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Safe Networked Robotics With
Probabilistic Verification

Sai Shankar Narasimhan , Sharachchandra Bhat , and Sandeep P. Chinchali

Abstract—Autonomous robots must utilize rich sensory data
to make safe control decisions. To process this data, compute-
constrained robots often require assistance from remote compu-
tation, or the cloud, that runs compute-intensive deep neural net-
work perception or control models. However, this assistance comes
at the cost of a time delay due to network latency, resulting in
past observations being used in the cloud to compute the control
commands for the present robot state. Such communication delays
could potentially lead to the violation of essential safety properties,
such as collision avoidance. This article develops methods to ensure
the safety of robots operated over communication networks with
stochastic latency. To do so, we use tools from formal verification
to construct a shield, i.e., a run-time monitor, that provides a list of
safe actions for any delayed sensory observation, given the expected
and maximum network latency. Our shield is minimally intrusive
and enables networked robots to satisfy key safety constraints,
expressed as temporal logic specifications, with desired probabil-
ity. We demonstrate our approach on a real F1/10th autonomous
vehicle that navigates in indoor environments and transmits rich
LiDAR sensory data over congested WiFi links.

Index Terms—Formal methods in robotics and automation,
networked robots, teleoperation, probabilistic verification.

I. INTRODUCTION

TODAY, an increasing number of robotic applications re-
quire remote assistance, ranging from remote manipula-

tion for surgery [1] to emergency take-over of autonomous
vehicles [2]. Teleoperation is even used to control food delivery
robots from command centers hundreds of miles away [3]. In
these scenarios, network latency is a key concern for safe robot
operation since actuation based on delayed state information can
lead to unsafe behavior.

Despite the rise of robots operating over communication
networks, we lack formal guarantees for their safe operation.
Today’s approaches for robotic safety range from reachability
analysis [4], [5], [6], [7] to shielding that restricts unsafe actions

Manuscript received 7 July 2023; accepted 11 November 2023. Date of
publication 7 December 2023; date of current version 14 February 2024. This
letter was recommended for publication by Associate Editor D. Brscic and Editor
A. Peer upon evaluation of the reviewers’ comments. This work was supported in
part by Lockheed Martin Corporation, ONR Award N00014-21-1-2379, in part
by the National Science Foundation under Grant 2148186, and in part by Federal
Agencies and Industry Partners as specified in the Resilient and Intelligent NextG
Systems (RINGS) Program. (Sai Shankar Narasimhan and Sharachchandra
Bhat contributed equally to this work.) (Corresponding author: Sai Shankar
Narasimhan.)

The authors are with the Department of Electrical and Computer Engineering,
The University of Texas at Austin, Austin, TX 78712 USA (e-mail: nsais-
hankar@utexas.edu; sharachchandra@utexas.edu; sandeepc@utexas.edu).

This letter has supplementary downloadable material available at
https://doi.org/10.1109/LRA.2023.3340525, provided by the authors.

Digital Object Identifier 10.1109/LRA.2023.3340525

Fig. 1. Safe Networked Control for Robotics: A resource-constrained robot
transfers sensor observations (RGB-D images or LiDAR point clouds) through a
wireless network with stochastic latency. At the receiving end, a control module
or a human teleoperator processes the observation to generate the corresponding
action. The action is filtered by the shield, which enforces a particular safety
specification that the robot has to maintain. The filtered, “safe” action is then
executed by the robot.

based on a formal safety specification [8], [9], [10], [11]. How-
ever, there is little to no research that provides such rigorous
safety analysis for networked robotics. This article asks: How
do we ensure safe networked control over wireless networks with
stochastic communication delays?

Communication delay is the cumulative time taken to send
an observation to the cloud and receive an action back at the
robot. We develop the intuition that if the interaction between a
remotely controlled robot and its environment can be modeled
as a Markov Decision Process (MDP), the communication delay
is analogous to sensing or actuation delays. Previous works on
Networked Control Systems (NCS) have addressed MDPs with
delays [12], [13], [14], but often make restrictive assumptions
about delay transitions. In our article, we propose Delayed Com-
munication MDP, a novel approach to model MDPs with delays
that aligns naturally with the transmission of observations and
control commands when operating a robot via wireless networks
in practice.

Fig. 1 shows our approach, tested on an F1/10th car [15]
controlled over a wireless link. Our approach is extremely gen-
eral - we can either have a human teleoperator or an automatic
controller running in the cloud, including Deep Neural Network
(DNN) perception models or deep reinforcement learning (RL)
based policies. First, sensor observations are transferred via
wireless links (step 1) and processed to compute the corre-
sponding control command (step 2). The control command is
transmitted back to the robot and filtered by the shield. The
shield is a run-time monitor, constructed offline, that disallows
actions that violate a safety property. The shield has access to the
delay corresponding to the received control command as it runs
on the robot. Finally, the shielded action is executed to ensure
safe behavior amidst stochastic network latency (steps 3-4).
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We design the shield using tools from formal verification [16],
given knowledge of the network latency and a model of the
environment transitions.

Shields, as implemented in [8], provide an absolute measure of
safety. For networked control with stochastic latency, shielding
results in perfectly safe operation at the cost of task efficiency.
In this article, we propose a shield synthesis approach that,
when combined with the cloud controller, allows the networked
control system to meet safety requirements with a desired proba-
bility. Our experimental findings indicate that a slight reduction
in the desired safety probability leads to a significant increase
in task efficiency. In this article,

1) We present the Delayed Communication MDP, a novel
approach that accurately models the interaction between
a remotely controlled robot and the environment, in the
presence of stochastic network latency.

2) We propose an algorithm to synthesize a shield that, when
executed with the cloud controller, guarantees the desired
probability of satisfying a safety property.

3) We demonstrate our approach in simulation as well as
on an F1/10th autonomous vehicle that must closely (and
safely) follow an unpredictable leader in indoor environ-
ments over congested wireless networks (Fig. 1).

II. RELATED WORK

We now survey how our work relates to cloud robotics,
networked control systems, shielding, and formal methods.

Cloud Robotics: Cloud robotics [17], [18] studies how
resource-constrained robots can offload inference [19], [20],
mapping, and control to remote servers [21]. Recent work ([22])
circumvents network latency for teleoperation by predicting the
intent of a teleoperator remotely and synthesizing trajectories
locally on the robot for handwriting imitation. This approach
does not scale well for resource-constrained robots for more
complicated tasks like autonomous driving as it involves running
DNNs for intent prediction.

Delayed MDPs: Numerous prior works have addressed sens-
ing and actuation delays in MDPs [12], [13], [14], [23], by
making restrictive assumptions about the delay transitions. The
delay is constant in [12] and [14], while it can only increase or
remain constant between consecutive time steps in [13], halting
the decision-making when the delay reaches the maximum limit.
In contrast, we make no such assumptions. Additionally, prior
works have focused on the delay in feedback [23] or cost collec-
tion ([13], [14]) in the RL setting. Our objective is to formally
verify the safety of NCS.

Shielding and Safe Reinforcement Learning: Our work builds
upon safe RL techniques developed for discrete-time systems.
The shielding approach ([8], [11]) involves synthesizing a run-
time monitor that overwrites the agent’s action if it violates
the desired safety specification, aiding in safe exploration [9].
Recent work relaxes assumptions on the knowledge of the envi-
ronment and makes the shielding approach more practical [24],
[25]. As the execution of perfectly safe policies restricts ex-
ploration in RL, probabilistic shields were introduced in [10]
and [26] to trade off safety for exploration. Building on this,
recent work implements probabilistic shields through proba-
bilistic logic programs [27]. The definitions of the probabilistic
shield in [10] and [26] are similar to ours but these works do not
provide theoretical guarantees for safety, which we do. Another
probabilistic shielding approach [28] focuses specifically on
synthesizing shields that satisfy bounded specifications. While

the above-mentioned works deal with shielding for safe RL, our
work focuses on developing a novel shielding approach for NCS.

The previous approaches deal with finite state models ob-
tained from an abstraction of the continuous state space. [29]
proposes an alternative approach using Robust Model Predictive
Shielding. Further, Hamilton-Jacobi reachability analysis [4],
[5] and Control Barrier Function methods [6], [7] formulate the
safe control problem for the continuous system. These methods
cannot express rich safety properties, such as “maintain a min-
imum distance between two vehicles when the delay is above
a threshold and visit the landmark before reaching the goal”,
which is possible in our approach.

III. BACKGROUND

A Markov Decision Process (MDP) is a tuple
〈S, Init,Act,A,P 〉, where S is a finite state set, Init is a
probability distribution over S representing the initial state
distribution and Act is a finite set of actions. The transition
probability function P : S× Act× S→ [0, 1] is a conditional
probability distribution and hence satisfies

∑
s′∈S P (s′ |

s, a) = 1 for every state-action pair (s, a) ∈ S×A(s), where
A(s) = {a ∈ Act | ∃ s′ ∈ S s.t. P (s′ | s, a) �= 0} is the set
of available actions for the state s. A policy π is defined as a
mapping from states to actions, π : S→ Act.

We will now introduce safety properties and our approach
using the hardware setup in Fig. 1, where a resource-constrained
mobile robot must safely follow an unpredictable leader while
being controlled remotely over a wireless link with stochastic
network delays. Henceforth, we will use the term agent to
indicate any controlled entity like the robot and environment
for uncontrolled entities (like the leader car). The agent and the
environment together form the system.

To capture our desired notion of safety for the system, we first
define Sunsafe to be the set of all unsafe states. For example, in
our hardware setup, an unsafe state is one where the distance
between the two cars, d, is less than the safety threshold dsafe
(Fig. 1). Then, we define the system to be safe if it never reaches
any state in Sunsafe. This can be encapsulated by the Linear
Temporal Logic (LTL) [16] safety specification �¬Sunsafe,
which translates to “always (�) never (¬) be in an unsafe state”.
Note that our notion of safety is now equivalent to determin-
ing the probability with which the system satisfies the safety
specification ϕ = �¬Sunsafe, which can be done efficiently.
We use Vπ

M,ϕ(s) to represent the probability of satisfying ϕ,
while executing the policy π starting from the state s ∈ S. The
probability with which the system satisfies ϕ is then given by
the expectation of Vπ

M,ϕ(s) over Init. To compute Vπ
M,ϕ, we

note that the safety specification ϕ = �¬Sunsafe can be cast
into a reachability specification θ = 	Sunsafe, which refers to
“eventually (	) reach any unsafe state”. Now, the probability of
satisfying this reachability specification, Vπ

M,θ(s), is the unique
solution to the following system of equations [16]:

if s ∈ Sunsafe ⇒ Vπ
M,θ(s) = 1; if s �|= θ ⇒ Vπ

M,θ(s) = 0,

else Vπ
M,θ(s) = Es′∼P(s′|s,π(s))

[
Vπ
M,θ(s

′)
]
. (1)

This can be solved using value iteration. Then, the safety
probabilities can be computed using the relation Vπ

M,ϕ(s) =

1−Vπ
M,θ(s) ∀s ∈ S. We denote the minimum and maximum

safety probabilities, across any policy, asVmin
M,ϕ(s) andVmax

M,ϕ(s)
respectively. We refer the readers to [16] for details on how
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they can be computed. We also denote the minimum and max-
imum safety probabilities for a state-action pair (s, a) ∈ S×
A(s) by Qmin

M,ϕ(s, a) and Qmax
M,ϕ(s, a) respectively. For example,

Qmax
M,ϕ(s, a) is computed as

Qmax
M,ϕ(s, a) = Es′∼P(s′|s,a)

[
Vmax
M,ϕ(s

′)
]
. (2)

The above discussion can be extended to reach-avoid specifi-
cation, ¬ Sunsafe ∪ goal, which translates to “never (¬) be in
an unsafe state until (∪) the goal state (goal) is reached”. We
note that the reach-avoid specifications can also be cast into a
reachability specification, and refer the readers to [16] for further
details. We denote the policy corresponding to the maximum
safety probability, Vmax

M,ϕ(s), as the optimally safe policy πsafe
M,ϕ,

defined as πsafe
M,ϕ(s) = argmaxa Q

max
M,ϕ(s, a). These quantities

are necessary to define our shield that can ensure a desired
safety probability δ for the networked controlled system. For
an MDPM = 〈S, Init,Act,A,P 〉, a shield ([8], [10]) is a func-
tion, C : S→ 2Act, that maps every state s ∈ S to a subset of
A(s). During runtime, the shield overwrites the policy only if
π(s) �∈ C(s).

IV. PROBLEM FORMULATION

In this section, we formally define our safe networked control
problem. We make the following three key assumptions:
� The agent-environment interaction is available as an MDP
Mb = 〈S, Init,Act,A,P 〉, where the state and action sets
are discrete and finite. For the continuous case, we obtain
finite sets by abstracting the continuous state and action
spaces. We term this as the Basic MDP. In our hardware
setup, the state set S consists of bins of possible distances
between the cars, the action set Act consists of bins of
allowed ego-robot velocities and the transition probability
function P captures the leader’s unpredictability modeled
using an assumed range of velocities. This is a standard as-
sumption since the offline computation of safe control poli-
cies typically require knowledge of the agent-environment
interaction [4], [10], [26].

� We assume a sufficient understanding of the stochasticity
in communication delay, which we model as a transition
probability function Pτ with an upper bound τmax on the
delay. Later, in Section VI, we show how to obtain Pτ

from the collected time-series datasets of communication
delays.

� Finally, we assume the cloud controller πcloud is available
as a mapping from the state setS to the action set Act for the
Basic MDP. For the discrete case, this mapping is trivial as
it is πcloud itself. For the continuous case, the mapping can
be easily obtained even for complex DNN controllers [30].
Later, we show how to relax this assumption for cases like
human-teleoperation. Note that the cloud controller πcloud
is unaware of the communication delay.

We now explain the practical effects of delays on NCS. Con-
sider an agent sending timestamped observations to the cloud.
The cloud processes these observations to extract the system
state information, generates a corresponding action, and appends
the same timestamp to it before sending it back to the agent. We
define communication delay as the time difference between the
current time and the timestamp of the received action. Formally,
at time t, the communication delay is τt if the received action, at,
corresponds to the delayed state st−τt . We refer to st−τt as the
latest available system state at time t. Between two consecutive

time steps t and t+ 1, only one of the following three events
can occur.
� Case 1: The agent receives no action from the cloud. This

implies that the latest available system state at t+ 1 is still
st−τt and the delay τt+1 = τt + 1.

� Case 2: The agent receives an action with a timestamp
equal to the current time, implying no delay, i.e., τt+1 = 0.

� Case 3: The agent receives an action with an older times-
tamp, implying τt+1 > 0 and τt+1 ≤ τt.

To model these events, we represent the delay transitions as
a conditional probability distribution Pτ (τt+1 | τt), Pτ : Ω×
Ω→ [0, 1] where Ω = {0, 1, .., τmax} is the set of integer delay
values. As the delay cannot increase by more than 1 (Case 1),
we have Pτ (τt+1 | τt) = 0 if τt+1 > τt + 1.

Problem: We are given the Basic MDP Mb, the delay
transition probability function Pτ with an upper bound on delay
τmax and the cloud controller πcloud. Our aim is to ensure safe
networked control such that the system satisfies the safety spec-
ification �¬Sunsafe with probability δ, where Sunsafe denotes
the unsafe states.

V. APPROACH

Our approach to safe networked control is based on shield
construction. The shield construction for safe networked control
requires an MDP that is cognizant of the delay. However, the
Basic MDPMb does not account for any delay. Therefore, from
Mb, we first create a Delayed Communication MDP (DC −
MDP) that accounts for the stochastic communication delay.
This is outlined in Section V-A. Consequently, in Section V-B,
we describe our approach for shield construction for any MDP
and any safety specification.

A. Delayed Communication Markov Decision Processes

To design the DC −MDP from the Basic MDPMb, we first
note that in the presence of delay, the state transition model
can no longer rely only on the current state st and the current
executed action at to determine the next state st+1. This is
because st is not known when the delay is not zero. For a system
with delay τt at time t, the maximum information available
about the system at t is the latest observed system state st−τt
and the action buffer, i.e., sequence of actions executed from
t− τt to t− 1, at−τt , . . . , at−1. Therefore, determining whether
an actionat is safe with respect to the property�¬Sunsafe should
intuitively rely on st−τt and at−τt , . . . , at−1. Hence, we incor-
porate this maximum information available about the system
into the state of the DC − MDP. Note that the action buffer’s
length is the delay τt, which can vary. So, we introduce τmax − τt
number of place-holder actions, φ, to ensure the action buffer’s
length is always τmax. Now, we define the state at time t, xt,
as (st−τt , (at−τt , . . . , at−1, φ, . . . , φ), τt) and the state space
for the DC − MDP as Xd ∈ S× (Act ∪ {φ})τmax × Ω, where
Ω = {0, 1, . . . , τmax} is the set of all possible delays. Without
loss of generality, the initial delay, τ0 is 0, i.e., the latest available
system state at the beginning of any task execution is the initial
system state. Let sInit be the set of initial states for Mb, then
we define the initial state probability distribution of the DC −
MDP, Initd, to only have non-zero probabilities for the states in
the list sInit × {(φ, φ, . . . , φ)} × {0}.

Let the state xt = (st−τt , (at−τt , . . . , at−1, φ, . . . , φ), τt) and
the action at. We now relate the three possible events described
in Section IV to the state transitions in Xd.
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� Case 1. τt+1 = τt + 1: The latest available
system state remains the same. Thus xt+1 is
(st−τt , (at−τt , . . . , at, φ, . . . , φ), τt + 1). The occurrence
of this event is governed only by the delay transition,
hence the probability of this event is Pτ (τt + 1 | τt).

� Case 2. τt+1 = 0: The latest available system state
is the current system state st+1. Thus xt+1 is
(st+1, (φ, . . . , φ), 0). This event depends on the de-
lay transition with probability Pτ (0 | τt) and the
system transition from st−τt to st+1 by executing
τt + 1 actions at−τt , . . . , at, with probability P (st+1 |
st−τt , at−τt , . . . , at).

� Case 3. 0 < τt+1 ≤ τt: The latest available
system state is delayed by τt+1. Thus xt+1 is
(st+1−τt+1

, (at+1−τt+1
, . . . , at, φ, . . . , φ), τt+1). Similar

to Case 2, the occurrence of this event is governed by
the delay transition with probability Pτ (τt+1 | τt) and
the system transition with probability P (st+1−τt+1

|
st−τt , at−τt , . . . , at−τt+1

).

Pd(xt+1 | xt, at) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pτ (τt+1 | τt),
if τt+1 = τt + 1
xt+1 = (st−τt , (at−τt , . . . , at, φ, . . . , φ), τt + 1)

Pτ (τt+1 | τt)
∑

st−τt+1∈S
yt−τt · · ·

∑
st∈S

yt−1 yt

︸ ︷︷ ︸
τt+1 terms

,

if τt+1 = 0, xt+1 = (st+1, (φ, . . . , φ), 0)

Pτ (τt+1 | τt)
∑

st−τt+1∈S
yt−τt · · ·

∑
st−τt+1

∈S
yt−τt+1−1 yt−τt+1

︸ ︷︷ ︸
τt−τt+1+1 terms

,

if 0 < τt+1 ≤ τt
xt+1 = (st+1−τt+1

, (at+1−τt+1
, . . . , at, φ, . . . , φ), τt+1)

0 otherwise,
(3)

Consequently, we define the transition probability function for
the DC − MDP Pd : Xd × Act×Xd → [0, 1] as shown in (3).
In (3), yt−τt = P (st−τt+1 | st−τt , at−τt) is the one-step transi-
tion probability from the system state st−τt to st−τt+1 while
executing the action at−τt . We note that the system transition
probabilities in Case 2 and Case 3 can be factorized into the
τt + 1 and τt − τt+1 + 1 terms in (3) respectively. Now, we
prove that Pd is a valid conditional probability distribution with
support over the state space Xd. First we note that since the
conditional distributions Pτ , yt ≥ 0, Pd ≥ 0. Next, we show
that

∑
xt+1∈Xd

Pd(xt+1 | xt, at) = 1. Substituting the transi-
tion probabilities from Cases 2,3 in place of the factorized terms
in (3),∑

xt+1∈Xd

Pd(xt+1 | xt, at) = Pτ (τt + 1 | τt)

+ Pτ (0 | τt)
∑
st+1

P (st+1 | st−τt , at−τt , . . . , at)

+

τt∑
τ ′=1

Pτ (τ
′ | τt)

∑
st−τ ′

P (st−τ ′ | st−τt , at−τt , . . . , at−τ ′−1).

(4)

The inner summations in the second and third terms of the
right-hand side of (4) equate to 1. Hence,

∑
xt+1∈Xd

Pd(xt+1 |
xt, at) =

∑
τ ′∈Ω Pτ (τ

′ | τ) = 1.
Thus, the DC−MDPMd is the tuple 〈Xd, Initd,Act,A,Pd〉.

From the definition of the state space of the DC − MDP, we
denote the unsafe states for the DC−MDP, Xunsafe, as a subset
of Sunsafe × (Act ∪ {φ})τmax × Ω, where Sunsafe is the unsafe
states set for the Basic MDP. In other words, the DC − MDP
state at time t, xt = (st−τt , (at−τt , . . . , at−1, φ, . . . , φ), τt),
is unsafe if st−τt ∈ Sunsafe. Additionally, we show how to
construct the DC − MDP when only τmax is known, and Pτ

is not. Since the delay is upper-bounded by τmax, the action
corresponding to the observation st−τmax

is always available
at timestep t. Therefore, we take st−τmax

as the latest available
system state and consider the delay to be a constant and equal
to τmax. Consequently, the initial delay is set to τmax and the
action buffer is set to {(as, as, . . ., as)}, where as is the action
that does not affect the agent’s state. In our hardware setup, as
is the ego-velocity of 0 m/s.

B. Shield Design for Safe Networked Control

In this section, we show how to construct a shield for any
MDPM = 〈S, Init,Act,A,P 〉, a specification ϕ = �¬Sunsafe
and a policy π. The shield should ensure that when π is executed
in the presence of the shield, the initial state distribution should
satisfy ϕ with at least the desired safety probability δ. First, we
formally define the shield.

Definition 1: The ε-shield,Cε : S→ 2Act, for any state s ∈ S,
and ε ∈ [0, 1] is

Cε(s) =

{{a | Qmax
M,ϕ(s, a) ≥ ε} if Vmax

M,ϕ(s) ≥ ε,

{argmaxaQ
max
M,ϕ(s, a)} if Vmax

M,ϕ(s) < ε.
(5)

During run-time, the action executed is different from π(s)
only if π(s) �∈ Cε(s); in which case an action from Cε(s) is
chosen. Hence, the ε-shield is minimally intrusive. Now, we
show there exists ε such that the run-time monitoring of π by the
ε-shield Cε provides a safety probability greater than or equal
to δ for the initial states.

Definition 2: The modified policy,πε : S→ Act, for any state
s ∈ S, policy π, and ε-shield Cε is

πε(s) =

{
π(s) if π(s) ∈ Cε(s),
pick from Cε(s) if π(s) �∈ Cε(s).

(6)

Observe that the modified policy πε is a result of the run-time
monitoring of π by the ε-shield Cε. In other words, πε is the
policy that is executed during networked control.

Proposition 1: The safety probability for a state s ∈ S
while executing πε, V

πε

M,ϕ(s), is lower bounded by Vmin
Mε,ϕ

(s)

where the MDP Mε = 〈S, Init,Act,Cε,P 〉. The lower bound
Vmin
Mε,ϕ

(s) is a non-decreasing function of ε.
Proof: First, we note that executing πε for M is equiva-

lent to executing π for Mε = 〈S, Init,Act,Cε,P 〉, where the
allowed action set for each state s is given by Cε(s). Hence,
the minimum safety probability forMε denoted by Vmin

Mε,ϕ
(s)

is the lower bound for Vπε

M,ϕ(s). Now, we show by contra-
diction that for ε, ε̄ ∈ [0, 1] and ε < ε̄, Vmin

Mε,ϕ
(s) ≤ Vmin

Mε̄,ϕ
(s)

for any state s ∈ S. Assume for the two MDPs, Mε and Mε̄,
Vmin
Mε,ϕ

(s) > Vmin
Mε̄,ϕ

(s) for some state s ∈ S. This implies that
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Algorithm 1: Shield Design.

Input: MDPM = 〈S, Init,Act,A,P 〉, policy π, safety
specification ϕ = �¬Sunsafe, desired safety probability δ

Output: ε-shield, C∗ε.
1: Initialize ε-shield,C∗ε(s) = A(s) ∀s ∈ S.
2: Compute Qmax

M,ϕ(s, a) for all state-action pairs inM.
3: for ε← [0, η, 2η, . . . 1] do
4: Determine Cε(s) for each state s ∈ S as in (5)
5: Determine the modified policy πε as in (6).
6: Compute Vπε

M,ϕ(s) for all states in S as in Section III.
7: if Es∼Init[V

πε

M,ϕ(s)] ≥ δ thenC∗ε = Cε

8: break
9: end if

10: end for
11: return C∗ε.

the policy that corresponds to Vmin
Mε̄,ϕ

(s) does not exist for
Mε, and hence Cε(s

′) ⊂ Cε̄(s
′) for some s′ ∈ S. But, from

the definition of ε-shield, if ε < ε̄, then Cε(s) ⊇ Cε̄(s) ∀s ∈ S,
which is a contradiction. Thus, the lower bound on Vπε

M,ϕ(s) is
a non-decreasing function of ε. �

Remark 1: For the MDP M = 〈S, Init,Act,A,P 〉 and the
safety propertyϕ, note that the safety probability for any s ∈ S is
upper-bounded by Vmax

M,ϕ(s). So, for the initial state distribution,
the upper bound on the safety probability is Es∼Init[V

max
M,ϕ(s)].

Hence, any choice of the desired safety probability δ should
satisfy δ ≤ Es∼Init[V

max
M,ϕ(s)].

The Algorithm 1 takes as input the MDP M, policy π,
specification ϕ, and desired safety probability δ, and outputs the
synthesized ε-shield C∗ε. In line 2, we compute the maximum
safety probability for all state-action pairs inM, as explained in
Section III, (2). Then, we gradually (based on the granularity η)
vary the parameter ε from 0 to 1 until the safety probability for
the initial state distribution, while executing the modified policy
πε, is greater than or equal to the desired safety probability δ
(lines 3-10).

Theorem 1. (Termination with guaranteed safety): For a given
MDP M and a policy π, Algorithm 1 always terminates with
an ε-shield, C∗ε as in (5), such that the modified policy πε, a
combination of π and C∗ε ( (6)), satisfies the safety property
ϕ = �¬Sunsafe for the initial state distribution with a probability
greater than or equal to the desired safety probability δ, where
δ ≤ Es∼Init[V

max
M,ϕ(s)].

Proof: From Proposition 1, we know that Vmin
Mε,ϕ

(s) is a
non-decreasing function of ε ∀s ∈ S. For ε = 0, note that
Cε(s) = A(s), and therefore Vmin

Mε,ϕ
(s) = Vmin

M,ϕ(s). Moreover,
for ε = 1, note that Cε(s) = {argmaxaQ

max
M,ϕ(s, a)} from (5).

This implies πε is the same as the optimally safe policy, πsafe
M,ϕ,

from Section III. Consequently, we haveVmin
Mε,ϕ

(s) = Vmax
M,ϕ(s).

To summarize, Vmin
Mε,ϕ

(s) is a non-decreasing function of ε that
lies between Vmin

M,ϕ(s) and Vmax
M,ϕ(s).

Since expectation is a linear operation, Es∼Init[V
min
Mε,ϕ

(s)]
is also a non-decreasing function of ε that lies between
Es∼Init[V

min
M,ϕ(s)] and Es∼Init[V

max
M,ϕ(s)]. Therefore, for any

desired safety probability δ ≤ Es∼Init[V
max
M,ϕ(s)] (from Re-

mark 1), there exists an ε ∈ [0, 1] such that Es∼Init[V
min
Mε,ϕ

(s)] ≥

δ. Finally, since Es∼Init[V
πε

M,ϕ(s)] is lower bounded by
Es∼Init[V

min
Mε,ϕ

(s)] (Proposition 1), we conclude that the
Algorithm 1 always terminates with the ε-shield,C∗ε, that guar-
antees the desired safety probaility δ. �

We note that irrespective of the choice to pick any action
from Cε(s) when π(s) �∈ Cε(s) ( (6)), Algorithm 1 returns an
ε-shield,C∗ε, which guarantees the desired safety probability. For
example, one could select actions from Cε(s) prioritizing either
task-efficiency or safety (argmaxaQ

max
M,ϕ(s, a)). We also note

that the shield design in [10] and [26] is similar to our ε-shield
definition. However, our key novelty is that unlike [10] and [26]
which do not provide any guarantee on achieving the required
safety probability, our approach (Algorithm 1) returns C∗ε which
guarantees the required safety probability.

Remark 2: Algorithm 1 can be modified to yield an ε-shield
even when π is not known, in cases like human-teleoperation.
Since the modified policy cannot be computed without π,
we instead check for Es∼Init[V

min
Mε,ϕ

(s)] ≥ δ in line 7 of the
Algorithm 1. This guarantees safety probability of at least δ
for any modified policy πε.

Hence, for safe networked control, we construct the DC −
MDP (refer to Section V-A), and given the safety specifica-
tion ϕ = �¬Sunsafe and the cloud controller πcloud, we use
Algorithm 1 to construct the ε-shield,C∗ε, which ensures a safety
probability greater than or equal to δ for the networked control
system. The same can be extended to reach-avoid specifications
by casting them into reachability specifications (refer to [16]).
More broadly, our approach works for any specification that can
be cast into a reachability specification.

VI. EXPERIMENTS

Now, we show empirically that the shield ensures safety in the
presence of communication delays. We analyze the behavior
of the agent with shields constructed using two different DC
− MDPs: “constant delay” when only τmax is known, and
“random delay” when Pτ is modeled additionally. We test on
three environments,
� A 2D 8× 8 gridworld simulation setup where the con-

trolled robot, initialized at (0,0), is tasked with reaching
the goal at (7,7) while avoiding collision with a dynamic
obstacle. Each episode runs for 50 timesteps. An episode
is considered a win if the robot reaches the goal without
colliding, a loss if there is a collision or a draw otherwise.
The cloud controller is learned using tabular Q-learning.

� A car-following simulation setup where the ego robot has
to follow the leader car with a minimum safety distance
of 5 m. The system state consists of relative distance and
relative velocity. The leader car can accelerate anywhere
between −0.2 m/s 2 and 0.2 m/s2, and the ego robot can
accelerate between −0.5 m/s2 and 0.5 m/s2. Each episode
runs for 100 s. The cloud controller is a pre-trained RL
agent that maximizes distance traveled and minimizes col-
lisions with the leader. We discretize the relative distance
and relative velocity to obtain a finite state space.

� The hardware setup (Fig. 1) with two F1/10th cars [15].
The ego robot is equipped with a laser rangefinder. The
generated point cloud is transmitted over WiFi to a remote
server (the cloud). Here the state is estimated and a time-
optimal control command is sent back over WiFi to the
robot. The robot has to follow the leader as quickly as
possible while maintaining a safe distance of at least 0.2 m.
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Fig. 2. Shielding leads to safe networked control in simulations. Top row - car following simulation results; Bottom row - gridworld simulation results. (a) and
(d) Show the set of safe initial states with maximum safety probability greater than 0.95 for the Delayed Communication MDP for the constant delay case. The
set of safe states expands as the maximum delay (τmax) decreases. This is depicted by the legend that has multiple colors attributed to lower latencies. (b) and (e)
Compares the set of safe initial states with maximum safety probability greater than 0.95 for the random and constant delay cases with τmax = 3 in both the cases.
The set of safe states is larger in the case of random delay as the shield exploits the knowledge of the delay transitions to allow the agent to act more aggressively.
The white color represents initial states that have maximum safety probability less than 0.95. For the gridworld setup, the obstacle is located at (4,4). (c) and (f)
Show that as latency increases, the system tends to be conservative, leading to increased distances in the car-following scenario, and an increased number of ties
in the gridworld case.

For the car-following and the hardware setup, the safety spec-
ification is�¬Sunsafe, where Sunsafe consists of states where the
distance between the cars is less than 5 m and 0.2 m respectively.
For the gridworld, it is ¬ Sunsafe ∪ goal, where Sunsafe is
the set of states where the robot and the obstacle are in the
same location, i.e., collision. In our simulation environments,
we experimented with the maximum delay ranging from 0 to
3 time steps for both constant and random delay. For random
delay, we assume a delay transition probability function, Pτ ,
where the delay is mostly 0 and changes to other values with
low probability.

How does the performance of our safe networked control
approach vary with communication delay? The safety of the
teleoperated robot reduces when the communication delay in-
creases. We observe this in Fig. 2(a) and (d) for the two sim-
ulation setups, for the constant delay case. The set of states
for which maximum safety probability Vmax

M,ϕ(s) (Section III) is
greater than a δ value shrinks with increasing delay. It shows
that when the delay is large it is safer for the robot to stay farther
away from the dynamic obstacle (gridworld) and for the ego
robot to maintain a larger relative distance and velocity between
itself and the leader car (car-following).

The shields ensure the desired safety probability δ for differ-
ent delays. However, for the same safety probability, the task
performance degrades with increasing delay due to increasing

uncertainty in the system state. We show this quantitatively for
the two simulation setups with constant delay. In the gridworld,
with larger delays, the shield increasingly restricts the robot
from moving aggressively toward the goal to avoid collisions.
As such, it effectively sacrifices a win for a tie. Similarly, in the
car-following scenario, the distance maintained from the leader
robot increases (Fig. 2(c)). We observe a similar trend in our
hardware setup that runs on a wireless network with stochastic
delays (Fig. 3(a)). During the initial 10 s when the delay is less
than 100 ms, the average distance maintained is less than 1.25 m.
Then, when the delay is about 200 ms, the ego-robot starts to
maintain a larger distance of around 1.5 m.

How does δ affect the safety-efficiency trade-off? Our key
insight is that we can vary δ to trade off safety for task ef-
ficiency. We observe this in the constant delay case, where
increasing δ leads to increasingly conservative behavior with
more restrictions from the shield. In the gridworld, Fig. 2(f)
shows fewer wins and more ties, an indicator of reduced task
efficiency. Additionally, the number of losses decreases as safety
is prioritized. Similarly, for car-following, the average distance
maintained from the leader car increases (Fig. 2(c)). On the
other hand, δ = 0 is the un-shielded approach, which leads to a
violation of the safety specification.

How does incorporating the delay transition probability func-
tion Pτ affect safety and efficiency? We now illustrate that by
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Fig. 3. Real World Demonstration Results. (a) Shows recorded trajectories from our hardware setup. Without our safe networked control approach, the system
fails to satisfy the safety specification “always remain at least 0.2 meters away”. However, our approach can satisfy the safety specification for constant and random
delays. (b) The shield for the random delay case exploits the knowledge of delay transitions in Wi-Fi rather than assuming only the maximum latency, which allows
the ego robot to follow the leader car at a closer distance. We set ε = 0.95 to construct the ε-shield. In (c) and (d), we show how the delay transition probability
function, Pτ , is estimated using multiple runs of the Wi-Fi latency time-series data. Here, Pτ is a conditional probability distribution with three possible delays
(0,1,2), where each delay is a bin of size 100 ms.

incorporating Pτ , our safe networked control approach performs
more efficiently since the DC − MDP model is more accurate.
Whereas, when only τmax is known, the model is less accu-
rate as it assumes the observation from τmax steps before to
be the latest available system state even if the delay is small
and more recent system states are available. We compare the
DC − MDP for constant delay against the DC − MDP for
random delay with τmax = 3 in both cases. Firstly, Fig. 2(b)
and 2(e) show that the set of states for which maximum safety
probability Vmax

M,ϕ(s) (Section III) is greater than a δ value is
larger when Pτ is incorporated. Secondly, we observe more
wins and fewer draws in the gridworld, and lower aggregate
distance maintained for the car following setup as seen in Fig.
2(f) and 2(c) respectively. For the hardware setup, Pτ is obtained
experimentally (see Fig. 3(d)). Similar to the car following
setup, the distance maintained between the two robots is less
in the case of random delay when compared to constant delay
(see Fig. 3(b)). This difference in safety distance is statistically
significant with a Wilcoxon p-value < 0.001. To summarize, we
infer that incorporating Pτ in our DC−MDP design allows for
efficient task performance without compromising safety.

Does a minimally intrusive shield always lead to safety?
Fig. 3(a) shows the state trajectory in the presence and absence of
the ε-shield, and the instances when the ε-shield overwrites the
cloud controller of the hardware setup. The ε-shield overwrites
control commands when close to the leader car (relatively un-
safe), and is inactive when further away. For example, in the
constant delay case, the shield is inactive when the distance is
above ∼2.25 m, and still ensures safety.

What are the practical effects of discretizing the state space
and communication delay? We explain the effects of discretiza-
tion on the time taken for the DC −MDP’s shield construction
and the achievable safety probabilities. To assess the effect
on the time taken for the shield construction, we quantify the
time complexity of Algorithm 1, which mainly depends on
line 2 (maximum safety probability for all state-action pairs).
Since this is a value iteration procedure, the time complexity
of Algorithm 1 is in the order of O(|S|2|Act|) for any MDP
M = 〈S, Init,Act,A,P 〉 (refer to [16]). From the Basic MDP
to DC − MDP, the state space increases exponentially with
τmax from |S| to the order of |S|(|Act|+ 1)τmax(τmax + 1). So,
the time complexity of Algorithm 1 for the DC − MDP also
increases accordingly. However, note that the shield construction
is an offline process, and for practically observed delay values

TABLE I
RUN TIME AND MEMORY ANALYSIS FOR THE SHIELD CONSTRUCTION

(Fig. 3(c)), our approach scales well. We also provide a compre-
hensive analysis of the state space size, time taken to compute
line 2 in Algorithm 1, and the size of the synthesized shield for
the DC−MDP for our simulation environments in Table I. Note
that even for τmax = 3, the time taken to compute the maximum
safety probabilities is only close to an hour and the shield
size is less than 50 MB. The effect of discretization on safety
probability depends on the environment and the discretization
method used, which is beyond the scope of this article.

VII. CONCLUSION AND FUTURE DIRECTIONS

This article provides a novel approach to accurately model
the networked control system transitions, in the presence of
stochastic communication delays, as an MDP. Consequently, we
use the MDP to synthesize shields for safe networked control.
We demonstrate the efficiency of our approach on simulation and
hardware setups. Our work is timely since we are seeing a surge
of teleoperated robots. As future work, we believe that explor-
ing state space reduction techniques to handle the exponential
growth of state space in DC−MDP and exploring solutions for
continuous-time systems with delay using HJ reachability are
promising directions.
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