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Abstract. We introduce an adjoint-based inverse rendering method
using a Neural Differential Radiance Field, i.e. a neural network repre-
sentation of the solution of the differential rendering equation. Inspired
by neural radiosity techniques, we minimize the norm of the residual
of the differential rendering equation to directly optimize our network.
The network is capable of outputting continuous, view-independent gra-
dients of the radiance field w.r.t scene parameters, taking into account
differential global illumination effects while keeping memory and time
complexity constant in path length. To solve inverse rendering problems,
we simultaneously train networks to represent radiance and differential
radiance, and optimize the unknown scene parameters. Our method is
not scalable to millions of scene parameters, but we propose future work
directions that could make that happen in the future.

Keywords: Neural radiance fields · physically-based differentiable
rendering · inverse rendering

1 Introduction

Differentiable rendering is the problem of computing derivatives of a rendering
process w.r.t scene parameters such as BRDFs, geometry, illumination, or camera
parameters. Differentiable rendering is attractive because it enables gradient-
based optimization in inverse rendering problems, where scene parameters are
optimized such that the rendering process produces a target image (or multiple
target images from different viewpoints).

Here we are focusing on differentiable rendering for algorithms that solve
the rendering equation, with the ultimate goal to eventually enable inverse ren-
dering based on real world photographs under large numbers of unknown scene
parameters. In the scope of this paper, we are only focused on a set of algorithms
that use a neural network approximation of the radiance function. Such methods
account for global illumination by querying a radiance cache instead of building
complete Monte Carlo path integrals which could be very costly. Despite being
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Fig. 1. Our differential radiance network can account for primary and secondary gra-
dients. In (a) we showcase bunny scene where the reflection of bunnies in the mirror
creates indirect effects, and staircase scene with significant levels of global illumina-
tion. (b) We pick a scalar non-spatially varying material parameter in each scene, and
(c) visualize the gradient space for each method. The largest bias expectedly appears
in the direct illumination solver; we observe improvement in gradients when we use a
radiance cache on top of it. However, the inter-reflection of gradients in the scene is
still totally missing. Next, our differential radiance network gives us the full differential
solution, despite bouncing light only once, see Fig. 3a.

computationally simpler than path integrals, these methods tend to miss indi-
rect gradients as a result of not differentiating the radiance cache w.r.t scene
parameters. This could result in considerable bias in gradients (see the missing
indirect effects in Fig. 1 under ‘radiance net’).

In this paper, we propose a novel technique to account for the missing indirect
gradients. Our key idea is to represent the entire differential radiance field, that
is, the derivative of the radiance field w.r.t a set of scene parameters, using
a neural network, in addition to the radiance cache proposed by state-of-the-
art. We then train this network to satisfy the differential rendering equation
introduced by Nimier-David et al. [8]. Our method is inspired by the Neural
Radiosity approach by Hadadan et al. [3] to solve the rendering equation; here
we use the same training scheme to train our differential network as well. We
show that we can account for indirect gradients more accurately than neural-
network based methods that learn radiance caches such as [4,12]. In addition,
our approach is the first that produces continuous view-independent differential
radiance fields for given scene parameters, instead of only sampling derivatives
for a discrete set of rays.

On the other hand, we can only optimize a limited number of parameters
using our approach as the size of the output layer of our differential radiance
network is equal to the number of parameters being optimized. Finally, even
with the correction of indirect gradients using our differential radiance network,
our gradients would not be perfectly unbiased due to the fact that they are
approximated by a neural network.
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2 Related Work

2.1 Neural Network Techniques for Realistic Rendering.

Neural networks can be leveraged in various ways for realistic rendering, from
computational photography to medical imaging [10]. In particular, we are inter-
ested in the case where neural networks can directly represent the solution of
the rendering equation as proposed in Neural Radiosity [3] and Neural Radiance
Caching [7], where the radiance function is represented by neural networks as a
form of a radiance cache.

This paper aims at leveraging neural networks to learn view-independent,
continuous differential radiance fields, which is to the best of our knowledge
unprecedented. We use a single neural network to represent the differential radi-
ance function w.r.t arbitrary scene parameters. In a similar approach to Neural
Radiosity, we optimize our network parameters directly by minimizing the norm
of the residual of the differential rendering equation. We benefit from the re-
renderability of the radiance network as in Neural Radiosity.

2.2 Differentiable Rendering with Indirect Effects

Inverse rendering problems in computer vision and graphics heavily rely on dif-
ferentiable rendering to reconstruct a set of scene parameters (geometry [1],
reflectance properties, camera positions, etc.) from images. Most computer vision
techniques on differentiable rendering simply ignore indirect illumination effects
[5,6], but if we want to account for them, we require a full solution of the render-
ing equation. Techniques to differentiate the rendering equation while accounting
for indirect effects have been proposed in prior work. The most naive approach
would be to differentiate a path tracer using Automatic Differentiation (AD),
which requires a transcription of the whole rendering process, thus suffering
from prohibitive memory requirement. Instead, adjoint-based techniques take
advantage of differential light properties to avoid the enormous transcript of
AD. Specifically, Radiative Backpropagation (RB) [8] differentiates the render-
ing equation to obtain a differential rendering equation, which describes scat-
tering and emission of differential light. The equation reveals that differential
light travels through a scene similarly as regular light does. RB proposes an
adjoint approach for differentiable rendering, which is more efficient than naive
Automatic Differentiation of a Monte Carlo path tracer. RB’s main shortcoming
is that its time complexity is quadratic in path length, since at every scatter-
ing event during the adjoint phase, it requires to estimate incident radiance by
building another complete light path. Although follow up works [11] have solved
this issue, these algorithms still needs to build complete path integrals.

As opposed to the above methods that require building path integrals of arbi-
trary length, recent works such as Hadadan et al. [4] and Zhang et al. [12] propose
to use a neural network to approximate the radiance function and query it during
inverse rendering to account for global illumination effects. This approximation
requires less computation memory and significantly less computation time than
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path tracing with arbitrary bounces. We will show that although this approxi-
mation can correctly account for global illumination in primal radiance space, it
cannot account for global illumination effects in the differential radiance space.
In other words, it misses the indirect gradients. Instead, in this paper we will
propose a few alterations to the radiance-cache-based methods to correctly com-
pute indirect gradients as well, with the help of a differential radiance network.
Additionally, Hadadan et al. [4] and Zhang et al. [12] use automatic differentia-
tion to compute the gradients of the whole process, while we propose to use an
adjoint-based method. We validate our gradients compared to RB in Fig. 2.

3 Background

3.1 (Differential) Rendering Equation

Realistic rendering algorithms compute a set of measurements Ik where k cor-
responds to a pixel, given by the measurement equation

Ik =
∫

A

∫
H2

Wk(x, ω)L(x, ω)dxdω⊥
i , (1)

where L is the incident radiance at location x and direction ω on the pixel,
and Wk is the importance of pixel k. As radiance L remains constant along un-
occluded rays, incident radiance at a pixel location and direction is equal to the
outgoing radiance from the nearest surface along the ray. The outgoing radiance
at surfaces can be computed using the rendering equation,

L(x, ωo) = E(x, ωo) +
∫

H2
f(x, ωi, ωo)L(x′(x, ωi),−ωi), dω⊥

i . (2)

Nimier-David et al. [8] differentiate the above equations w.r.t an arbitrary
set of scene parameters p = (p1, ..., pn). For simplicity, we use ∂p to represent
∂/∂p. Note that variables preceded by ∂p imply a vectorized gradient w.r.t each
parameter. By assuming a static camera where ∂pWk = 0, we can differentiate
Eq. 1 as,

∂pIk =
∫

A

∫
H2

Wk(x, ω)∂pL(x, ω)dxdω⊥
i , (3)

which describes the relationship between differential measurement ∂pIk and dif-
ferential radiance ∂pL. Differential radiance ∂pL in turn can be found by differ-
entiating Eq. 2,

∂pL(x, ωo) = ∂pE(x, ωo) +
∫

H2
f(x, ωi, ωo)∂pL(x′(x, ωi),−ωi)dω⊥

i

+
∫

H2
∂pf(x, ωi, ωo)L(x′(x, ωi),−ωi)dω⊥

i , (4)

which is referred to as differential rendering equation. This equation explains the
scattering of differential radiance in a similar manner to regular radiance. More
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Fig. 2. Validation of our gradients compared to Radiative Backpropagation [8]. (a),
(b) and (c) are the gradient images with respect to the red wall albedo.

specifically, the first term describes how differential radiance is emitted from
surfaces whose emission is dependent on the scene parameters p. The second term
means differential radiance scatters on surfaces based on their BRDFs, similar
to regular radiance in the rendering equation. The new third term represents
additional differential emission from the surface if its BRDF function changes
with perturbations of scene parameters p. This term is dependent on the incident
radiance L at (x, ωi), which implies computing ∂pL depends on computing L also.

3.2 Neural Radiosity

Neural Radiosity [3] is an algorithm to find a solution of the rendering equa-
tion (Eq. 2) using a single neural network. More formally, the radiance function
L(x, ωo) in Eq. 2 is represented by a neural network with a set of parameters φ
(such as geometry, lighting, and material properties), as Lφ(x, ωo). The param-
eters φ of this network can be directly optimized in a self-training approach
by minimizing the norm of the residual of the rendering equation. The residual
rφ(x, ωo) is

rφ(x, ωo) = Lφ(x, ωo) − E(x, ωo)

−
∫

H2
f(x, ωi, ωo)Lφ(x′(x, ωi),−ωi)dω⊥

i , (5)

which is simply the difference of the left and right-hand sides of Eq. 2 when the
radiance function L is substituted by Lφ. This neural network takes a location
x and outgoing direction ωo as input and returns the outgoing radiance. Such
a pre-trained network serves as a compact, re-renderable, and view-independent
solution of the rendering equation.

4 Solving the Differential Rendering Equation

Similar to Neural Radiosity, we propose to use neural network-based solvers to
find the solution of the differential rendering equation. We call this Differentiable
Neural Radiosity. Let us denote a differential radiance distribution ∂pLθ(x, ωo)
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as the unknown in Eq. 4, given by a set of network parameters θ. Additionally,
we define a residual rθ as the difference of the left and right hand side of Eq. 4,

rθ(x, ωo) = ∂pLθ(x, ωo) − ∂pE(x, ωo) −
∫

H2
f(x, ωi, ωo)∂pLθ(x′(x, ωi),−ωi)dω⊥

i

−
∫

H2
∂pf(x, ωi, ωo)Lφ(x′(x, ωi),−ωi)dω⊥

i , (6)

where rθ depends on the parameters θ of the differential radiance function ∂pLθ.
Also, the primal radiance can be represented by a constant parameter set φ in
Lφ which is independent of θ.

We define our loss as the L2 norm of the residual,

L(θ) = ‖rθ(x, ωo)‖22
=

∫
M

∫
H2

rθ(x, ωo)2dxdωo, (7)

where M means integration over all scene surfaces. We propose to minimize L(θ)
using stochastic gradient descent.

4.1 Monte Carlo Estimation

The Monte Carlo estimation of the residual norm is

L(θ) ≈ 1
N

N∑
j=1

rθ(xj , ωo,j)2

p(xj , ωo,j)
, (8)

where N is the number of samples, xj and ωo,j are the surface location and the
outgoing direction samples, taken from a distribution with density p(x, ω).

The Monte Carlo estimation of the incident integral for any rθ(xj , ωo,j) is

rθ(xj , ωo,j) = ∂pLθ(xj , ωo,j) − ∂pE(xj , ωo,j)

− 1
M

M∑
k=1

f(xj , ωi,j,k, ωo,j)∂pLθ(x′(xj , ωi,j,k),−ωi,j,k)
p(ωi,j,k)

− 1
Z

Z∑
l=1

∂pf(xj , ωi,j,l, ωo,j)Lφ(x′(xj , ωi,j,l),−ωi,j,l)
p(ωi,j,l)

. (9)

The notation ωi,j,k and ωi,j,l indicates that each sample xj , ωo,j has its own set of
samples of M and Z incident directions ωi,j,k and ωi,j,l (i stands for “incident”,
it is not an index).



Neural Differential Radiance Field 99

5 Inverse Rendering Using Our Method

For inverse rendering, the goal is to optimize a set of scene parameters p using an
objective function z(.), which denotes the distance between a candidate image
to the reference, and a rendering function g(.). To minimize z(g(p)), we need the
gradient ∂z

∂p ,

∂z

∂p
=

∂z

∂y
.
∂y

∂p
, (10)

where y is a rendered image y = g(p). The term ∂z
∂y can be interpreted as the

gradient of the loss w.r.t pixel values of the candidate image. In most cases,
computing this gradient is easy either manually (e.g. if it is L2 or L1) or using
AD (e.g. if it is a neural network). The more challenging part is ∂y

∂p , which is
equivalent to the differential measurement vector [∂pI0...∂pIn], since we need to
differentiate the rendering algorithm. Recall from Eq. 3 that ∂pIk is the result of
integrating the incident differential radiance ∂pL over locations x and directions
ω on the hemisphere at pixel k. Therefore, the task breaks down to finding
∂pL(x,w). In our approach we query our neural network ∂pLθ(x,w) for the
differential radiance, as it represents the entire differential radiance distribution
in the scene.

With the use of our network, inverse rendering breaks down into an iteration
over the following steps:

1. Train (or fine-tune) our networks ∂pLθ and Lφ with the current state of the
scene parameters (minimize Eqs. 5 and 7).

2. Compute a non-differentiable candidate primal rendering and its distance to
the reference (L2, L1, etc.). In case of multi-view optimization, the losses are
summed.

3. Find the derivatives of the loss w.r.t the pixels of the primal image (to get
∂z
∂y ).

4. Compute ∂y
∂p , which is equivalent to the measurement vector [∂pI0...∂pIn]. To

do so, we trace rays from the sensor to find the first hit point and at that
point, query our differential radiance network ∂pLθ. More formally,

∂pIk,θ =
∫

A

∫
H2

Wk(x, ω)∂pLθ(x′(x, ω))dxdω⊥
i . (11)

5. Compute the gradient of the loss w.r.t the parameters ∂z
∂p by multiplying the

gradients from Step (2) and (3) as in Eq. 10.
6. Update the scene parameters using the computed gradient using an optimizer

such as Adam).

Figure 3b summarizes the steps of our pipeline.
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Fig. 3. Pipeline schematics illustrating our training scheme and inverse optimizations
steps.

6 Implementation

6.1 Training

The training process for our networks is end-to-end and it occurs simultaneously
with the parameter optimization, i.e., during every optimization step, we take a
certain number of training steps for our networks to adapt to the most recent
changes in the scene parameters. In each training step, we minimize the norm
of the residual of the rendering equation and the differential rendering equation
simultaneously as

L(θ, φ) = ‖rφ(x, ωo)‖22 + ‖rθ(x, ωo)‖22 ,

using a separate set of samples for location and direction in each residual term.
Please note that the network Lφ is also present in the differential residual term
rθ (see the loss function Eq. 7). In practice, we use a sg(.) to prevent our primal
network from adapting itself to the differential loss.

Similar to Neural Radiosity, our training scheme is a self-training approach,
that is, instead of providing noisy estimated data to our network as ground truth
regression data, we compute both sides of the differential rendering equation
using the same network and minimize the difference (residual) during training
(Fig. 3a).
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Fig. 4. (a) Separate renderings of our differential network w.r.t to the BRDF param-
eters of each teapot in the Fig. 3b. Our network is capable of learning non-diffuse
gradients and global illumination effects in differential space. Using 8 spp for LHS and
2048 for RHS and reference (b) Multi-view renderings of our view-independent solution
of the differential rendering equation compared to reference. We show the derivative
with respect to the copper teapot’s roughness (the first row in Fig. 4a).

6.2 Sampling and Architecture

To sample the norm of the residual, we uniformly sample locations xi and direc-
tions wo,i in Eq. 8. The incident direction samples are taken using MIS of emitter
and BSDF. Each of our networks is an MLP with 3 fully-connected layers with
256 neurons per hidden layer, preceded by multi-resolution sparse grid encoding
of location x.

6.3 LHS Vs. RHS for Differential Radiance

As stated in Sect. 5, Step (4) of inverse rendering requires a query to ∂pLθ

to compute gradients of pixels w.r.t. scene parameters. Equivalently, one could
query our RHS to compute these gradients. Ideally, if the residual is zero every-
where, there should be no difference between the LHS and RHS; in practice,
however, the is always a nonzero residual. We find that our RHS more quickly
adapts to scene parameter changes, as computing the RHS requires one extra
ray-tracing step using the updated parameters. Hence, we use the RHS to query
the gradients in the experiments in this paper.



102 S. Hadadan and M. Zwicker

7 Results and Analysis

7.1 Comparison to Previous Work

In Sect. 2.2, we mentioned that automatic differentiation of multi-bounce path
integrals could be memory intensive and time-consuming when dealing with com-
plex scenes. A solution to alleviate the memory and time complexity of building
path integrals is to use a radiance cache; it can provide global illumination effects
while removing the need to trace further bounces. Such a radiance cache can be
solely trained from input images [12], and/or using a global illumination solver
[4] based on Neural Radiosity [3].

More formally, in Eq. (4), a radiance cache would provide an approximation
of the term L in the second integral term which would make it more accurate
than a direct illumination solver (see Fig. 1). The issue is, having a network
representation of L would not yield ∂pL, since the network is not differentiable
with respect to the scene parameters. Therefore, using a radiance-cache-based
method results in ∂pL = 0. That is the motivation for our method, to account
for the term ∂pL and L at the same time using separate networks; Fig. 1 shows
that our method yields the least biased gradients, accounting for the global
illumination effects in both primal and differential spaces, needless of tracing
further bounces.

Here we provide an analysis of our method:

– Smooth gradients: All path integral based methods compute gradients using
Monte Carlo sampling which results in noisy gradients. Instead, our networks
∂pLθ and Lφ produce smooth gradients that could enable a faster and more
robust optimization process.

– Constant time complexity: Our time complexity is constant in path length,
similar to other radiance-cache-based methods that avoid computing path
integrals. Our method requires tracing only one bounce to compute a full
global illumination solution in both differential and primal space.

– View-independence: Our method provides view-independent solutions to
the differential rendering equation (Fig. 4b). This means our solutions need
not be recomputed/updated under changes of sensor parameters – except if
sensor parameters are in the set of parameters that are being optimized. This
property can be helpful for multi-view optimization tasks.

– Memory complexity The inference and training memory complexity of our
differential network (LHS) with batch size of k samples is O(k ∗ n) where n
is the number of the parameters of our networks; for the RHS with N surface
samples and M samples for the hemispherical integral, the complexity would
be O(N ∗ M ∗ l). As our differential network requires an output channel for
each scene parameter included in the gradient, assuming a fixed network size
except the last layer, the number of network parameters l grows linearly with
the number of scene parameters in gradient.
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7.2 Inverse Rendering Experiments

We conduct an inverse rendering using our method to find the albedo of the
small bunny in Fig. 1 from a single view; the bunny is not directly visible by the
camera, but only the reflection off the camera can provide information about
its albedo. Results in Fig. 5 show that radiance-cache based methods completely
fail to account for indirect gradients, while our method can successfully optimize
for the parameter using the differential radiance field.

Fig. 5. Inverse rendering using our method compared to when a radiance cache was
trained based on the input images similar in spirit to [4,12]. The parameter being
optimized for is the albedo of the small bunny.

8 Limitation and Future Work

Our method has a key limitation: our differential network requires an output
channel for each scene parameter included in the gradient. As we use fully-
connected layers, the number of connections in the last layer grows linearly with
the number of outputs (assuming fixed-sized network except the output layer)
and this generates a memory constraint for differentiable rendering tasks that
require optimizing w.r.t millions of parameters. One could use techniques such as
low rank factorization [9] to reduce the output dimension of the neural network;
another approach could be using hypernetworks [2] to have a neural network
learn the weights of a small network ∂pL with millions of outputs.

9 Conclusion

In this paper, we introduced a new method to solve the differential render-
ing equation using a single neural network. Our network parameters are opti-
mized directly by minimizing the norm of the residual of the differential render-
ing equation. Our learnable network architecture is capable of representing the
full continuous, view-independent differential radiance distribution and accounts
for global differential illumination. Such a network can be utilized on top of a
radiance-cache based method to fix the bias issue of missing indirect gradients.
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