

1 "I think": integrating project-based learning and case study to teach fundamentals of evolutionary
2 tree-thinking

3

4

5 Thomas J. Firneno Jr^{1*}, Gabrielle T. Welsh¹, Peter J. Nimlos¹, and Erica L. Larson^{1*}

6

7 *¹Department of Biological Science, University of Denver, Denver, Colorado, 80208, USA*

8

9 *corresponding authors: thomas.firneno@du.edu and erica.larson@du.edu

10

11

12 ORCID ID: 0000-0002-4975-2794 (TJF)

13

14 ORCID ID: 0000-0002-8492-2509 (GTW)

15

16 ORCID ID: 0000-0002-5726-3325 (PJN)

17

18 ORCID ID: 0000-0003-3006-645X (ELL)

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43 **Abstract**

44 The theory and practice of evolutionary tree-thinking is pervasive through many scientific fields and
45 is a critical component of biological literacy. Many elements of tree-thinking are introduced early in
46 undergraduate biology education. However, basic concepts are often not revisited/reinforced and are
47 assumed to have been fully conceptually grasped in upper-level courses and beyond. Here, we present
48 a project-based activity that we developed to aid upper-level biology students to learn, conceptualize,
49 and practice tree-thinking. This approach allows them to identify the misconceptions that they may
50 have about tree-thinking, while reinforcing the theories and concepts that they may have
51 encountered in introductory courses. It also integrates several pedagogical styles (instructor-led and
52 student-centered), along with an organismal case study to make concepts concrete and realistic to
53 students.

54

55

56

57

58

59

60

61

62

63

64

65

66 **Key words:** phylogeny, systematics, active learning, field crickets

67

68 **Introduction**

69 *Background*

70 The central concept of evolutionary biology is that the diversity of organisms on earth is descended

71 from common ancestors, and that we are all connected like tips of branches on a single tree of life

72 (Avise 2006; Baum and Smith 2013; Darwin 1859). Evolutionary relationships, both within or

73 between groups of organisms, are depicted in evolutionary trees (i.e. phylogenetic trees). Being able

74 to build, visualize, and interpret evolutionary trees is crucial for developing an accurate

75 understanding of evolution, organizing biological diversity, and to effectively investigate and

76 communicate evolutionary phenomena. This practice is known as “tree-thinking” and is a critical

77 component of biological literacy (Baum and Offner 2008; Baum and Smith 2013; Gregory 2008;

78 Halverson 2011; Novick and Catley 2016; Novick and Catley 2013; Sandvik 2008). Tree-thinking is an

79 important component of many undergraduate courses including introductory biology, evolution, and

80 organismal-based courses, as well as extending into other fields such as medicine, forensics, and

81 anthropology (Baum and Offner 2008). Undergraduates are typically introduced to concepts of tree-

82 thinking (e.g., terminology and tree topology, parsimony, trait evolution, relatedness) in introductory

83 courses and it is often assumed in upper-level courses that this level of instruction is sufficient for

84 students to interpret evolutionary trees in texts and primary literature. However, research has shown

85 that even advanced biology undergraduates still struggle with a range of misconceptions about the
86 building and interpretation of evolutionary trees (highlighted in Table 1; (Baum et al. 2005; Baum
87 and Offner 2008; Blacquiere et al. 2020; Dees et al. 2014; Dees and Momsen 2016; Gregory 2008;
88 Halverson 2011; Lents et al. 2010; Meir et al. 2007; Meisel 2010; Novick and Catley 2013; Sandvik
89 2008).

90 In our experience, these misunderstandings stem from several factors including: (1)
91 significant lengths of time between being introduced to concepts of tree-thinking and revisiting or
92 applying concepts; (2) commonly misconstrued concepts are not explained thoroughly or clearly
93 when introducing tree-thinking; and/or (3) a lack of any application (e.g. tree building
94 practice/interpretation) to reinforce and allow students to fully grasp abstract concepts of tree-
95 thinking. Misconceptions of tree-thinking can hinder deeper understanding of evolutionary theory
96 and have an effect on students' acceptance of the evidence and scientific validity of evolutionary
97 theory (Gibson and Hoefnagels 2015; Gregory 2008; Meisel 2010). Moreover, misconceptions formed
98 early in students' college careers can impact their success in upper-level courses, often leading
99 students to leave biology majors (Chen X 2013; Cherif A, Adams G, Movahedzadeh F, Martyn MA,
100 Dunning J. 2014; Ingram and Nelson 2006; McKeachie et al. 2002). Therefore, even slight
101 misconceptions in either introductory or upper-level courses could have consequences that drive
102 students to leave the discipline (Heddy and Nadelson 2013; Mead et al. 2015).

103 Abstract concepts like tree-thinking can be made more intuitive and concrete with the use of
104 hands-on pedagogical techniques (Brewer and Zabinski 1999). There is considerable evidence that
105 hands-on activities are more effective than traditional lectures because (1) students become active
106 participants in their own learning (Alters and Nelson 2002; Freeman et al. 2014; Gardner and Belland

107 2012; Hake 1998; Nelson 2008; Smith et al. 2005) and (2) hands-on activities tend to engage students
108 from historically excluded groups in STEM (Ballen 2020; Ballen et al. 2017; Estrada et al. 2016; Haak
109 et al. 2011; Theobald et al. 2020). Furthermore, several case studies have shown that tree-building
110 exercises improve students' abilities to build, read, and interpret phylogenies, and more broadly,
111 think about evolution (Eddy et al. 2013). Here, we present a project-based activity for teaching and
112 reinforcing evolutionary tree building and interpretation. Project-based learning often combines
113 various pedagogical strategies that use a project(s) as a central component. These projects extend over
114 a period of time and vary in complexity, actively engaging students in autonomous work and problem
115 solving, and stimulating critical thinking and decision making (Bell 2010; Berchiolli et al. 2018;
116 Blumenfeld et al. 1991; Guo et al. 2020; Larmer et al. 2015). The other major component of project-
117 based learning is instructor feedback at pivotal times during the exercise(s) to aid students in
118 reflection and recalibration, which ultimately facilitates deep-learning and comprehension of the
119 major concepts being covered.

120 The project-based activity that we present spans six-hours across three class periods and
121 integrates a traditional instructor-lecture to introduce the concepts of tree-thinking and tree
122 building, student-centered instruction to carry out the activities within the exercise, and a case study
123 to bring abstract concepts into a novel, real-world framework. Students are asked to work in small
124 groups to encourage collaboration and discussion throughout the process, which has been shown to
125 be beneficial and effective in making theory more tangible to students (Allen and Tanner 2005;
126 Buckberry and Burke da Silva 2012; Freeman et al. 2014; Prince 2004). Our project-based activity
127 builds on prior work that provides frameworks for teaching tree-thinking (Baum et al. 2005; Baum
128 and Offner 2008; Meisel 2010) and tree building (Burks and Boles 2007; David 2018; McCullough et

129 al. 2020; Sokal 1983a; Sokal 1983b; Sokal 1983c; Sokal 1983d). Additionally, our project fulfills several
130 recommendations for best practices in teaching phylogeny (and evolution, in general) more
131 effectively by making broad use of active learning, directly addressing student misconceptions,
132 incorporating multimodal instruction, and introducing opportunities for communication and
133 collaboration (AAAS 2011; Nelson 2008; NGSS Lead States 2013). We designed this project to lay
134 foundational concepts of tree-thinking, and then reinforce these concepts through hands-on activities
135 and an engaging case study (herein defined as a teaching tool to show the application of theory and
136 concepts to real life, biological examples/situations).

137 Below, we outline our learning goals and objectives for this exercise to assist instructors in
138 designing comprehensive and meaningful assessment questions. Learning goals are broad and
139 achievable, though not always measurable, statements of what the exercise is intended to accomplish.
140 Whereas, learning objectives describe specific and measurable learning outcomes that can be assessed
141 by the end of the exercise.

142

143 *Learning Goals*

144 1. Build a foundation in evolutionary tree-thinking including building, interpreting, and
145 evaluating evolutionary trees.

146 2. Graphically and verbally represent evolutionary tree-thinking.

147 3. Build quantitative skills used to create and evaluate phylogenies.

148

149 *Learning Objectives*

150 1. Build morphological character matrixes and corresponding phylogenies.

151 2. Use a real-world case study to construct morphological and genetic character matrixes, along
152 with corresponding phylogenies.
153 3. Discuss how taxa differ and are related morphologically and genetically.
154 4. Build and evaluate phylogenies by implementing basic bioinformatics tools.
155 5. Apply what they have learned to deeper discussions of tree-thinking, tree building, and
156 evolution broadly.

157

158 *Significance of Field Crickets as a Case Study*

159 To allow students to connect abstract concepts of tree-thinking and tree building, we integrated a
160 case study using field crickets (Order: Orthoptera; Family Gryllidae, Subfamily Gryllinae) . Field
161 crickets can be found throughout the world and are familiar occupants of backyards in rural,
162 suburban and urban environments (Byerly et al. in press). Their songs, which males use to attract and
163 court females, can be heard during warm seasons and they are ubiquitous, though often unnoticed
164 organisms. This makes field crickets ideal to introduce students to “hidden” biodiversity. Moreover,
165 cricket species are fairly cryptic - for example many field crickets were considered a single species as
166 recently as the 1950s (Alexander 1957) and new species have even been described in recent years
167 (Gray et al. 2020; Weissman and Gray 2019). This makes field crickets an excellent, yet challenging
168 study system for students to explore the scientific literature, identify key traits that can distinguish
169 species, and compare different types of evidence for evolutionary relationships (morphology versus
170 molecular). We introduced field crickets in an introductory presentation (see Instructional Strategy:
171 Day 1 - Additional File 3) by covering some of their general characteristics (e.g. life history, natural

172 history) and the importance of the group taxonomically (e.g. hybridization, poorly understood
173 evolutionary relationships of some species).

174

175 *Intended Audience*

176 We developed this project in a small (< 20 student), upper-level (2nd-4th year) undergraduate
177 evolution course. However, it is flexible enough to be used in advanced high school biology classes,
178 undergraduate introductory courses for both majors and non-majors, upper-level classes for students
179 majoring in ecology or evolution, and/or undergraduate laboratories. Based on ideal group sizes for
180 project-based learning and manageability of work for instructors, we believe that it can be effectively
181 used in various class sizes ranging from small

182 (15 students) to medium (≤ 50) (Bilgin et al. 2015; Chen and Yang 2019; Kanter and
183 Konstantopoulos 2010; Kooloos et al. 2011; Mahasneh et al. 2018). We have personally observed that
184 this project can successfully engage students and reinforce conceptual knowledge in exploring and
185 implementing evolutionary tree building techniques.

186

187 **Instructional Strategy**

188 In this paper, we present this project-based activity as we have used it. The activities are intended to
189 span six hours across three class periods, with about two weeks between each class/session (general
190 timeline included in Figure 1). However, we have included extensions and variations for adapting it
191 to specific classes depending on the timeframe, comprehension and educational level, and class size.
192 We have not used all of the variations that we suggest. We simply present what has worked for us

193 and what we believe will be the most effective modifications or extensions based on education
194 literature and our own experiences. We encourage instructors to adjust this project as necessary for
195 their teaching style, size of class, and availability of time and materials. Here, we describe each part of
196 the project-based activity in further detail.

197

198 *Before Class*

199 Before beginning the project-based activity, the instructor(s) should familiarize themselves with the
200 material, teaching strategy, and learning goals and objectives, making modifications for their class
201 level and size. We also suggest, if time allows, that instructors conduct an evaluation prior to the
202 introductory lecture to determine what topics of tree-thinking students could benefit from focusing
203 on or highlighting (see #1 in Extensions of Activities section). If needed, instructor(s) can modify the
204 provided worksheets (Additional File 1) or the example introductory lecture (Additional File 2) to
205 cover specific parts of phylogeny that students find challenging. Instructor(s) should also tell students
206 in advance to bring laptops to subsequent sessions and to download both MESQUITE (Maddison
207 2021) and MEGA (Kumar et al. 2008; Tamura et al. 2021) or provide them with the necessary tools
208 for the exercise (e.g. using a computer lab with pre-downloaded software). The students should
209 familiarize themselves with the basic concepts of tree-thinking and tree building via their textbook,
210 instructional videos, or supplemental text.

211

212 *During Session 1*

213 Prior to the beginning the project-based activity, we presented a lecture (~ 40-50 minutes) that
214 discussed the basic concepts of tree-thinking (e.g., what evolutionary trees are, how to interpret

215 them, character states, homology), while also addressing the misconceptions that students may have
216 coming into the class. This allowed us to mitigate/alleviate these misconceptions prior to the actual
217 activity. We have included an example lecture that we used as Additional File 2. The lecture can be
218 presented in a prior class, or the same day as the following activity - depending on the length of the
219 class.

220 We then split the class into small groups (3-5 students each), which could be done by the
221 students themselves or randomly by the instructor. We gave students the accompanying In-Class and
222 Out-of-Class Activity 1 (Additional File 1) either in hard copy or as a PDF through Canvas. We
223 presented the first activity (“trait-to-tree”) using hypothetical organisms (In-Class Activity 1 – see
224 Additional File 3). Here, we also discussed and walked through how to choose binary character traits
225 and how to build a character matrix from these traits in the context of their hypothetical organisms.
226 We then allowed the student groups 15-20 minutes to choose their traits and create their matrices.
227 After this, we reviewed a brief example of building a phylogeny from a character matrix and then
228 allowed the students another 15-20 minutes to create their phylogenies from their character matrixes.
229 An example of a student’s matrix and tree are provided in Figure 2.

230 After the completion of In-Class Activity 1, we introduced the field cricket case study and
231 Out-of-Class Activity 1 (see Additional File 3). Students were asked to think about a set of synthesis
232 questions from the In-Class Activity 1. These questions were designed to enable students to make
233 connections across concepts that were covered in the pre-activity lecture and the tree-building In-
234 Class Activity 1.

235

236 *Out-of-Class Activity*

237 The out-of-class activity and case study were designed to reinforce the skills that students learned
238 during the first class. It was intended to be challenging to (1) show students that tree building and
239 tree-thinking is not always easy, (2) allow students to analyze complex tree-thinking problems, (3)
240 engage students in the natural history of a particular group of organisms, and (4) give students the
241 opportunity to practice searching primary literature and online sources. Students were asked once
242 again to decide on characters (this time they did not have to be binary), code the characters into a
243 matrix, and then follow a tutorial (Additional File 4) to use the program MESQUITE to build their
244 phylogenies. We encouraged students to find characters within the primary literature (Gray et al.
245 2020; Weissman and Gray 2019; specifically, Weissman et al. 1980) and other potential sources
246 (Orthoptera Species File, <http://orthoptera.speciesfile.org/>; or Singing Insects of North America,
247 <https://orthsoc.org/sina/>). When necessary, we provided students with a character bank (Additional
248 File 5). Students were also encouraged to work with their groups on this activity outside of class. An
249 example of a student's matrix and tree are included in Figure 3a.

250

251 *During Session 2*

252 For the first quarter of the second session (for us, this was 25-30 minutes out of a 2-hour session) we
253 discussed the synthesis questions of In-Class Activity 1 and reviewed the student groups' trees from
254 Out-of-Class Activity 1. Again, this was used to answer any questions or issues about the out-of-class
255 activity, reinforce concepts presented in the first session, and mitigate any misconceptions that
256 students had about the material/activities.

257 Next, we presented the continuation of the field cricket case study that introduced the use of
258 molecular data to create phylogenies (In-Class Activity 2 – see Additional File 1). This portion of the

259 exercise used a mixture of instructor-guided and student-centered independent work to familiarize
260 students with common tools for mining genetic data from repositories and creating and interpreting
261 phylogenies and diversity metrics from genetic data. We presented a very brief introduction (no more
262 than 15-20 minutes) to familiarize students with the basic concepts covered in this activity (e.g.,
263 GenBank, BLAST, DNA barcoding, sequence alignment, pairwise genetic distance, neighbor joining
264 and other tree building methods – see Additional File 6).

265 First, we gave student groups the GenBank accession number of one of their ingroup field
266 cricket species, which they used to find and download the 16S sequence of that cricket through the
267 GenBank plugin in MEGA. Students then used the BLAST (Altschul et al. 1990) plugin in MEGA to
268 BLAST against their downloaded 16S sequence and see if they were able to find their other ingroup
269 taxa provided on the activity sheet. The resulting sequences of their BLAST queries that match their
270 respective taxa in the activity sheet were then downloaded into their 16S alignment in MEGA. The
271 students ended up with an alignment file in MEGA of eight field cricket taxa . From their initial
272 alignment, students then used the CLUSTALW (Thompson et al. 1994) function to align their actual
273 data. Once their data were aligned, we instructed students on how to export their alignment as a .meg
274 file that could then be used to analyze the alignment. Students used their newly imported alignment
275 data to (1) assess conserved versus variable sites in their alignment, (2) create a pairwise genetic
276 distance matrix and (3) a neighbor joining tree using MEGA. An example of a student's alignment
277 and tree are included in Figure 3b.

278 After student groups had finished the activity sheet , we asked them to review their data and
279 analyses from both the Out-of-Class Activity 1 and In-Class Activity 2 and compare their results for
280 their character-based and gene-based phylogenies. We also answered questions or concerns that the

281 students had. Finally, we asked students to prepare to discuss their data, analyses, and trees, as well as
282 review and answer the Synthesis and Review questions at the end of the In-Class Activity 2 for the
283 final session.

284

285 *During Session 3*

286 Our goal in the final session of this project was for students to discuss their data and trees, think more
287 deeply about the concepts that we covered in the first session and apply those concepts to the data,
288 analyses and results they completed throughout the project. First, we asked student groups to briefly
289 (no more than 5 minutes per group) and informally discuss their results for both their character- and
290 gene-based trees. After this, we proceeded to go through the Synthesis and Review questions in a
291 forum style discussion to see how students were thinking about the activities and the data that they
292 collected and analyzed. Through this discussion we tried to discuss common misconceptions with
293 tree-thinking and gauge how the activities mitigated these misconceptions by creating a more
294 concrete foundation to the abstract notion of tree building and tree-thinking.

295

296 *Implementation Tips for Activity*

297 The exercises within this project-based activity are easy to implement in any style room (e.g. lecture
298 hall, smaller classroom, teaching laboratory). The only required items for the project are student
299 laptops and a projector. We recognize that this project, having been designed and implemented over
300 the course of six hours or class time, may not fit many or most allotted class periods. This is why we
301 have designed this project as three independent in-class activities and one out-of-class activity, which
302 allows instructors to utilize all or just a part of the project. Portions of the project can be made into

303 out-of-class activities. For example, we created a tutorial for MEGA/In-Class Activity 2 (Additional
304 File 7) in case instructors wanted to make this another activity to be done out-of-class. However, we
305 do suggest that the first in-class activity and the discussion of the Synthesis and Review questions be
306 implemented during class time. We provide further information on how to break the components of
307 this project down to best fit other styles and lengths of classes in the Variations on Activities section.

308 We found that students struggled with two parts of this project. The first occurred in both the
309 In-Class Activity 1 and Out-of-Class Activity when students tried to construct a character matrix and
310 the tree. Students struggled with how to assign ancestral and derived character states (“0” versus “1”
311). To address this, we created additional lecture material that used a step-by-step approach to coding
312 outgroup and ingroup character states using winged insects (Additional File 1) or the hypothetical
313 organisms from In-Class Activity 1 (Additional File 3) as examples. Along with this, students
314 struggled with the idea of gain and loss of traits. To address this, we mapped trait gain and loss using
315 the example of winged insects or with the hypothetical organisms (if this issue was brought up while
316 building the tree during In-Class Activity 1). We also demonstrated how numerous trees could be
317 generated from a data matrix that may have more trait “steps” on certain trees. This also allowed us to
318 further discuss the idea that the most parsimonious tree is not always the most evolutionarily
319 accurate.

320 The second challenge for students was troubleshooting the bioinformatic tools. The main
321 problem occurred with trying to BLAST samples through GenBank and/or the GenBank plugin in
322 MEGA. Oftentimes the function would time out or simply run indefinitely. The first thing we tried
323 was to simply reload the page or restart the BLAST plugin. Sometimes if there were too many open
324 windows in the plugin, it would stall or stop working. If the issue continued, we had students (1)

325 BLAST the sequence directly through GenBank on their web server or (2) search GenBank (through
326 the GenBank plugin in MEGA) for the species and gene that they were looking for (e.g., “*Gryllus*
327 *firmus* 16S” under a “nucleotide” search). This would bring them to a window of all 16S genes that
328 they could choose from to upload into their sequence. This second work around does not allow the
329 students to fill in the BLAST table in the second in-class activity. However, students still got an
330 understanding of how BLAST and GenBank worked.

331

332 *Assessment*

333 Finally, we did not grade our students’ assignments for correctness since much of this exercise is
334 subjective (rubric provided as Additional File 8). Instead, we graded students on (1) the completeness
335 of the project, (2) their ability to articulate their understanding of the topics covered in the exercise
336 and (3) their understanding of common misconceptions in tree-thinking and tree building (assessed
337 during the Synthesis and Review question discussion). Instructors who choose to use this activity as a
338 whole or in part can be as free or strict with grading as they like and can create grading rubrics as
339 they see fit.

340

341 *Variations on Activities*

342 In recognizing that this project was designed for a small class with a two hour class period , we
343 provide some variations on how best to implement this activity in larger and/or shorter classes.
344 1. If the class period is shorter (50-80 minutes) and paired with a lab, we suggest carrying out
345 the introduction lecture prior to the lab and the first in-class and out-of-class activities during

346 the lab. The second in-class activity can either be turned into an out-of-class activity or it can
347 be carried out in a second lab period along with the Synthesis and Review questions.

348 2. If the class period is shorter (50-80 minutes) without a lab, we suggest making this a multi-
349 day activity. The introduction lecture would be given on the first day and the first in-class
350 activity and introduction to the out-of-class activity on the second day. The second in-class
351 activity could either be done on a third day or as an out-of-class activity. If it is turned into an
352 out-of-class activity, we suggest either carrying out the introduction lecture to that material
353 (Additional File 6) during class or providing a recorded lecture. It is also possible to omit the
354 first in-class activity and only carry out the activities that include the case study.

355 3. If the class size is larger (>40 students) and paired with a lab, groups can be created in
356 individual lab sections and the activity can be carried out as suggested in #1.

357 4. If the class size is larger (>40 students) and not paired with a lab, the project can be either
358 independent or completed as an out-of-class group project.

359 5. For introductory level courses (undergraduate or high school), we suggest using just the first
360 in-class activity, just the case study, or just the first part of the case study. Instructors could
361 also provide students with the premade trait list/matrix for the out-of-class activity and/or a
362 premade sequence alignment for the second in-class activity.

363

364 *Extensions of Activities*

365 1. To evaluate students' comprehension before or after the lesson, instructors can administer the
366 Basic Tree-Thinking Assessment (Baum et al. 2005), "quiz" portions of The Tree Thinking
367 tutorial (Novick et al. 2012), or an evaluation of their own making. Instructors can also

368 evaluate comprehension during the first lecture using real-time questions via think-pair-

369 share, clickers, or other methods (we have included examples in Additional File 2).

370 2. As a more in-depth follow up to the conclusion or as a replacement to the Synthesis and

371 Review questions, students can give an oral presentation of their results in which they could

372 (1) discuss morphological and molecular trees, (2) interpret and compare both methods and

373 trees, and (3) identify caveats that could have arisen during the case study. This final point is

374 crucial, especially as a metric to see whether students grasped the exercises and gained a

375 deeper understanding of tree-thinking. Here, students can discuss the limitations of their

376 methodology that could have, in turn, affected their results including how altering traits in

377 their character-based matrix could alter their character-based tree, or how using a different

378 gene (e.g., nuclear versus mitochondrial) or set of genes could alter their neighbor joining tree

379 and other genetic distance metrics.

380 3. As a more in-depth introduction or follow up to the activity, papers can be assigned that

381 cover aspects of tree-thinking (Gregory 2008- reading evolutionary trees and misconceptions

382 of them; Halanych 2004- influence of molecular data on the tree of life; Novick et al. 2012- an

383 introduction and self-paced tutorial to tree-thinking). These papers can be discussed later in

384 the course or evaluated for completion and comprehension on exams.

385 4. To reinforce other topics from the first lecture (e.g., rotating nodes, monophyly, etc.) students

386 can be asked to change tree topologies or identify monophyletic/paraphyletic/polyphyletic

387 groupings from the trees they generated during the case study.

388

389 **Conclusion**

390 There is overwhelming evidence that active- and project-based learning are highly effective teaching
391 strategies when compared to traditional lectures because students become active participants in their
392 own learning (Alters and Nelson 2002; Ballen 2020; Ballen et al. 2017; Estrada et al. 2016; Freeman et
393 al. 2014; Gardner and Belland 2012; Haak et al. 2011; Hake 1998; Nelson 2008; Smith et al. 2005;
394 Theobald et al. 2020). The use of interactive and cooperative styles of teaching engages students in
395 deeper critical thinking and has been at the forefront of recommended standards for teaching biology
396 (AAAS 2011; Nelson 2008; NGSS Lead States 2013). The project-based activity presented here
397 emphasizes the importance of using an integration of both student-centered and instructor-led
398 techniques, as well as combining hypothetical scenarios with a case study to engage students in the
399 scientific process. Because the future of biological sciences is becoming strongly associated with
400 bioinformatics, we used this activity to explore aspects of bioinformatics (e.g., data mining and
401 alignment, tree building algorithms) and as a pathway to training undergraduates in basic
402 bioinformatic tools. From student responses and discussion during Session 3 (discussion of Synthesis
403 and Review questions) it was clear to us that students were thinking more deeply and concretely
404 about the material compared to when it was first presented, as well as how the material and methods
405 they learned could be extended and used in many branches of biology (e.g. conservation). We
406 evaluated the effectiveness of this exercise from student feedback (final question of the Synthesis and
407 Review questions). A majority of the students found the project useful at “conceptualizing how
408 evolutionary trees are built and interpreted”, “learning how different data types impact building
409 evolutionary trees”, and “recognizing how [they were] incorrectly thinking about trees due to their
410 abstractness.” Students were positive about the project in both the activity evaluation and course
411 instructor evaluations, and in particular liked the hands-on aspect of the project, group-work, and the

412 introduction to bioinformatic tools. This activity is well-aligned with the broader goals of biology
413 education and has been designed to have students critically think about evolutionary trees from
414 theory to practice and to have them identify and face misconceptions in their own learning when it
415 comes to the subject of tree-thinking. After this activity, students should have a deeper
416 understanding of tree-thinking and evolution, as a whole.

417

418 **References**

419 AAAS. Vision and change in undergraduate biology education: A call to action. 2011.

420 Alexander RD. The taxonomy of the field crickets of the eastern United States (Orthoptera: Gryllidae:
421 Acheta). *Ann. Entomol. Soc. Am.* Oxford Academic; 1957;50(6):584–602.

422 Allen D, Tanner K. Infusing active learning into the large-enrollment biology class: seven strategies,
423 from the simple to complex. *Cell Biol. Educ.* 2005;4(4):262–8.

424 Alters BJ, Nelson CE. Perspective: Teaching evolution in higher education. *Evolution.*
425 2002;56(10):1891–901.

426 Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. *J. Mol. Biol.*
427 1990;215(3):403–10.

428 Avise JC. Evolutionary pathways in nature: A phylogenetic approach. Cambridge University Press;
429 2006.

430 Ballen CJ. Enhancing Diversity in College Science with Active Learning [Internet]. Active Learning
431 in College Science. 2020. p. 873–87. Available from: <http://dx.doi.org/10.1007/978-3-030->

432 33600-4_54

433 Ballen CJ, Wieman C, Salehi S, Searle JB, Zamudio KR. Enhancing diversity in undergraduate science:
434 self-efficacy drives performance gains with active learning. *CBE Life Sci. Educ.* [Internet].
435 2017;16(4). Available from: <http://dx.doi.org/10.1187/cbe.16-12-0344>

436 Baum DA, Offner S. *Phylogenies & tree-thinking*. Am. Biol. Teach. University of California Press;
437 2008;70(4):222–9.

438 Baum DA, Smith SD. *Tree thinking*. Citeseer; 2013.

439 Baum DA, Smith SD, Donovan SSS. Evolution. The tree-thinking challenge. *Science*.
440 2005;310(5750):979–80.

441 Bell S. Project-based learning for the 21st century: Skills for the future. *The Clearing House: A
442 Journal of Educational Strategies, Issues and Ideas*. Routledge; 2010;83(2):39–43.

443 Berchiolli B, Movahedzadeh F, Cherif A. Assessing student success in a project-based learning biology
444 course at a community college. Am. Biol. Teach. University of California Press; 2018;80(1):6–
445 10.

446 Bilgin I, Karakuyu Y, Ay Y. The effects of project based learning on undergraduate students'
447 achievement and self-efficacy beliefs towards science teaching. *Eurasia J. Math. Sci. Technol.
448 Educ.* Modestum Limited; 2015 Apr 29;11(3):469–77.

449 Blacquiere LD, Fawaz A, Hoes WJ. Who's related to whom? Use published phylogenies and make
450 customized tree-thinking assessments. *Evolution: Education and Outreach*. BioMed Central;

451 2020;13(1):1–24.

452 Blumenfeld PC, Soloway E, Marx RW, Krajcik JS, Guzdial M, Palincsar A. Motivating project-based
453 learning: Sustaining the doing, supporting the learning. *Educ. Psychol.* Routledge; 1991;26(3-
454 4):369–98.

455 Brewer CA, Zabinski C. Simulating genetic change in a large lecture hall: The ultimate bean counting
456 experience. *Am. Biol. Teach.* [University of California Press, National Association of Biology
457 Teachers]; 1999;61(4):298–302.

458 Buckberry S, Burke da Silva K. Evolution: improving the understanding of undergraduate biology
459 students with an active pedagogical approach. *Evolution: Education and Outreach.* BioMed
460 Central; 2012;5(2):266–73.

461 Burks RL, Boles LC. Evolution of the chocolate bar: A creative approach to teaching phylogenetic
462 relationships within evolutionary biology. *American Biology Teacher.* National Association of
463 Biology Teachers; 2007;69(4):229–37.

464 Byerly AR, Firneno TJ Jr, Beard R, Larson EL. The role of community science in orthopteran
465 research. *Journal of Orthoptera Research.*

466 Chen C-H, Yang Y-C. Revisiting the effects of project-based learning on students' academic
467 achievement: A meta-analysis investigating moderators. *Educational Research Review.* 2019
468 Feb 1;26:71–81.

469 Chen X SM. STEM attrition: college students' path into and out of stem fields. NCES 2014-001,
470 Washington DC; 2013.

471 Cherif A, Adams G, Movahedzadeh F, Martyn MA, Dunning J. Why do students fail? Faculty's
472 Perspective. In: A Collection of papers on creating and supporting learning environments.
473 The Higher Learning Commission; 2014.

474 Darwin C. *On the origin of species by means of natural selection, or, the preservation of favoured
475 races in the struggle for life.* London: John Murray; 1859.

476 David AA. Using project-based learning to teach phylogenetic reconstruction for advanced
477 undergraduate biology students: Molluscan evolution as a case study. *Am. Biol. Teach.*
478 University of California Press USA; 2018;80(4):278–84.

479 Dees J, Momsen JL. Student construction of phylogenetic trees in an introductory biology course.
480 *Evolution: Education and Outreach.* 2016;9(1):3.

481 Dees J, Momsen JL, Niemi J, Montplaisir L. Student interpretations of phylogenetic trees in an
482 introductory biology course. *CBE Life Sci. Educ.* 2014;13(4):666–76.

483 Eddy SL, Crowe AJ, Wenderoth MP, Freeman S. How should we teach tree-thinking? An
484 experimental test of two hypotheses. *Evolution: Education and Outreach.* BioMed Central;
485 2013;6(1):1–11.

486 Estrada M, Burnett M, Campbell AG, Campbell PB, Denetclaw WF, Gutiérrez CG, et al. Improving
487 underrepresented minority student persistence in STEM. *CBE Life Sci. Educ.* [Internet].
488 2016;15(3). Available from: <http://dx.doi.org/10.1187/cbe.16-01-0038>

489 Freeman S, Eddy SL, McDonough M, Smith MK, Okoroafor N, Jordt H, et al. Active learning
490 increases student performance in science, engineering, and mathematics. *Proc. Natl. Acad.*

491 Sci. U. S. A. 2014;111(23):8410–5.

492 Gardner J, Belland BR. A conceptual framework for organizing active learning experiences in biology
493 instruction. *J. Sci. Educ. Technol.* 2012;21(4):465–75.

494 Gibson JP, Hoefnagels MH. Correlations between tree thinking and acceptance of evolution in
495 introductory biology students. *Evolution: Education and Outreach.* BioMed Central;
496 2015;8(1):1–17.

497 Gray DA, Weissman DB, Cole JA, Lemmon EM, Lemmon AR. Multilocus phylogeny of *Gryllus* field
498 crickets (Orthoptera: Gryllidae: Gryllinae) utilizing anchored hybrid enrichment. *Zootaxa.*
499 2020 Mar 12;4750(3):328–48.

500 Gregory TR. Understanding evolutionary trees. *Evolution: Education and Outreach.* BioMed Central;
501 2008;1(2):121–37.

502 Guo P, Saab N, Post LS, Admiraal W. A review of project-based learning in higher education: Student
503 outcomes and measures. *Int. J. Educ. Res.* 2020;102:101586.

504 Haak DC, HilleRisLambers J, Pitre E, Freeman S. Increased structure and active learning reduce the
505 achievement gap in introductory biology. *Science.* 2011;332(6034):1213–6.

506 Hake RR. Interactive-engagement versus traditional methods: A six-thousand-student survey of
507 mechanics test data for introductory physics courses. *Am. J. Phys.* American Association of
508 Physics Teachers; 1998;66(1):64–74.

509 Halanych KM. The New View of Animal Phylogeny. *Annu. Rev. Ecol. Evol. Syst.* Annual Reviews;

510 2004;35:229–56.

511 Halverson KL. Improving tree-thinking one learnable skill at a time. *Evolution: Education and*
512 *Outreach*. 2011;4(1):95–106.

513 Heddy BC, Nadelson LS. The variables related to public acceptance of evolution in the United States.
514 *Evolution: Education and Outreach*. BioMed Central; 2013;6(1):1–14.

515 Ingram EL, Nelson CE. Relationship between achievement and students' acceptance of evolution or
516 creation in an upper-level evolution course. *J. Res. Sci. Teach. Wiley*; 2006;43(1):7–24.

517 Kanter DE, Konstantopoulos S. The impact of a project-based science curriculum on minority student
518 achievement, attitudes, and careers: The effects of teacher content and pedagogical content
519 knowledge and inquiry-based practices. *Sci. Educ. Wiley*; 2010 Sep;94(5):855–87.

520 Kooloos JGM, Klaassen T, Vereijken M, Van Kuppeveld S, Bolhuis S, Vorstenbosch M. Collaborative
521 group work: effects of group size and assignment structure on learning gain, student
522 satisfaction and perceived participation. *Med. Teach.* 2011;33(12):983–8.

523 Kumar S, Nei M, Dudley J, Tamura K. MEGA: a biologist-centric software for evolutionary analysis of
524 DNA and protein sequences. *Brief. Bioinform.* 2008 Jul;9(4):299–306.

525 Larmer J, Mergendoller J, Boss S. Setting the standard for project based learning. ASCD; 2015.

526 Lents NH, Cifuentes OE, Carpi A. Teaching the process of molecular phylogeny and systematics: a
527 multi-part inquiry-based exercise. *CBE Life Sci. Educ.* 2010;9(4):513–23.

528 Maddison WPADRM. Mesquite: a modular system for evolutionary analysis [Internet]. 2021.

529 Available from: <http://www.mesquiteproject.org>

530 Mahasneh AM, Department of Educational Psychology, Faculty of Educational Sciences, The
531 Hashemite University, Zarqa, Jordan, dahmadmahasneh1975@yahoo.com, Alwan AF,
532 Department of Educational Psychology, Faculty of Educational Sciences, The Hashemite
533 University, Zarqa, Jordan. The effect of project-based learning on student teacher self-efficacy
534 and achievement. *Int. J. Instr. Media.* Modestum Limited; 2018 Jul 25;11(3):511–24.

535 McCullough EL, Verdeflor L, Weinsztok A, Wiles JR, Dorus S. Exploratory activities for
536 understanding evolutionary relationships depicted by phylogenetic trees: United but diverse.
537 Am. Biol. Teach. University of California Press; 2020;82(5):333–7.

538 McKeachie WJ, Lin Y-G, James Strayer. Creationist vs. evolutionary beliefs: effects on learning
539 biology. *Am. Biol. Teach.* [University of California Press, National Association of Biology
540 Teachers]; 2002;64(3):189–92.

541 Mead LS, Clarke JB, Forcino F, Graves JL. Factors influencing minority student decisions to consider a
542 career in evolutionary biology. *Evolution: Education and Outreach*. BioMed Central;
543 2015;8(1):1–11.

544 Meir E, Perry J, Herron JC, Kingsolver J. College students' misconceptions about evolutionary trees.

545 The American Biology Teacher [Internet]. National Association of Biology Teachers; 2007

546 [cited 2022 Nov 5];69(7). Available from: https://bioone.org/journals/the-american-biology-teacher/volume-69/issue-7/0002-7685_2007_69_71_CSMAET_2.0.CO_2/College-Students-Misconceptions-About-Evolutionary-Trees/10.1662/0002-

547

548

549 7685(2007)69[71:CSMAET]2.0.CO;2.short

550 Meisel RP. Teaching tree-thinking to undergraduate biology students. *Evolution Education and*
551 *Outreach*. 2010;3(4):621–8.

552 Nelson CE. Teaching evolution (and all of biology) more effectively: Strategies for engagement,
553 critical reasoning, and confronting misconceptions. *Integr. Comp. Biol.* 2008;48(2):213–25.

554 NGSS Lead States. Next generation science standards: For states, by state. National Academies,
555 Washington, DC; 2013.

556 Novick LR, Catley KM. Reasoning about evolution's grand patterns: college students' understanding
557 of the tree of life. *Am. Educ. Res. J.* American Educational Research Association;
558 2013;50(1):138–77.

559 Novick LR, Catley KM. Fostering 21st-century evolutionary reasoning: teaching tree thinking to
560 introductory biology students. *CBE Life Sci. Educ.* [Internet]. 2016;15(4). Available from:
561 <http://dx.doi.org/10.1187/cbe.15-06-0127>

562 Novick LR, Catley KM, Schreiber EG. Understanding evolutionary history: An introduction to tree
563 thinking [Internet]. 2012. Available from: https://cdn.vanderbilt.edu/vu-my/wp-content/uploads/sites/2396/2017/02/14141743/TT_instruct_Novick_Catley_8-12.pdf

565 Prince M. Does active learning work? A review of the research. *J. Eng. Educ.* Wiley; 2004
566 Jul;93(3):223–31.

567 Sandvik H. Tree thinking cannot be taken for granted: challenges for teaching phylogenetics. *Theory*

568 Biosci. 2008;127(1):45–51.

569 Smith KA, Sheppard SD, Johnson DW, Johnson RT. Pedagogies of Engagement: Classroom-Based
570 Practices [Internet]. *Journal of Engineering Education*. 2005. p. 87–101. Available from:
571 <http://dx.doi.org/10.1002/j.2168-9830.2005.tb00831.x>

572 Sokal RR. A Phylogenetic Analysis of the Caminalcules. I. the Data Base. *Syst. Biol.* Oxford
573 Academic; 1983a;32(2):159–84.

574 Sokal RR. A Phylogenetic Analysis of the Caminalcules. II. Estimating the True Cladogram. *Syst. Biol.*
575 Oxford Academic; 1983b;32(2):185–201.

576 Sokal RR. A phylogenetic analysis of the Caminalcules. III. Fossils and classification. *Syst. Biol.*
577 [Internet]. academic.oup.com; 1983c;. Available from:
578 <https://academic.oup.com/sysbio/article-abstract/32/3/248/1611365>

579 Sokal RR. A Phylogenetic Analysis of the Caminalcules. IV. Congruence and Character Stability. *Syst.*
580 *Biol.* Oxford Academic; 1983d;32(3):259–75.

581 Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11.
582 *Mol. Biol. Evol.* 2021;38(7):3022–7.

583 Theobald EJ, Hill MJ, Tran E, Agrawal S, Arroyo EN, Behling S, et al. Active learning narrows
584 achievement gaps for underrepresented students in undergraduate science, technology,
585 engineering, and math. *Proc. Natl. Acad. Sci. U. S. A.* 2020;117(12):6476–83.

586 Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive

587 multiple sequence alignment through sequence weighting, position-specific gap penalties and
588 weight matrix choice. *Nucleic Acids Res.* 1994;22(22):4673–80.

589 Weissman DB, Gray DA. Crickets of the genus *Gryllus* in the United States (Orthoptera: Gryllidae:
590 Gryllinae). *Zootaxa*. 2019;4705(1):zootaxa.4705.1.1.

591 Weissman DB, Rentz DCF, Alexander RD, Loher W. Field crickets (*Gryllus* and *Acheta*) of California
592 and Baja California, Mexico (Orthoptera: Gryllidae: Gryllinae). *Trans. Am. Entomol. Soc.*
593 American Entomological Society; 1980;106(3):327–56.

594

595 **Author Contributions**

596 T.J.F. and E.L.L. conceptualized and designed the activity. T.J.F, G.T.W., P.J.N., and E.L.L.
597 implemented the activity. All authors created, compiled, and edited additional files. T.J.F. wrote the
598 manuscript with input and editing done by G.T.W., P.J.N., and E.L.L. All authors read and approved
599 of the final manuscript.

600

601 **Acknowledgements**

602 We would like to thank the undergraduate students in E.L.L.’s Evolution course that took part in this
603 activity and gave us valuable and critical feedback to help hone this project-based activity. We would
604 also like to thank Brandon Woo for sharing photographs of *Gryllus firmus* and *Gryllus*
605 *pennsylvanicus* used in the case study slides.

606

607 **Competing Interests**

608 The authors declare that they have no competing interests.

609

610 **Ethics Approval and Consent to Participate**

611 Not Applicable.

612

613 **Funding**

614 This work was supported by the National Science Foundation to E.L.L. (DEB 2012041 and IOS
615 2015976) and to T.J.F. (DBI 2208825), as well as Orthopterists' Society Theodore J. Cohn Research
616 awards to T.J.F. and G.T.W.

617

618 **Additional Files**

619 Additional file 1 - activity worksheets

620 Additional file 2 - example introduction lecture

621 Additional file 3 - introduction to in-class activity 1 and case study

622 Additional file 4 - MESQUITE tutorial

623 Additional file 5 - character bank

624 Additional file 6 - introduction to in-class activity 2

625 Additional file 7 - MEGA tutorial

626 Additional file 8 - rubric

627

628

629 **Tables**

Table 1. Summary of the misconceptions of tree-thinking.

Misconception	Description	Source
The Great Chain of Being	Evolution has progressed from simpler to more advanced organisms	Meisel 2010, Gregory 2008, Kummer et al. 2016, Schramm and Schmiemann 2019
Reading across tips	Use relative order of tips to make conclusions about species relatedness	Meisel 2010, Gregory 2008, Kummer et al. 2016, Schramm and Schmiemann 2019
Clade density	Species-poor clades are “primitive” while species-rich clades are “advanced”	Meisel 2010, Schramm and Schmiemann 2019
Node Counting	The more nodes that separate species, the more distantly related they are	Meisel 2010, Gregory 2008, Kummer et al. 2016
Main line and side tracks	Human evolution forms the main line of the tree, and all other branching species are side tracks	Gregory 2008
Similarity vs. relatedness	Group organisms based on phenotypic similarity rather than relatedness	Gregory 2008, Kummer et al. 2016, Schramm and Schmiemann 2019
Sibling vs. ancestor	The common ancestor of two contemporary groups is very similar to one of these two groups	Gregory 2008
Long branch implies no change	Interpreting a long branch to mean that a species is more similar to the root ancestor than the other contemporary species	Gregory 2008, Schramm and Schmiemann 2019
Difference lineage ages for contemporary species	Conflate taxon age with lineage age	Gregory 2008, Schramm and Schmiemann 2019

Backwards time axes	Read time from tips as being oldest an root being youngest	Gregory 2008
Change only at nodes	Assuming node represents exact moment of change	Gregory 2008

631

632

633

634

635

636

637

638

639

640

641

642

643

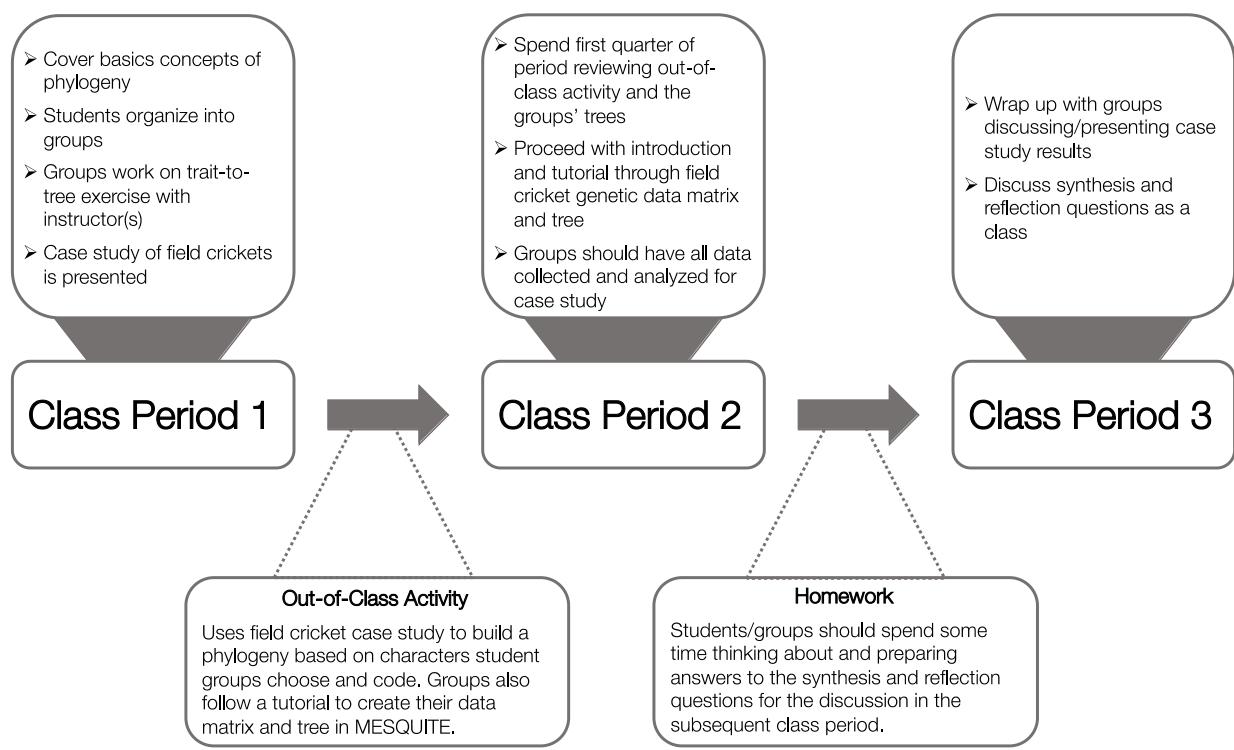
644

645

646

647

648


649

650

651

652 **Figures**

653 **Figure 1.** Workflow and timeline of project-based activity for upper-level undergraduate evolution
654 course.

655

656

657

658

659

660

661

662

663

664

665 **Figure 2.** Example of a student's character trait list, matrix and tree generated for the first in-class
666 activity with hypothetical organisms. This student showed both events of (1) trait evolution and then
667 loss (red) and (2) separate trait evolution across taxa (blue). We used this tree example to discuss these
668 events (trait gain/loss) with the class since it was often a place where students got stuck or caught up
669 while making their trees.

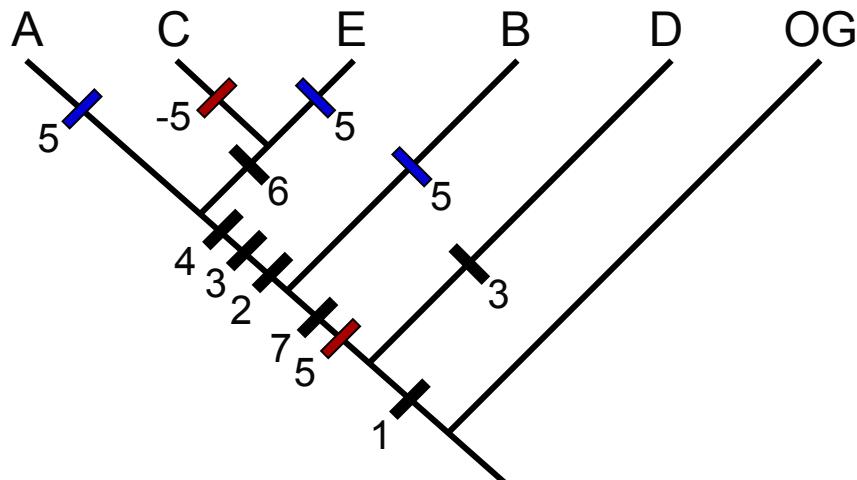
Character List

1: Wings: 0 = absent, 1 = present

2: Feet: 0 = absent, 1 = present

3: Eyes: 0 = simple, 1 = compound

4: Mouth Parts: 0 = absent, 1 = present

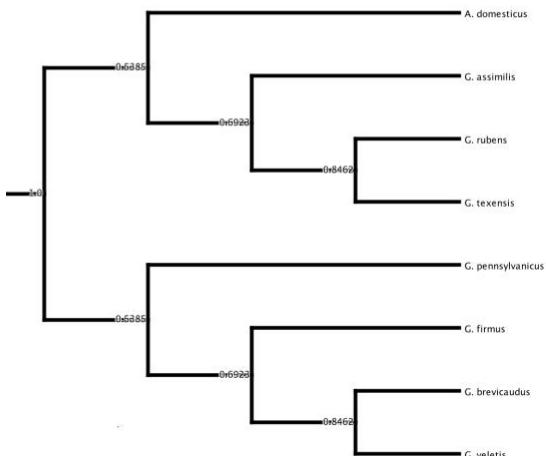

5: Antennae: 0 = short, 1 = long

6: Body: 0 = two parts, 1 = three parts

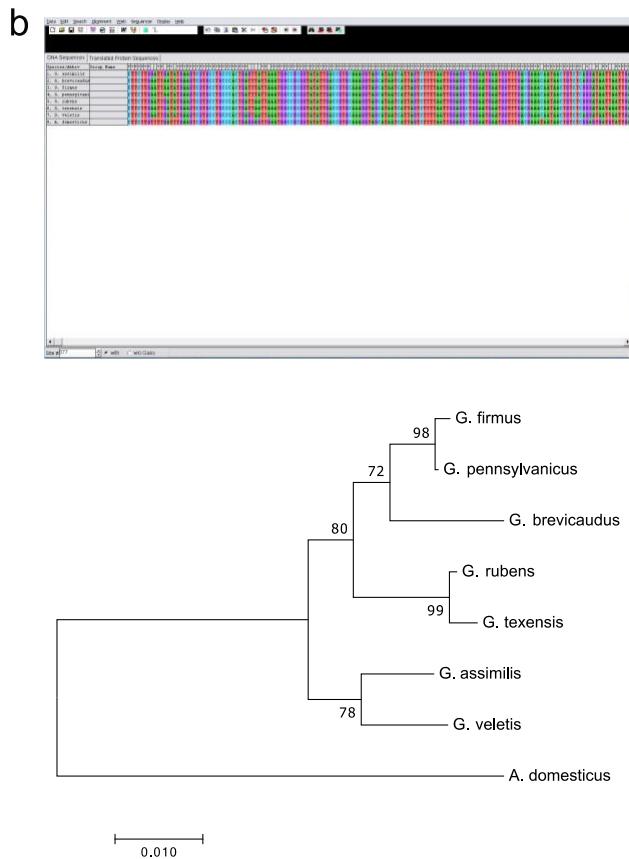
7: Body Pattern: 0 = linear, 1 = curved

Character Matrix

		Characters						
		1	2	3	4	5	6	7
OTUs	OG	0	0	0	0	0	0	0
	A	1	1	1	1	1	0	1
	B	1	0	0	0	1	0	1
	C	1	1	1	1	0	1	1
	D	1	0	1	0	0	0	0
	E	1	1	1	1	1	1	1


670

671 **Figure 3.** (a) Example character matrix and tree generated in MESQUITE, and (b) example 16S


672 sequence alignment and the neighbor joining tree generated in MEGA for the field cricket case study.

673

Taxon \ Character	1	2	3	4	5	6	7
Ovipositor Length							
Femur Length							
Number of Fteeth							
Average Chirp Rate/M							
Usual Number of Pulses							
Breeding Season							
1 <i>G. assimilis</i>	2	2	1	0	1	2	0
2 <i>G. brevicaudus</i>	0	0	2	1	1	1	3
3 <i>G. firmus</i>	2	2	2	3	1	1	2
4 <i>G. pennsylvanicus</i>	1	2	1	2	1	1	2
5 <i>G. rubens</i>	1	1	0	0	2	0	4
6 <i>G. texensis</i>	1	1	1	0	2	0	4
7 <i>G. veletis</i>	1	0	2	1	1	1	1
8 <i>A. domesticus</i>	1	0	0	3	0	0	0

674
675
676
677
678

