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Abstract

Graph Neural Networks (GNNs) have drawn significant at-
tentions over the years and been broadly applied to essen-
tial applications requiring solid robustness or vigorous se-
curity standards, such as product recommendation and user
behavior modeling. Under these scenarios, exploiting GNN’s
vulnerabilities and further downgrading its performance be-
come extremely incentive for adversaries. Previous attackers
mainly focus on structural perturbations or node injections
to the existing graphs, guided by gradients from the surro-
gate models. Although they deliver promising results, sev-
eral limitations still exist. For the structural perturbation at-
tack, to launch a proposed attack, adversaries need to ma-
nipulate the existing graph topology, which is impractical
in most circumstances. Whereas for the node injection at-
tack, though being more practical, current approaches require
training surrogate models to simulate a white-box setting,
which results in significant performance downgrade when the
surrogate architecture diverges from the actual victim model.
To bridge these gaps, in this paper, we study the problem
of black-box node injection attack, without training a poten-
tially misleading surrogate model. Specifically, we model the
node injection attack as a Markov decision process and pro-
pose Gradient-free Graph Advantage Actor Critic, namely
G2A2C, a reinforcement learning framework in the fash-
ion of advantage actor critic. By directly querying the vic-
tim model, G?A2C learns to inject highly malicious nodes
with extremely limited attacking budgets, while maintain-
ing a similar node feature distribution. Through our com-
prehensive experiments over eight acknowledged benchmark
datasets with different characteristics, we demonstrate the su-
perior performance of our proposed G?A2C over the existing
state-of-the-art attackers. Source code is publicly available at:
https://github.com/jumxglhf/G2A2C.

Introduction

Graph neural networks (GNNs), a class of deep learning
methods designed to perform inference on graph data, have
achieved outstanding performance in various real-world ap-
plications, such as recommendation system (Ying et al.
2018), user behavior modeling (Pal et al. 2020) and drug
discovery (Jiang et al. 2021). The success of GNNs relies on
their powerful capability of integrating the graph structure
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and node features simultaneously for node representation
learning. Specifically, the majority of popular GNNs (Kipf
and Welling 2016; Velickovi¢ et al. 2017) follow a neu-
ral message-passing scheme to learn node embeddings via
recursively aggregating and propagating neighbor informa-
tion. Along with their great success, the robustness of GNNs
has also attracted increasing attentions in recent years, and
it has been proved that such a message-passing scheme is
vulnerable to adversarial attacks (Ziigner, Akbarnejad, and
Giinnemann 2018; Chen et al. 2022).

Existing research efforts on graph adversarial attack
mainly concentrate on graph structure perturbations via
modifying edges (Dai et al. 2018; Wang and Gong 2019;
Ziigner, Akbarnejad, and Giinnemann 2018). Despite their
promising performance, these attack strategies have narrow
applications since the adversaries are required to manipulate
the existing graph topology, which is impractical under most
circumstances. Besides graph structural perturbations, an-
other trend of research focuses on the node injection attacks
(Tao et al. 2021; Zou et al. 2021; Wang et al. 2020). They
explore a more practical setting where attacks are launched
by injecting new nodes into the existing graphs, and hence
the authorities of modifying the existing graph structures are
unnecessary. Considering spam detection in the social net-
works as an example, where adversaries aim at tricking the
victim model into misclassifying the spam accounts (i.e., tar-
get nodes). In many circumstances, they do not have per-
mission to add or remove the friendships already formed
among the existing users (i.e., modifying connections be-
tween existing nodes). However, adversaries can easily cre-
ate accounts with new profiles and establish new links with
the existing users to fulfill the attack purposes (i.e., injecting
new malicious nodes to deceive the victim model). Appar-
ently, the node injection attacks are more feasible compared
with the attacks via graph perturbations.

Nevertheless, node injection attacks are challenging, and
the adversaries should consider: (i) how to generate imper-
ceptible yet malicious features for the injected nodes? and
(>ii) how to establish links between an injected node and the
existing nodes? Current related works (Tao et al. 2021; Zou
et al. 2021; Wang et al. 2020; Sun et al. 2019) fulfill these
purposes according to the gradient from the victim model
in the white-box setting or the simulated gradient from the
surrogate model in the black-box setting. Though promis-



ing, white-box approaches are usually not practical, and the
performance of black-box ones can be deteriorated when the
surrogate architecture and the actual victim model diverge.

In this work, we consider the most challenging and practi-
cal scenario, i.e., black-box evasion attack through the node
injection, where only adjacency matrix, node attributes and
model queries are available. To tackle these aforementioned
challenges, we propose Gradient-free Graph Advantage
Actor Critic, namely G2A2C, a reinforcement learning
framework in the fashion of advantage actor critic. Differ-
ent from the existing counterparts, GZA2C does not require
the adversaries to train a surrogates model since the vulner-
abilities of the victim model are learned according to the
queries from the victim model instead of the surrogate gra-
dient. Thus, G2A2C makes no prior assumption about the
victim model, which eliminates possible performance down-
grade introduced by the divergence between the assumption
and the actual victim model. Specifically, we formulate the
node injection attack as a Markov Decision Process (MDP),
where the attack is decoupled into node generation and edge
wiring. During the node generation phase, imperceptible yet
malicious features are attributed to the adversarial node. To
guarantee the imperceptibility, besides the regularization on
the similarities to the real nodes from the original graph, we
design separate strategies to tackle both discrete and contin-
uous feature spaces, so that GZA2C can inject nodes accord-
ing to the real feature space. And during the edge wiring
phase, edges between the injected node and the remaining
graph are wired according to a learnable conditional proba-
bility distribution. These two steps are gradient-free because
they are guided by the rewards calculated from the model
feedback instead of the surrogate gradients. The key contri-
butions of this paper are summarized as follows:

* This is the first work that studies black-box node injec-
tion attack for GNNs without using the surrogate gradi-
ent, eliminating the performance downgrade entailed by
the inaccurate approximation of the victim model.

* We carefully formulate the black-box node injection at-
tack as an MDP and propose G2A2C to launch effective
yet imperceptible attacks against GNNs trained on graphs
with either discrete or continuous node features.

* With comprehensive experiments over eight acknowl-
edged benchmark datasets, we demonstrate G2A2C’s su-
perior attack effectiveness with different attack budgets by
comparison with the state-of-the-art attack models.

Preliminary

Let G = (V, E) denote a graph, where V' is the set of |V| =
N nodes and E C V x V is the set of |E| edges between
nodes. Adjacency matrix is denoted as A C {0, 1}V*V,
where a;; at i-th row and j-th column equals to 1 if there
exists an edge between nodes v; and v;, and O otherwise.
We further denote the node feature matrix as X € RV*F
where node v; is associated with a feature vector x; € R¥
of dimension F. Y C {0, 1}/V*® denotes the label matrix
of a graph, where C' is the number of total classes. For M
labeled nodes (0 < M < N) with label Y and N — M un-
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labeled nodes with missing label YU, the objective of GNNs
for node classification is to predict YV given Y%, A and X.

Graph Neural Network

GNNs generalize neural networks into graph-structured data
(Kipf and Welling 2016; Velickovi¢ et al. 2017; Klicpera,
Bojchevski, and Giinnemann 2019; Ju et al. 2022). The
key operation is graph convolution where information is
routed between nodes with some pre-defined deterministic
rules (e.g., adjacency matrices, Laplacian matrices, and at-
tention). For example, the graph convolution layer (GCL) of
GCN (Kipf and Welling 2016) is formulated as: H(+1 =

W (A HO WO) = o(AHOWO), where A denotes
the normalized adjacency matrix with self-loop, o(.) de-
notes the non-linearity function, and W and H® are the
learnable parameters and node representations at [** layer
respectively. Normally, at K-th layer, with the last dimen-
sion of W) and & (.) set to C' and softmax respectively,
the loss for node v; is calculated as:

where [-] is the indexing operation and CE\(-, -) refers to the
cross entropy loss function.

Graph Adversarial Attack

For a trained GNN model f(-,-) : V x G — Y, the attacker
g(-,-) : GX f — G is asked to modify the graph G = (V, E)
into G’ = (V', E’) such that:

ma IV, £ YY)
G' =g(G,f) and Z(G,G") = 1.

Here VU can be the testing set or nodes of interest, I(-) is an
indicator function that returns the number of true conditions,
andZ(-,-) : G x G — {0, 1} is an indicator function, which
returns one if two graphs are equivalent under the classifi-
cation semantics. There exist two approaches to fulfill the
attack purposes. The first is edge modification in G, also
known as structural perturbation, which changes the entries
in A. Whereas the second approach tampers the nodes via
adding, modifying, or deleting nodes in G, resulting in not
only entry-level but also dimensional changes to both A and
X. In this work, we focus on the black-box node injection
evasion attack, a special case of the second approach, where
three attack budgets need to be considered: the number of
adversarial nodes injected per attacking one node, denoted
as f3,, the degree of each injected node f3., and lastly the
feature distribution shift 5. Hence, Z(-, -) is defined as

N+Bn
(GG =T(V'| = [V < B.) - T 1lall < Be)

i=N

2
s.t.

3)

N+pBn

T LX) < 8y),
i=N

where (-, -) refers to the metric measuring the similarities be-
tween the generated feature and the original features (e.g.,
Kullback-Leibler divergence for continuous features, and
norm difference for discrete features).
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Figure 1: System overview of GZA2C.

Methodology

Given a clean graph G = (V, E), the attacker ¢ injects a set
of adversarial nodes V4 with generated features X4 into
the clean node set V. After injecting V4, attacker g creates
adversarial edges EACVAXVUVA X VA to evade the
detection of GNN f for nodes VU. G’ = (V', E') is the
attacked graph in which V! = V U VA, E' = EU E4, and
X’ = X & XA, where & is the vertical concatenation.

Injecting node involves generating discrete graph data,
such as adjacency matrices or feature matrices, that gradient-
based approaches handle poorly in many circumstances.
This phenomenon could be further aggravated by the black-
box setting where gradient information from the surrogate
model might not be accurate. Moreover, generating node
and assigning edges are naturally sequential and reinforce-
ment learning fits for such Markov Decision Process (MDP).
Hence, to perform the optimization task in Eq. (2), we pro-
pose to explore deep reinforcement learning. Specifically,
we utilize an on-policy A2C reinforcement learning frame-
work, adapted from (Mnih et al. 2016), instead of the off-
policy algorithms such as deep Q-learning. Since A2C cir-
cumvents the need to calculate the expected value for every
possible action, which is intractable.

The overview of G2A2C is shown in Figure 1. Given a
graph G and a target node v;, the node generator g,, creates
the adversarial node according to v;’s sub-graph. Then edge
sampler g, is forwarded for . consecutive times to con-
nect the injected node to the existing graph. Previous two
processes iterate until the label of v; has been successfully
changed or the attack budget is depleted. A detailed defini-
tion of our proposed MDP is defined as follows:

State. s, € S contains the intermediate modified graph
G} = (V/, E}) as well as the generated features X;* at the
timestamp ¢. To efficiently interpret s;, edge sampler g. and
node generator g, attend to the K -hop sub-graph G} (v;) en-
tailed by the target node v;, where K is a hyper-parameter
for the number of stacked GCLs. We restrain our scope on
the neighbors within K hops since normally the victim GNN
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f has a shallow receptive field. However, without loss of
generality, g. can be extended to the full graph G for the
optimal performance.

Action. Node injection attack can be decoupled into two
components: creating the injected node and wiring it to the
existing graph. We model this process as an MDP where
G2A2C starts with the node generation and then wires the
generated node to the existing graph for §. consecutive
times. The MDP terminates if the attacker g successfully
evades the detection from f or the attack budget is depleted.

Formally, at time ¢, the node generation action is denoted as

(n)

a; ’, and the node wiring action is denoted as age). The tra-

jectory of our proposed MDP is (sq, al"”, s1, a{”

age), T9, S9, ...,a,(g”), St, ..., sT), where sp refers to the

terminal state, and r; is the reward for the action a;.

» T'1, 82,

Reward. In our curated setup, generating an isolated node
does not entail a reward value, as an isolated node brings
no perturbation to f; instead, the impact is reflected later
when links are wired to the existing graph. Hence, reward
values are only assigned to the edge wiring actions. During
the intermediate phase of attacking node v; at timestamp £,

(e)

the reward for edge wiring action a; ’ is calculated as:

(v, age)

aGy/f) = E(’Ui, G{‘,-‘rl? f(via G))

, | 4)
- E(/Uiv ty f(/UZvG)) lf St+1 7é ST,

where G} ; is the resulted graph after applying a,ge) to G}.
The reward function measures the difference between the
classification losses before and after the edge wiring, which
encourages G?A2C to imperil the correct decision of the
victim model. Besides, to further motivate our model to ac-
tively evade the detection, we give extra rewards if the pre-
diction of v; is flipped at the end of one attacking episode

(e I(f (G, vi) # f(vi, B))).



Node Injection Attack via Actor Critic

Adversarial Node Generator To deceive f into mis-
classifying the target node v;, given its K-order sub-graph
G, (v;), the node generator g,, aims to create an adversarial
node v, with an imperceptible yet malicious feature vector
Xq. Specifically, the generated x, should follow the same
characteristic conventions as X. We should not expect a con-
tinuous x, when all other feature vectors are discrete, and
vice versa. Moreover, x, should not diverge too much from
nodes features in G}(v;), as restrained by the distribution
shift budget 3¢. To tackle the aforementioned challenges, g,,
is equipped with K-stacked GCLs, conducts message prop-
agation on G';(v;), summarizes G}(v;) by a readout function
(Xu et al. 2018), and with Gumbel-Softmax (Jang, Gu, and
Poole 2016), generates x,, tailoring the vulnerability of v; as
well as the imperceptibility, as shown in Figure 1 (b). For-
mally, the K -th convolution layer of g,, can be described as:

HEHD = (B (A), B, WE)), (5)

where H%O)

matrix of G} (v;) and W s the parameter matrix of g,,’s
K -th convolution layer. To consider the holistic representa-
tion of G (v;) and the unique characteristics tailored by v;,
we formulate the feature distribution z,, as:

= X/, A(v;) refers the normalized adjacency

2, — o (READOUT(H{ 1) [H<+) () - W ).

where READOUTY(-) refers to the graph pooling func-
tion such as column-wise summation (Xu et al. 2018),
Hg,,KH)(vi) denotes v;’s node embedding after the propa-
gation, and W/ € R24*F ig the learnable parameter matrix
that combines the target node’s characteristics with the local
neighborhood information.

To inject nodes in the discrete feature space, we directly
utilize z,, as the logits of a relaxed Bernoulli probability dis-
tribution, a binary special case of the Gumbel-Softmax repa-
rameterization trick which is soft and differentiable (Jang,
Gu, and Poole 2016). Utilizing the relaxed sample, we apply
a straight-through gradient estimator (Bengio, Léonard, and
Courville 2013) that rounds the relaxed sample in the for-
ward phase. In the backward propagation, actual gradients
are directly passed to the relaxed samples instead of the pre-
viously rounded values, making g,, trainable. Formally, the
discrete version of x, is generated by:

mmz{

where [-] is the indexing operation, Gb ~ Gumbel (0, 1) is
a Gumbel random variable and 7 is the temperature for the
Gumbel-Softmax distribution. To maintain the impercepti-
bility of x,, we propose a feature loss function for the dis-
crete feature space:

L(xa) = (Ixall/IX] = B5)%. 7

Whereas to inject nodes in the continuous feature space, we
transform z,, into u,, and o,, by two learnable weight matri-
ces W, and W, € R%*? and utilize them as parameters of

_|_

1 1
1 + ¢—(ogzn[i]+Gb) /T QJ ) (6)
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a normal distribution to generate the feature, formulated as:

Xa ~ N (fin, 0'721) (8)
where pu, =z, - W, and 0, = z,, - W,.
For nodes in the continuous feature space, we enforce the
imperceptibility by minimizing the KL-divergence between
the feature generation distribution and the real node feature
distribution (i.e., represented by the mean value of the real
features 5 and their standard deviation o), as follows:

DP(Xa; hn, On
Ef(Xa) :p(Xa,Mn,Un)logg — Bfa
p(xaaﬂx,(fx)
1 1 (a) =iy ®)
Where p(Xa,/J,,J) = e_E(T) .

oV 2T

Adversarial Edge Sampler For the target node v;, given
the generated node features x,, from g,,, the adversarial edge
sampler g. aims at connecting v, to the current graph Gi.
Similar to g,, g. is equipped with a K-stacked GCLs, for-
mulated as HF T = féec’fz)(./&(vi), HO wik)
H((io) = X/, and WgK) is the parameter matrix of g.’s K-th
convolution layer. Then, we concatenate x, with each row of
H%*Y 0 obtain Z, € RIY'1X(@+F) The probability vector
of remaining nodes connecting to v, is calculated as:

pe = softmax(Z. - W, + Alv;]), (10)

where W, € R(4+F) is the learnable parameter matrix and
Alv;] denotes v;’s row in the adjacency matrix of G}. We
add A[v;] to the probability logits because in order for the
adversarial perturbation to be perceived by f, the introduced
edge must enable v, to lie in the receptive field of f. Then,
we sample an edge from an one-hot categorical distribution
parameterized by p., merge the sampled edge into G} and
get G, ;. For the next edge sampling operation, G, is
fed into g., and this process iterates until v; is successfully
evaded or the number of wired edges reaches to 3., as shown
in Figure 1 (c).

, Where

Value Predictor Along with the policy learners g,, and g,
we have proposed, the value predictor g,, is the other com-
ponent of A2C that aims at predicting the expected accumu-
lated rewards at the end of the MDP. Given the dedicated
reward function we have defined in Eq. (4), g, predicts the
final accumulated loss score of targeted node based on the
current ;. We formulate this process as a regression task,
where g, predicts the negative log likelihood between the
class log probabilities in current graph G} and f(G,v;).
Specifically, a GNN model with K-stacked layers is uti-
lized to capture the node topological information, similar

to ge, formulated as: HYX Y = f(G”élz)(A,H,(,K),WgK)),
where Wq(,K) is the parameter matrix of g,’s K-th convolu-
tion layer. As shown in Figure 1 (d), we extract node v;’s

embedding and concatenate it with f’s output to predict the
value score, formulated as:

v (vi7 G::) =
NLL((HE @)1 (01, G)) - W, £(01.G))

where NLL(-,-) is the negative log likelihood function, and
W, € R(@+C)*C i the learnable parameter.

Y



Training Algorithm

To train G2A2C = {g,, g, 9.}, we explore the experi-
ence replay technique with memory buffer M. Intuitively,
we simulate the selection process to generate the training
data and store the experience in the memory buffer dur-
ing the forward runs of training phase. An instance in M
is in the format of triplet (G}, at, R¢) with return R; =

jif r(vi, a5, G) - 7971, where 7 refers to the discount
factor. During the back-propagation, three losses are in-
volved: policy loss £,, value loss £, and feature loss L.

Given a triplet (G}, at, R;) € M, L, is calculated as:

Ly (G, ar, Ry) = —log (p(a:|GY)) - (Re — go(vi, GY)),

where p(a:|G}) denotes the probability of conducting ac-
tion a; under the graph G;. In £, the second term (R; —
gu (v, GY)) is also known as the advantage score (Mnih et al.
2016), which depicts how much better of selecting action a
over the other actions. £, enforces G2A2C to deliver better
actions with higher probabilities. On the other hand, value
loss L, enforces the value predictor g, to correctly deliver
the actual accumulated reward, calculated as:

ﬁU(GivRt) = |gv(vi7G;) - Rt| (12)

The final loss for GZA2C is formulated as:

L= (LG} R)+Lp(Ghan, R)) + Y Ly(xa)
M

xan;ﬁA

Experiment

In this section, we aim at answering the following four re-
search questions: (RQ1) Can our proposed G2A2C effec-
tively evade target nodes given a well trained GNN for var-
ious datasets? (RQ2) Can the “gradient-free” property en-
hance attack performance when inaccurate victim model ar-
chitecture is approximated? (RQ3) What is the attack per-
formance of G°A2C under different budgets? (RQ4) How
does G2A2C conduct the node injection attack in real cases?

Dataset. We conduct experiments on eight acknowl-
edged benchmark datasets, namely Cora, Citeseer,
Pubmed (Sen et al. 2008), Amazon Photo, Amazon
Computers (McAuley, Pandey, and Leskovec 2015),
Wiki. CS (Mernyei and Cangea 2020), Reddit (Hamil-
ton, Ying, and Leskovec 2017), and OGB-Products
(Hu et al. 2020). These datasets cover a broad range
of fields, such as social networks, merchandise networks
and citation networks. Besides, node features of these
datasets cover both discrete and continuous spaces, to val-
idate the attack performance of all baselines under vari-
ous scenarios. We use public splits for training and eval-
uation on Cora, Citeseer and Pubmed, the random
splits of 10%/10%/80% for Amazon Photo, Amazon
Computers and Wiki. CS. For OGB-Products and
Reddit, we explore the sub-graphs and splits shared by
G-NIA (Tao et al. 2021) for fair comparison. The dataset
statistics are shown in Table 1.
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Dataset | Node Edge Class Dim.
Datasets with Discrete Feature Space
Cora* 2,708 5,429 7 1,433
Citeseer* 3,327 4,732 6 3,703
Am. Photo 7,650 119,043 8 745
Am. Comp. 13,752 245,778 10 767
Datasets with Continuous Feature Space
Pubmed* 19,717 44,338 3 500
Wiki. CS 11,701 216,123 10 300
OGB-Prod.* | 10,494 77,656 35 100
Reddit* 10,004 37,014 41 602

Table 1: Dataset statistics. For the datasets with *, we ex-
plore the public splits (Kipf and Welling 2016). And for
datasets with x, we use the largest connect component sub-
graphs acquired from Tao et al. (2021).

Baselines. Since black-box node injection attack is an
emerging and far less researched area, only few methods
focus on this topic, such as NIPA (Sun et al. 2019), G-
NIA (Tao et al. 2021), AFGSM (Wang et al. 2020), and
TDGIA (Zou et al. 2021). To sufficiently demonstrate the
effectiveness of GZA2C, besides these methods, we also
compare G2A2C with the adaptions of the state-of-the-
art structural perturbation method Nettack (Ziigner, Ak-
barnejad, and Giinnemann 2018). Accordingly, our base-
lines include: NIPA (Sun et al. 2019) and its variant
(i.e., Node+NIPA), two variants of Nettack (Ziigner, Ak-
barnejad, and Giinnemann 2018) (i.e., Rand.+Nettack and
Node+Nettack), G-NIA (Tao et al. 2021), AFGSM (Wang
et al. 2020), and TDGIA (Zou et al. 2021). “Rand” and
“Node” refer to the random-generated and the G2A2C-
generated node features, respectively. To compare G2A2C
with white-box (i.e., Nettack, AFGSM and G-NIA) or grey-
box (i.e., NIPA) approaches requiring gradient from the vic-
tim model, we train a 2-layer GCN as the surrogate model.

Experimental Setup

For the baselines, we explore DeepRobust (Li et al. 2020)
and open-source code with the default settings. We set the
hyper-parameters in G2A2C as following: the number of
GCLs K to 2, the temperature of Gumbel-Softmax to 1.0,
hidden dimension d to 256, and the discount factor to 0.95.
We utilize Adam optimizer with learning rate 10~%. Besides,
we adopt the early stopping with a patience of 3 epochs. All
experiments are conducted for 10 times with mean and de-
viation reported.

Performance Comparison

We perform single injection attack, the most extreme set-
ting where only one injected node with one edge is allowed
to attack a target node. The results of GZA2C and all base-
lines are reported in Table 2. We can observe that all base-
lines cause a performance downgrade to the victim model,
and the introduced perturbation on the datasets with con-



Attacker \ Discrete Feature Space

\ Continuous Feature Space

| Cora Citeseer Am.Comp. Am.Photo | OGB-Prod.  Reddit ~ Pubmed Wiki. CS
Clean 18.4 21.1 24.37 17.8 24.3 8.5 219 21.3
NIPA 18.6101 21.140. 25.040.2 17.840. 2594102 125107 21940, 252404
Node+NIPA 25-3i0.4 33-5i0.6 32.6i0.7 27-2i1.0 65.3i0_4 44-2i0.2 45-0i0.1 56.0i0_3
Rand+Nettack 24.3:|:0_3 32.1:‘:1.1 30.5:‘:1.4 22.4:|:1,2 63.3:|:0,5 31.2:‘:(),9 46.7:|:0,6 53.9:|:1_2
Node+Nettack | 27.44104 372413 399413 277414 78.640.3 632405 53.6407 783108
AFGSM 2631492 38.6132 375419 323411 749107 458407 658109 77441056
TDGIA 29-5:|:2.8 44.212.2 39.4j:1,1 32.5:|:0_7 93.3:|:0_2 91.8:‘:0.5 67.2:|:0_4 84.2:|:1_1
G-NIA 24.3:|:2_5 36.5:|:3.1 34.4:|:1.4 25.2:|:1.4 95.0:|:0_4 94.6:|:1.2 68.3:|:1_0 81.1:|:1_2
G2A2C (ours) 36.3:|:2,7 49-412‘8 42.2:‘:1‘1 33.6:|:1‘2 97.4:|:()‘4 98.7:‘:0.6 74-1:|:0.8 86.6:&0,8
Avg. 1 6.8 5.2 2.3 1.1 24 4.1 5.8 24

Table 2: Miclassification rate (%) of a trained two-layer GCN model after the single node injection attack (i.e., 5. = 1, 5, = 1,
and 3y = 0) launched by the different attackers. Rate in bold indicates the best and rate in underline is the second best. The
results reported above are averaged over 10 independent runs with different initialization seeds.

tinuous feature space is more severe than those with dis-
crete feature space, demonstrating the obstacle from the un-
smooth feedback during the attack phase. Compared with
all baselines, on average, G2A2C increases the misclassifi-
cation rate by 3.85 on discrete datasets and by 3.68 on con-
tinuous datasets. We further conduct a t-test on the results of
G2A2C and the best performing baseline in each dataset, and
the performance improvement brought by G2A2C is signif-
icant with 95% confidence, demonstrating the superior and
stable performance of G2A2C. By comparing perturbation
models of random features with those utilizing the generated
adversarial features from G2A2C (e.g., Rand+Nettack vs.
Node+Nettack), we can clearly observe that the latter greatly
imperils the performance of the victim model, and all base-
lines can cause considerable downgrade with the generated
features from G2A2C, which further demonstrates the legit-
imacy of the node generator in GZA2C. To answer RQ1: un-
der the black-box setting, G2A2C outperforms all baselines
and by a significant margin across all datasets in the most
extreme setting. Besides, the performance of weak base-
lines can be significantly boosted by the adversarial features
generated by G2A2C, as demonstrated by Node+NIPA and
Node+Nettack. By comparing Node+Nettack with G2A2C,
we observe a higher performance for GZA2C, indicating the
outstanding edge wiring capability of the edge sampler.

To further validate the performance of GZA2C, we change
the backbone GNN of the victim model to GAT (Veli¢kovié
etal. 2017), APPNP (Klicpera, Bojchevski, and Glinnemann
2019), and SGC (Wu et al. 2019) and launch attacks by the
best-performing baselines as well as G?A2C. In this setting,
we do not accordingly modify the surrogate model archi-
tecture or the backbone GNN of G2A2C to intentionally
create an extreme setting where the attacker possesses an
inaccurate approximation of the victim model. The results
are shown in Table 3. We can observe that the performances
of all attackers are significantly enhanced on shallow mod-
els such as SGC, indicating the vulnerabilities of the shal-
low and less-parametrized models. While attacking the over-
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Attacker | Backbone | Cora Citeseer Pubmed
GCN 243,55 3654317 683119
SGC | 27.6190 401435 70241,
G-NIA GAT | 221491 353115 688407
APPNP | 242 50 372434 697408
GCN 295498 442495 672404
SGC 352491 5124141 744415
TDGIA GAT | 283120 521414 812409
APPNP 291494 438411 69.6499
GCN 3634197 494455 741405

SGC 41.6- 53.8 76.3
2 +3.1 +1.4 +2.2
G'A2C | GAT | 334143 556416 850403
APPNP | 364,05, 4804135 82.9.30

Table 3: Misclassification rate (%) to different two-layer
GNNSs. The same setting as reported in Table 2 is explored.

parametrized GAT model, G-NIA delivers downgraded per-
formances, but TDGIA and G?A2C show stronger perfor-
mance compared with the performance of attacking other
shallow models (e.g., GCN and SGC). This phenomenon
demonstrates that the vulnerabilities of GAT is dependent on
the different datasets. Overall, G2ZA2C outperforms all best-
performing baselines over these three exemplary datasets. To
answer RQ2, when the attacker’s assumptions on the archi-
tecture of the victim model are incorrect, the effectiveness of
G2A2C is barely downgraded, demonstrating the advantages
brought by the “gradient-free” property.

Budget Analysis

In this section, we conduct experiments w.r.t. all the attack
budgets in our setting: the edge budget S, the node budget
Br and the feature shift budget 3¢, as shown in Figure 2.
From these results, to answer RQ3, the most fruitful budget
is B, and with 3 injected nodes per target, the performance
of GCN on all datasets is downgraded to the range around
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Figure 2: Effectiveness of G2A2C under different budgets.

10%. The second most impactful budget is 3, and the per-
formance of GCN all falls down below 10% with a distribu-
tion shift budget of 0.5 and its impact saturates around 0.5.
The least impactful budget is S.. We observe that its impact
is relatively linear compared with other budgets.

Case Study

To further investigate how G2A2C conducts node injection
attack, we visualize two successful attacks on Citeseer. As
shown in Figure 3, we visualize the attack process by plot-
ting the hidden embedding of the involved nodes, extracted
from the victim model, before and after the attack via T-SNE
(Van der Maaten and Hinton 2008). In this figure, blue points
are target node’s original neighbors in the clean graph, green
point is the target node before the attack, black point refers to
the attacked target node, and red point refers to the injected
adversarial node. To answer RQ4, as shown in these two
cases, the injected node could effectively perturb the embed-
ding of the target node, relocate it to a relatively intertwined
position, and hence flip its prediction.

Related Work

GNNs have been proved to be sensitive to adversarial at-
tacks (Dai et al. 2018; Ma et al. 2019; Wang and Gong 2019;
Xu et al. 2019; Ziigner, Akbarnejad, and Glinnemann 2018;
Sun et al. 2019; Tao et al. 2021; Wang et al. 2020). Most of
them focus on perturbations on existing knowledge, such as
topological structure (Xu et al. 2019; Wang and Gong 2019;
Ma et al. 2019), node attributes (Ziigner, Akbarnejad, and
Giinnemann 2018), and labels (Sun et al. 2019). However, in
the real world, modifying existing edges or node attributes
is not practical, due to limited access to the node of inter-
ests. Node injection attack aims at a more realistic scenario,
which adds adversarial nodes in to the existing graph. State-
of-the-art attackers (Sun et al. 2019; Tao et al. 2021; Wang
et al. 2020; Zou et al. 2021) either explore the less practi-
cal white-box setting, or training a surrogate model to simu-
late a white-box setting, which might introduce performance
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Figure 3: Visualization of the attack launched by G2A2C.

downgrade when inaccurate approximations about the vic-
tim model are made. For the white-box setting, NIPA (Sun
et al. 2019) creates a batch of random nodes and wiring them
to the existing graph to fulfill the malicious intent. And for
the black-box setting, AFGSM (Wang et al. 2020) utilizes
a fast gradient sign method and G-NIA (Tao et al. 2021)
explores a neural network to generalize the attacking pro-
cess. TDGIA firstly selects topological defective edges to
the injected node, and then generates the adversarial features
for the injected nodes according to the surrogate model. To
further leverage the practicality as well as effectiveness, we
study the node injection attack under the black-box setting
without training a surrogate model to acquire simulated gra-
dient, eliminating the possibility of error propagation due to
inaccurate approximations about the victim model.

Conclusion

In this work, we study gradient-free node injection evasion
attack for graphs under the black-box setting. Unlike other
node injectors requiring gradient from the surrogate model,
we propose GZA2C, a gradient-free attacker without any as-
sumption on the victim model, eliminating the possibility
of error propagation due to inaccurate approximations about
the victim model. We formulate such attack as an MDP and
solve it through our designed graph reinforcement learn-
ing framework. Our node generator generates impercepti-
ble yet malicious node features, followed by the edge sam-
pler that wires the node to the remaining graph. Through
comprehensive experiments with the state-of-the-art base-
lines, we demonstrate the promising performance of GZA2C
over eight acknowledged datasets with diverse characteris-
tics. And by modifying the architectures of the victim model
to four different GNNs, we empirically prove the advantage
brought by the “gradient-free” property of G2A2C.
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