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Abstract

A k-transversal to a family of sets in R is a k-dimensional affine subspace that
intersects each set of the family. In 1957 Hadwiger provided a necessary and sufficient
condition for a family of pairwise disjoint, planar convex sets to have a 1-transversal.
After a series of three papers among the authors Goodman, Pollack, and Wenger
from 1988 to 1990, Hadwiger’s Theorem was extended to necessary and sufficient
conditions for (d — 1)-transversals to finite families of convex sets in R¢ with no
disjointness condition on the family of sets. However, no such conditions for a finite
family of convex sets in R to have a k-transversal for 0 < k < d — 1 have previously
been proven or conjectured. We make progress in this direction by providing necessary
and sufficient conditions for a finite family of convex sets in R2 o have a (2d — 2)-
transversal.
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1 Introduction

The well-known Helly’s theorem [9] states that if a finite family F of convex sets in
R< has the property that any choice of d + 1 or fewer sets in  have a non-empty
intersection, then there is a point in common to all the sets in F (see [3, 5] for surveys
on Helly’s theorem and related results). A k-transversal is a k-dimensional affine space
that intersects each set of F, so Helly’s theorem provides a necessary and sufficient

The author was supported by NSF Grant DMS-1839918 (RTG).

B Daniel McGinnis
dam] @iastate.edu

I Jowa State University, Ames, USA

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00493-023-00050-7&domain=pdf

1104 Combinatorica (2023) 43:1103-1109

condition for F to have a O-transversal. In 1935, Vincensini was interested in the
natural extension of Helly’s theorem of finding necessary and sufficient conditions
for a finite family of convex sets F in R? to have a k-transversal for k > 0 [15].
In particular, Vincensini asked if there exists some constant » = r(k, d) such that if
every choice of r or fewer sets in F has a k-transversal, then F has a k-transversal.
However, Santal6 provided examples showing that such a constant » does not exist
for any k > 0 [14]. Many other related problems in geometric transversal theory have
also been considered. For more information we refer the reader to the surveys [5, 7].

In 1957, Hadwiger made the first positive progress toward this extension of Helly’s
theorem considered by Vincensini by proving the following theorem.

Theorem 1.1 (Hadwiger [8]) A finite family of pairwise disjoint convex sets in R? has
a l-transversal if and only if the sets in the family can be linearly ordered such that
any three sets have a 1-transversal consistent with the ordering.

Hadwiger’s theorem has been generalized in different ways, eventually resulting in
an encompassing result for (d — 1)-transversals in R?. The first significant result in
this direction was made by Goodman and Pollack who showed that in R¢, the linear
ordering in Hadwiger’s theorem can be replaced with the notion of an order type of
points in R~ ! given the additional condition that the family is (d —2)-separable, which
generalizes the disjointness condition in Hadwiger’s theorem (see [6] for the precise
statement of the theorem and definitions of these notions). Soon after, Wenger showed
that the disjointness condition of Hadwiger’s theorem can be dropped [16]. Finally,
Pollack and Wenger completed the picture by proving the necessary and sufficient
conditions required to have a (d — 1)-transversal in R? with no additional separability
conditions on the family of sets [13]. We note that several extensions of this result,
including colorful generalizations, have been studied for instance in [1, 2, 4, 10, 11].

Despite the previous work on the existence of (d — 1)-transversals, no necessary
and sufficient conditions for the existence of k-transversals in R? for 0 < k < d — 1
have been proven or conjectured. In this paper, we make progress in this direction by
providing necessary and sufficient conditions for (2d — 2)-transversals in R2“.

2 Hyperplane Transversals Revisited

Here we will describe the result of Pollack and Wenger on (d — 1)-transversals in R4
as presented in [5], then we will discuss an equivalent rephrasing of this theorem to
put our main result in Sect. 3 into context.

Let  be a finite family of convex sets in R? and let P be a subset of points in R¥ for
some k. We say that F separates consistently with P if there existsamap ¢ : F — P
such that for any two subfamilies |, F» C F, we have that

conv(F1) Nconv(Fy) =W = conv(¢(F1)) Nconv(gp(F)) = 0.

Here we mean conv(F;) to be conv(Upcz F). Another way to think about this con-
dition is that if the sets of ] can be separated from the sets of 7> by a hyperplane in
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RY, then the sets of points ¢ (F}) and ¢ (F>) can be separated by a hyperplane in R,
We also note that F separates consistently with P if and only if

conv(F1) Nconv(Fr) =0 = conv(¢(F1)) Nconv(p(Fr)) = @.

whenever |F1|+|F2| < k+2. This is a consequence of the well-known Kirchberger’s
theorem [12], which states that if U and V are finite point sets in R¥ such that for
every set of k + 2 points S C U U V, we have that conv(S N U) Nconv(SNV) =@,
then conv(U) Nconv(V) = (.

We now have the terminology to state the Goodman—Pollack—Wenger theorem.

Theorem 2.1 (Goodman—Pollack—Wenger theorem [13]) A finite family of convex sets
F inR? has a (d — 1)-transversal if and only if F separates consistently with a set
P C R4L

The condition in our main result of Sect.3 is quite similar to the condition in
Theorem 2.1, and we will first provide a slight rephrasing of the definition for F
to separate consistently with P in order to make this similarity more apparent. By
taking the contrapositive of the implication in the definition of separating consistently,
we may equivalently say that F separates consistently with P if there exists a map
¢ : F — P C RFsuch that

conv(¢(F1)) Nconv(p(Fr)) # ¥ — conv(Fq) Nconv(F,) # @.

In other words, the existence of an affine dependence

Y ar=0, > arg(F)=0

FeF UF, FeF UF,

where arp > 0 for all F € Fj (not all 0) and ar < O for all F € F, implies the
existence of points pr € F and real numbers rr > 0 such that

Y rrap=0. Y (rar)pr=0

FeF UF, FeF UF,

is an affine dependence of the points pr and the numbers rrar are not all 0.

3 Main Result

In order to simplify the statement of our main result, we will state our theorem as a
necessary and sufficient condition for a finite family F of convex sets in C? to have a
complex (d — 1)-transversal, where a complex (d — 1)-transversal here is a complex
(d — 1)-dimensional affine subspace of C¢ that intersects each set in F. Since C¢
can be identified with R?? and a complex (d — 1)-transversal can subsequently be
identified with a (2d — 2)-transversal in R??, our result will equivalently provide a
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necessary and sufficient condition for a finite family of convex sets F in R>? to have
a (2d — 2)-transversal.

First, following our discussion from Sect.2, we make the following definition in
order to articulate our main theorem, Theorem 3.4.

Definition 3.1 Let JF be a finite family of convex sets in C¢, and let P C C*. We say
that F is dependency-consistent with P if there exists a map ¢ : F — P such that
for every subfamily 7' C F and every affine dependence

Y ar=0. ) arp(F)=0

FeF’ FeF'

for complex numbers ar, there exist real numbers rr > 0 and points pr € F for
F € F' such that

Z rrap =0, Z (rrarp)pr =0

FeF' FeF'
where not all of the values rrpar are O.

Remark 3.2 Note that we could add the additional restriction that || < 2k +3 in Def-
inition 3.1, and we would get an equivalent definition. Indeed, by associating the points
(ar¢ (F), ar) with points inR%*+2 we have that the setof points {(arp @ (F), ar)}per
contains 0 € R**2 in its convex hull. Therefore, by Carathéodory’s Theorem,
there exist m < 2k + 3 sets Fy, ..., F,, € F' and real numbers s; > 0 such that
Zf"zl si(ap,¢(F;), ar;) = 0. In other words, there is the complex affine dependence

Y siap, =0, (siar)$(F) =0

i=1 i=1
among the points ¢ (F1), ..., ¢(Fp).

In our proof of Theorem 3.4 will make use of the Borsuk—Ulam theorem below. We
note that the Borsuk—Ulam theorem was also employed in the proof of the Goodman—
Pollack—Wenger theorem in [13], and in fact our proof of Theorem 3.4 takes significant
inspiration from this proof.

Theorem 3.3 (Borsuk—Ulam theorem) Ifn > m and f : S" — R™ is an odd, contin-
uous map, i.e. f(—x) = — f(x) forall x € §", then 0 € Im(f).

We are now ready to state and prove the main result. The non-trivial direction, and
the contents of the following proof, is the “if” part of the statement. The “only if”
direction is straightforward since a complex (d — 1)-transversal can be associated with
C9=1, and P can be constructed by choosing a point in the intersection of a set from
F and the complex (d — 1)-transversal for each set in F.

Theorem 3.4 (Main theorem) A finite family of convex sets F in C% has a complex
(d — 1)-transversal if and only if F is dependency-consistent with a set P C C471,
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Proof We associate C? with the set of points
H ={(z1,...,24+1) € Cca+l Zd+1 = 1}.

Thus, we think of the convex sets from the family F as lying in H as well.

We will now define a continuous odd map f from {z € C4t1 | ||z|| = 1}, which
can be identified with the (2d + 1)-dimensional sphere, §2d+1 (o R24 Such a map
will have a zero by Theorem 3.3, and we will show that for the map that we define,
this zero will correspond to a complex (d — 1)-transversal of F.

Letx € {z € C?*! | ||z|| = 1}, and let Py be the complex subspace spanned by X.
Additionally, for a set F € F we denote the orthogonal projection of F' onto Py by
Fx; note that Fx is a convex set.

For each set F' € F, let py r be the complex number ¢ such that cx is the element
of Fy that is closest in distance to 0, the origin in C?*!. Note that the convexity of
Fx implies that ¢ is unique. Furthermore, for a fixed set F, the point px r varies
continuously with x. Let ¢ be the map witnessing the fact that F is dependency-
consistent with P; we define f(x) € C x C?~!, which can be identified with R2?, as
follows

f® =" (pxr Prrd(F)).
FeF

where px r denotes the complex conjugate of py r. Because py r = —p_x F and
Px, F varies continuously with x, we have that f is indeed a continuous odd map and
thus has a zero, say Xo, by Theorem 3.3.

It cannot be the case that xo = (0,...,0, zg41) for some z4+1 # 0, since in
that case, each Fy is the point (0,...,0,1) and thus py, r = 1/z441 for every
F € F.If py,r = 1/zq41 for each F, then clearly Y p_r px,,r # 0. Thus,
xo # (0,...,0,z4+1), and in particular, this implies that the orthogonal comple-
ment of Xq intersects H in a complex (d — 1)-dimensional affine space, say 7. If
T intersects each set in F, then F has a complex (d — 1)-transversal, and we are
done. Therefore, we assume that 7 does not intersect each set in F, so we have that
some of the values py, r must be nonzero. We show that this assumption leads to a
contradiction.

Let 7' C F be the family of sets F such that py, r # 0. Since f(xg) = 0, we
have the affine dependence

Y Por =0, Y P re(F)=0.

FeF' FeF'

Since F is dependency-consistent with P, we have that there exist points pr € F for
all F € F and real numbers g > 0 such that

> rEpx.r =0, Y Frpsg.rpr =0.
FeF' FeF'
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Fig. 1 Depiction of Fx,,

Px(, FX0; and proij (pr) in the
complex plane Py,

projxo (pF)

pxo,FXO

Now, consider the C-linear map projy,, : C9*! — Py, given by orthogonal projection
onto Py,. By linearity, we have that

Projy, Z T'FPxo,FPF | = Z T'F Pxo, FPIOjy, (pF) = 0.
FeF’ FeF’

However, this immediately leads to a contradiction. Indeed, recall that px, rXo is the
point of Fy, closest to 0 and Fx, > projy (pr) is a convex set. This implies that the
angle between py,, rxo and projy (pr) is less than 90° (see Fig. 1). Therefore, writing
proj,(pr) = crXp, we have that the absolute difference in argument between the
complex numbers py, r and cr is less than 90°, which implies that Re(px,. rcr) > 0.
This is in contradiction to the fact that ) .. = 7' px,. FProjy, (pr) = 0, and hence
completes the proof. O
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