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Abstract—In recent decades, due to the lucrative profits, the
crime of drug trafficking has evolved with modern technologies.
Social media, as one of the popular online platforms, have be-
come direct-to-consumer intermediaries for illicit drug trafficking
communities to promote and trade drugs. These group-wise
drug trafficking activities pose significant challenges to public
health and safety, requiring urgent measures to address this
issue. However, existing works against the imminent problem
still face limitations, such as primarily analyzing individual roles
from a single perspective, ignoring the group-wise relationships,
and requiring sufficient labeled samples for model training. To
this end, we propose a novel HyperGraph Contrastive Learning
framework called HyGCL-DC that employs hypergraph to model
the higher-order relationships among users to detect Drug
trafficking Communities. Firstly, we build a hypergraph called
Twitter-HyDrug including online user nodes and four types of
hyperedges to depict the rich group-wise relationships among
these users. Then, we leverage hypergraph neural networks
to model the rich relationships among nodes and hyperedges
in the drug trafficking hypergraph. Furthermore, we design a
hypergraph self-supervised contrast module, which integrates the
augmentation from the structure view and the attribute view to
enhance hypergraph representation learning over unlabeled data.
Finally, we design an end-to-end framework that combines the
self-supervised contrastive module and the supervised module to
classify online drug trafficking communities. To comprehensively
study the online drug trafficking problem and evaluate our
model, we conduct extensive experiments over Twitter-HyDrug
and three citation benchmark hypergraph datasets to demon-
strate the effectiveness of our model. Our new data and source
code are available at https://github.com/HyGCL-DC.

Index Terms—hypergraph representation learning,
supervised learning, community detection, drug trafficking

self-

I. INTRODUCTION

The illicit drug trafficking markets, encompassing drugs
such as synthetic opioids, remain highly profitable in recent
decades. As a result, the crime of drug trafficking (a.k.a.
illicit drug trading) has increasingly adapted and evolved with
modern technologies (e.g., social media). Recent works [1]—
[3] have demonstrated that the major social media platforms,
e.g., Twitter and Instagram, have become direct-to-consumer
intermediaries for illicit drug trafficking, enabling drug sellers
to sell drugs and drug users to purchase drugs much more
easily than before. For instance, an illicit drug seller on Twitter
advertises their drugs by posting drug-related content (e.g.,
drug street names and related hashtags), which easily attracts

1 Equally contributed.
+ Corresponding authors.

potential drug users to discuss and trade drugs through so-
cial media. Consequently, these activities naturally form drug
trafficking communities on social media platforms, and these
group-wise drug trafficking scenarios pose unprecedentedly
serious challenges to social health and public safety, which
needs imminent actions to address this issue.

However, existing works against drug trafficking activities
still face the following limitations: (i) most works [1], [4]
primarily study drug trafficking by analyzing individual roles
from a single perspective (either from the drug seller side
or drug user side) while ignoring the natural connections
among different roles in drug trafficking communities. (ii)
some existing graph models [5]-[7] merely focus on the
pairwise relationships among users on social media but fail
to model the higher-order group-wise relationships among
these communities. For example, a drug user replies to the
tweet of a drug seller inquiring about the drug price, and
another drug buyer interacts with the drug user about previous
purchases from the drug seller. These active and group-
wise interactions among drug sellers, drug buyers, and drug
users naturally form online drug communities (e.g., opioid
community and depressant community). However, existing
works [2], [8] do not capture more complex group-level
behaviors exhibited by users within these communities. (iii)
most of the existing works against drug trafficking activities
require sufficient labeled samples to train models, but they
underestimate the valuable information within the handy un-
labeled data. For example, Roy et al. [9] spent a couple of
months collecting 100,500 Instagram posts, while only 20% of
posts were positive drug tweets, which is very time-consuming
and effort-consuming. The aforementioned challenges inspire
us to investigate the following research problem: How do we
design an effective graph representation learning framework
to study drug trafficking communities comprehensively?

To this end, we design a novel HyperGraph Contrastive
Learning framework called HyGCL-DC that leverages hyper-
graphs to model the higher-order relationships among online
users to detect Drug trafficking Communities. To handle the
first challenge, we comprehensively study online drug commu-
nities that are involved with four types of roles (i.e., drug seller,
drug buyer, drug user, and drug discussant) on social media.
For the second challenge, we first build a drug trafficking
hypergraph called Twitter-HyDrug including online users and
four types of hyperedges among these users. Then, we employ
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hypergraph neural networks (HyGNNs) to model the higher-
order relationships among users and hyperedges. To solve
the third challenge, inspired by self-supervised contrastive
learning methods [10], [11], we design a hypergraph contrast
learning method, which integrates hypergraph augmentations
from the structure view and the attribute view to enhance
the hypergraph representation learning over unlabeled data in
hypergraphs. Furthermore, our framework is designed as an
end-to-end model that combines self-supervised contrastive
learning and supervised learning to detect drug communities
on social media. To validate the effectiveness of HyGCL-
DC, besides the newly collected data Twitter-HyDrug, we
also evaluate our model over three benchmark hypergraphs.
To conclude, our work makes the following contributions:
Novelty: We devise a novel framework called HyGCL-
DC, which effectively captures group-wise behaviors among
online users to detect drug trafficking communities. To the
best of our knowledge, this is the first work that employs
hypergraph contrastive learning to detect drug trafficking
communities on social media.

New Data: To comprehensively study drug trafficking activi-
ties, we collect a new drug trafficking hypergraph from Twit-
ter called Twitter-HyDrug, which contributes to research
communities of drug trafficking and hypergraph learning.
Effectiveness: Comprehensive experiments on three bench-
mark hypergraph datasets and the new data Twitter-HyDrug
demonstrate the effectiveness of HyGCL-DC.

II. RELATED WORK

Community Detection. Community detection is frequently
employed in network analysis, which involves the segmen-
tation of nodes in networks into distinct groups or clusters
according to various criteria [12], [13]. Existing community
detection methods can be roughly divided into three categories:
optimization-based methods [14]-[16], matrix factorization
methods [17], and generative models [18], [19]. The existing
algorithms have demonstrated significant performance across
various domains; however, these methods mainly focus on
pairwise structure relationships and fail to preserve the higher-
order structure relationships within the graphs. Unlike existing
works, we leverage hyperedges to extract the higher-order
relationships among entities to analyze online drug trafficking
communities comprehensively.

Hypergraph Neural Networks. Hypergraphs are usually
regarded as a generalized version of standard graphs be-
cause hypergraphs employ the hyperedge to connect multiple
nodes [20], [21]. Accordingly, hypergraph neural networks
models (HyGNNs) [22]-[24] have gained considerable atten-
tion in recent years with their strong ability to capture com-
plex relationships among networks. For instance, Hypergraph
Neural Network (HGNN) [20] is one of the earliest works in
this field, which encodes higher-order data correlation in a hy-
pergraph structure. Another notable work is Hypergraph Con-
volutional Neural Network (HyperGCN) [21], which extends
Graph Convolution Network (GCN) to hypergraph through
hypergraph Laplacian. Motivated by existing HyGNN:s, this
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work proposes an effective hypergraph representation learning
framework to learn the complex relationships for drug traf-
ficking community detection on social media.

III. PRELIMINARY

Definition III.1. Hypergraph. Let G = (V, £, X) denotes a
hypergraph, where V is the set of nodes with size N = [V|, £
is the set of hyperedges with size M = |€|, and X is the set
of node attribute features where 2; € R, Unlike the pairwise
edges in graphs, each hyperedge e € £ can connects multiple
nodes and represents higher-order interactions among nodes.

Definition III.2. Community Detection. Given a network, the
community detection aims to partition nodes in the network
into KX communities C = {C4,Cy,...,Ck}, where each
community Cj is a set of nodes. This work studies the
overlapping community detection problem that each node can
belong to multiple communities simultaneously, i.e., Vv; € V,
‘{k cv; € O, Cf € C}| > 1.

Definition III.3. Hypergraph Laplacian. In this paper,
we select HyperGCN [21] as the hypergraph encoder, which
leverages hypergraph Laplacian with mediators to transfer the
hypergraph to weighted graphs. Given a hypergraph G =
(V,&,X), and a real-valued signal S € R¥, the hypergraph
Laplacian constructs a weighted graph Gs with all nodes in
V and edges from the edge set where {(v;,v;) @ (v;,v;) =
argmax, , |S; — 81} UL (0 v0), (0 0) ¢ v € €\
{vs,v;}}. Formally, the symmetrically normalized hypergraph
Laplacian can be formulated as follows:

I(8)=(I—-D 2AsD3)S, (1)
where Ag denotes the weighted adjacency matrix of graph G,
I denotes the identity matrix, and D = diag(dy,...,dy) is
the diagonal degree matrix of Gs.

Problem 1. Hypergraph Contrastive Learning for Drug
Trafficking Community Detection. Given a hypergraph G =
(V,E,X) built on drug trafficking data, the objective is to
build a hypergraph contrastive learning model fg : V — R?
(with parameter ¢) to project nodes into b-dimensional em-
beddings for drug trafficking community detection.

IV. METHODOLOGY

In this section, we present the details of HyGCL-DC, which
includes three key steps: (1) drug hypergraph construction; (2)
hypergraph contrastive learning; (3) community detection.

A. Drug Hypergraph Construction

To comprehensively describe drug trafficking communities
on social media, we propose to construct a drug trafficking
hypergraph that integrates informative content features and
complex higher-order relationships among online users. The
details of content-based features and higher-order relationships
are described below.

Content Feature. In this paper, we regard Twitter as an
example to study online drug trafficking activities. Specifically,
we consider each Twitter user as a node in our hypergraph
named Twitter-HyDrug. To accurately characterize each user
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Fig. 1: The overall framework of HyGCL-DC: (a) it first constructs a hypergraph G based on the interactions among online
drug-related users; (b) it integrates augmentations from the structure view and the attribute view to augment hypergraphs into
G1 and Go. HyGCL-DC is designed as an end-to-end framework that integrates self-supervised contrastive learning to boost the
node embeddings over unlabeled data by reaching the agreement among positive and negative embedding pairs and supervised

learning with community labels for downstream drug trafficking community detection tasks.

in Twitter-HyDrug, similar to existing works [25]-[29], we
concatenate the informative text content, including profile in-
formation, username, and tweets, and further leverage the pre-
trained transformer-based language model, SentenceBert [30],
to convert the concatenated text information to a fixed-length
feature vector (d = 384). Each feature vector is applied to the
corresponding node as the attribute feature x;. Details about
user feature generation are introduced in our GitHub page.

Hyperedge. To exhaustively depict the complex and group-
wise relationships among users in Twitter-HyDrug, we define
four types of hyperedges for describing the activities among
users as follows: (i) RI: users-follow-user hyperedge rela-
tion denotes that a group of users follow a specific user in
Twitter-HyDrug. The follow/following-based hyperedge aims
to represent the social connections within drug trafficking
communities, illustrating the friend circles involved in such
illicit activities. (ii) R2: users-engage-conversation hyperedge
relation represents that a group of users is engaged in a tweet-
based conversation, encompassing activities such as posting,
replying, retweeting, and liking the tweets involved within
the conversation. The conversation-based hyperedge serves
to portray the shared interests and topics among the group
of users. (iii) R3: users-include-hashtag hyperedge relation
indicates that a bunch of users actively discuss the specific
hashtag-based topics by posting the specific hashtag in tweets
or profiles. For instance, a hyperedge encompasses a group
of users that post tweets on Twitter that include oxycodone,

one of the opioid drugs. Note that, we follow our previous
work [31] to define the drug-related hashtags. (iv) R4: users-
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contain-emoji hyperedge relation signifies that a bunch of
users contains a specific drug-related emoji in their tweets
or profiles. Similar to hashtags, we use emojis to describe the
interested drugs in this group. Fig. 1.(a) intuitively shows how
we build Twitter-HyDrug. To summarize, we build a hyper-
graph called Twitter-HyDrug by integrating content features
and four types of hyperedge relationships among users.

B. Hypergraph Contrastive Learning

After the construction of Twitter-HyDrug, we propose to
employ HyGNNs [20], [21] to model the complex rela-
tionships among hypergraphs. Besides, inspired by the self-
supervised contrastive learning models [10], we devise a
hypergraph self-supervised contrast learning model to enhance
the hypergraph representation learning over unlabeled data.

Hypergraph Representation Learning. Our framework
HyGCL-DC is applicable to any HyGNNs. In this work, we
leverage a two-layer HyperGCN [21] as the encoder example
to map nodes into a latent representation space. Formally, the
propagation rule of a two-layer HyperGCN is defined as:

7 = ADReLUAD AW O, @)

where A and A®) are the weighted adjacency matrices
generated via Definition I11.3 in the first layer and second layer,
respectively. (1) is the weight matrix for the first layer, and
W@ is the weight matrix for the second layer.

Hypergraph Contrastive Learning. After obtaining the node
embeddings Z, we design a self-supervised contrast learning
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module to enhance the expressive ability of the hypergraph
encoder f(-). The main idea of graph contrastive learning is
to apply graph augmentation methods to convert graphs into
different views and further achieve the agreements among node
embedding pairs [11], [32]. Existing works conclude that the
quality of contrastive pairs has a significant influence on graph
contrastive learning, and relatively challenging contrastive
pairs will enhance contrastive learning [33]-[35]. Inspired by
the findings and the success of HyperGCL [10] that extends
graph contrastive learning into the hypergraph field, we design
a novel hypergraph contrastive model that aims to generate
high-quality hypergraph contrastive pairs by perturbing the
hyperedges from the structure view and corrupting node at-
tributes from the attribute view simultaneously.

Structure View Augmentation. Based on the underlying prior
that the absence of certain higher-order relations does not
significantly affect the semantics of hypergraphs, We first
corrupt the hypergraph structures by perturbing partial hyper-
edges in hypergraphs. Mention that, unlike edge perturbation
in graphs that randomly removes or adds edges among nodes,
we propose to merely remove hyperedges in hypergraphs
as adding hyperedges for a group of nodes would be risky
and would bring too much unnecessary or even harmful
noise. Specifically, we generate a hyperedge masking matrix
M* € {0,1}1M ~ B(p,). The augmented hyperedge set £
is a subset of &, where £ = {e; : M =1,¢; € £}.

Attribute View Augmentation. Instead of merely corrupting
the hypergraph structure, we further design a hypergraph
augmentation method that aims to corrupt the node attribute
features for generating more challenging contrastive hyper-
graph pairs. Our attribute view augmentation is based on the
idea that the corruption of the attribute in partial nodes would
not significantly affect the semantics of nodes. To achieve this,
we first generate a mask matrix M € {0, 1}'*N ~ B(p,)
to mask partial nodes. Then we corrupt the node attribute
features by generating the random noise \;. Based on the
above strategy, the augmented node attribute feature set X'
is formulated as X' = {x; - M% + \; : z; € X'}.

Contrastive Optimization. Merely performing the hyperedge
perturbation at the structure level or the attribute corruption
augmentation at the node attribute level on hypergraphs is not
optimal enough to generate challenging contrastive pairs for
hypergraph contrastive learning. In this paper, we combine the
hyperedge perturbation and the attribute corruption to generate
high-quality contrastive pairs and further enhance the ability
of hypergraph representation learning. Following the above
augmentation methods, we first obtain the augmented hyper-
graph pairs [G1,Gs] = [V, &1, &), (V, E2, Xs)]. Then, the
augmented hypergraph pairs are fed to the hypergraph encoder
f(-) to get the node embeddings Z; and Z,, respectively.
Note that a projection head layer h(-) is applied to convert
node embeddings from different augmented hypergraphs into
the same space. Afterward, the hypergraph encoder f(-) is
trained via optimizing the contrastive loss £.;, which attempts
to maximize the consistency between the positive embedding
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pairs and the negative embedding pairs. The temperature-
scaled contrastive loss (NT-Xent) £.; is formulated as:

1 exp(éi Z/T)
Lo=——1 : :
Y Ogu% 2 exp(0:;/7) + exp(0ii/7)

where ¢; ; is the cosine similarity between contrastive embed-
ding pairs (21,4, 22,j). T is the temperature hyper-parameter.

3)

C. Community Detection

After obtaining self-supervised node embeddings generated
by the hypergraph encoder, inspired by HyperGCL that designs
an end-to-end framework for downstream tasks [10], we
design an end-to-end framework to detect communities among
online drug trafficking activities. Specifically, as illustrated
in Fig. 1.(b), we first feed the original hypergraph G into
the hypergraph encoder to generate node embeddings Z.
Afterward, motivated by the existing work [36] that converts
the community detection task to the node classification task,
we regard the drug trafficking community detection as a node
classification task that aims to classify which communities
each node should belong to. As we focus on over-lapping
community detection in this work, we pass node embeddings
Z into a fully connected layer with the sigmoid function to
get the probability distribution P. With the ground-truth label
Y, we employ the binary cross-entropy (BCE) loss as the
community detection loss L... Then, the final objective for
community detection can be formally defined as:

L=a1Lee+ Ly,
where «; and i are the trade-off hyper-parameters.

“

V. EXPERIMENTS
A. Datasets

New Real-world Dataset. To comprehensively study online
drug trafficking activities, we build a new real-world dataset
called Twitter-HyDrug to analyze drug trafficking communities
on Twitter. Specifically, we first crawl the metadata through the
official Twitter API [43] from Dec 2020 to Aug 2021. After-
ward, following the existing work [1], we generate a keyword
list that covers 21 drug types that may cause drug overdose or
drug addiction problems to filter the tweets that contain drug-
relevant information. Based on the keyword list, we obtain
266,975 filtered drug-relevant posts by 54,680 users. More-
over, we define six types of communities, i.e., cannabis, opioid,
hallucinogen, stimulant, depressant, and others communities,
based on the drug functions, and we, six researchers, spent 62
days annotating these Twitter users into six communities. The
annotation rules are discussed in our provided GitHub page.
To conclude, Twitter-HyDrug includes 2,936 user nodes and
33,892 hyperedges. The task of drug trafficking community
detection over Twitter-HyDrug is considered the overlapping
community detection (multi-label classification) problem.

Existing Benchmark Datasets. To exhaustively evaluate the
effectiveness of HyGCL-DC, we also employ three citation hy-
pergraph benchmark datasets [21]: Cora-author, Cora-citation,
and Citeseer-citation. TABLE II lists the statistics of our newly
collected Twitter-HyDrug and three benchmark datasets.
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TABLE I: Performance comparison (Mean % =+ std) of all methods for community detection. The train/validate/test ratio is
60%:20%:20%. Purple shaded numbers indicate the best result and gray shaded numbers represent the runner-up performance.

Setting \ Twitter-HyDrug \ Cora-author \ Cora-citation \ Citeseer-citation
Group | Model ‘ Jaccard Fl-score | Jaccard Fl-score | Jaccard Fl-score | Jaccard F1-score
K-means [37] 1543 £ 0.33 31.53 +£2.05 12.15 + 4.36 22.10 = 5.68 18.36 + 4.91 26.64 + 5.68 15.38 + 4.32 20.10 = 3.28
Gl BigClam [38] 23.46 +2.54 36.74 £ 7.24 19.73 £ 4.93 27.71 £5.28 21.53 £5.28 28.54 £ 4.29 17.21 £ 4.15 20.45 + 4.05
CESNA [39] 37.26 + 4.60 40.83 + 3.45 21.81 £5.04 31.02 £ 4.19 20.41 + 3.46 3431 £3.72 20.94 +2.97 23.15 £ 2.84
GCN [5] 44.56 + 1.03 61.64 = 1.00 42.73 £ 3.44 70.24 £ 541 47.83 £ 1.46 63.91 + 2.61 47.83 £ 0.62 51.89 £ 0.78
G2 GAT [6] 48.65 +2.02 60.35 + 1.39 51.73 + 843 67.75 = 7.99 4592 £ 691 62.44 + 8.12 23.14 +3.79 37.42 +5.18
GIN [40] 45.07 £ 0.82 61.74 + 0.82 59.69 + 4.80 70.95 + 3.75 57.56 + 0.83 70.60 + 0.69 48.20 + 2.30 65.02 + 2.08
CLARE [13] 50.17 + 3.06 64.55 +3.95 54.19 = 8.19 71.34 +5.26 5526 +4.12 70.83 = 3.19 48.70 £ 1.23 62.12 + 2.67
G3 SEAL [12] 40.24 £ 2.37 58.92 +2.19 48.96 + 6.48 60.07 + 443 50.25 £ 5.10 65.26 + 443 38.26 + 1.37 56.45 +3.71
Bespoke [41] 41.68 + 3.74 59.02 + 1.14 50.30 + 6.25 63.19 + 421 48.02 £ 3.17 64.89 +5.13 36.90 +2.93 51.64 +3.04
HyperGCN [21] 56.83 +2.38 7245 £ 1.93 66.15 + 0.89 79.62 + 0.64 62.86 + 1.46 77.19 £ 1.11 55.15 + 3.13 71.06 + 2.58
G4 HGNN [20] 5545 + 0.44 72.16 £ 1.42 65.96 + 0.74 79.54 + 1.46 60.13 +2.14 76.39 +2.18 5427 + 147 68.59 + 0.75
HCHA [42] 52.78 + 1.42 65.83 + 1.42 58.84 +2.07 75.43 = 1.60 56.29 + 0.97 73.41 + 1.81 52.89 + 245 64.53 + 1.89
Ours ‘ HyGCL-DC ‘ 60.05 + 0.54 74.85 £ 2.15 68.67 + 0.94 81.20 + 1.02 ‘ 64.73 + 0.14 78.59 £ 0.11 ‘ 56.72 + 2.85 72.36 + 2.30

B. Baseline Methods

To evaluate HyGCL-DC, we compare it with twelve base-
line methods which are divided into four groups: unsupervised
community detection methods (G1), including K -means [37],
BigClams [38], and CESNA [39]; supervised graph-based
methods (G2), i.e., GCN [5], GAT [6], and GIN [40], super-
vised community detection methods (G3), i.e., CLARE [13],
SEAL [12], and Bespoke [41], and supervised hypergraph-
based methods (G4), i.e., HyperGCN [21], HGNN [20], and
HCHA [42]. To fairly compare with graph methods, following
existing works [10], [20], we transfer the hypergraph into a
graph through clique expansion [44].

C. Experimental Settings

To evaluate the performance of our model and baseline
methods, we adopt two widely-used metrics to evaluate
the performance of community detection: Jaccard score [?],
[45] and Micro-F1 score [41]. For data splitting, we use
60%/20%/20% of data as train/validate/test data respectively.
Moreover, we conduct each method three times and report the
average score with standard deviation (std). All experiments
are conducted under the environment of the Ubuntu 16.04
OS, plus an Intel 19-9900k CPU, two GeForce GTX 2080
Ti Graphics Cards, and 64 GB of RAM.

TABLE II: The statistics of four hypergraph datasets.

Twitter-HyDrug Cora-author Cora-citation Citeseer-citation

# nodes, NV 2,936 2,708 2,708 3,312
# hyperedges, M 33,892 1,072 1,579 1,079
Avg. hyperedges 2.4 4.2 3.0 32
# features 384 1,433 1,433 3,703
# communities, K 6 7 7 6

D. Experimental Comparison

Performance Comparison. According to TABLE I, we make
the following conclusions: (i) Supervised models largely out-
perform all unsupervised learning models, showing that su-
pervised learning with community labels can enhance com-
munity detection performance to a large extent. (ii) Most of
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the hypergraph-based models in G4 outperform graph-based
models in G2, proving hypergraphs’ necessity for community
detection tasks. (iii) HyperGCN has better performance than
other hypergraph models in G4 over four datasets, which is
the motivation for selecting HyperGCN as the hypergraph
encoder. (iv) Our contrastive hypergraph learning framework
can enhance the ability of representation learnings in hyper-
graphs by comparing HyperGCN and HyGCL-DC. Besides,
our model gains the best performance by comparison with all
baseline models, which shows the effectiveness of our model
over Twitter-HyDrug and three benchmark datasets.

HyGCL-DC HyperGCN

N .

GCN GIN

Cora-author  Citeseer-citation

*Q
i

Fig. 2: Embedding Visualization over three benchmark data.

N
v
h )

Cora-citation

Embeddding Visualization. To further examine the effective-
ness of our model intuitively, we render the embedding of three
benchmark datasets generated by HyGCL-DC, HyperGCN,
GCN, and GIN, respectively in Fig 2. Each unique color
represents the embeddings belonging to a specific community
label. We can find out that, compared HyGCL-DC with
the three baseline models, HyGCL-DC shows more distinct
boundaries and smaller overlapping areas. In addition, GCN
and GIN appear to be unable to effectively separate different
communities, especially since GCN has the largest overlapping
area, which again demonstrates the effectiveness of HyGCL-
DC for both overlapping (multi-label) and disjoint (multi-
class) community detection tasks.
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VI. CONCLUSION

In this work, we first collect a new drug trafficking hyper-
graph data called Twitter-HyDrug to study the drug traffick-
ing community detection problem. Then we design a novel
hypergraph contrastive learning framework called HyGCL-
DC to detect online drug trafficking communities. To show
the effectiveness of HyGCL-DC, we evaluate it over Twitter-
HyDrug and other three benchmark hypergraph datasets. The
empirical results on community detection tasks show the
superiority of HyGCL-DC compared with baseline methods.
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