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Abstract
A k-transversal to a family of sets in R

d is a k-dimensional affine subspace that
intersects each set of the family. In 1957 Hadwiger provided a necessary and sufficient
condition for a family of pairwise disjoint, planar convex sets to have a 1-transversal.
After a series of three papers among the authors Goodman, Pollack, and Wenger
from 1988 to 1990, Hadwiger’s Theorem was extended to necessary and sufficient
conditions for (d − 1)-transversals to finite families of convex sets in R

d with no
disjointness condition on the family of sets. However, no such conditions for a finite
family of convex sets in Rd to have a k-transversal for 0 < k < d − 1 have previously
been proven or conjectured.Wemake progress in this direction by providing necessary
and sufficient conditions for a finite family of convex sets in R

2d to have a (2d − 2)-
transversal.
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1 Introduction

The well-known Helly’s theorem [9] states that if a finite family F of convex sets in
R
d has the property that any choice of d + 1 or fewer sets in F have a non-empty

intersection, then there is a point in common to all the sets in F (see [3, 5] for surveys
onHelly’s theorem and related results). A k-transversal is a k-dimensional affine space
that intersects each set of F , so Helly’s theorem provides a necessary and sufficient
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condition for F to have a 0-transversal. In 1935, Vincensini was interested in the
natural extension of Helly’s theorem of finding necessary and sufficient conditions
for a finite family of convex sets F in R

d to have a k-transversal for k > 0 [15].
In particular, Vincensini asked if there exists some constant r = r(k, d) such that if
every choice of r or fewer sets in F has a k-transversal, then F has a k-transversal.
However, Santaló provided examples showing that such a constant r does not exist
for any k > 0 [14]. Many other related problems in geometric transversal theory have
also been considered. For more information we refer the reader to the surveys [5, 7].

In 1957, Hadwiger made the first positive progress toward this extension of Helly’s
theorem considered by Vincensini by proving the following theorem.

Theorem 1.1 (Hadwiger [8]) A finite family of pairwise disjoint convex sets in R2 has
a 1-transversal if and only if the sets in the family can be linearly ordered such that
any three sets have a 1-transversal consistent with the ordering.

Hadwiger’s theorem has been generalized in different ways, eventually resulting in
an encompassing result for (d − 1)-transversals in R

d . The first significant result in
this direction was made by Goodman and Pollack who showed that in R

d , the linear
ordering in Hadwiger’s theorem can be replaced with the notion of an order type of
points inRd−1 given the additional condition that the family is (d−2)-separable,which
generalizes the disjointness condition in Hadwiger’s theorem (see [6] for the precise
statement of the theorem and definitions of these notions). Soon after, Wenger showed
that the disjointness condition of Hadwiger’s theorem can be dropped [16]. Finally,
Pollack and Wenger completed the picture by proving the necessary and sufficient
conditions required to have a (d −1)-transversal inRd with no additional separability
conditions on the family of sets [13]. We note that several extensions of this result,
including colorful generalizations, have been studied for instance in [1, 2, 4, 10, 11].

Despite the previous work on the existence of (d − 1)-transversals, no necessary
and sufficient conditions for the existence of k-transversals in R

d for 0 < k < d − 1
have been proven or conjectured. In this paper, we make progress in this direction by
providing necessary and sufficient conditions for (2d − 2)-transversals in R2d .

2 Hyperplane Transversals Revisited

Here we will describe the result of Pollack and Wenger on (d − 1)-transversals in Rd

as presented in [5], then we will discuss an equivalent rephrasing of this theorem to
put our main result in Sect. 3 into context.

LetF be a finite family of convex sets inRd and let P be a subset of points inRk for
some k. We say thatF separates consistently with P if there exists a map φ : F → P
such that for any two subfamilies F1, F2 ⊂ F , we have that

conv(F1) ∩ conv(F2) = ∅ �⇒ conv(φ(F1)) ∩ conv(φ(F2)) = ∅.

Here we mean conv(Fi ) to be conv(∪F∈Fi F). Another way to think about this con-
dition is that if the sets of F1 can be separated from the sets of F2 by a hyperplane in
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R
d , then the sets of points φ(F1) and φ(F2) can be separated by a hyperplane in Rk .

We also note that F separates consistently with P if and only if

conv(F1) ∩ conv(F2) = ∅ �⇒ conv(φ(F1)) ∩ conv(φ(F2)) = ∅.

whenever |F1|+|F2| ≤ k+2. This is a consequence of the well-known Kirchberger’s
theorem [12], which states that if U and V are finite point sets in R

k such that for
every set of k + 2 points S ⊂ U ∪ V , we have that conv(S ∩U ) ∩ conv(S ∩ V ) = ∅,
then conv(U ) ∩ conv(V ) = ∅.

We now have the terminology to state the Goodman–Pollack–Wenger theorem.

Theorem 2.1 (Goodman–Pollack–Wenger theorem [13]) A finite family of convex sets
F in R

d has a (d − 1)-transversal if and only if F separates consistently with a set
P ⊂ R

d−1.

The condition in our main result of Sect. 3 is quite similar to the condition in
Theorem 2.1, and we will first provide a slight rephrasing of the definition for F
to separate consistently with P in order to make this similarity more apparent. By
taking the contrapositive of the implication in the definition of separating consistently,
we may equivalently say that F separates consistently with P if there exists a map
φ : F → P ⊂ R

k such that

conv(φ(F1)) ∩ conv(φ(F2)) �= ∅ �⇒ conv(F1) ∩ conv(F2) �= ∅.

In other words, the existence of an affine dependence

∑

F∈F1∪F2

aF = 0,
∑

F∈F1∪F2

aFφ(F) = 0

where aF ≥ 0 for all F ∈ F1 (not all 0) and aF ≤ 0 for all F ∈ F2 implies the
existence of points pF ∈ F and real numbers rF ≥ 0 such that

∑

F∈F1∪F2

rFaF = 0,
∑

F∈F1∪F2

(rFaF )pF = 0

is an affine dependence of the points pF and the numbers rFaF are not all 0.

3 Main Result

In order to simplify the statement of our main result, we will state our theorem as a
necessary and sufficient condition for a finite family F of convex sets in Cd to have a
complex (d − 1)-transversal, where a complex (d − 1)-transversal here is a complex
(d − 1)-dimensional affine subspace of Cd that intersects each set in F . Since C

d

can be identified with R
2d and a complex (d − 1)-transversal can subsequently be

identified with a (2d − 2)-transversal in R
2d , our result will equivalently provide a
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necessary and sufficient condition for a finite family of convex sets F in R
2d to have

a (2d − 2)-transversal.
First, following our discussion from Sect. 2, we make the following definition in

order to articulate our main theorem, Theorem 3.4.

Definition 3.1 Let F be a finite family of convex sets in Cd , and let P ⊂ C
k . We say

that F is dependency-consistent with P if there exists a map φ : F → P such that
for every subfamily F ′ ⊂ F and every affine dependence

∑

F∈F ′
aF = 0,

∑

F∈F ′
aFφ(F) = 0

for complex numbers aF , there exist real numbers rF ≥ 0 and points pF ∈ F for
F ∈ F ′ such that

∑

F∈F ′
rFaF = 0,

∑

F∈F ′
(rFaF )pF = 0

where not all of the values rFaF are 0.

Remark 3.2 Note that we could add the additional restriction that |F ′| ≤ 2k+3 inDef-
inition 3.1, andwewould get an equivalent definition. Indeed, by associating the points
(aFφ(F), aF )with points inR2k+2,we have that the set of points {(aFφ(F), aF )}F∈F ′
contains 0 ∈ R

2k+2 in its convex hull. Therefore, by Carathéodory’s Theorem,
there exist m ≤ 2k + 3 sets F1, . . . , Fm ∈ F ′ and real numbers si > 0 such that∑m

i=1 si (aFi φ(Fi ), aFi ) = 0. In other words, there is the complex affine dependence

m∑

i=1

si aFi = 0,
m∑

i=1

(si aFi )φ(Fi ) = 0

among the points φ(F1), . . . , φ(Fm).

In our proof of Theorem 3.4 will make use of the Borsuk–Ulam theorem below.We
note that the Borsuk–Ulam theorem was also employed in the proof of the Goodman–
Pollack–Wenger theorem in [13], and in fact our proof of Theorem 3.4 takes significant
inspiration from this proof.

Theorem 3.3 (Borsuk–Ulam theorem) If n ≥ m and f : Sn → R
m is an odd, contin-

uous map, i.e. f (−x) = − f (x) for all x ∈ Sn, then 0 ∈ Im( f ).

We are now ready to state and prove the main result. The non-trivial direction, and
the contents of the following proof, is the “if” part of the statement. The “only if”
direction is straightforward since a complex (d−1)-transversal can be associated with
C
d−1, and P can be constructed by choosing a point in the intersection of a set from

F and the complex (d − 1)-transversal for each set in F .

Theorem 3.4 (Main theorem) A finite family of convex sets F in C
d has a complex

(d − 1)-transversal if and only if F is dependency-consistent with a set P ⊂ C
d−1.
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Proof We associate Cd with the set of points

H = {(z1, . . . , zd+1) ∈ C
d+1 | zd+1 = 1}.

Thus, we think of the convex sets from the family F as lying in H as well.
We will now define a continuous odd map f from {z ∈ C

d+1 | ||z|| = 1}, which
can be identified with the (2d + 1)-dimensional sphere, S2d+1, to R

2d . Such a map
will have a zero by Theorem 3.3, and we will show that for the map that we define,
this zero will correspond to a complex (d − 1)-transversal of F .

Let x ∈ {z ∈ C
d+1 | ||z|| = 1}, and let Px be the complex subspace spanned by x.

Additionally, for a set F ∈ F we denote the orthogonal projection of F onto Px by
Fx; note that Fx is a convex set.

For each set F ∈ F , let px,F be the complex number c such that cx is the element
of Fx that is closest in distance to 0, the origin in C

d+1. Note that the convexity of
Fx implies that c is unique. Furthermore, for a fixed set F , the point px,F varies
continuously with x. Let φ be the map witnessing the fact that F is dependency-
consistent with P; we define f (x) ∈ C×C

d−1, which can be identified with R2d , as
follows

f (x) =
∑

F∈F

(
px,F , px,Fφ(F)

)
,

where px,F denotes the complex conjugate of px,F . Because px,F = −p−x,F and
px,F varies continuously with x, we have that f is indeed a continuous odd map and
thus has a zero, say x0, by Theorem 3.3.

It cannot be the case that x0 = (0, . . . , 0, zd+1) for some zd+1 �= 0, since in
that case, each Fx is the point (0, . . . , 0, 1) and thus px0,F = 1/zd+1 for every
F ∈ F . If px0,F = 1/zd+1 for each F , then clearly

∑
F∈F px0,F �= 0. Thus,

x0 �= (0, . . . , 0, zd+1), and in particular, this implies that the orthogonal comple-
ment of x0 intersects H in a complex (d − 1)-dimensional affine space, say T . If
T intersects each set in F , then F has a complex (d − 1)-transversal, and we are
done. Therefore, we assume that T does not intersect each set in F , so we have that
some of the values px0,F must be nonzero. We show that this assumption leads to a
contradiction.

Let F ′ ⊂ F be the family of sets F such that px0,F �= 0. Since f (x0) = 0, we
have the affine dependence

∑

F∈F ′
px0,F = 0,

∑

F∈F ′
px0,Fφ(F) = 0.

Since F is dependency-consistent with P , we have that there exist points pF ∈ F for
all F ∈ F ′ and real numbers rF ≥ 0 such that

∑

F∈F ′
rF px0,F = 0,

∑

F∈F ′
rF px0,F pF = 0.
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Fig. 1 Depiction of Fx0 ,
px0,Fx0, and projx0 (pF ) in the
complex plane Px0

0

px0,Fx0

projx0
(pF )

Fx0

Now, consider the C-linear map projx0 : Cd+1 → Px0 given by orthogonal projection
onto Px0 . By linearity, we have that

projx0

(
∑

F∈F ′
rF px0,F pF

)
=

∑

F∈F ′
rF px0,Fprojx0(pF ) = 0.

However, this immediately leads to a contradiction. Indeed, recall that px0,Fx0 is the
point of Fx0 closest to 0 and Fx0 � projx0(pF ) is a convex set. This implies that the
angle between px0,Fx0 and projx0(pF ) is less than 90◦ (see Fig. 1). Therefore, writing
projx0(pF ) = cFx0, we have that the absolute difference in argument between the
complex numbers px0,F and cF is less than 90◦, which implies that Re(px0,FcF ) > 0.
This is in contradiction to the fact that

∑
F∈F ′ rF px0,Fprojx0(pF ) = 0, and hence

completes the proof. ��
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