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Abstract 

Human infants are fascinated by other people. They bring to this fascination a constellation of 

rich and flexible expectations about the intentions motivating people’s actions. Here we test 11-

month-old infants and state-of-the-art learning-driven neural-network models on the “Baby 

Intuitions Benchmark (BIB),” a suite of tasks challenging both infants and machines to make 

high-level predictions about the underlying causes of agents’ actions. Infants expected agents’ 

actions to be directed towards objects, not locations, and infants demonstrated default 

expectations about agents’ rationally efficient actions towards goals. The neural-network models 

failed to capture infants’ knowledge. Our work provides a comprehensive framework in which to 

characterize infants’ commonsense psychology and takes the first step in testing whether human 

knowledge and human-like artificial intelligence can be built from the foundations cognitive and 

developmental theories postulate. 

 

Keywords: intuitive psychology; commonsense psychology; action understanding; infancy; 

machine common sense; artificial intelligence  
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 The early-developing ease with which infants know about people (Gergely et al., 1995; 

Woodward, 1998), objects (Spelke, 1990; Stahl & Feigenson, 2015), and places (Hermer & 

Spelke, 1994) is impressive, especially compared with the difficulties machines have had in 

achieving these simple human competencies (Lake et al., 2017; Marcus & Davis, 2019). Such 

differences between human and artificial intelligence (AI) are critical to address if we aim to 

create commonsense AI, leading to AI that we better understand and that better understands us. 

One of the general challenges of building commonsense AI is deciding what knowledge 

to start with. A human infant’s foundational knowledge is limited, abstract, and reflects our 

evolutionary inheritance, yet it can accommodate any context or culture in which that infant 

might develop (Spelke, 2022; Spelke & Kinzler, 2007). If an aim of AI is to build the flexible, 

commonsense thinker that human adults become, then machines might need to start like adults 

do, from the same core abilities as infants, whether achieved through learning-driven or 

engineered approaches (Botvinick et al., 2017). 

Over the past several decades, foundational research on infants’ commonsense 

psychology, i.e., infants’ understanding of the intentions, goals, preferences, and rationality 

underlying agents’ actions, has suggested that infants attribute goals to agents and expect agents 

to pursue goals in rationally efficient ways (Baillargeon et al., 2016; Gergely et al., 1995; Spelke, 

2022; Woodward, 1998). The predictions that support infants’ commonsense psychology are 

foundational to human social intelligence (Banaji & Gelman, 2013; Jara-Ettinger et al., 2016) 

and could thus inform better commonsense AI, but these predictions are typically missing from 

machine-learning algorithms, which instead predict actions directly (e.g., churn, clicks, likes, 

etc.; Griffiths, 2015), and therefore lack flexibility to new contexts and situations. 
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Nevertheless, research on infants’ commonsense psychology has not yet been evaluated 

in a framework that could be directly tested against machines’—let alone built into them—

because of non-scalable stimuli, varied task demands, isolated questions, and mixed results. For 

example, experiments on infants’ commonsense psychology have exemplified agents and their 

actions using various displays, from live human actors reaching for everyday objects 

(Woodward, 1998), to live puppets with or without animate features like eyes or fur (Johnson et 

al., 1998), to highly minimal animations of simple shapes navigating in 2D or 3D worlds (Csibra 

et al., 1999, 2003). These experiments have also typically focused on individual questions of, 

e.g., goal (Woodward, 1998) or rationality (Gergely et al., 1995) attribution, although some work 

has probed, for example, how infants’ inferences about goals and those about rationality might 

combine to support notions of consistency, cost, or value (Liu et al., 2017; Scott & Baillargeon, 

2013). 

Different accounts of infants’ knowledge about agents have suggested that this 

knowledge: coheres as a unified set of abstract concepts of causal efficacy, efficiency, goal-

directedness, and perceptual access (Spelke, 2022); reflects infants’ intuitive understanding of 

agents’ mental states, which direct their efficient actions consistent with their mental states 

(Baillargeon et al., 2015, 2016); or emerges from individual achievements rooted in infants’ own 

action experience (Woodward, 2009; Woodward et al., 2001). From this rich experimental and 

theoretical tradition thus arises the need for a comprehensive framework in which to characterize 

infants’ knowledge of agents with results on one task comparable to those on another and with 

results on the suite of tasks comparable across infants and machines. Such a framework can 

inform both theories of infants’ knowledge and the future of human-like social AI. 
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Here we take a critical step in addressing this need. We provide a comprehensive 

framework for testing infants’ commonsense psychology by assessing infants’ performance on 

the “Baby Intuitions Benchmark (BIB),” a suite of six tasks probing commonsense psychology. 

BIB was designed expressly to allow for testing both infant and machine intelligence alike 

(Gandhi et al., 2021), and fulfilling that intention, here we also directly compare the performance 

of infants and machines, providing an empirical foundation for building human-like AI. 

 

General Methods 

Materials 

BIB’s tasks include short silent animated videos with simple visuals (Heider & Simmel, 

1944), like basic shapes without eyes or limbs, undertaking basic movements in a grid world 

(Figures 1 and S1). This design allowed for the stimuli’s scalable procedural generation, which 

is required for testing machine-learning algorithms, and emphasized the high-level properties of 

agents (Csibra et al., 1999; Gao et al., 2010; Johnson & Gilmore, 2003; Meltzoff, 1995), which 

challenges the limits and abstraction of an observer’s inferential capacity (Kominsky et al., 

2022). This design also presented a novel, overhead navigational context, which required an 

assumption of agents’ full observability of the grid world and its contents (Baker et al., 2017; 

Luo & Baillargeon, 2007; Luo & Johnson, 2009; Rabinowitz et al., 2018). 

Importantly, all of BIB’s tasks are presentationally consistent, allowing for comparisons 

across tasks, without concerns of attributing null effects to varying visual, memory, or other task 

demands. Instead of focusing on one principle of commonsense psychology, moreover, BIB’s 

tasks focus on three possible attributions to agents’ actions that an observer could make—goal 
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attribution, rationality attribution, and instrumentality attribution—thereby addressing whether 

and how such principles of commonsense psychology might cohere. 

Using BIB’s environment (Gandhi et al., 2021), we procedurally generated the video 

stimuli to test infants and computational models and chose the clearest examples of the particular 

principles of commonsense psychology targeted by each task (Figures 1 and S1). The first three 

tasks focus on an observer’s attribution of goals to agents’ actions. The Goal-Directed Task 

captures the idea that agents’ goals are directed towards objects, not locations. Observers watch 

an agent repeatedly move to the same one of two objects in approximately the same location in 

an unchanging grid world during familiarization. At test, observers may be more surprised when 

the agent moves to a new object in that grid world after the locations of the two objects switch 

(Woodward, 1998). The Multi-Agent Task asks whether goals are specific to agents. Observers 

watch an agent move to the same one of two objects during familiarization in a changing grid 

world, with objects appearing in any location. At test, observers may be more surprised when the 

original agent versus a new agent moves to a new object (Buresh & Woodward, 2007; Repacholi 

& Gopnik, 1997). The Inaccessible-Goal Task asks whether agents might form new goals when 

their existing goals become unattainable. Observers watch an agent move to the same one of two 

objects during familiarization in a changing grid world. At test, the grid world changes again 

such that the agent’s goal object becomes physically inaccessible. Observers may be more 

surprised when the agent moves to a new object when its prior goal object is accessible versus 

inaccessible (Luo & Baillargeon, 2007; Scott & Baillargeon, 2013). 

The next two tasks focus on an observer’s attribution of rationality to agents’ actions. The 

Efficient-Agent Task captures the idea that agents act rationally to achieve goals. Observers 

watch an agent move to an object efficiently around obstacles in an unchanging grid world 
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during familiarization. At test, the object appears in a location that it had appeared during 

familiarization, but the grid world has changed such that the obstacles that blocked the object are 

gone or have been replaced with different obstacles (Gergely et al., 1995; Liu & Spelke, 2017). 

Observers may be more surprised when the agent moves along a familiar but now inefficient 

path to the object. The Inefficient-Agent Task asks what expectations observers have about agents 

who initially move inefficiently in a changing grid world. During familiarization, observers 

watch an agent move along the same paths to an object as the agent in the Efficient-Agent Task, 

but this time there are no obstacles in the agent’s way, so the agent’s movements to the object are 

inefficient. At test, the environment changes as in the Efficient Agent Task. Observers may either 

be more surprised when the agent continues to move inefficiently to the object (Liu & Spelke, 

2017) or may have no expectations about whether that agent will move efficiently or inefficiently 

to the object (Gergely et al., 1995). 

The last task focuses on an observer’s attribution of instrumentality to agents’ actions. 

The Instrumental-Action Task captures the idea that agents should only take instrumental actions 

when necessary. During familiarization, observers watch an agent move first to a key, which it 

uses to remove a barrier around an object in varying locations, and then to that object. At test, 

observers may be more surprised when the agent continues to move to the key, instead of 

directly to the object, when the barrier is no longer blocking the object (Sommerville & 

Woodward, 2005; Woodward & Sommerville, 2000). 

All of the stimuli videos are available at: https://osf.io/r98je/, and additional details about 

each task are included in the SI. 
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Figure 1. Schematic of BIB’s six tasks used in Experiments 1 & 2 (see also Figure S1). For each 
task, observers first see eight familiarization videos in which an agent acts consistently in terms 
of its goals, rationality, or instrumentality. The exact make-up of the grid world and the 
movement of the agent may vary across trials, as described in the main text and SI. One example 
still image per task from a familiarization trial is shown here. Observers then see an expected and 
unexpected test video (with the order of these videos varying for infants). Examples of both test 
trials per task are shown here. All of the videos are available at: https://osf.io/r98je/. 
 

BIB’s task structure adopts the “violation-of-expectation” looking-time paradigm often 

used to test infants (Spelke, 1985; Téglás et al., 2011). Observers see a series of familiarization 

events that serve to set up an expectation followed by an expected outcome that is perceptually 

dissimilar to the familiarization but is conceptually consistent and an unexpected outcome that is 

perceptually similar to the familiarization but is conceptually surprising. This task structure has 

been used in recent machine-learning benchmarks focusing on commonsense (Piloto et al., 2022; 
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Shu et al., 2021; Smith et al., 2019) and is advantageous because it both protects against low-

level heuristic-based solutions (Spelke, 1985) and allows for an algorithm’s quantitative measure 

of surprise to be compared to a well-established psychological measure of surprise (Piloto et al., 

2022; Stahl & Kibbe, 2022). 

 

Infant Methods 

Infant Design and Analyses 

In Experiment 1, we collected infants’ responses to two of BIB’s six tasks, the Goal-

Directed Task, and the Efficient-Agent Task. Mixed-model linear regressions with raw looking 

time as the dependent variable, outcome (expected versus unexpected) as a fixed effect, and 

participant as a random-effects intercept evaluated infants’ performance on each task, and an 

additional regression examined infants’ overall performance across both tasks. To obtain p-

values, we ran Type 3 Wald tests on the results of each regression. Experiment 1 focused on 

these two tasks because the commonsense they measured has had consistent findings in the prior 

literature on infants’ action understanding (Baillargeon et al., 2016; Gergely & Csibra, 2003; 

Spelke, 2022; Woodward, 2009). Experiment 1 thus aimed to provide initial evidence of infants’ 

commonsense psychology, as elicited by BIB’s highly minimal displays, in BIB’s fully 

observable, overhead navigational context, and with BIB’s multiple tasks presented to infants 

online. 

Experiment 2 followed a preregistered design and analysis plan (https://osf.io/48k26/) 

with replications of the two tasks in Experiment 1 with several improvements, including: 

automated trial progression; balancing of the side of the goal object across participants in the 

Goal-Directed Task; and matching of the test trial lengths within participants in the Efficient-
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Agent Task. Infants were tested on these two tasks as well as on BIB’s other four tasks outlined 

above that were not included in Experiment 1. 

Following Experiment 1, Experiment 2 evaluated infants’ performance on each task with 

planned mixed-model linear regressions and Type 3 Wald tests with raw looking time as the 

dependent variable, outcome (expected versus unexpected) as a fixed effect, and participant as a 

random-effects intercept. Additional planned regressions examined infants’ overall performance 

across all six tasks and directly compared their performance on the two tasks focused on agents’ 

rational actions. 

Infant Participants 

In Experiment 1, typically developing 11-month-old infants (N = 26, Mage = 11.13 

months, Range = 10.42 months – 11.83 months; 12 girls) born at ≥ 37 weeks gestational age 

were included. They completed the Goal-Directed Task, the Efficient-Agent Task, or both, with 

half of the infants receiving each task first, totaling N = 48 individual testing sessions and N = 24 

sessions per task. An additional four sessions were excluded because infants did not complete the 

session. 

In Experiment 2, typically developing 11-month-old infants (N = 58, Mage = 11.06 

months, Range = 10.50 months – 11.50 months; 31 girls) born at ≥ 37 weeks gestational age 

were included. Each infant completed at least one of BIB’s tasks, totaling N = 288 individual 

testing sessions. Following our preregistration, data collection stopped when 32 infants (Mage = 

11.09 months, Range = 10.50 months – 11.50 months; 17 girls) completed all six of BIB’s tasks. 

Tasks were presented in a semi-randomized order using 32 fixed orders that averaged to each 

task being presented 5.33 times in each ordinal position (range: 4 – 7 times). All included 

sessions for each task contributed to the main analyses. The final sample sizes for each task 
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were: Goal-Directed Task, N = 48; Multi-Agent Task, N = 49; Inaccessible-Goal Task, N = 47; 

Efficient-Agent Task, N = 47; Inefficient-Agent Task, N = 49; Instrumental-Action Task, N = 48. 

An additional 37 sessions were excluded because of preregistered exclusion criteria, 

including: looking time < 1.5 s to least one test trial and/or two familiarization trials with or 

without the infant completing the session (16); poor video quality and/or technical failure (18); 

and parental interference (3). An additional two sessions were excluded post hoc for extreme 

values (> 40 s) to one test outcome, which could artificially inflate the calculation of the 

sample’s variance. These extreme values were identified through examination of a histogram of 

the raw looking times across all of the sessions across all of the tasks by two researchers masked 

to the task and outcome represented by each value. Exclusions were consistent across tasks: 

Goal-Directed Task, 5; Multi-Agent Task, 6; Inaccessible-Goal Task, 9; Efficient-Agent Task, 7; 

Inefficient-Agent Task, 5; Instrumental-Goal Task, 7. The total exclusion rate was 11.9%. 

Participating families received a $5 Amazon gift card after each testing session and received a 

bonus gift card of $30 if they completed all six sessions. Prior to participation in session one, we 

obtained informed consent from the infant’s legal guardian, and we confirmed consent before 

each subsequent session. The use of human participants for this study was approved by the 

Institutional Review Board on the Use of Human Subjects at our university. 

Infant Procedure 

Infants were tested online on Zoom. In the first ten minutes of the first testing session, the 

experimenter explained to parents the instructions for setting up their device and positioning the 

infant in front of the screen. We asked parents to close their eyes and not communicate with the 

infant during the stimuli presentation. The experimenter, masked to what trial was being 

presented and the order of the test trials, coded infants’ looking to the stimuli live from the start 
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of each video and controlled the progression of stimuli using PyHab (Kominsky, 2019) and 

slides.com. Each trial video was preceded by a 5 s attention grabber (a swirling blob 

accompanied by a chiming sound, centered on the screen) to focus the infant’s attention to the 

screen, and each video froze after the agent reached an object. The last frame of the video 

remained on the screen until infants looked away for 2 s consecutively or for a maximum of 60 s. 

Testing sessions were recorded through the Zoom recording function, capturing both the infant’s 

face and the screen presenting the stimuli. 

Following our preregistration, a different researcher, masked to the study outcome, what 

trial was being presented, and the order of the test trials, recoded 48 randomly chosen sessions 

(25%) from the 32 infants who completed all six tasks. The reliability between the first and 

second coder was very high (ICC = .98). 

 

Infant Results 

Infants’ performance on Experiment 1’s two tasks is displayed in Figure 2. Infants’ 

looking time varied by task, with longer looking to the Efficient-Agent versus Goal-Directed 

Task (F(1, 71) = 9.34, p = .003), reflecting the longer test-trial lengths in the Efficient-Agent Task 

(see SI). Overall, infants looked longer to the unexpected versus expected outcomes (F(1, 66) = 

11.34, p = .001), and there was no task by outcome interaction (F(1, 66) = 0.30, p = .585). 

Infants were surprised (looked longer) when an agent moved to a new object in the Goal-

Directed Task (F(1, 23) = 4.73, p = .040), and they were surprised when an efficient agent later 

took an inefficient path to an object in the Efficient-Agent Task (F(1, 23) = 2.60, p = .016). 

Infants’ performance on Experiment 2’s six tasks is also displayed in Figure 2. Infants’ 

looking time varied by task (F(5, 341) = 2.78, p = .018), reflecting the different test-trial lengths 
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of the different tasks (see SI). Overall, infants did not look longer to unexpected versus expected 

outcomes (F(1, 341) = 2.27, p = .133), but a task by outcome interaction suggested that different 

tasks elicited different patterns of infants’ looking (F(5, 341) = 2.23, p = .051). 

 

Figure 2. Infants’ raw looking times to the two outcomes in each of BIB’s tasks in Experiments 
1 & 2. Gray lines connect the individual looking times (represented by blue and yellow dots) of 
each infant to each outcome. Red dots connected by red lines indicate the mean looking times to 
each outcome for each task. Beta coefficients are effects sizes in terms of standard deviations, 
and statistical analyses are reported in the main text (*p < .05, **p < .01). 
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We first considered infants’ performance on Experiment 2’s three tasks that focused on 

goal attribution: the Goal-Directed; Multi-Agent; and Inaccessible Goal Tasks. First, consistent 

with the results in Experiment 1, infants were surprised when an agent moved to a new object in 

the Goal-Directed Task (F(1, 47) = 4.09, p = .049). Infants presented with a new agent in the 

Multi-Agent Task, however, did not show a difference in surprise when that agent versus the 

original agent moved to a new object (F(1, 48) = 3.41, p = .071; with longer looking times to the 

expected outcome). Infants in the Inaccessible-Goal Task also did not show a difference in 

surprise when an agent moved to a new object when its goal object was accessible versus 

inaccessible (F(1, 46) = 0.02, p = .891). 

We next considered infants’ performance on the two tasks that focused on rationality 

attribution: the Efficient-Agent and Inefficient-Agent Tasks. First, consistent with the results in 

Experiment 1, infants were surprised when an efficient agent later took an inefficient path to an 

object in the Efficient-Agent Task (F(1, 46)= 7.72, p = .008). Infants in the Inefficient-Agent Task 

did not show a difference in surprise when an inefficient agent continued to move inefficiently to 

an object at test (F(1, 48) = 2.51, p = .119). But, when comparing infants’ performance in the 

Efficient-Agent and Inefficient-Agent Tasks directly, there was no significant task by outcome 

interaction (F(1, 132) = 0.49, p = .484): We did not find evidence that infants’ surprise at the 

inefficient agent’s later inefficient action was different from their surprise at the efficient agent’s 

later inefficient action. 

Finally, we considered infants instrumentality attribution through their performance on 

the Instrumental-Action Task. Infants did not show a difference in surprise when the agent 

moved to the tool as opposed to its goal object when the tool was no longer needed to achieve 

the goal (F(1, 47) = 0.03, p = .853). 
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Infant Discussion 

Infants’ successful performance in the Goal-Directed and Efficient-Agent Tasks in both 

Experiments 1 and 2 suggest that they expect agents’ actions to be goal directed towards objects, 

not locations, and that they expect agents’ goal-directed actions to be rationally efficient. These 

results also show that infants’ common sense about the underlying causes of agents’ actions are 

accessible when testing infants online and are highly abstract: Infants’ expectations are elicited 

by BIB’s minimal displays and are generalizable to BIB’s novel, overhead navigational context. 

This latter suggestion is especially striking given infants’ success on the Efficient-Agent 

Task since obstacles in the grid world blocked an agent’s direct access to the goal object. Given 

infants sensitivity to and use of agents’ perceptual access to objects when making inferences 

about agents’ actions (Luo & Baillargeon, 2007; Luo & Johnson, 2009), infants evidently 

appreciated BIB’s blocking obstacles as only physical, not perceptual. With BIB’s context 

providing no information that these obstacles limit an agent’s perceptual access, infants may 

have interpreted the obstacles as something that agents could “see over” or “see through.” Future 

studies could explore how infants appreciate the geometric, physical, and perceptual affordances 

of such overhead navigational environments. 

Infants’ pattern of performance on BIB thus enriches our understanding of their 

commonsense psychology and raises new questions about the abstract principles that might be 

inherent to that common sense. Building on questions of infants’ sensitivity to agents’ physical 

and perceptual access to objects, future versions of the Goal-Directed Task could reveal how 

having an agent move around obstacles to a goal object, instead of taking only straight paths—

actions providing additional cues to agency (Johnson et al., 2007; Luo & Baillargeon, 2005)—

might bolster infants’ goal attribution in that task. Introducing significant changes to the 
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arrangement of obstacles across the familiarization and test environments in the Goal-Directed 

Task, moreover, could explore the effects of environmental changes on goal attribution (Liu & 

Spelke, 2017; Sommerville & Crane, 2009). These latter results might also shed light on infants’ 

failures in some of BIB’s other tasks. For example, infants may have failed in the Inaccessible-

Goal Task because the arrangement of obstacles changed from familiarization to test, including 

in a way that affected one object’s physical accessibility. Infants may have found a change in the 

object’s accessibility itself surprising, or they may not have generalized the agent’s goal to this 

new test environment with significantly different physical affordances because they interpreted 

this change as indicating two different places in which the agent was acting (Sommerville & 

Crane, 2009). The Multi-Agent Task similarly changed the arrangement of obstacles from 

familiarization to test, although infants may have failed in this task simply because of heightened 

attention to the new agent, who appeared for the first and only time in the expected outcome 

(prior studies showing agent-specific goal attribution had presented the new agent in both test 

outcomes; Buresh & Woodward, 2007). 

Changes to the affordances of the environment from familiarization to test may also 

explain the pattern of findings we obtained in the Inefficient-Agent Task, which did not differ 

from the patterns of findings in the Efficient-Agent Task. In particular, previous literature 

suggests both that infants do not expect an agent who had previously moved inefficiently to later 

move efficiently when an obstacle present during familiarization is removed from the test 

environment (Gergely et al., 1995; Skerry et al., 2013) and that infants do expect a previously 

inefficient agent to later move efficiently if the test environment introduces a new obstacle (Liu 

& Spelke, 2017). The changes in the number and location of the obstacles across the Inefficient-

Agent Task’s familiarization and test environments may have weakly elicited, or elicited in only 
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some infants, this latter, “default” prediction about rationally efficient goal-directed actions for 

inefficient agents in the Inefficient-Agent Task’s (Liu & Spelke, 2017). Future versions of the 

Inefficient-Agent Task could thus focus specifically on the effects of different kinds of changes in 

the context and in the environment’s affordances on infants’ rationality attribution. 

Finally, given infants’ successes in previous tasks probing their understanding of 

instrumental actions, infants may have failed in BIB’s Instrumental-Action Task because they 

could not understand the tool object’s causal efficacy (Sommerville et al., 2008) or the agent’s 

ultimate goal. Specifically, prior findings suggesting that infants recognize agents’ instrumental 

actions (e.g., the use of a tool) relied on tools whose causal efficacy was familiar to infants (e.g., 

pulling a cloth to bring a toy within reach; Piaget, 1953; Sommerville & Woodward, 2005) or on 

novel tools to which infants were first given direct experience (Sommerville et al., 2008). The 

tool infants saw in the Instrumental-Action Task was both novel and not something they were 

given experience with. Future versions of the Instrumental-Action Task might thus introduce 

state-changes, such as color changes, to the contacted tools and objects, which, in previous 

studies, have made the causal efficacy of otherwise novel and inscrutable actions appreciable to 

young infants (Liu et al., 2019; Skerry et al., 2013). 

 

Model Methods 

 Machine Design and Analyses 

To examine whether infants’ intelligence about agents might be reflected in state-of-the-

art machine intelligence, we compared infants’ performance on BIB in Experiment 2 to the 

performance of three learning-driven neural-network models. Following prior work (Gandhi et 

al., 2021; Rabinowitz et al., 2018), the models formed predictions about an agent’s actions at test 



 18 

based on its actions during familiarization. To obtain a continuous measure of surprise as a 

correlate of infants’ looking time, we calculated the models’ prediction error for each frame of 

each outcome and considered the frame with the maximum error. To compare model and infant 

performance, we then calculated the Z-scored mean surprisal score to each outcome for each 

model and the Z-scored mean looking time to each outcome for infants. Z-scores were calculated 

within task. For an unplanned quantitative comparison of the overall similarity between the 

infants’ and each models’ performance, we evaluated the root mean squared error (RMSE) 

across BIB’s six tasks using the mean Z-score to the unexpected outcome. We also included a 

comparison between infants’ performance and a “baseline,” which we gave a surprisal score of 

“0” for all tasks. 

Finally, to confirm that the models’ performance on the specific trials presented to infants 

was representative of their performance more generally and not due to any idiosyncrasies of the 

particular videos shown to infants, we also evaluated the models’ accuracy on BIB’s full dataset 

(Gandhi et al., 2021). Because those results were consistent with the models’ performance on the 

infant videos and with prior work (Gandhi et al., 2021), they are reported in the SI. 

Model Specifications 

Learning-driven neural network models have accelerated recent advances in AI (Lecun et 

al., 2015; Rabinowitz et al., 2018), and so we chose to compare such models’ performance on 

BIB to infants’. Approaches like reinforcement learning (Sutton & Barto, 2018) and inverse 

reinforcement learning (Ng & Russel, 2000), for example, have succeeded in learning to control 

agents and in understanding the actions of agents, but these approaches cannot be used with BIB 

because they require privileged information, including the ability to actively control agents in the 

test environment and, in the case of reinforcement learning, receive a reward. Infants engage 
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with stimuli like BIB’s through passive observation, and so we based our modeling on the 

“Theory of Mind Net (ToMnet)” architecture from Rabinowitz et al., (2018), which is a neural 

network designed specifically for passive observation that has been shown to make inferences 

about an agent’s underlying mental states from its behavior. 

With this architecture, we tested three models from two classes: behavioral cloning (BC) 

and video modeling (Gandhi et al., 2021). The models’ schematized architectures are presented 

in Figures 3 and S2. Two BC models predicted how an agent would act using the background 

training as examples of state and action pairs (see Model Training below). To predict the agent’s 

next action in a test trial, BC combined information from the learned features from the previous 

frame of a test trial video along with the learned features in the set of familiarization trial videos. 

Video modeling used a similar strategy, architecture, and training procedure, but it aimed to 

predict the entire next frame of the test trial video rather than just the agent’s next action. 

 
Figure 3. Architecture of the video and BC RNN models (Gandhi et al., 2021; Rabinowitz et al., 
2018). An agent-characteristic embedding was inferred from the familiarization trials using a 



 20 

recurrent net. This embedding, with a frame from the test trial, was used to predict the next 
action of the agent in case of the BC model and the next frame of the video using a U-net 
(Ronneberger et al., 2015) in the case of the video model and. 

 

The two BC models differed in their encoding of the familiarization trials. One BC model 

relied on a simple multi-layer perceptron (MLP) to encode pairs of states and actions 

independently (Figure S2), and the other BC model relied on a more complex, bi-directional 

recurrent neural network (RNN) to sequentially encode pairs of states and actions (Figure 3). 

The states were encoded with a convolutional neural network (CNN), which was pretrained 

using Augmented Temporal Contrast (ATC) (Stooke et al., 2020). Table S1 provides the CNN 

specifications and the ATC data augmentation details. For both the MLP and RNN encoders, the 

model obtained a characteristic embedding (Rabinowitz et al., 2018) of an agent by first 

aggregating the embeddings across frames (using the average for the MLP and the last step for 

the RNN) for each familiarization trial and, second, averaging across familiarization trials. When 

aggregating frames, the videos were randomly sub-sampled to use no more than 30 frames. To 

predict the future actions of the agent, defined as the continuous change in position based on the 

video (at 3 frames per second), the models combined the characteristic embedding with the 

current state of the environment (also encoded with the CNN). See Table S2 for the 

specifications of the BC models. 

The one video model sequentially encoded each familiarization trial by passing up to 30 

frames through a CNN and combining them with a bi-directional RNN. The model obtained a 

characteristic embedding of an agent by averaging the RNN embeddings. To predict the future 

state of the agent, the model combined the characteristic embedding with the current state of the 

environment (specified by the current frame of the video) to predict the next frame of the video 

(at 3 frames per second) using a U-net architecture (Ronneberger et al., 2021). 
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Model Training 

Prior to being tested, the models were trained on thousands of background examples 

provided by the BIB dataset (Gandhi et al., 2021) of BIB-like agents exhibiting simple behaviors 

in a grid world. While the training set included individual components of the test set (e.g., 

agents’ movement to objects, agents’ consistent object goals, barriers, tools, etc.; see below), 

success on the test set required models to flexibly combine representations across the different 

training tasks. Moreover, since training included only expected outcomes, training with labeled 

videos was not possible. The training otherwise used the same familiarization/test task design as 

the test set. 

In one training task, an agent moved to one object in varying locations in the grid world. 

In a second training task, two objects were presented in varying locations in the grid world but 

always very close to the agent; the agent consistently moved to one of the two objects. In a third 

training task, the agent moved to one object in varying locations in the grid world; at varying 

points during the familiarization, that agent was substituted by another agent. Finally, in a fourth 

training task, a green barrier surrounded an agent and a key; the agent retrieved the key to let 

itself out of the blocked area to move to an object. 

We included five runs of each model type with the runs initialized randomly and trained 

until they converged on the background training. The BC models were trained to minimize mean 

squared error, and the video model was trained to minimize mean squared error in pixel space. 

Twenty percent of the background training trials were left out as a validation set, and the models 

were successful at the validation set in predicting agents’ actions on all of the background 

training tasks, with low prediction errors. For example, the MSE error for the BC models on the 

validation set was about 0.03 which is 0.8% of the maximum possible prediction error (4.0). The 
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only exception was that the BC RNN model performed an order of magnitude less well 

compared to the BC MLP model on the training task in which two objects were presented very 

close to the agent and the agent consistently moved to just one (see SI). 

 

Model Results 

Figure 4 displays the Z-scored means of the models’ surprisal scores to the expected and 

unexpected outcomes for each task (see the SI for additional details). The Z-scored means of 

infants’ looking times in the tasks of Experiment 2 are also displayed. Model performance shows 

little resemblance to infant performance. 
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Figure 4. Z-scored means of the models’ surprisal scores (each model is shown with a different 
shape and in a different shade of gray) and the Z-scored means of infants’ looking times (shown 
in red) to the expected and unexpected outcomes in each of BIB’s six tasks in Experiment 2. 
Models differ from infants in terms of infants’ successful goal- and rationality attribution (A), 
and models show no additional commonsense psychology missing from infants’ performance 
(B). 
 

First, to evaluate machines’ goal attribution relative to infants’, we compared infants and 

models on the Goal-Attribution Task. Unlike infants, who attributed to agents goal objects, not 

goal locations, the models either attributed to agents goal locations (BC MLP) or neither goal 

objects nor goal locations (BC RNN, video model). Next, to evaluate machines’ rationality 

attribution relative to infants’, we compared infants and models on the Efficient-Agent and 

Inefficient Agent Tasks. While models attributed rational action to agents in the Efficient-Agent 

Task (to an even greater degree than did infants), models did not attribute rational action to 

previously inefficient agents who act in new environments in the Inefficient Agent Task. Here the 

models’ performance was nearly orthogonal to infants’, who did attribute rational action to 

previously inefficient agents who act in new environments. 

The comparisons between machine and infant performance on BIB’s other three tasks 

revealed no instances in which the models demonstrated positive predictions about agents’ 

actions missing from infants’ predictions. In particular, while infants’ may have been relatively 

more surprised at the appearance of the new agent in the expected outcome of the Multi-Agent 

Task, as described above, the models did not show a difference in surprise across the two 

outcomes. In the Inaccessible-Goal Task, the video model did appear to be more surprised when 

the agent moved to a new object when its goal object was accessible, unlike the infants, but 

given this model’s failure on the Goal-Directed and Multi-Agent Tasks, its performance is 

unlikely to reflect an understanding of agents’ goal-directed actions towards objects. For 
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example, the model may have learned that the obstacles in the grid world block objects and that 

agents move to objects. This would lead to a lower surprisal score when an agent moved to the 

one accessible object compared with when it moved to either one of the accessible objects. 

Similarly, in the Instrumental-Action Task the models seemed to have succeeded where the 

infants did not, showing greater surprise when the agent moved to the key when it was 

unnecessary to do so. But, closer investigation of the models’ performance shows that this 

apparent success is limited to test trials in which the green barrier was absent versus present and 

inconsequential (see SI). A true understanding of instrumental actions would generalize across 

the presence or absence of the green barrier at test. The models thus did not understand agents’ 

instrumental actions. 

Finally, the RMSE analysis revealed high values for all infant and model comparisons: 

BC RNN: 0.319; BC MLP: 0.492; video model: 0.297, suggesting little similarity between infant 

and model performance. Indeed, these RMSE values were higher than the one obtained by 

comparing infants’ performance to “baseline” surprisal scores of “0” for all tasks: 0.143. 

 

Model Discussion 

BIB was expressly designed to allow for testing both infant and machine intelligence 

alike (Gandhi et al., 2021), providing an empirical foundation for building human-like AI. While 

the performance of the models tested here has not previously been compared with human 

performance (let alone to infant performance), and while and models like these are limited in 

their capacity for flexible generalization to out-of-distribution novel test displays compared with 

the displays used for their training (a generalization BIB requires and infants excel at), such 

models have nevertheless accelerated recent advances in AI (Lecun et al., 2015; Rabinowitz et 
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al., 2018). Our comparison reveals that the state-of-the-art “machine theory of mind” captured in 

such models is indeed missing key principles of commonsense psychology that infants possess. 

In particular, while infants expect agents’ goal-directed actions to be towards objects, not 

locations, models either have no expectations or expect those actions to be towards locations, not 

objects. And, while infants expect both previously efficient and inefficient agents to exhibit 

rational and efficient goal-directed actions towards objects in new environments, models only 

expect previously efficient agents to act efficiently in new environments. Finally, where we were 

unable to find any predictions that infants might have about the goals of new agents, about 

agents’ goal objects in new environments, or about novel instrumental actions, models show no 

additional commonsense psychology. 

Our approach of directly comparing infant and machine intelligence allows us to specify 

what principles of commonsense psychology are present in infants yet missing in machines, 

thereby inspiring new directions in engineering AI. For example, alternative models based on 

Bayesian inverse planning have been applied successfully to tasks like BIB by making more 

explicit abstract inferences about mental states (Baker et al., 2009, 2017; Shu et al., 2021). 

Nevertheless, extending the Bayesian approach to BIB in particular and to videos in general is 

not straightforward: A video format does not by itself provide the identification of agents (let 

alone any relations among them) or objects present in the scene. Recent approaches based on 

inverse reinforcement learning (Sim & Xu, 2019; Yu et al., 2019) could also be promising, but, 

as we reviewed above, they require online, active sampling from the testing environment, and 

BIB’s environment, like much of infants’ experience, involves passive viewing. It thus remains 

an open challenge for learning-driven systems to acquire sufficiently rich, abstract structure from 

BIB’s training and match infant commonsense intelligence. Nevertheless, setting infant common 
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sense as a benchmark for machine common sense promises to give AI the foundations of human 

intelligence. 

 

General Discussion 

 BIB includes six highly minimal but presentationally consistent tasks focusing on three 

high-level principles of commonsense psychology: goal attribution; rationality attribution; and 

instrumentality attribution. Infants’ successes on BIB suggest they have a highly abstract notion 

of agents’ actions as goal-directed towards objects and a principle of rationality that leads to 

default expectations of agents’ efficient actions towards goals. These results are consistent with 

the rich literature on infants’ commonsense psychology (Baillargeon et al., 2015, 2016; Spelke, 

2022; Woodward, 2009; Woodward et al., 2001) and synthesize the literature’s findings in a 

unified framework that can be directly compared with—and perhaps built into—machine 

intelligence. In addition, BIB uniquely reveals that infants appreciate agents’ actions in a novel, 

overhead navigational context, here recognizing obstacles as physical but not perceptual barriers 

to action. 

Infants’ failures on BIB suggest that changes to the contexts in which goals are first 

demonstrated may have significant impacts on infants’ goal and rationality attribution (Liu & 

Spelke, 2017; Sommerville & Crane, 2009). For example, infants may not generalize an agent’s 

goal to a test environment with even minimal or inconsequential changes relative to the 

environment in which the goal was initially demonstrated if those changes suggest that agents are 

acting in a new place. Regardless of how infants might come to understand the geometry of 

BIB’s environment, their sensitivity to and use of where an agent is for goal and rationality 

attribution is apparent. Future studies might thus investigate infants’ use of such geometry for 



 27 

recognizing places based on their shape or navigability even before infants can navigate on their 

own (Deen et al., 2017; Kosakowski et al., 2021). 

Future work exploring infants’ knowledge about the world could extend our general 

approach to investigate other aspects of infant commonsense psychology. Because BIB’s tasks 

are procedurally generated and presentationally consistent, for example, new tasks could easily 

be incorporated into BIB’s dataset. Future studies might explore expectations of agents’ notions 

of cost and value (Jara-Ettinger et al., 2016; Liu et al., 2017) or recognition of agents’ actions 

that might signal potential social partnerships (Meltzoff, 2007; Powell & Spelke, 2013; 

Schachner & Carey, 2013; Tomasello, 2018). While we show that learning-driven neural-

network approaches already fall short of infant’s common sense on BIB’s existing tasks, such 

expectations will nevertheless become increasingly important for AI too as it becomes further 

embedded in real-world, multi-agent settings that demand common sense. Extending our 

approach can ultimately inform comprehensive accounts of infants’ knowledge not only about 

agents, but also about objects (Lin et al., 2022; Spelke, 1990; Stahl & Feigenson, 2015) and 

places (Hermer & Spelke, 1994), allowing us to more fully describe the origins and development 

of human common sense and provide an avenue for building the future of human-like AI. 

BIB called for an interanimating research program between developmental cognitive 

science and artificial intelligence. The present work demonstrates that such a program is both 

possible and generative for both fields. Our work provides a first step in this productive dialogue 

between the cognitive and computational sciences to test whether knowledge can be built, in 

human or machine, from the foundations that cognitive and developmental theories postulate.  
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