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We present a finite-element-based cohesive zone model for simulating the nonlinear
fracture process driving the propagation of water-filled surface crevasses in floating ice
tongues. The fracture process is captured using an interface element whose constitutive
behavior is described by a bilinear cohesive law, and the bulk rheology of ice is described
by a nonlinear elasto-viscoplastic model. The additional loading due to meltwater
pressure within the crevasse is incorporated by combining the ideas of poromechanics
and damage mechanics. We performed several numerical studies to explore the
parametric sensitivity of surface crevasse depth to ice rheology, cohesive strength,
density, and temperature for different levels of meltwater depth. We find that viscous
(creep) strain accumulation promotes crevasse propagation and that surface crevasses
propagate deeper in ice shelves/tongues if we consider depth-varying ice density and
temperature profiles. Therefore, ice flowmodels must account for depth-varying density
and temperature-dependent viscosity to appropriately describe calving outcomes.

Ice tongues and ice shelves are the floating exten-
sions of ice sheets, which provide buttressing to the
upstream land ice and control the ice mass loss into

the ocean. Iceberg calving resulting from the propaga-
tion of crevasses and rifts is a predominant mass loss
mechanism in ice shelves and ice tongues. Incidentally,
meltwater can infiltrate surface crevasses (or seawater
can infiltrate basal crevasses) and apply additional
hydraulic pressure on the crevasse walls promoting
crevasse propagation deeper into the glacier; this
hydraulic-pressure-driven fracture is generally referred
to as hydrofracture.1 To better understand crevasse
propagation in relation to different physical and envi-
ronmental conditions that can lead to diverse calving
styles, it is crucial that we develop and utilize advanced
fracture-process-based models.

In the glaciology literature, three broad classes of
models are used for estimating crevasse penetration
depths: zero stress, linear elastic fracture mechanics
(LEFM), and continuum damage mechanics (CDM).
The zero-stress model provides the simplest treat-
ment of fracture by assuming that ice has zero tensile
strength and that a crevasse will penetrate to the
depth at which the longitudinal stress becomes zero.
Existing analytical calving laws based on zero stress
and LEFM models suffer from a few limitations: 1) the
tensile strength of ice, which inherently determines
the length scale of the fracture process zone at
the crevasse tip is disregarded, based on the concept
of small-scale yielding; 2) the analytical stress and
stress intensity factor are calculated assuming ideal-
ized rectangular bodies and simplistic boundary
conditions, which are not representative of the
geometry or boundary conditions of real ice shelves/
tongues;2 and 3) the assumption of brittle fracture
ignores the contribution of time-dependent creep
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deformation in promoting fracture and altering calv-
ing outcomes.

To overcome the aforementioned limitations, CDM
models were developed and utilized for predicting cre-
vasse depth.3 The presence of a substantial distributed
region of damage near the crack tip, known as the frac-
ture process zone, introduces nonlinearity in fracture
scaling, necessitating the use of a quasi-brittle (nonlin-
ear and nonlocal) representation of the fracture. Incor-
porating nonlocal CDM models into the shallow shelf
approximation can enable physically consistent simula-
tion of the calving process from ice shelves,4 compared
to analytical calving laws based on ice thickness,
height-above-buoyancy, or stress/strain-rate invariants.5,6

Nonlocal CDM models3 can account for the propa-
gation of water-filled crevasses assuming a quasi-
static hydrofracture process by including the effect
of meltwater pressure in crevasses as an additional
crack-opening stress. However, phenomenological CDM
models involve empirical parameters, and existing
experiments and observations may not be adequate to
uniquely calibrate these parameters, which can con-
tribute to uncertainty. Alternatively, phase-field dam-
age models can be used for simulating glacier calving,7

wherein the model parameters are related to fracture
toughness and material strength measured from stan-
dard experiments. However, nonlocal CDM and phase-
field models are computationally expensive as fine
meshes are required to adequately resolve the dam-
age length scale.

Cohesive zone models (CZMs) are a class of CDMs
that have been extensively used for simulating fracture
in composite materials and hydraulic fracture in poro-
elastic rock. In a CZM, crack propagation is determined
based on cohesive strength and fracture energy (two
parameters) per fracture mode, unlike in LEFM models,
where crack propagation is determined based on the
fracture energy (only one parameter). In our past
work,8 we verified and validated the damage-based
CZM implementation for composite fracture. Here, we
extend this CZM for simulating the propagation of
air/water-filled surface crevasses in ice shelves/
tongues, assuming nonlinear elasto-viscoplastic ice
rheology. We utilize the poro-damage approximation3

that combines the ideas of Biot’s theory of poroelastic-
ity with damage mechanics, based on the assumption
that isotropic damage can be treated as porosity. We
use this poro-damage CZM to estimate crevasse pene-
tration depths, compare them with the estimates from
the LEFM model, and examine the sensitivity of pre-
dicted depths to ice rheology, cohesive strength, den-
sity, and temperature.

MODEL FORMULATION
Finite-Element-Based CZM
To describe the formulation of the CZM, we consider
an idealized 2-D rectangular ice shelf/tongue domain X
subdivided into rectangular finite elements, as shown
in Figure 1. The pre-existing crevasse (red line in Figure 1)
and the cohesive interface C! (blue line in Figure 1), rep-
resenting the potential crevasse path, split the bulk
domain X into two nonoverlapping subdomains: Xð1Þ

andXð2Þ:We use a rectangular Cartesian coordinate sys-
tem and the total Lagrangian description with coordi-
nates x¼ fx,y,zg, assuming small deformations. The
displacement field uðx) is discontinuous across the
cohesive interface C!, but continuous within the subdo-
mains Xð1Þ and Xð2Þ, so it can be represented by two
separate continuous functions uð1Þ and uð2Þ, respec-
tively. The interface separation vector is defined by the
nodal displacements of the cohesive element as

D¼ ½½u&& ¼ uð2Þ 'uð1Þ: (1)

The interface traction/stress vector tc is defined as
a function of the interface separation

tc ¼ aðDÞD (2)

FIGURE 1. Schematic of the ice domain with the cohesive ele-

ments placed at the crevasse interface (refer to the “Finite-

Element-Based CZM” and “Static Equilibrium” sections for

notation and domain definitions). The red line represents the

pre-existing crevasse, where the cohesive elements are fully

damaged. The blue line represents the potential crevasse

interface, where the cohesive elements are either partially

damaged or undamaged. The crack is allowed to grow only

along the blue line, so we only capture vertical mode I cre-

vasse propagation. The zoomed-in view shows the nodes of

the interface element, which are the edge nodes of adjacent

bulk finite elements. In the undeformed or initial configura-

tion, the cohesive element has zero thickness.

COMPUTATIONAL MODELING OF ICE SHEETS AND GLACIERS

May/June 2023 Computing in Science & Engineering 9Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on January 19,2024 at 17:32:10 UTC from IEEE Xplore.  Restrictions apply. 



where a is the nonlinear cohesive stiffness matrix. The
aforementioned traction-separation relationship, oth-
erwise called cohesive law, describes the constitutive
equation of the cohesive elements governing crack ini-
tiation and propagation.

Bilinear Mixed-Mode Cohesive Law
The bilinear cohesive law describes an initial (increas-
ing) linear elastic response followed by a (decreasing)
linear damage-induced softening response. For mixed-
mode fracture under quasi-static loading in 2-D, we
can express this cohesive law in the damage mechan-
ics framework, as detailed in our previous work.8 The
tangential ts and normal tn components of the inter-
face traction vector tc are related to the tangential Ds

(sliding or mode II) and normal Dn (opening or mode I)
components of the interface separation vector D as

!
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tn
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Ds
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where

as ¼ ð1'DsÞa0s ; an ¼ 1'Ds
hDni
Dn
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a0n and a0s represent the initial cohesive stiffness in the
normal and the tangential directions, respectively, and
Ds is the scalar damage variable. In (4), the Macaulay
brackets are defined such that hDni¼maxð0,DnÞ, which
ensures that there is no damage growth or damage
effect on the normal traction under compression or
contact.
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In (5), the critical and ultimate interface separation
parameters Dc
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and fracture energy considerations as
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where the direction cosines cosI ¼ Dn=De and cos II ¼
Ds=De, rmax and smax are the pure mode I (tensile) and
mode II (shear) cohesive strengths, respectively; and
GIC and GIIC are the pure mode I and mode II critical
fracture energies, respectively. A sketch of the bilinear

traction-separation and damage-separation relation-
ships is shown in Figure 2.

Poro-Damage Extension for
Hydrofracture
We extend the aforementioned bilinear cohesive law to
model the fracture of air-filled surface crevasses to
account for the hydrofracture of water-filled surface
crevasses. The scalar (isotropic) damage variable can
be interpreted as the ratio of the area of voids to the
total area of the 2-D planar cohesive interface. As melt-
water fills the crevasse, we assume that water can
seep into the damaged zone below the crevasse tip
and exert hydrostatic pressure to pry open the cre-
vasse. To account for this additional pressure load,
we previously developed the continuum poro-damage
mechanics approach,3 which extends the ideas of
Biot’s theory of poroelasticity by assuming isotropic
damage to have a similar effect on the material behav-
ior as porosity. Noting that interface traction is equal
to the stress vector corresponding to the crack sur-
face, the poro-damage mechanics approach can be
applied to the CZM. The water pressure pw within the
crevasse and its damage process zone can be intro-
duced into the bilinear cohesive law in (3) to obtain the
extended cohesive law for hydrofracture as
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The depth-varying water pressure is defined by

pwðzÞ ¼ qwghhs ' ðz' zsÞi (8)

where qw is the density of meltwater, g is the accelera-
tion due to gravity, zs is the height of the surface

FIGURE 2. Sketch of the bilinear CZM for mixed-mode fracture.

(a) A traction-separation relationship and (b) damage-separation

relationship. For a given mode-mix ratio, the equivalent or

resultant traction is given by the magnitude of the traction

vector jjtcjj¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2n þ t2s

p
, and the equivalent separation is

defined as De ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hDni2 þD2

s

q
: Note that the interface damage

Ds is zero until the separation reaches a critical value and

then increases rapidly (nonlinearly) until failure.
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crevasse tip from the base of the ice slab, and hs is the
height of the meltwater column measured from the
crevasse tip.

Figure 3 depicts the process of crevasse propagation
described by the CZM. The potential crevasse path
described by the cohesive region consists of interface
elements that connect the neighboring bulk finite ele-
ments. As the ice slab deforms and creeps under the
action of gravity, in some cohesive elements, the normal
traction at the crack tip will reach the cohesive strength,
as the interface separation reaches a critical value under
predominantly mode I fracture. Subsequently, damage
(in the form of microcracks or microvoids) grows within
these cohesive interface elements, and meltwater will
percolate into the damaged regions assuming a fully sat-
urated medium. In this scenario, four different types of
cohesive interface states can be perceived:

1) Air-filled crevasse: The interface element is fully
damaged ðDs ¼ 1Þ and there is no meltwater
pressure ðpw ¼ 0Þ, so the normal interface trac-
tion becomes zero ðtn ¼ 0Þ:

2) Water-filled crevasse: The interface element is
fully damaged and meltwater applies pressure
on the crack walls ðpw > 0Þ, so the normal inter-
face traction magnitude is equal to that of the
water pressure at that depth ðtn ¼'pwÞ:

3) Fracture process zone: The interface element is
partially damaged ð0<Ds < 1Þ with distributed

microcracks/microvoids that are saturated with
meltwater, so the normal interface traction
includes contributions from the interface cohe-
sion and water pressure ðtn ¼ anDn 'DspwÞ:

4) Undamaged zone: The interface element has no
damage ðDs ¼ 0Þ, so the normal interface trac-
tion is linearly proportional to the interface sep-
aration with the undamaged cohesive stiffness
ðtn ¼ a0nDnÞ:

Thus, the poro-damage mechanics enables the
automated handling of air/water-filled crevasse propa-
gation using cohesive elements.

BY SWITCHINGONANDOFF THE
VISCOUS STRAIN CONTRIBUTIONS
IN THISMODEL,WECAN EXAMINE
THEDIFFERENCES IN FRACTURE
PROPAGATIONANDCALVING
OUTCOMES FORPURELY ELASTIC
ANDELASTO-VISCOPLASTIC
RHEOLOGIES.

Constitutive Model for Glacier Ice
The mechanical response of glacier ice is dependent
on the strain rate (nonlinear), temperature, and time.
Over longer time scales, glacier and ice-sheet flow is
described using a nonlinear viscous Stokes model
based on Glen’s law; whereas, over shorter time scales,
the mechanical response is often described by linear
elastic or linear/nonlinear visco-elasto-plastic constitu-
tive models. Additionally, due to the Arrhenius-type
temperature dependence of ice’s viscosity, tempera-
ture gradients in ice can introduce significant changes
in flow rates and stress state. Here, we utilize the
temperature-dependent elasto-viscoplastic constitu-
tive model for polycrystalline ice.9 By switching on and
off the viscous strain contributions in this model, we
can examine the differences in fracture propagation
and calving outcomes for purely elastic and elasto-
viscoplastic rheologies.

We assume small deformations as crevasse propa-
gation generally occurs over shorter time scales. Con-
sequently, the total strain tensor can be additively
decomposed as

! ¼ !e þ !v (9)

where !e and !v denote the elastic and viscous strain
tensors, respectively. The total strain tensor is given by

FIGURE 3. Schematic diagram of the predominantly mode I

fracture of an air/water-filled crevasse in the ice domain, as

described by the poro-damage CZM. The interface elements

inserted into the finite-element mesh account for the damage

growth process through the scalar damage variable Ds: The

crevasse depth measured from the top of the ice slab is ds,

and hs is the height of the meltwater column measured from

the crevasse tip. For any given ds and hs, four different inter-

face zones can be identified, including an air-filled and water-

filled crevasse, fracture process zone, and undamaged zone

based on the damage variable.
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the symmetric part of the displacement gradient ten-
sor as

!¼ 1

2
ðruþruT Þ (10)

where r denotes the gradient operator and T in the
superscript denotes a transpose. The elastic stress-
strain relationship in the bulk finite elements is given
by the generalized Hooke’s law as

r¼C : !e (11)

where : denotes the double dot or inner product, C
denotes the fourth-order isotropic elasticity tensor,
whose components are defined in terms of Young’s
modulus E and Poisson’s ratio !: The viscous strain
rate is given by the power-law creep equation as

!_v ¼ @!v

@t
¼ 3

2
KNðT ÞrðN'1Þ=2

e rdev (12)

where KNðT Þ is the temperature-dependent vis-
cosity coefficient; N is the viscous exponent; the
equivalent stress measurement re ¼ 3=2rdev : rdev; and
rdev denotes the deviatoric part of the Cauchy stress
tensor.

WEPERFORMA SERIES OF
NUMERICAL SIMULATIONSUSING THE
PORO-DAMAGECZM TOEXAMINE
THE PROPAGATIONOF AIR/WATER-
FILLED SURFACE CREVASSES IN
IDEALIZED ICE TONGUES/SHELVES.

Static Equilibrium
The stress state in the glacier is obtained by solving
the governing equations of static equilibrium along
with the boundary conditions

r * rþ b ¼ 0 in X (13)

u ¼ "u on CD (14)

"tðzÞ ¼ qswghhw ' zi on CN (15)

"tðz,uzÞ ¼ qswghhw ' z' uzi on CR (16)

where b¼ ½0,0,' qig&
T is the body force, qi is ice den-

sity, qsw is seawater density, "u is the prescribed dis-
placement on the Dirichlet boundary CD, "t ¼ rn is the
prescribed traction on the Neumann boundary CN, and
n is the outward unit normal to the boundary C+ @X:
On the Robin boundary CR, the traction is equal to the
buoyancy pressure, which depends on seawater height
hw and vertical displacement uz:

Numerical Implementation
We implement the poro-damage-based CZM in the
commercial software ABAQUS via the User ELement
(UEL) and User MATerial (UMAT) subroutines. The
Fortran codes and input files are available for down-
load at https://doi.org/10.15784/601704. At the cohe-
sive interface, we deploy four-noded zero-thickness
interface elements with a two-point Gaussian integra-
tion scheme to capture crevasse propagation. By
design, the mesh size (or node spacing) is equal to the
interface element size near the cohesive interface and
is gradually coarsened away from it toward the domain
boundaries to reduce the computation expense. We
choose interface element sizes small enough so that
there are at least three elements within the estimated
cohesive process zone;8 this ensures an accurate repre-
sentation of the stress distribution within the fracture
process zone at the crevasse tip. The UEL subroutine
describes the computation of the force vector and
stiffness matrix for the interface element. In the
bulk regions, we deploy four-noded plane strain con-
tinuum elements (i.e., bilinear quadrilateral) with a
four-point Gaussian integration scheme to capture
elasto-viscoplastic ice deformation. The initial stress
state in the glacier is established using a linear elastic
step, and subsequent isochoric viscoplastic deformations
are determined by assuming appropriate time steps using
explicit time updates. The UMAT subroutine describes
the computation of the stiffness matrix and the right-
hand side force vector for the bulk finite elements.

SIMULATION RESULTS
Geometry and Boundary Conditions
We perform a series of numerical simulations using the
poro-damage CZM to examine the propagation of air/
water-filled surface crevasses in idealized ice tongues/
shelves. We consider a simple rectangular geometry
with an L¼ 5 km (length) andH ¼ 125m (height) under
plane strain assumptions, as depicted in Figure 4. A
free-slip (roller) boundary condition is applied to the
left edge to prevent horizontal motion. A Robin-type
boundary condition is applied to the bottom edge to
simulate a buoyant ice shelf/tongue. Seawater pres-
sure is applied as a Neumann boundary condition at
the right edge (terminus) with seawater level hw ¼
qi=qswH, which is the floating depth.

Ice Properties and Model Parameters
Thematerial parameters of the incompressible, linear elas-
tic rheology case are the Young’s modulus E ¼ 9500 MPa
and Poisson’s ratio ! ¼ 0:4995: The parameters of the
nonlinear viscoplastic rheology case are the viscosity
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coefficient KN ¼ 1:58825, 10'7 Pa-s at T ¼'10
-
C and

viscosity exponent parameter N ¼ 3: The density of
ice, meltwater, and seawater are qi ¼ 917 kg/m3, qw ¼
1000 kg/m3, and qsw ¼ 1020 kg/m3. Based on previous
studies,10 we assumed fracture toughness KIC ¼ 0:4

MPa
ffiffiffiffi
m

p
and mode I cohesive strength rmax in the

range of 35' 220 kPa. We then determined GIC ¼
K2

IC ð1' !2Þ=E ¼ 12:63 N/m. Due to the lack of experi-
mental data on mode II properties, we assumed
GIC ¼GIIC and rmax ¼ smax: Because we only study
predominantly mode I crevasse propagation in ideal-
ized rectangular floating ice tongues, the crevasse
depth predictions are not sensitive to the choice of
GIIC and smax: The initial cohesive stiffnesses a0n ¼
a0s ¼ 1010 N/m3 are treated as penalty parameters, so
we assumed them to be large enough to enforce dis-
placement continuity across the crack interface before
fracture without affecting numerical convergence.

Effect of Ice Rheology and Cohesive
Strength on Crevasse Propagation
It has been argued that the nonlinear viscous nature of
glacier ice and its finite (tensile/shear) cohesive strength
are important parameters to be incorporated into calv-
ing laws. Therefore, we first investigate the effect of ice
rheology and strength on the penetration depth of

air/water-filled surface crevasses in the idealized ice
tongue. We assume three values of cohesive strength:
35 kPa, 110 kPa, and 220 kPa, which are within the range
of values reported in the literature.10,11 We consider lin-
ear elastic and nonlinear elasto-viscoplastic rheology
for glacier ice and compare the CZM-predicted cre-
vasse depths for different strengths with the analytical
LEFM solution,10 as shown in Figure 5.

In the case of linear elastic rheology [Figure 5(a)],
we find that for the small cohesive strengths of 1 kPa
and 35 kPa, the predicted crevasse depths from the
CZM matches best with the LEFM result. If the cre-
vasse is partially filled with meltwater, then the CZM
does not predict crevasse propagation for meltwater
depth ratio hs=ds < 0:65; whereas for hs=ds > 0:65, the
crevasse depth gradually increases with meltwater
depth until it fully penetrates the ice thickness at
hs=ds . 0:9: For the medium strength of 110 kPa, the
CZM result does not show a gradual increase in cre-
vasse depth; rather, it predicts that the crevasse
will not propagate if hs=ds < 0:9 but fully penetrates
the ice shelf if hs=ds > 0:9: For the nonlinear elasto-
viscoplastic rheology [Figure 5(b)], the CZM mostly
predicts similar crevasse propagation behavior as the
linear elastic rheology. However, the time-dependent
creep deformation promotes crevasse propagation for
slightly smaller meltwater depth ratios. Notably, for
the large strength of 220 kPa, the CZM result with the
nonlinear elasto-viscoplastic rheology shows that a

FIGURE 5. Surface crevasse penetration depth ratios ðds=HÞ
in the idealized ice shelf for different meltwater depth ratios

ðhs=dsÞ predicted using the CZM for different cohesive

strengths (dashed lines). Crevasse depth ratios are evaluated

assuming (a) linear elastic rheology and (b) nonlinear elasto-

viscoplastic rheology and compared with those from an ana-

lytical LEFMmodel (solid line). Note that as cohesive strength

goes to zero ðrmax ¼ 1 kPaÞ, the CZM predicted crevasse

depths for the linear elastic rheology converges to the LEFM

model predictions.

(a)

(b)

FIGURE 4. (a) Loading configuration for the idealized ice shelf

with heightH ¼ 125m and length L¼ 5 km. (b) Finite-element

mesh used for analysis. The size of the zoomed-in domain is

roughly 11 m, 20m.
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fully water-filled crevasse penetrates the entire ice
tongue/shelf thickness; whereas with the linear elastic
rheology, the surface crevasses will not propagate
even if it is fully filled withmeltwater.

We further explore the role of viscous creep defor-
mation in promoting crevasse propagation to answer a
key fracture mechanics question: Why do crevasses
propagate to a greater depth for smaller meltwater
depth ratios with the nonlinear elasto-viscoplastic rhe-
ology? Noting that crevasse propagation described by
damage evolutionDs in the cohesive element is depen-
dent on the equivalent separation De [see (5) and (6)],
we plotted the equivalent separation and crevasse
depth ratio versus time in an element near the cre-
vasse tip in Figure 6(a) and (b), respectively. It is appar-
ent that the equivalent separation is initially less than
the critical separation required for damage evolution
as the normal traction at the crevasse tip is smaller
than the cohesive strength. However, time-dependent
creep deformation will gradually increase the interface
separation over the critical limit and lead to damage
evolution and crevasse propagation. In contrast, if
the linear elastic rheology is assumed, the equivalent
separation will not increase with time, so crevasse

propagation in the ice shelf would be arrested for the
larger cohesive strength. The time scale associated
with water-filled crevasse propagation in a floating ice
tongue [minutes to an hour in Figure 6(b)] is much
smaller compared to its flow or deformation (days to
years), given that typical strain rates are 10'7 ' 10'9

per second. Therefore, the assumption of small strain
is reasonable to assess the effect of small amounts of
accumulated viscous strain on crevasse propagation.

Effect of Depth-Varying Density and
Temperature Profiles on Crevasse
Propagation
The upper regions of glaciers and ice tongues typically
consist of firn, which is partially compacted granular
snow and an intermediate state between snow and gla-
cial ice. The near-surface density of firn is considerably
smaller (.350 kg/m3) than that of solid ice (.917 kg/m3).10

In the case of an ice shelf, both density and tempera-
ture vary with depth, and the latter is due to the fact
the bottom surface is in contact with seawater,
whereas the top surface is in contact with air. For sim-
plicity, we assume that the temperature varies linearly
with depth, where the bottom temperature is '5-C
and the top surface temperature is'30-C. The temper-
ature dependence of glacier ice viscosity is incorpo-
rated into the constitutive model using the Arrhenius
law.9 We considered the empirical relationship from
the literature10 to describe the variation of ice density
with depth. We performed a set of simulations using
the CZM with three different cohesive strengths (i.e.,
35 kPa, 110 kPa, and 220 kPa) for air-filled (dry) and
90% water-filled crevasse cases. In all the following
simulations, we use the nonlinear elasto-viscoplastic
model for ice and take the initial seed crevasse to be
10 m long (i.e., the initial crevasse depth ratio is 0.08).
For the constant temperature and density simulations,
we took T ¼'10-C and qi ¼ 917 kg/m3.

The final crevasse depth ratios are reported in
Tables 1 and 2. We find that in both the air-filled cre-
vasse and 90% water-filled crevasse cases, the cre-
vasse depth ratio for a given cohesive strength is the
largest if the depth variation of both temperature and
density is considered. Table 1 shows that with constant
density, the driving force is not large enough to

FIGURE 6. Time evolution of (a) equivalent separation in the

crevasse tip element and (b) crevasse depth ratio ðhs=ds ¼ 1Þ
for the idealized ice shelf obtained from the CZM for different

cohesive strengths. The critical separation threshold for cor-

responding cohesive strength is shown by the dashed lines in

(a). The nonlinear elasto-viscoplastic rheology accounts for

creep deformation, which gradually opens the subcritical cre-

vasse and promotes deeper crevasse penetration, eventually

leading to calving (i.e., ds=H ¼ 1).

TABLE 1. Effect of density and temperature on final air-filled crevasse depth ratio in ice tongues.

rmax

(kPa)
Constant T
Constant qi

Constant T
Variable qi

Variable T
Constant qi

Variable T
Variable qi

35 0.08 0.1328 0.08 0.2912
110 0.08 0.1872 0.08 0.3072
220 0.08 0.1888 0.08 0.3088
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propagate the crevasse beyond the initial crevasse
with or without variable temperature. However, for var-
iable density cases, the driving force is large enough to
propagate the crevasse for both constant and variable
temperature cases. Moreover, we get the deepest cre-
vasses for the variable density and temperature case
because the temperature dependence of viscosity
further alters the stress state to promote crevasse
propagation. From Table 2, we find that the 90%
water-filled crevasse can fully penetrate the ice shelf
if depth variation of density qi is considered, thus
leading to a different calving outcome. Thus, the
assumption of constant density and temperature
overestimates crevasse closure, so crevasse depth is
underestimated.10

With variable density, in the air-filled crevasse case,
crevasse depth slightly increases as the cohesive
strength is increased (Table 1); whereas in the 90%
water-filled crevasse cases, the crevasse fully pene-
trates the ice shelf irrespective of the value of the
cohesive strength (Table 2). In both cases, the effect
of cohesive strength on crevasse propagation is
less significant for calving outcomes compared to
other variables, namely, meltwater depth, density, and
temperature. However, more parametric studies are
needed to study the influence of depth-varying Young’s
modulus and fracture toughness on the penetration
depth of water-filled surface crevasses.12 In the sup-
plementary material, which is available in the IEEE
Computer Society Digital Library at http://doi.ieeecom-
putersociety.org/10.1109/MCSE.2023.3315561, we also
compared crevasse propagation in ice shelves with
the same mass (Tables S1 and S2), as opposed to ice
shelves with the same height reported here.

CONCLUSION
We developed a new poro-damage mechanics-based
CZM for simulating nonlinear and time-dependent
crevasse propagation in glaciers driven by thermo-
hydromechanical processes. In this CZM formulation,
the scalar damage variable represents the ratio of the
isotropic void area to the total area on the cohesive
crack interface. Assuming meltwater can permeate

the damaged material and exert hydrostatic pressure
along the interface, we defined the effective normal
traction in the cohesive element based on Biot’s theory
of poroelasticity. A limitation of our simple finite-
element-based CZM implementation (in the commer-
cial software ABAQUS) is its reliance on predefined
potential crack paths; however, it is adequate for
studying predominantly mode I propagation of water-
filled crevasses, which is comparable to LEFM and zero
stress-based crevasse models.

Through several simulation studies, we examined
the influence of ice rheology, cohesive strength, depth-
variable density, and temperature profiles on crevasse
penetration depth in ice tongues/shelves. Our key find-
ing is that temperature-dependent viscous (creep)
deformation and depth-varying ice density promote
crevasse propagation and can alter calving outcomes.
Our studies suggest that ice flow models and calving
laws must appropriately incorporate/parameterize the
effects of variable ice density, in addition to that of
temperature-dependent viscosity. To conclude, our CZM
model will be useful for determining ice cohesive strength
at fracture initiation as appropriate experimental/
field data become available and provides a nonlinear
alternative to LEFM that is more computationally effi-
cient than phase-field fracture models. In our future
studies, we will also examine depth variation of Young’s
modulus and fracture toughness on crevasse pro-
pagation12 and attempt to develop a new calving
parameterization for shallow ice shelves, which can be
deployed in large-scale ice sheet models.
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