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Abstract
Philosophers throughout history have debated the relations between the abstract geometry of
formal mathematics and the physical geometry of the natural world. We provide evidence that
abstract geometry reflects the geometry humans and non-human animals use for spatial
navigation. Across two preregistered experiments, educated adults watched short videos of two
points and two line segments forming an open figure on an otherwise blank screen. These simple
visuals were described with sparse and minimally different language, creating different spatial
contexts. After watching each video, participants were asked to click: anywhere (anywhere
condition); to complete the triangle (¢riangle condition); where the next corner of an object
would be (object condition); where the next stop on an agent’s path would be (ravigation
condition); or where the next point on an abstract plane would be (abstract condition). Across
spatial contexts, participants produced responses that reflected strikingly different sets of
geometric representations; in particular, preserving distance and direction for open paths in the
navigation condition but preserving length and angle for closed shapes in the object condition. In
the navigation and abstract contexts, however, the elicited geometry was remarkably similar.
Human language may thus effectively isolate phylogenetically ancient geometric representations
used for navigating the physical world and recognizing the objects in it. Moreover, the cognitive
origins of uniquely human abstract geometry may lie in representations used for navigating the

physical world.
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Public Significance Statement
Philosophers throughout history have debated the relation between the “abstract geometry” in
our mind and the “physical geometry” in our world. Since antiquity, geometry has been the
model of human abstract thought. But where do our ideas about geometry come from? Are our
geometric concepts rooted in everyday experience? Our work informs debates over the origins of
geometry. Using only minimally different language, our experiments were able to get adults to
think differently about the same simple geometric forms. We humans are able to think about
geometry in many different ways, through our experiences with places or with objects. Most
surprisingly, however, when we think about abstract geometry, we wander the Euclidean plane
like we wander the land. There is a connection between how we navigate the world and how we
think about formal geometry. Perhaps, we suggest, we can harness this connection to inform the

development of mathematics education.



“We are wanderers.” —Carl Sagan (Sagan, 1985)

Our experience of the everyday spatial world seems rich and unitary, integrating the
geometry of the places we navigate with our recognition of the objects and visual forms that
populate those places. Nevertheless, decades of research in the psychological, cognitive, and
neural sciences suggests that the representations underlying our understanding of places and
objects are not as unitary as they might seem. For example, seminal work exploring the search
behavior in simple rectangular environments of disoriented animals, from fish and chickens to
rats and humans, suggests that when we navigate such environments, we tend to keep track of the
allocentric distances and directions of the environment’s boundaries (Cheng et al., 2013; Doeller
et al., 2008; Doeller & Burgess, 2008; Julian et al., 2015; Spelke & Lee, 2012). In contrast, work
exploring the sensitivities of humans and non-human animals to small-scale 2D and 3D visual
forms suggests that when we recognize objects, it matters less how far away an object is or what
direction it is facing, as long as it is the right shape (Blough & Blough, 1997; Kourtzi &
Kanwisher, 2001; Lehrer & Campan, 2004; Logothetis et al., 1994; Tanaka, 1997; Zoccolan et
al., 2009).

Previous research has thus found surprising dissociations in human’s use of geometric
information for representing the physical world, dissociations shared with non-human animals.
Nevertheless, representing the physical world is not unique to humans, and shared environments
and common phylogeny may lead to similar cognitive and neural processes for navigation and
object recognition across humans and non-human animals. But what of the geometric intuitions
that are unique to humans? At the foundation of formal geometry and cultural productions like

science, technology, art, and architecture lies humans’ intuitive abstract geometry, which affords



humans the unique capacity to imagine and reason about a spatial world of zero-dimensional
points, infinitely long lines, and endless planes. Indeed, since antiquity, this geometry has often
been held up by philosophers and scientists as the model of human abstract thought (Hodge,
1978; Olson, 1995). Do uniquely human abstract geometric intuitions rely on the same
foundational geometry humans and non-human animals use to represent the physical spatial
world? What are the cognitive origins of human abstract geometry?

Current research in the cognitive and neural sciences provides several proposals for these
origins. One proposal is that humans uniquely possess early emerging and abstract
representations of Euclidean principles, which get composed in an algorithmic-like “language of
thought” for geometry (Amalric et al., 2017; Dehaene et al., 2022; Sablé-Meyer et al., 2021).
These principles include foundational concepts like linearity, parallelism, perpendicularity, and
symmetry represented as symbolic concepts. Recent evidence for this proposal has come from
cross-species, cross-cultural, and computational work using an odd-ball paradigm that presented
participants with arrays of planar figures—Ilike squares, parallelograms, and trapezoids—simply
asking them to find the one figure in each array that did not belong with the rest. The more
Euclidean that the principles exemplified by the context figures or deviant figure were, the easier
the task was for human adults and children but not for baboons (Sablé-Meyer et al., 2021).
Moreover, while state-of-the-art convolutional-neural-network models performed on this task
like baboons, only a model that included a symbolic list of discrete geometric properties
performed like humans.

Another proposal for the cognitive origins of abstract geometry is an appeal to
phylogenetically ancient and dissociable geometric systems for everyday navigation and 2D and

3D form analysis (Dillon et al., 2013; Dillon & Spelke, 2018; Izard et al., 2011; Spelke et al.,



2010). This proposal suggests that the system dedicated to navigation prioritizes distance and
directional information for paths through space while the system dedicated to form analysis
prioritizes length and angle information for closed shapes and objects. Through human
development and supported by the combinatorial capacities of uniquely human and domain-
general symbolic systems like language and pictures, the complementary geometries of the
navigation and form-analysis systems merge to support an intuitive natural geometry that
captures Euclidean geometry, including granting symbolic concepts of linearity, parallelism,
perpendicularity, and symmetry.

A third proposal for the cognitive origins of abstract geometry is that noisy and dynamic
mental simulations of moving though the physical world, akin to a correlated random walk of a
navigating animal, approximate Euclidean principles and ground abstract geometric reasoning
(Hart et al., 2018, 2022). Consistent with the second proposal, such navigation prioritizes
distance and directional information, but this third proposal emphasizes the role of simulated
navigation (Banino et al., 2018; Dragoi & Tonegawa, 2010; Gupta et al., 2010) in abstract
reasoning. The proposal is built from a series of findings suggesting that older children and
adults reason about the Euclidean properties of planar figures not with language-like rules or
symbolic concepts, but rather with approximate and dynamic mental simulations of figures. The
sides and corners of these figures are mentally simulated with local, smooth motion (and with it,
local noise akin to the noise in a random walk) as well as a global correction process that reflects
and preserves the basic Euclidean principle of scale-invariant angle/directional representations
(making the random walk’s steps correlated from one step to the next; Hart et al., 2018, 2022).
This tradeoff between maintaining both smooth motion and motion in a certain direction is

inherent in the navigational abilities of a variety of animal species (Cheung et al., 2007;



Papastamatiou et al., 2011; Peleg & Mahadevan, 2016; Wehner et al., 1996; Wiltschko &
Wiltschko, 2005). This proposal then suggests that reasoning consistent with Euclidean geometry
may emerge in human development when children start to reason about the general properties of
planar figures using such mental simulation. In doing so, children develop a natural geometry
within which are principles that allow for an intuitive but approximate grasp of Euclidean
geometry and a capacity to learn formal Euclidean geometry (Huey et al., 2023), like concepts of
linearity, parallelism, perpendicularity, and symmetry.

These three proposals differ in their commitments to foundational representations of
physical geometry as a grounding for abstract geometry: the first proposal suggests no such
grounding; the second suggests grounding in both navigation and object recognition; and the
third suggests grounding primarily in navigation. The three proposals thus also make different
predictions about whether and how adults’ judgments about figures described as abstract points
and lines should relate to figures described in the contexts of navigation and object recognition.
The first proposal, because of its emphasis on the immediately symbolic nature of abstract
geometry, might suggest that abstract figures would show no necessary geometric resemblance
to figures contextualized in navigational or object-recognition contexts. Or, this proposal might
suggest that all planar figures, regardless of context, are represented with the same abstract
geometric principles. The second proposal, because of its emphasis on navigation and object
recognition as two independent sources of different geometric representations, might suggest that
figures contextualized in navigation would preserve distance and direction for open paths
through space while those contextualized in object recognition would preserve length and angle
information for closed shapes. Abstract figures would then reflect a combination of these two

contexts, preserving distance, direction, angle, and length, and forming both open and closed



figures with equal facility. The third proposal, because of its emphasis on navigation, might
suggest that abstract figures would resemble figures contextualized in navigation and would
preserve distance and direction for open paths through space.

With simple visual displays and short, minimally contrastive linguistic descriptions, the
present work intervenes on this debate on the origins of human abstract geometry by
investigating whether foundational representations of the geometry of navigation and object
recognition, which are shared by humans and non-human animals alike, are reflected in educated
adults’ representations of abstract points and lines. In finding that a verbal description of a
navigating agent uniquely elicits the same geometric information as a verbal description of
abstract points and lines, the present study suggests that abstract geometry reflects spatial
navigation—a unique prediction of the third proposal outlined above.

Finally, the present work also probes a novel question about geometric cognition and
human language, not directly addressed by the proposals outlined above: i.e., whether language
can consistently evoke foundational geometric representations for navigation and object
recognition, effectively isolating the different geometries that may contribute to our sense of a
unified spatial world. The second proposal outlined above is committed to the persistence of
foundational geometric representations of navigation and object recognition being present and
active throughout the lifespan of human and non-human animals, merging these different
geometries only in humans via natural language. The present work reveals that such
representations are not only still present and active in human adults but also that and are

individually accessible through language used to describe the very same simple planar figures.
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Transparency and Openness

All materials, methods, and analyses were preregistered on the Open Science Framework
unless otherwise stated. These preregistrations as well as the stimuli, data, and analysis code are
available at: https://osf.io/gvn6k/. Our report follows the guidelines of JARS-Quant (Applebaum
et al., 2018).

Overview

In two preregistered experiments (Experiment 1: https://osf.io/5jvwn; Experiment 2:
https://osf.io/dbe8h), educated adults from the United States watched short videos of two points
and two line segments forming an open figure on an otherwise blank screen. At the end of each
video, the lines disappeared, leaving the two points (Figure 1; Movie S1). Across five randomly
assigned conditions, these simple visuals were described with sparse and minimally different
language, creating different spatial contexts in which participants provided a mouse-click
response. Participants were asked to click: anywhere (anywhere condition); to complete the
triangle (triangle condition); where the next corner of the object would be (object condition);
where the next stop on the agent’s path would be (navigation condition); or where the next point

on the abstract plane would be (abstract condition).
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Figure 1. Example frames of a stimulus video showing a 55° angle. A. The first line is drawn
from the figure’s origin, which is not displayed as a point, and ends with a first visible point. B.
The second line is drawn from the first visible point and ends with a second visible point. C. The
two points remain visible at the end of the video.



Participants

The sample size was chosen after exploring participant responses in scatterplots from
pilot experiments. Participants were recruited from our university’s participant pool and received
course credit. They reported their age and gender in a text box; no other participant demographic
information was collected. The study was approved by the institutional review board for the use
of human participants at our university.

In Experiment 1, 150 adults (111 women, 38 men, 1 gender non-binary; age: M = 20
years, SD = 1.71, range = 18-33) participated. Based on preregistered exclusion criteria, an
additional 84 participants were excluded for not completing the experiment (34), taking longer
than 60 minutes to complete the experiment (16), answering the comprehension question
incorrectly after two attempts (20); or answering the catch question incorrectly (14; see the SI).
In Experiment 2, 150 adults (107 women, 41 men, 2 gender non-binary; age: M = 19.41 years,
SD = 1.36, range = 17-24) participated. An additional 64 participants were excluded for not
completing the experiment (9), taking longer than 60 minutes to complete the experiment (6),
answering the comprehension question incorrectly after two attempts (10); or answering the
catch question incorrectly (39; see the SI). The exclusion rates are comparable to the exclusion
rates reported in previous unmonitored online studies with adults (Ludwin-Peery et al., 2020,
2021).

Stimuli

Participants saw a total of 84 trials presenting stimuli videos generated in MATLAB at
1120 px X 840 px and forming angles of six different sizes (25°, 55°, 80°, 100°, 125°, and 155°),

with 14 unique examples of each angle size, which varied in length, orientation, and location (see
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the SI). The individual lines forming the angles were between 20% and 45% the height of the
full gray background area (840 px); neither line was oriented within 10° of the vertical or
horizontal; both lines had at minimum a 4% distance to the gray background’s boundary; and the
line drawn second was to the right of the first line in a random half of the videos and to the left in
the other half of the videos. The videos were presented at a faster speed in Experiment 2
compared with Experiment 1 to reduce participant fatigue (Experiment 1: M = 9649 ms, SD =
1459 ms, range = 6800—12700 ms; Experiment 2: M/ = 5789 ms, SD = 874 ms, range = 4080—
7620 ms). Prior to seeing the test trial videos, participants practiced making mouse-click
responses to three practice videos, which showed similar figures but with angle sizes not used in
the test videos (13°, 72°, and 167°).

Sparse and minimally different language, which described five different spatial contexts,
characterized these simple visuals across conditions (see the SI for full task instructions). In the
anywhere condition, participants were told, “For each question, you will see one video. Please
watch the video closely. After the video ends, click anywhere you’d like.” In the triangle
condition, participants were told, “For each question, you will see one video showing a partial
triangle. The sides of the partial triangle will disappear, but the vertices will remain visible.
Please watch the video closely. After viewing the video, click to complete the triangle.” In the
object condition, participants were told, “For each question, you will see one video of some of
the edges and corners of an object. Please watch the video closely. The edges will disappear at
the end of the video, but two corners of the object will remain visible. After viewing the edges
and corners, click where you think the next corner of that object will be.” In the navigation
condition, participants were told, “For each question, you will see one video of some of the paths

and stops that an agent has travelled on a land. Please watch the video closely. The paths will
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disappear at the end of the video, but the two stops the agent visited will remain visible. After
viewing the paths and stops, click where you think the next stop of that agent will be.” Finally, in
the abstract condition, participants were told, “For each question, you will see one video of some
points and lines on a plane. The lines will disappear, but two points will remain visible. Please
watch the video closely. After viewing the points and lines, click where you think the next point
will be.”

Procedure

In both experiments, participants were randomly assigned to one of the five conditions
and completed the experiment online and unmonitored through the survey platform Qualtrics.
Participants first read the instructions for their assigned condition and answered comprehension
questions that assessed their understanding of those instructions. They were given two chances to
answer each comprehension question correctly; participants who answered incorrectly on both
attempts were allowed to complete the experiment but were excluded from the analysis (see the
SI). After completing the comprehension questions, participants completed three practice trials.
The practice trials were presented in a random order for each participant. Before proceeding to
the test trials, participants were reminded of the instructions. No feedback was given on practice
or test trials.

In Experiment 1, participants were asked to make only one click at the end of the video,
adding one point to the two points given in the video. In Experiment 2, participants were free to
make at least one but up to ten clicks. Participants saw their click(s) appear as a point on the
screen, but they did not see any lines drawn from the last given point to the click(s) they
generated.

In both experiments, the same subset of test trials was randomized within the first,
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second, or third of three blocks, and there was an optional break at the end of each block. During
the breaks, participants could watch a two-minute video of cute animals. The animal videos were
embedded in the experiment so participants did not need to navigate away from the experiment.

After the first block of trials and before the first optional break, participants saw a catch
question in which they were presented with four still pictures, one which most closely resembled
a still from the stimuli videos (see the SI). Participants had only one opportunity to click on the
picture that most closely resembled the stimuli videos, and they received no feedback. If they
responded incorrectly, they were allowed to complete the experiment but were excluded from the
analysis.

Analysis

In two preregistered analysis plans (Experiment 1: https://osf.io/d8ts9; Experiment 2:
https://osf.io/xvwm4), we evaluated whether participants responded to the given figures
differently depending on the spatial framing provided by the language of their assigned condition
and whether participants responded in the abstract condition in a way similar to any other
condition. To do so, we used multivariate (2D) kernel density estimations to estimate and
compare the probability density functions of participants’ mouse-click responses across
conditions.

First, we preprocessed the data in MATLAB to align participants’ responses to the
different examples they saw of the same angle size. To conduct this preprocessing, we rotated,
flipped, and translated the 14 examples of each angle to align the angles’ vertices, keeping the
line lengths unchanged. Then, we applied the same set of rotations, flips, and translations to the
coordinates of participants’ mouse-click responses to determine their new coordinates in relation

to the now aligned angles. Aligning the stimuli and responses resulted in a square response space
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instead of the rectangle space in the stimulus videos.

To conduct the kernel density estimation analysis, we first defined a region within the
square response space that included almost all of participants’ responses (Experiment 1: 99.97%
responses; Experiment 2: 99.94% responses), excluding a small number of outlier responses
detected upon visual inspection by a researcher masked to the condition of those responses
(Experiment 1: anywhere condition, 80° [3 responses]; anywhere condition 100° [1 response];
Experiment 2: anywhere condition, 80° [5 responses]; object condition 80° [1 response];
navigation condition 80° [1 response]; abstract condition 80° [1 response]). With the kde
function in the ks R package, we then used the default 151 X 151 grid size to fit a separate kernel
density estimation to each participant’s 14 responses per angle and used cross validation to find
the optimal bandwidth matrix (smoothing factor) for each of these kernel density estimations.
We averaged these bandwidth matrices across all participants and angles to obtain a shared
bandwidth matrix and fit a new set of kernel density estimations to each participant’s responses
to each angle using this shared bandwidth matrix. Next, we compared the kernel density
estimations across participants at each cell of the grid for each angle across the five conditions
using one-way ANOV As with permutation tests (to control for the family-wise error), permuting
all of the possible kernel density estimations, the dependent variable, while keeping condition,
the independent variable, fixed. Finally, at each location with a significant effect of condition
revealed by the ANOVA, we conducted pairwise contrasts across the conditions with
permutation tests (to control for the family-wise error) and Holm correction on the resulting p-
values to adjust for multiple comparisons.

In an addition to this preregistered analysis, we conducted an unplanned analysis focused

on characterizing the differences between three target conditions—object, navigation, and
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abstract—using earth mover’s distance, a method of image comparison that evaluates the
minimum cost required to align one distribution of responses to another (Rubner et al., 2000).
To conduct the earth mover’s distance analysis, we used the same optimal bandwidth
matrix as the preregistered analysis, and first fit new kernel density estimations to each condition
and each angle size, this time collapsing across participants. Because this analysis was too
computationally demanding to conduct with the original kernel-density-estimation 151 X 151
grid, we down-sampled to a 51 X 51 grid (following Beller et al., 2022), visually inspecting the
original and down-sampled kernel density estimations to ensure the down-sampling preserved
the patterns observed at the original grid size. Then, we computed the earth mover’s distance for
each pair of conditions for each angle size using the EMD function of the opency package in
Python, with one distance measure for each pair. Finally, we performed a one-way ANOVA and
pairwise contrasts across angles to compare the earth mover’s distances of the object/navigation

comparison, object/abstract comparison, and navigation/abstract comparison.

Results

Figure 2A presents scatter plots of all mouse-click responses to the 55° angle across the
five conditions of Experiment 1. Figure 2B presents the results of the kernel density
estimations, with the colored patches in each plot representing significantly different response

densities (p < .05) across the two compared conditions.
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Figure 2. A Scatter plots of all mouse-click responses to the 55° angle in Experiment 1. B
Results of the kernel density estimation analysis, with the colored patches in each plot
representing significantly different response densities (p < .05, Holm-corrected) across the two
compared conditions. The range of the kernel density estimations are provided on the figure’s
color scale. A magnitude of 6 (the scale’s maximum) refers to a 0.15 percentage-point increase
of responding at that location in the grid in the indicated condition.

All conditions had a cluster of clicks at the figure’s origin (which was not represented as
a point), suggesting some tendency to complete the given open figure to form a triangle. This

tendency was nevertheless strongest in the triangle condition. The anywhere condition showed

much more distributed responses compared with the responses in all the other conditions. Unique
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responses in the object condition clustered opposite the given figure’s first visible point, as if
participants were preserving the overall shape of a closed figure to form the third side of what
would be a parallelogram. Unique responses in the navigation condition, in contrast, clustered
past the end of the given figure’s second visible point, as if participants were continuing the
agent’s path with the same distance and direction as the first line in an open zig-zag. Despite the
identical visual stimuli and the minimal linguistic differences across these conditions,
participants produced very different responses. Strikingly, however, participants’ responses in
the abstract condition closely resembled participants’ responses in the navigation condition:
There was a large cluster of responses extending beyond the given figure’s second visible point
and no difference in the response patterns across these two conditions. The results across the six
angles tested (Figure 3) corroborate these results (for the scatter plots and complete kernel

density estimations for the additional angles, see the SI).
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Figure 3. Results of the kernel density estimation analysis in the object, navigation, and abstract
conditions across the six angles in Experiment 1, with the colored patches in each plot
representing significantly different response densities (p < .05) across the two compared
conditions.

The results of the unplanned earth mover’s distance analysis, which focused on the
object, navigation, and abstract conditions, were consistent with those of the preregistered kernel
density estimation analysis. Figure 4A displays the earth mover’s distance comparing each pair

of conditions across the six angles in Experiment 1, with smaller values representing smaller

differences between conditions. The object/abstract comparison had the largest earth mover’s
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distance (M = 8.09, SD = 1.40), followed by the object/navigation comparison (M = 7.90, SD =
1.26). The navigation/abstract comparison had the smallest earth mover’s distance (M = 1.73,
SD = 0.74). The one-way ANOVA on earth mover’s distance across conditions revealed a
significant effect of condition (F(1, 15) = 57.22, p <.001), and pairwise contrasts revealed no
significant difference between the object/navigation comparison and the object/abstract
comparison (p = .958), but significant differences between the object/navigation comparison and
navigation/abstract comparison (p < .001) as well as between the object/abstract comparison

and navigation/abstract comparison (p < .001).
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Figure 4. A The earth mover’s distance comparing the object, navigation, and abstract
conditions across the six angles in Experiment 1. B The earth mover’s distance comparing the
object, navigation, and abstract conditions across the six angles in Experiment 2. The black
lines represent the mean earth mover’s distance across the six angles of each comparison.
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Experiment 2 replicated and extended Experiment 1’s findings to cases in which
participants were not constrained to responding with only one click. Compared with Experiment
1, Experiment 2 thus provided an even more open-ended procedure both to ensure that the
findings from Experiment 1 were generalizable (i.e., not idiosyncratic to a one-click response)
and to provide more opportunities for the conditions to converge or diverge, contributing to a
stronger test of our hypothesis. Across all conditions and angle sizes, participants differed in
their number of clicks (mixed-model Poisson regression, Wald Test, X* (4) = 38.81, p <.001).
The number of clicks in the anywhere (mode = 3 clicks) and triangle (mode = 3 clicks)
conditions did not differ from each other (Holm-corrected pairwise contrast, p = 1.000), but did
differ from the other conditions (Holm-corrected pairwise contrasts, anywhere - object, p < .001;
anywhere - navigation: p < .001; anywhere - abstract: p = .015; triangle - object. p < .001;
triangle - navigation: p < .001; triangle - abstract: p = .006). The number of clicks in the object,
navigation, and abstract conditions did not differ from each other (all modes = 1 click; object -
navigation: p =1.000; object - abstract: p = .598; navigation - abstract. p = 1.000).

Figure S presents the scatter plots (A) and kernel density estimations (B) from for the
responses to the 55° angle across the five conditions of Experiment 2, and Figure 6 shows the
results of the object, navigation, and abstract conditions across all six angles tested (for the
scatter plots and complete kernel density estimations for these additional angles, see the SI).
Consistent with the findings of Experiment 1, participants in all conditions showed some
tendency to complete the triangle, but those in the friangle condition did so the most. Participants
in the anywhere condition showed the most distributed responses, participants in the object
condition uniquely responded opposite the first given point in what would be a closed

parallelogram, and participants in the navigation condition uniquely responded by continuing the
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agent’s path in an open zig-zag. As in Experiment 1, participants responded remarkably

differently across conditions, except in the navigation and the abstract conditions, in which

responses closely resembled one another.
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Figure 5. A Scatter plots of all mouse-click responses to the 55° angle in Experiment 2. B
Results of the kernel density estimation analysis, with the colored patches in each plot
representing significantly different response densities (p < .05, Holm-corrected) across the two
compared conditions. The range of the kernel density estimations are provided on the figure’s
color scale. A magnitude of 6 (the scale’s maximum) refers to a 0.15 percentage-point increase
of responding at that location in the grid in the indicated condition.
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Figure 6. Results of the kernel density estimation analysis in the object, navigation, and abstract
conditions across the six angles in Experiment 2, with the colored patches in each plot
representing significantly different response densities (p < .05) across the two compared
conditions.

As in Experiment 1, moreover, the results from the unplanned earth mover’s distance
analysis were consistent with those of the preregistered kernel density estimation analysis.
Figure 4B displays the earth mover’s distance comparing each pair of conditions across the six

angles in Experiment 2. The object/navigation comparison had the largest earth mover’s

distance (M = 9.50, SD = 1.89), followed by the object/abstract comparison (M = 7.42, SD =
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0.76). The navigation/abstract comparison had the smallest earth mover’s distance (M = 4.46,
SD = 0.65). The one-way ANOVA revealed a significant effect of condition (F(1, 15) =25.15, p
<.001), but unlike in Experiment 1, all pairwise contrasts were significant (object/navigation
comparison - object/abstract comparison, p = .028; object/navigation comparison -
navigation/abstract comparison, p < .001, object/abstract comparison - navigation/abstract

comparison, p = .002).

Discussion

The results yield three main findings. First, the same simple visual displays, characterized
only by sparse and minimally different linguistic descriptions, readily elicited in educated adults
strikingly different sets of geometric representations. These geometric representations are
inherent in phylogenetically ancient cognitive systems of geometry for navigating places by
distance and direction and for recognizing objects by shape: Participants in the navigation
condition preserved the distance and direction of the initial figure’s first line segment, while
those in the object condition instead preserved the global shape of the initial figure. The clarity
and consistency with which participants’ responses reflected the geometry of these cognitive
systems are particularly surprising given the open-ended and subjective nature of the procedure
and participants’ education in formal geometry. Participants could have imagined a path or
object with any geometry, especially considering that there was no actual navigation or object
recognition involved in the task. Despite this freedom but consistent with other tasks’ use of an
open-ended tapping procedure to elicit consistent spatial representations (Firestone & Scholl,
2014; Boger & Ullman, 2023), participants more often imagined open paths with distance and

direction preserved and objects with global convex shape preserved. Human language may thus
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both naturally invoke the particular geometric representations inherent to navigation and object
recognition given a basic description of the spatial context and also allow us easily to mentally
wander among our different domains of foundational spatial knowledge about places and objects.

Sensitivity to this foundational geometric information is shared across cultures and
through human development (Dehaene et al., 2006; 1zard et al., 2022; Izard, Pica, Dehaene, et
al., 2011; Sablé-Meyer et al., 2021). Nevertheless, future studies might explore whether these
same sets of geometric representations can be elicited using the same visual stimuli and similarly
minimal linguistic descriptions as the present study in adults across cultures and who speak
different languages. Future studies might also explore when and how language might elicit such
geometric representations in children. If the present results rely on adults’ capacity to combine
place and object geometry for geometric tasks like reorientation (Hermer-Vazquez et al., 1999;
Pyers et al., 2010; Shusterman et al., 2011) or their successful verbal reasoning about relations
among the distance, direction, and shape properties of visual forms (Dillon & Spelke, 2018; Hart
et al., 2022; Izard, Pica, Spelke, et al., 2011), then the same results may not be obtained until late
childhood.

Second, while human language may enrich (e.g., Dessalegn & Landau, 2008; Landau et
al., 2009) or combine disparate spatial representations (e.g., Hermer-Vazquez et al., 1999;
Shusterman et al., 2011) to solve spatial tasks, the results from the present study show that
language can also effectively isolate such foundational spatial representations, even in human
adults who can use them together. Language’s powerful capacity for selectivity has been
revealed across languages, for example: in representations of motion verbs by directing a
speaker’s and listener’s attention either to the manner by which a motion is taken or to the

properties of that motion’s path; and in choice of reference frames by specifying egocentric,
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geocentric, or object-centered reference frames (see Landau et al., 2009 for a review).
Language’s selectivity in the present study modulated spatial representations within a single
natural language. Moreover, language here selected over content that in our experience of the
everyday spatial world seems unitary, carving this experience at joints that fall along separable
but complementary geometries, which are separate in human infancy and childhood. What seems
like a unified system of spatial intuitions in the minds of human adults may thus actually be the
merger of two systems of persisting and complementary geometries for representing places and
objects, consistent with the second proposal outlined in the Introduction. The present work
makes the novel suggestion that these merged geometries can nevertheless be later re-isolated
through language. Future studies could thus explore whether and how language might isolate
other foundational human knowledge in adult cognitive systems that seem unified, like a system
of moral reasoning, which may rely on a merged representation of another person as both an
intentional agent with goals and a phenomenal being with experiences and emotions (Gray et al.,
2007; Knobe & Prinz, 2008; Spelke, 2022).

Third, the present findings demonstrate a striking resemblance between the geometry
educated adults use to extrapolate the next point given points and lines on a plane, and the
geometry they use to extrapolate the next stop of an agent, given the agent’s previous stops and
paths on a land. Consistent with the third proposal reviewed in the Introduction, these findings
suggest a link between our basic abstract geometric intuitions about points and lines on the
Euclidean plane and the specific geometric intuitions we call upon in contexts of navigation: Just
as humans and other animals navigate places dynamically by distance and direction, participants
in the navigation and abstract conditions preserved the distance and direction of the initial

figure’s first line segment to form open paths. Indeed, we humans may wander the abstract
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Euclidean plane like we and other animals wander the physical world. Future studies might
nevertheless explore the specificity of this link and the language required to elicit it. For
example, since the visual displays themselves were dynamic, participants may have by default
interpreted these visuals as displays of navigation, suggesting that other verbal prompts could
elicit the same kinds of responses as the navigation and abstract conditions and/or that the
associated “points” and “lines” verbal descriptions in the abstract condition may not have
conveyed anything critical about abstract entities. While the anywhere condition served as a
control for these possibilities, other control conditions using language like, “click what will come
next,” which highlight the dynamism of the visual displays, should be explored.

The link between navigating the physical world of everyday life and the abstract world of
formal geometry suggested by the present study informs not only philosophical debates over the
origins of geometry (Husserl, 1970/1954; Kant, 1998/1781), but also our interpretation of past
empirical findings. For example, the present results are consistent with the navigationally
grounded abstract inferences shown in a seminal study of a young blind child’s ability to
complete triangular paths in a novel environment (Landau et al., 1981). And, the present work
suggests that describing abstract geometric concepts, such as zero-dimensional points and
infinitely long lines, in a navigational context may be essential to eliciting accurate Euclidean
judgements in adults across cultures (Izard, Pica, Spelke, et al., 2011). In particular, Izard et al.
(2011; see also Dillon & Spelke, 2018; Huey et al., 2023) probed the intuitions of adults from the
Amazon, who had received no formal education in geometry, about the general properties of
points and lines, including probing concepts like linearity and parallelism, by asking them to
imagine points as villages and lines as paths on a land. Future studies could examine whether the

same accurate abstract intuitions could be elicited by instead grounding descriptions of abstract
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points and lines as the corners and sides of an object. An object context might be less likely to
elicit abstract geometry. And, while such navigational descriptions successfully elicited adults’
abstract intuitions, we might wonder whether previous studies like these are probing fully
abstract geometry or merely eliciting intuitions about navigation.

A link between abstract geometry and navigation may also have implications for the
development of geometry pedagogy and educational interventions. Future studies might thus
explore the development of this link to determine whether children’s responses to the navigation
and abstract conditions resemble one another. This link might precede children’s achievement of
geometric reasoning consistent with Euclidean geometry or this link might emerge only after that
achievement. In either case, teaching abstract geometry using navigational contexts might better
serve math instruction (Dillon et al., 2017), which should also take into account how an
individual’s navigation experience (Coutrot et al., 2022; Newcombe et al., 2022) might affect
their capacity for learning. Relatedly, future studies might explore whether and what specific
properties of navigation—Ilike straight-ahead motion without turning—might support the
acquisition of foundational Euclidean concepts of linearity, parallelism, perpendicularity, and
symmetry. Finally, in finding that a verbal description of a navigating agent uniquely elicits the
same geometric information as a verbal description of abstract points and lines, the present study
suggests that our explorations of abstract geometry often rely on our spatial navigation,
suggesting, perhaps, that the origins of geometry may lie in dynamic mental simulations of
moving through the physical world, akin to a correlated random walk of a navigating animal.
Here, mathematical invention and education coincide, as we see on the pages of math textbooks

that traditionally, since at least Gauss, imagine geometric manifolds as traversed by ants (Ault,

2018).
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Constraints on Generality

Geometric representations for everyday navigation and object recognition are present
across human cultures and languages, regardless of formal education, and with varied
experiences of the physical world (Dehaene et al., 2006; Dillon et al., 2017; Heimler et al., 2021;
Landau et al., 1981); they are also present in other animal species (Cheng et al., 2013; Spelke &
Lee, 2012). Moreover, studies on human abstract geometry have shown striking consistency
among the responses of formally educated adults from the United States and France, adults from
the Amazon, where there is no formal education in geometry and no specialized geometric
vocabulary, and even mathematics enthusiasts and professionals (Amalric & Dehaene, 2016;
2018; Butterworth, 2006; Hart et al., 2022; Izard et al., 2011). These previous findings suggest
that our results with educated college-aged English-speaking adults may generalize to adults
from other cultures, who speak different languages, and with varied educational and everyday
experiences. Future studies should explore such differences to further inform the implementation

of scalable mathematics education.
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