover structure or contains a striped K4 under c′p.

If Sd has a leftover structure under cp, then we see that S also has a leftover structure under c′p
since we can form S under c′p from Sd under cp by a sequence of splits as described in the definition
of a leftover structure. That is, for each x′

d ∈ Sd for which |Tx′d | = 2, we replace x′
d with two vertices

with a new edge colour between them, and the same edge colours that x′
d already had to the rest

of the vertices.

https://doi.org/10.1017/S0963548322000293 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548322000293


356 A. Cameron and E. Heath

On the other hand, if Sd contains a striped K4 under cp, then Smust contain a striped K4 under
c′p with colours entirely from C(d)

B . This concludes the proof.

2.5 Proof of Lemma 2.2
Let a, b, c, d ∈ {0, 1}α be four distinct vertices, and assume towards a contradiction that they
form a striped K4 under ψp. Specifically, assume that ψp(a, b)= ψp(c, d), ψp(a, c)= ψp(b, d), and
ψp(a, d)= ψp(b, c).

Without loss of generality, we may assume the following: that a is the minimum element of the
four under the lexicographic ordering of {0, 1}α ; that for some i≤ j, k,

ηp(a, b)= ηp(c, d)= (i, {x, y})
ηp(a, c)= ηp(b, d)= (j, {z,w})
ηp(a, d)= ηp(b, c)= (k, {s, t});

and that a(p)i = c(p)i = x while b(p)i = d(p)i = y. It follows from the ordering that x< y and that
a< c< b, d. Furthermore, we have i< j since a and c do not differ in the ith block. Similarly,
we see that (k, {s, t})= (i, {x, y}). Without loss of generality, we may assume a(p)j = b(p)j = z and

c(p)j = d(p)j =w. Therefore, z <w and a< c< b< d.
Now, it follows that δj(a, d)= +1 and that δj(c, b)= −1, contradicting our assumption that

ψp(a, d)= ψp(c, b).

3. Modified Dot Product colouring
Fix an odd prime power q and a positive integer d. In this section, we prove Theorem 1.2 by giv-
ing an edge-colouring ϕd for the complete graph on n= (q− 1)d vertices that uses (3d + 1)q− 1
colours and contains no leftover 6-cliques when d = 3 and no leftover 8-cliques when d = 4.

In what follows, we make use of several standard concepts and results from linear algebra
without providing explicit definitions or proofs. We highly recommend Linear Algebra Methods
in Combinatorics by László Babai and Péter Frankl [1] for a detailed treatment of these ideas.
In particular, Chapter 2 covers all of the necessary background for our argument.

3.1 The construction
Let F∗

q denote the nonzero elements of the finite field with q elements, and let (F∗
q)d denote the

set of ordered d-tuples of elements from F
∗
q . In other words, (F∗

q)d is the set of d-dimensional
vectors over the field Fq without zero components. In what follows, we will assume that the set F∗

q
is endowed with a linear order which can be arbitrarily chosen. We then order the set (F∗

q)d with
lexicographic ordering based on the order applied to F∗

q .
Define a set of colours Cd as the disjoint union

Cd =DOT � ZERO �UP �DOWN,

where DOT= F
∗
q , and ZERO, UP, and DOWN are each copies of the set {1, . . . , d} × Fq. Let

ϕd :
(
(F∗

q)d

2

)
→ Cd
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be a colouring function of pairs of distinct vectors, x< y, defined by

ϕd
(
x, y

)=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(i, xi + yi)ZERO if x · y= 0

(i, xi + yi)UP if x · y �= 0 and x · y= x · x
(i, xi + yi)DOWN if x · y �∈ {0, x · x} and x · y= y · y
x · y otherwise

where i is the first coordinate for which x= (x1, . . . , xd) differs from y= (y1, . . . , yd) and x · y
denotes the standard inner product (dot product).

3.2 Number of colours
Let n be a positive integer. Let q be the smallest odd prime power for which n≤ (q− 1)d. Then we
can colour the edges of Kn by arbitrarily associating each vertex with a unique vector from (F∗

q)d

and taking the colouring induced by ϕd. By Bertrand’s Postulate, q≤ 2(n1/d + 1). Therefore, the
number of colours used by ϕd on Kn is at most

(3d + 1)q− 1≤ (6d + 2)n1/d + (6d + 1).

3.3 Proof of Theorem 1.2

Definition 3.1. Given a subset of vectors S⊆ F
d, let rk(S) denote the rank of the subset, the dimen-

sion of the linear subspace spanned by the vectors of S. Let af(S) denote the affine dimension of S,
the dimension of the affine subspace (also known as the affine hull) spanned by S.

Definition 3.2. A colour α ∈ Cd has the dot property if α ∈DOT∪ ZERO. Note that if α has the
dot property, then ϕd

(
a, b

)= ϕd
(
e, f

)= α implies that a · b= e · f for any a, b, e, f ∈ (F∗
q)d.

Lemma 3.1. Let {s1, . . . , st} ⊆ (F∗
q)d be a set of linearly independent vectors and let a, b ∈ (F∗

q)d
such that

ϕd
(
a, b

)= ϕd (a, si) = α

ϕd
(
b, si

)= β

for some α, β ∈ Cd and for each 1≤ i≤ t. Then s1, . . . , st , b are linearly independent.

Proof. Assume towards a contradiction that b=∑t
j=1 λjsj for some scalars λ1, . . . , λt ∈ Fq. We

will first show that
∑t

j=1 λj = 1.
If α ∈ DOT, then b=∑t

j=1 λjsj implies that

α = a · b=
t∑

j=1
λj(a · sj)=

t∑
j=1

λjα.

Therefore,
∑t

j=1 λj = 1 since α /∈ ZERO.
If α /∈ DOT, then

ai + bi = ai + s1,i = · · · = ai + st,i
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Figure 2. A t-falling star.

where i is the first index of difference between a and b. Thus, sj,i = bi for all 1≤ j≤ t. But then
b=∑t

j=1 λjsj implies that

bi =
t∑

j=1
λjsj,i =

t∑
j=1

λjbi.

Hence,
∑t

j=1 λj = 1 since bi �= 0. Therefore, for any α ∈ Cd we have
∑t

j=1 λj = 1.
Now, if β has the dot property, then let β ′ denote b · sj for all j= 1, . . . , t. We have

b · b=
t∑

j=1
λj(b · sj)=

t∑
j=1

λjβ ′ = β ′.

But this implies that β ∈UP∪DOWN, contradicting that β has the dot property.
So we must assume that β does not have the dot property. It follows that

bk + s1,k = · · · = bk + st,k
where k is the first index of difference between b and s1. Therefore, s1,k = · · · = st,k, and so

bk =
t∑

j=1
λjsj,k =

t∑
j=1

λjs1,k = s1,k,

contradicting our choice of k.
Since we reach a contradiction for all colours β , it must be the case that s1, . . . , st , b are linearly

independent vectors, as desired. �
We now define a particular instance of leftover structure that will be useful in our arguments.

Definition 3.3. We call the set of vectors S= {s1, . . . , st} ⊆ (F∗
q)d a t-falling star under the colour-

ing ϕd if ϕd
(
si, sj

)= αi for all 1≤ j< i≤ t, as shown in Figure 2. For any set of vectors T ⊆ (F∗
q)d

under ϕd, let FS(T) denote the maximum t such that T contains a t-falling star.

The following result about these falling stars is an easy consequence of Lemma 3.1 which can
be shown by induction on the number of vectors.

Corollary 3.2. Let S= {s1, . . . , st} ⊆ (F∗
q)d be a t-falling star under ϕd. Then the vectors s1, . . . , st−1

are linearly independent. Consequently, for any subset T ⊆ (F∗
q)d,

rk(T)≥ FS(T)− 1.
Moreover, if T is contained within a monochromatic neighbourhood of some other vector, then

rk(T)≥ FS(T).

https://doi.org/10.1017/S0963548322000293 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548322000293


Combinatorics, Probability and Computing 359

Definition 3.4. Let A, B⊆ F
d
q be disjoint sets of vectors. We say that A confines B if for each a ∈A,

a · x= a · y for every x, y ∈ B.

Lemma 3.3. Let A, B⊆ F
d
q be disjoint sets of vectors such that A confines B. Then

af(B)≤ d − rk(A).

Proof. Let t = rk(A), and let a1, . . . , at be linearly independent vectors from A. Since A confines
B, then for each ai, there exists an αi ∈ Fq such that ai · b= αi for all b ∈ B. Therefore, B is a subset
of the solution space for the matrix equation,⎛

⎜⎜⎜⎝
−a1−

...

−at−

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎝

|
x

|

⎞
⎟⎟⎠=

⎛
⎜⎜⎜⎝

α1
...

αt

⎞
⎟⎟⎟⎠ .

Since a1, . . . , at are linearly independent, the matrix of these t vectors has full rank, and hence,
the solution set is an affine space of dimension d − t, as desired. �
Lemma 3.4. Let A, B⊆ (F∗

q)d be disjoint sets of vectors and α ∈ Cd such that ϕd(a, b)= α for all
a ∈A and b ∈ B. Then either A confines B or B confines A (or both).

Proof. If α has the dot property, then it is trivial that A and B confine one another. So assume that
α ∈UP∪DOWN. It follows that the first position of difference i is the same between any a ∈A
and any b ∈ B. Moreover, every vector of A has the same ith component, every vector of B has the
same ith component, and every vector of A∪ B has the same jth component for each 1≤ j< i if
i> 1. Since the vectors are ordered lexicographically based on an underlying linear order of F∗

q , it
follows that either a< b for all a ∈A and b ∈ B, or b< a for all a ∈A and b ∈ B.

Without loss of generality, assume that a< b for all a ∈A and b ∈ B. If α ∈UP, then for any
particular a ∈A, a · b= a · a for every b ∈ B. Therefore, A confines B. Similarly, if α ∈DOWN,
then for any particular b ∈ B, b · a= b · b for every a ∈A, so B confines A. �
Lemma 3.5. Let t ≥ 2 be an integer. An affine subspace of Fd

q of dimension t − 2 will contain no
t-falling stars of (F∗

q)d under ϕd. Therefore,

af(S)≥ FS(S)− 1

for any subset of vectors S⊆ (F∗
q)d.

Proof. We will proceed by induction on t. The base case t = 2 is trivial since an affine subspace of
dimension 0 is just one vector while a 2-falling star contains two distinct vectors.

So assume that t ≥ 3 and that the statement is true for t − 1. Let s1, . . . , st be t distinct vec-
tors that form a t-falling star. That is, let α1, . . . , αt−1 ∈ Cd and let ϕd

(
si, sj

)= αi when 1≤
i< j≤ t. Assume towards a contradiction that these vectors are contained inside an affine sub-
space of dimension t − 2. Then there exist scalars λ1, . . . , λt−1 ∈ Fq such that st =∑t−1

j=1 λjsj and∑t−1
j=1 λj = 1.
First, note that if λ1 = 0, then the vectors s2, . . . , st form a (t − 1)-falling star and are contained

in an affine subspace of dimension t − 3, a contradiction of the inductive hypothesis. So we must
assume in what follows that λ1 �= 0.

Now, we consider two cases: either α1 ∈DOT or α1 �∈DOT. If α1 ∈DOT, then

α1 = s1 · st = s1 ·
t−1∑
j=1

λjsj = λ1(s1 · s1)+ α1

t−1∑
j=2

λj = λ1(s1 · s1)+ α1(1− λ1).
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Therefore, λ1(s1 · s1 − α1)= 0. Since λ1 �= 0, it follows that
s1 · s1 = α1 = s1 · s2,

which that implies α1 �∈DOT, a contradiction.
So assume that α1 �∈DOT, and let i denote the index of the first component where s1 differs

from the other vectors. In this case,
s1,i + s2,i = · · · = s1,i + st,i,

and hence s2,i = · · · = st,i. Therefore,

st,i =
t−1∑
j=1

λjsj,i = λ1s1,i + st,i
t−1∑
j=2

λj = λ1s1,i + st,i(1− λ1).

So λ1(s1,i − st,i)= 0. Since λ1 �= 0, we have s1,i = st,i, a contradiction of our choice of i. �
Lemma 3.6. Let S⊆ (F∗

q)d be a set of p≥ 1 vectors with a leftover structure under the colouring ϕd.
Then

FS(S)≥ ⌈
log2 p

⌉+ 1.

Proof. We will prove this by induction on p. The base case when p= 1 is trivial, so assume that S
has p≥ 2 vectors. Then S has an initial bipartition, S=A∪ B, and we note that

FS(S)≥ 1+max (FS(A), FS(B)) .

Since |A|, |B| < p, then by induction FS(T)≥ ⌈
log2 (|T|)⌉+ 1 for T =A, B. Thus, we have

FS(S)≥ ⌈
log2 (max (|A|, |B|))⌉+ 2,

and since max (|A|, |B|)≥ ⌈ p
2
⌉
, then

FS(S)≥
⌈
log2

(⌈p
2

⌉)⌉
+ 2= ⌈

log2 p
⌉+ 1. �

Lemma 3.7. Let p≥ 2 and T ≥ 0 be integers. Let S⊆ (F∗
q)d be a subset of p vectors with a leftover

structure under ϕd. If T ≥ 1, let a1, . . . , aT ∈ (F∗
q)d and α1, . . . , αT ∈ Cd such that ϕd

(
ai, aj

)= αi
for all 1≤ i< j≤ T and ϕd (ai, s) = αi for all 1≤ i≤ T and all s ∈ S.

Then there exists a sequence of positive integers, x1, . . . , xt such that
∑t

i=1 xi = p− 1 and for
each i= 1, . . . , t, the following three conditions hold:

(1) 1≤ xi ≤
⌊
p−si
2

⌋
;

(2)
⌈
log2 (xi)

⌉+ ⌈
log2 (p− si − xi)

⌉≤ d − 1;
(3)

⌈
log2 (p− si − xi)

⌉≤ d − i− T,

where si = 0 if i= 1 and si =∑i−1
j=1 xj otherwise.

Proof. We will prove this by induction on p. For the base case, let p= 2. Let x1 = 1 be the entire
sequence. Then the first two conditions hold trivially since the sum of the sequence is 1, and since⌈

log2 (1)
⌉+ ⌈

log2 (1)
⌉= 0≤ d − 1

for any d ≥ 1. For the third condition, since
⌈
log2 (1)

⌉= 0, it suffices to show that T + 1≤ d.
This follows from Corollary 3.2, since S∪ {a1, . . . , aT} forms a (T + 2)-falling star, and hence
d ≥ rk (S∪ {a1, . . . , aT}) ≥ T + 1.
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So assume that S is a set of p vertices for p≥ 3 and that the statement is true for smaller sets.
Let the initial bipartition of S be S=A∪ B. By Lemma 3.4, we may assume without loss of gen-
erality that A confines B. Therefore, af(B)≤ d − rk(A) by Lemma 3.3. By Corollary 3.2, we know
that rk(A)≥ FS(A) since A is in a monochromatic neighbourhood of any vector from B. And by
Lemma 3.5, we know that af(B)≥ FS(B)− 1. Thus, FS(A)+ FS(B)− 1≤ d. So by Lemma 3.6, we
can conclude that ⌈

log2 (|A|)⌉+ ⌈
log2 (|B|)⌉≤ d − 1.

Therefore, setting x1 =min{|A|, |B|} guarantees that 1≤ x1 ≤ ⌊ p
2
⌋
and that⌈

log2 (x1)
⌉+ ⌈

log2 (p− x1)
⌉≤ d − 1.

This gives us a positive integer x1 which satisfies the first two conditions. Moreover, by
Corollary 3.2 and Lemma 3.6,

d ≥ rk (S∪ {a1, . . . , aT}) ≥ FS(S∪ {a1, . . . , aT})− 1
≥ (T + 1+max(FS(A), FS(B)) )− 1
≥ T + ⌈

log2 (p− x1)
⌉+ 1.

Thus, x1 also satisfies the third condition.
Let S′ denote the larger of the two parts A and B, and let aT+1 denote an arbitrary vector

from S \ S′. Then S′ contains p− x1 < p vectors and has a leftover structure under ϕd. Moreover,
S′ and a1, . . . , aT , aT+1 satisfy the monochromatic neighbourhood conditions of the hypothesis.
Hence, by induction there exists a sequence of positive integers x1′, . . . , x′

t′ such that
∑t′

i=1 x′i =
p− x1 − 1 and for each i= 1, . . . , t′, the following three conditions hold:

(1) 1≤ x′i ≤
⌊
p−x1−s′i

2

⌋
;

(2)
⌈
log2 (x′i)

⌉+ ⌈
log2 (p− x1 − s′i − x′i)

⌉≤ d − 1;
(3)

⌈
log2 (p− x1 − s′i − x′i)

⌉≤ d − i− (T + 1),

where s′i = 0 if i= 1 and s′i =∑i−1
j=1 x′j otherwise.

Let xi = x′i−1 for 2≤ i≤ t′ + 1 and let t = t′ + 1 to get a sequence x1, . . . , xt for which

t∑
i=1

xi = x1 +
t′∑
i=1

xi′ = x1 + p− x1 − 1= p− 1.

For each i= 2, . . . , t, the first two conditions are satisfied since x1 + s′i = si+1, and the third
condition is satisfied since d − i− (T + 1)= d − (i+ 1)− T. �

Corollary 3.8. Let S⊆ (F∗
q)3 be a set of 6 vectors. Then S cannot have a leftover structure under the

colouring ϕ3.

Proof. If such a set exists, then by Lemma 3.7 with T = 0, a positive integer x1 exists such that
1≤ x1 ≤ 3 and ⌈

log2 (x1)
⌉+ ⌈

log2 (6− x1)
⌉≤ 2.

It is simple to check that no such integer exists. �
Corollary 3.9. Let S⊆ (F∗

q)4 be a set of 8 vectors. Then S cannot have a leftover structure under the
colouring ϕ4.
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Proof. If such a set exists, then by Lemma 3.7 with T = 0, we must be able to find a sequence
of positive integers x1, x2, . . . , xt that satisfy the conditions given in the Lemma. In particular,
1≤ x1 ≤ 4 and ⌈

log2 (x1)
⌉+ ⌈

log2 (8− x1)
⌉≤ 3.

We can check and find that x1 = 1 is the only possibility. Therefore, 1≤ x2 ≤ 3 such that⌈
log2 (7− x2)

⌉≤ 2⌈
log2 (x2)

⌉+ ⌈
log2 (7− x2)

⌉≤ 3.

A quick check reveals that no such integer exists. �
Theorem 1.2 follows from Theorem 1.1 and Corollaries 3.8 and 3.9.

4. Conclusion
The proof of Lemma 3.7 actually shows which leftover p-cliques can appear under ϕd for a par-
ticular d. For example, this proof implies that the only leftover 5-clique that can appear under ϕ3
is a monochromatic C4 contained inside a monochromatic neighbourhood of one vertex (that is,
an initial (1, 4)-bipartition with a (2, 2)-bipartition inside the part with four vertices). In [2], we
handled this specific leftover structure by splitting each colour class of ϕ3 into four new colours
determined by certain relations between vectors. While the current paper can be viewed as our
attempt to fully generalize the colouring techniques used in [2] and [8], it does not generalize the
splitting that was crucial for handling the final leftover 5-clique. Perhaps such a generalized split-
ting would be enough to give f (n, p, p)≤ n1/(p−2)+o(1) for p≥ 6 or at least improve the best-known
upper bounds for values of p other than the two addressed in this paper.
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