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Abstract—In recent decades, due to the lucrative profits, the
crime of drug trafficking has evolved with modern technologies.
Social media, as one of the popular online platforms, have be-
come direct-to-consumer intermediaries for illicit drug trafficking
communities to promote and trade drugs. These group-wise
drug trafficking activities pose significant challenges to public
health and safety, requiring urgent measures to address this
issue. However, existing works against the imminent problem
still face limitations, such as primarily analyzing individual roles
from a single perspective, ignoring the group-wise relationships,
and requiring sufficient labeled samples for model training. To
this end, we propose a novel HyperGraph Contrastive Learning
framework called HyGCL-DC that employs hypergraph to model
the higher-order relationships among users to detect Drug
trafficking Communities. Firstly, we build a hypergraph called
Twitter-HyDrug including online user nodes and four types of
hyperedges to depict the rich group-wise relationships among
these users. Then, we leverage hypergraph neural networks
to model the rich relationships among nodes and hyperedges
in the drug trafficking hypergraph. Furthermore, we design a
hypergraph self-supervised contrast module, which integrates the
augmentation from the structure view and the attribute view to
enhance hypergraph representation learning over unlabeled data.
Finally, we design an end-to-end framework that combines the
self-supervised contrastive module and the supervised module to
classify online drug trafficking communities. To comprehensively
study the online drug trafficking problem and evaluate our
model, we conduct extensive experiments over Twitter-HyDrug
and three citation benchmark hypergraph datasets to demon-
strate the effectiveness of our model. Our new data and source
code are available at https://github.com/HyGCL-DC.

Index Terms—hypergraph representation learning, self-
supervised learning, community detection, drug trafficking

I. INTRODUCTION

The illicit drug trafficking markets, encompassing drugs

such as synthetic opioids, remain highly profitable in recent

decades. As a result, the crime of drug trafficking (a.k.a.

illicit drug trading) has increasingly adapted and evolved with

modern technologies (e.g., social media). Recent works [1]–

[3] have demonstrated that the major social media platforms,

e.g., Twitter and Instagram, have become direct-to-consumer

intermediaries for illicit drug trafficking, enabling drug sellers

to sell drugs and drug users to purchase drugs much more

easily than before. For instance, an illicit drug seller on Twitter

advertises their drugs by posting drug-related content (e.g.,

drug street names and related hashtags), which easily attracts

† Equally contributed.
∗ Corresponding authors.

potential drug users to discuss and trade drugs through so-

cial media. Consequently, these activities naturally form drug

trafficking communities on social media platforms, and these

group-wise drug trafficking scenarios pose unprecedentedly

serious challenges to social health and public safety, which

needs imminent actions to address this issue.

However, existing works against drug trafficking activities

still face the following limitations: (i) most works [1], [4]

primarily study drug trafficking by analyzing individual roles

from a single perspective (either from the drug seller side

or drug user side) while ignoring the natural connections

among different roles in drug trafficking communities. (ii)

some existing graph models [5]–[7] merely focus on the

pairwise relationships among users on social media but fail

to model the higher-order group-wise relationships among

these communities. For example, a drug user replies to the

tweet of a drug seller inquiring about the drug price, and

another drug buyer interacts with the drug user about previous

purchases from the drug seller. These active and group-

wise interactions among drug sellers, drug buyers, and drug

users naturally form online drug communities (e.g., opioid

community and depressant community). However, existing

works [2], [8] do not capture more complex group-level

behaviors exhibited by users within these communities. (iii)

most of the existing works against drug trafficking activities

require sufficient labeled samples to train models, but they

underestimate the valuable information within the handy un-

labeled data. For example, Roy et al. [9] spent a couple of

months collecting 100,500 Instagram posts, while only 20% of

posts were positive drug tweets, which is very time-consuming

and effort-consuming. The aforementioned challenges inspire

us to investigate the following research problem: How do we
design an effective graph representation learning framework
to study drug trafficking communities comprehensively?

To this end, we design a novel HyperGraph Contrastive

Learning framework called HyGCL-DC that leverages hyper-

graphs to model the higher-order relationships among online

users to detect Drug trafficking Communities. To handle the

first challenge, we comprehensively study online drug commu-

nities that are involved with four types of roles (i.e., drug seller,

drug buyer, drug user, and drug discussant) on social media.

For the second challenge, we first build a drug trafficking

hypergraph called Twitter-HyDrug including online users and

four types of hyperedges among these users. Then, we employ
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hypergraph neural networks (HyGNNs) to model the higher-

order relationships among users and hyperedges. To solve

the third challenge, inspired by self-supervised contrastive

learning methods [10], [11], we design a hypergraph contrast

learning method, which integrates hypergraph augmentations

from the structure view and the attribute view to enhance

the hypergraph representation learning over unlabeled data in

hypergraphs. Furthermore, our framework is designed as an

end-to-end model that combines self-supervised contrastive

learning and supervised learning to detect drug communities

on social media. To validate the effectiveness of HyGCL-

DC, besides the newly collected data Twitter-HyDrug, we

also evaluate our model over three benchmark hypergraphs.

To conclude, our work makes the following contributions:

• Novelty: We devise a novel framework called HyGCL-

DC, which effectively captures group-wise behaviors among

online users to detect drug trafficking communities. To the

best of our knowledge, this is the first work that employs

hypergraph contrastive learning to detect drug trafficking

communities on social media.

• New Data: To comprehensively study drug trafficking activi-

ties, we collect a new drug trafficking hypergraph from Twit-

ter called Twitter-HyDrug, which contributes to research

communities of drug trafficking and hypergraph learning.

• Effectiveness: Comprehensive experiments on three bench-

mark hypergraph datasets and the new data Twitter-HyDrug

demonstrate the effectiveness of HyGCL-DC.

II. RELATED WORK

Community Detection. Community detection is frequently

employed in network analysis, which involves the segmen-

tation of nodes in networks into distinct groups or clusters

according to various criteria [12], [13]. Existing community

detection methods can be roughly divided into three categories:

optimization-based methods [14]–[16], matrix factorization

methods [17], and generative models [18], [19]. The existing

algorithms have demonstrated significant performance across

various domains; however, these methods mainly focus on

pairwise structure relationships and fail to preserve the higher-

order structure relationships within the graphs. Unlike existing

works, we leverage hyperedges to extract the higher-order

relationships among entities to analyze online drug trafficking

communities comprehensively.

Hypergraph Neural Networks. Hypergraphs are usually

regarded as a generalized version of standard graphs be-

cause hypergraphs employ the hyperedge to connect multiple

nodes [20], [21]. Accordingly, hypergraph neural networks

models (HyGNNs) [22]–[24] have gained considerable atten-

tion in recent years with their strong ability to capture com-

plex relationships among networks. For instance, Hypergraph

Neural Network (HGNN) [20] is one of the earliest works in

this field, which encodes higher-order data correlation in a hy-

pergraph structure. Another notable work is Hypergraph Con-

volutional Neural Network (HyperGCN) [21], which extends

Graph Convolution Network (GCN) to hypergraph through

hypergraph Laplacian. Motivated by existing HyGNNs, this

work proposes an effective hypergraph representation learning

framework to learn the complex relationships for drug traf-

ficking community detection on social media.

III. PRELIMINARY

Definition III.1. Hypergraph. Let G = (V, E ,X ) denotes a

hypergraph, where V is the set of nodes with size N = |V|, E
is the set of hyperedges with size M = |E|, and X is the set

of node attribute features where xi ∈ R
d. Unlike the pairwise

edges in graphs, each hyperedge e ∈ E can connects multiple

nodes and represents higher-order interactions among nodes.

Definition III.2. Community Detection. Given a network, the

community detection aims to partition nodes in the network

into K communities C = {C1, C2, . . . , CK}, where each

community Ck is a set of nodes. This work studies the

overlapping community detection problem that each node can

belong to multiple communities simultaneously, i.e., ∀vi ∈ V ,

|{k : vi ∈ Ck, Ck ∈ C}| ≥ 1.

Definition III.3. Hypergraph Laplacian. In this paper,

we select HyperGCN [21] as the hypergraph encoder, which

leverages hypergraph Laplacian with mediators to transfer the

hypergraph to weighted graphs. Given a hypergraph G =
(V, E ,X ), and a real-valued signal S ∈ R

N , the hypergraph

Laplacian constructs a weighted graph GS with all nodes in

V and edges from the edge set where {(vi, vj) : (vi, vj) =
argmaxvi,vj∈e|Si − Sj |, }

⋃{(vm, vi), (vm, vj) : vm ∈ e \
{vi, vj}}. Formally, the symmetrically normalized hypergraph

Laplacian can be formulated as follows:

l(S) = (I −D− 1
2ASD− 1

2 )S, (1)

where AS denotes the weighted adjacency matrix of graph GS ,

I denotes the identity matrix, and D = diag(d1, . . . , dN ) is

the diagonal degree matrix of GS .

Problem 1. Hypergraph Contrastive Learning for Drug
Trafficking Community Detection. Given a hypergraph G =
(V, E ,X ) built on drug trafficking data, the objective is to
build a hypergraph contrastive learning model fφ : V → R

b

(with parameter φ) to project nodes into b-dimensional em-
beddings for drug trafficking community detection.

IV. METHODOLOGY

In this section, we present the details of HyGCL-DC, which

includes three key steps: (1) drug hypergraph construction; (2)

hypergraph contrastive learning; (3) community detection.

A. Drug Hypergraph Construction

To comprehensively describe drug trafficking communities

on social media, we propose to construct a drug trafficking

hypergraph that integrates informative content features and

complex higher-order relationships among online users. The

details of content-based features and higher-order relationships

are described below.

Content Feature. In this paper, we regard Twitter as an

example to study online drug trafficking activities. Specifically,

we consider each Twitter user as a node in our hypergraph

named Twitter-HyDrug. To accurately characterize each user
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Fig. 1: The overall framework of HyGCL-DC: (a) it first constructs a hypergraph G based on the interactions among online

drug-related users; (b) it integrates augmentations from the structure view and the attribute view to augment hypergraphs into

G̃1 and G̃2. HyGCL-DC is designed as an end-to-end framework that integrates self-supervised contrastive learning to boost the

node embeddings over unlabeled data by reaching the agreement among positive and negative embedding pairs and supervised

learning with community labels for downstream drug trafficking community detection tasks.

in Twitter-HyDrug, similar to existing works [25]–[29], we

concatenate the informative text content, including profile in-

formation, username, and tweets, and further leverage the pre-

trained transformer-based language model, SentenceBert [30],

to convert the concatenated text information to a fixed-length

feature vector (d = 384). Each feature vector is applied to the

corresponding node as the attribute feature xi. Details about

user feature generation are introduced in our GitHub page.

Hyperedge. To exhaustively depict the complex and group-

wise relationships among users in Twitter-HyDrug, we define

four types of hyperedges for describing the activities among

users as follows: (i) R1: users-follow-user hyperedge rela-

tion denotes that a group of users follow a specific user in

Twitter-HyDrug. The follow/following-based hyperedge aims

to represent the social connections within drug trafficking

communities, illustrating the friend circles involved in such

illicit activities. (ii) R2: users-engage-conversation hyperedge

relation represents that a group of users is engaged in a tweet-

based conversation, encompassing activities such as posting,

replying, retweeting, and liking the tweets involved within

the conversation. The conversation-based hyperedge serves

to portray the shared interests and topics among the group

of users. (iii) R3: users-include-hashtag hyperedge relation

indicates that a bunch of users actively discuss the specific

hashtag-based topics by posting the specific hashtag in tweets

or profiles. For instance, a hyperedge encompasses a group

of users that post tweets on Twitter that include oxycodone,

one of the opioid drugs. Note that, we follow our previous
work [31] to define the drug-related hashtags. (iv) R4: users-

contain-emoji hyperedge relation signifies that a bunch of

users contains a specific drug-related emoji in their tweets

or profiles. Similar to hashtags, we use emojis to describe the

interested drugs in this group. Fig. 1.(a) intuitively shows how

we build Twitter-HyDrug. To summarize, we build a hyper-

graph called Twitter-HyDrug by integrating content features

and four types of hyperedge relationships among users.

B. Hypergraph Contrastive Learning

After the construction of Twitter-HyDrug, we propose to

employ HyGNNs [20], [21] to model the complex rela-

tionships among hypergraphs. Besides, inspired by the self-

supervised contrastive learning models [10], we devise a

hypergraph self-supervised contrast learning model to enhance

the hypergraph representation learning over unlabeled data.

Hypergraph Representation Learning. Our framework

HyGCL-DC is applicable to any HyGNNs. In this work, we

leverage a two-layer HyperGCN [21] as the encoder example

to map nodes into a latent representation space. Formally, the

propagation rule of a two-layer HyperGCN is defined as:

Z = Ā(2)ReLU(Ā(1)X W̄ (1))W̄ (2), (2)

where Ā(1) and Ā(2) are the weighted adjacency matrices

generated via Definition III.3 in the first layer and second layer,

respectively. W̄ (1) is the weight matrix for the first layer, and

W̄ (2) is the weight matrix for the second layer.

Hypergraph Contrastive Learning. After obtaining the node

embeddings Z, we design a self-supervised contrast learning
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module to enhance the expressive ability of the hypergraph

encoder f(·). The main idea of graph contrastive learning is

to apply graph augmentation methods to convert graphs into

different views and further achieve the agreements among node

embedding pairs [11], [32]. Existing works conclude that the

quality of contrastive pairs has a significant influence on graph

contrastive learning, and relatively challenging contrastive

pairs will enhance contrastive learning [33]–[35]. Inspired by

the findings and the success of HyperGCL [10] that extends

graph contrastive learning into the hypergraph field, we design

a novel hypergraph contrastive model that aims to generate

high-quality hypergraph contrastive pairs by perturbing the

hyperedges from the structure view and corrupting node at-

tributes from the attribute view simultaneously.

Structure View Augmentation. Based on the underlying prior

that the absence of certain higher-order relations does not

significantly affect the semantics of hypergraphs, We first

corrupt the hypergraph structures by perturbing partial hyper-

edges in hypergraphs. Mention that, unlike edge perturbation

in graphs that randomly removes or adds edges among nodes,

we propose to merely remove hyperedges in hypergraphs

as adding hyperedges for a group of nodes would be risky

and would bring too much unnecessary or even harmful

noise. Specifically, we generate a hyperedge masking matrix

M̃s ∈ {0, 1}1×M ∼ B(ps). The augmented hyperedge set Ẽ
is a subset of E , where Ẽ = {ei : M̃s

i = 1, ei ∈ E}.
Attribute View Augmentation. Instead of merely corrupting

the hypergraph structure, we further design a hypergraph

augmentation method that aims to corrupt the node attribute

features for generating more challenging contrastive hyper-

graph pairs. Our attribute view augmentation is based on the

idea that the corruption of the attribute in partial nodes would

not significantly affect the semantics of nodes. To achieve this,

we first generate a mask matrix M̃a ∈ {0, 1}1×N ∼ B(pa)
to mask partial nodes. Then we corrupt the node attribute

features by generating the random noise λi. Based on the

above strategy, the augmented node attribute feature set X̃
is formulated as X̃ = {xi · M̃a

i + λi : xi ∈ X}.
Contrastive Optimization. Merely performing the hyperedge

perturbation at the structure level or the attribute corruption

augmentation at the node attribute level on hypergraphs is not

optimal enough to generate challenging contrastive pairs for

hypergraph contrastive learning. In this paper, we combine the

hyperedge perturbation and the attribute corruption to generate

high-quality contrastive pairs and further enhance the ability

of hypergraph representation learning. Following the above

augmentation methods, we first obtain the augmented hyper-

graph pairs [G̃1, G̃2] = [(V, Ẽ1, X̃1), (V, Ẽ2, X̃2)]. Then, the

augmented hypergraph pairs are fed to the hypergraph encoder

f(·) to get the node embeddings Z̃1 and Z̃2, respectively.

Note that a projection head layer h(·) is applied to convert

node embeddings from different augmented hypergraphs into

the same space. Afterward, the hypergraph encoder f(·) is

trained via optimizing the contrastive loss Lcl, which attempts

to maximize the consistency between the positive embedding

pairs and the negative embedding pairs. The temperature-

scaled contrastive loss (NT-Xent) Lcl is formulated as:

Lcl = − 1

N
log

∑
vi∈V

exp(δi,i/τ)∑
j �=i exp(δi,j/τ) + exp(δi,i/τ)

, (3)

where δi,j is the cosine similarity between contrastive embed-

ding pairs (z̃1,i, z̃2,j). τ is the temperature hyper-parameter.

C. Community Detection

After obtaining self-supervised node embeddings generated

by the hypergraph encoder, inspired by HyperGCL that designs

an end-to-end framework for downstream tasks [10], we

design an end-to-end framework to detect communities among

online drug trafficking activities. Specifically, as illustrated

in Fig. 1.(b), we first feed the original hypergraph G into

the hypergraph encoder to generate node embeddings Z.

Afterward, motivated by the existing work [36] that converts

the community detection task to the node classification task,

we regard the drug trafficking community detection as a node

classification task that aims to classify which communities

each node should belong to. As we focus on over-lapping

community detection in this work, we pass node embeddings

Z into a fully connected layer with the sigmoid function to

get the probability distribution P̂ . With the ground-truth label

Y , we employ the binary cross-entropy (BCE) loss as the

community detection loss Lce. Then, the final objective for

community detection can be formally defined as:

L = α1Lce + α2Lcl, (4)

where α1 and α2 are the trade-off hyper-parameters.

V. EXPERIMENTS

A. Datasets

New Real-world Dataset. To comprehensively study online

drug trafficking activities, we build a new real-world dataset

called Twitter-HyDrug to analyze drug trafficking communities

on Twitter. Specifically, we first crawl the metadata through the

official Twitter API [43] from Dec 2020 to Aug 2021. After-

ward, following the existing work [1], we generate a keyword

list that covers 21 drug types that may cause drug overdose or

drug addiction problems to filter the tweets that contain drug-

relevant information. Based on the keyword list, we obtain

266,975 filtered drug-relevant posts by 54,680 users. More-

over, we define six types of communities, i.e., cannabis, opioid,

hallucinogen, stimulant, depressant, and others communities,

based on the drug functions, and we, six researchers, spent 62

days annotating these Twitter users into six communities. The

annotation rules are discussed in our provided GitHub page.

To conclude, Twitter-HyDrug includes 2,936 user nodes and

33,892 hyperedges. The task of drug trafficking community

detection over Twitter-HyDrug is considered the overlapping

community detection (multi-label classification) problem.

Existing Benchmark Datasets. To exhaustively evaluate the

effectiveness of HyGCL-DC, we also employ three citation hy-

pergraph benchmark datasets [21]: Cora-author, Cora-citation,

and Citeseer-citation. TABLE II lists the statistics of our newly

collected Twitter-HyDrug and three benchmark datasets.
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TABLE I: Performance comparison (Mean % ± std) of all methods for community detection. The train/validate/test ratio is

60%:20%:20%. Purple shaded numbers indicate the best result and gray shaded numbers represent the runner-up performance.

Setting Twitter-HyDrug Cora-author Cora-citation Citeseer-citation

Group Model Jaccard F1-score Jaccard F1-score Jaccard F1-score Jaccard F1-score

G1
K-means [37] 15.43 ± 0.33 31.53 ± 2.05 12.15 ± 4.36 22.10 ± 5.68 18.36 ± 4.91 26.64 ± 5.68 15.38 ± 4.32 20.10 ± 3.28
BigClam [38] 23.46 ± 2.54 36.74 ± 7.24 19.73 ± 4.93 27.71 ± 5.28 21.53 ± 5.28 28.54 ± 4.29 17.21 ± 4.15 20.45 ± 4.05
CESNA [39] 37.26 ± 4.60 40.83 ± 3.45 21.81 ± 5.04 31.02 ± 4.19 20.41 ± 3.46 34.31 ± 3.72 20.94 ± 2.97 23.15 ± 2.84

G2
GCN [5] 44.56 ± 1.03 61.64 ± 1.00 42.73 ± 3.44 70.24 ± 5.41 47.83 ± 1.46 63.91 ± 2.61 47.83 ± 0.62 51.89 ± 0.78
GAT [6] 48.65 ± 2.02 60.35 ± 1.39 51.73 ± 8.43 67.75 ± 7.99 45.92 ± 6.91 62.44 ± 8.12 23.14 ± 3.79 37.42 ± 5.18
GIN [40] 45.07 ± 0.82 61.74 ± 0.82 59.69 ± 4.80 70.95 ± 3.75 57.56 ± 0.83 70.60 ± 0.69 48.20 ± 2.30 65.02 ± 2.08

G3
CLARE [13] 50.17 ± 3.06 64.55 ± 3.95 54.19 ± 8.19 71.34 ± 5.26 55.26 ± 4.12 70.83 ± 3.19 48.70 ± 1.23 62.12 ± 2.67
SEAL [12] 40.24 ± 2.37 58.92 ± 2.19 48.96 ± 6.48 60.07 ± 4.43 50.25 ± 5.10 65.26 ± 4.43 38.26 ± 1.37 56.45 ± 3.71
Bespoke [41] 41.68 ± 3.74 59.02 ± 1.14 50.30 ± 6.25 63.19 ± 4.21 48.02 ± 3.17 64.89 ± 5.13 36.90 ± 2.93 51.64 ± 3.04

G4
HyperGCN [21] 56.83 ± 2.38 72.45 ± 1.93 66.15 ± 0.89 79.62 ± 0.64 62.86 ± 1.46 77.19 ± 1.11 55.15 ± 3.13 71.06 ± 2.58

HGNN [20] 55.45 ± 0.44 72.16 ± 1.42 65.96 ± 0.74 79.54 ± 1.46 60.13 ± 2.14 76.39 ± 2.18 54.27 ± 1.47 68.59 ± 0.75
HCHA [42] 52.78 ± 1.42 65.83 ± 1.42 58.84 ± 2.07 75.43 ± 1.60 56.29 ± 0.97 73.41 ± 1.81 52.89 ± 2.45 64.53 ± 1.89

Ours HyGCL-DC 60.05 ± 0.54 74.85 ± 2.15 68.67 ± 0.94 81.20 ± 1.02 64.73 ± 0.14 78.59 ± 0.11 56.72 ± 2.85 72.36 ± 2.30

B. Baseline Methods

To evaluate HyGCL-DC, we compare it with twelve base-

line methods which are divided into four groups: unsupervised

community detection methods (G1), including K-means [37],

BigClams [38], and CESNA [39]; supervised graph-based

methods (G2), i.e., GCN [5], GAT [6], and GIN [40], super-

vised community detection methods (G3), i.e., CLARE [13],

SEAL [12], and Bespoke [41], and supervised hypergraph-

based methods (G4), i.e., HyperGCN [21], HGNN [20], and

HCHA [42]. To fairly compare with graph methods, following

existing works [10], [20], we transfer the hypergraph into a

graph through clique expansion [44].

C. Experimental Settings

To evaluate the performance of our model and baseline

methods, we adopt two widely-used metrics to evaluate

the performance of community detection: Jaccard score [?],

[45] and Micro-F1 score [41]. For data splitting, we use

60%/20%/20% of data as train/validate/test data respectively.

Moreover, we conduct each method three times and report the

average score with standard deviation (std). All experiments

are conducted under the environment of the Ubuntu 16.04

OS, plus an Intel i9-9900k CPU, two GeForce GTX 2080

Ti Graphics Cards, and 64 GB of RAM.

TABLE II: The statistics of four hypergraph datasets.

Twitter-HyDrug Cora-author Cora-citation Citeseer-citation

# nodes, N 2,936 2,708 2,708 3,312
# hyperedges, M 33,892 1,072 1,579 1,079
Avg. hyperedges 2.4 4.2 3.0 3.2
# features 384 1,433 1,433 3,703
# communities, K 6 7 7 6

D. Experimental Comparison

Performance Comparison. According to TABLE I, we make

the following conclusions: (i) Supervised models largely out-

perform all unsupervised learning models, showing that su-

pervised learning with community labels can enhance com-

munity detection performance to a large extent. (ii) Most of

the hypergraph-based models in G4 outperform graph-based

models in G2, proving hypergraphs’ necessity for community

detection tasks. (iii) HyperGCN has better performance than

other hypergraph models in G4 over four datasets, which is

the motivation for selecting HyperGCN as the hypergraph

encoder. (iv) Our contrastive hypergraph learning framework

can enhance the ability of representation learnings in hyper-

graphs by comparing HyperGCN and HyGCL-DC. Besides,

our model gains the best performance by comparison with all

baseline models, which shows the effectiveness of our model

over Twitter-HyDrug and three benchmark datasets.

Fig. 2: Embedding Visualization over three benchmark data.

Embeddding Visualization. To further examine the effective-

ness of our model intuitively, we render the embedding of three

benchmark datasets generated by HyGCL-DC, HyperGCN,

GCN, and GIN, respectively in Fig 2. Each unique color

represents the embeddings belonging to a specific community

label. We can find out that, compared HyGCL-DC with

the three baseline models, HyGCL-DC shows more distinct

boundaries and smaller overlapping areas. In addition, GCN

and GIN appear to be unable to effectively separate different

communities, especially since GCN has the largest overlapping

area, which again demonstrates the effectiveness of HyGCL-

DC for both overlapping (multi-label) and disjoint (multi-

class) community detection tasks.
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VI. CONCLUSION

In this work, we first collect a new drug trafficking hyper-

graph data called Twitter-HyDrug to study the drug traffick-

ing community detection problem. Then we design a novel

hypergraph contrastive learning framework called HyGCL-

DC to detect online drug trafficking communities. To show

the effectiveness of HyGCL-DC, we evaluate it over Twitter-

HyDrug and other three benchmark hypergraph datasets. The

empirical results on community detection tasks show the

superiority of HyGCL-DC compared with baseline methods.
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